Accuracy and limitations for spectroscopic prediction of leaf traits in seasonally dry tropical environments
Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) are still lacking for most ecosystems, and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we te...
Saved in:
Published in | Remote sensing of environment Vol. 244; p. 111828 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) are still lacking for most ecosystems, and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we tested the ability of using leaf reflectance spectra to estimate LMA and LDMC and classify plant growth forms within the cerrado and campo rupestre seasonally dry non-forest vegetation types of Southeastern Brazil, filling an existing gap in published assessments of leaf optical properties and plant traits in such environments. We measured leaf reflectance spectra from 1648 individual plants comprising grasses, herbs, shrubs, and trees, developed partial least squares regression (PLSR) models linking LMA and LDMC to leaf spectra (400–2500 nm), and identified the spectral regions with the greatest discriminatory power among growth forms using Bhattacharyya distances. We accurately predicted leaf functional traits and identified different growth forms. LMA was overall more accurately predicted (RMSE = 8.58%) than LDMC (RMSE = 9.75%). Our model including all sampled plants was not biased towards any particular growth form, but growth-form specific models yielded higher accuracies and showed that leaf traits from woody plants can be more accurately estimated than for grasses and forbs, independently of the trait measured. We observed a large range of LMA values (31.80–620.81 g/m2) rarely observed in tropical or temperate forests, and demonstrated that values above 300 g/m2 could not be accurately estimated. Our results suggest that spectroscopy may have an intrinsic saturation point, and/or that PLSR, the current approach of choice for estimating traits from plant spectra, is not able to model the entire range of LMA values. This finding has very important implications to our ability to use field, airborne, and orbital spectroscopic methods to derive generalizable functional information. We thus highlight the need for increasing spectroscopic sampling and research efforts in drier non-forested environments, where environmental pressures lead to leaf adaptations and allocation strategies that are very different from forested ecosystems. Our findings also confirm that leaf reflectance spectra can provide important information regarding differences in leaf metabolism, structure, and chemical composition. Such information enabled us to accurately discriminate plant growth forms in these environments regardless of lack of variation in leaf economic traits, encouraging further adoption of remote sensing methods by ecologists and allowing a more comprehensive assessment of plant functional diversity.
•We measured spectra and leaf traits for an understudied dry tropical grassland;•We could not accurately predict LMA values >300 g/m2 from spectral data•We could infer plant lifeform from spectra despite absence of leaf trait differences•These key findings have seldom been studied due to biases towards humid forests |
---|---|
AbstractList | Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) are still lacking for most ecosystems, and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we tested the ability of using leaf reflectance spectra to estimate LMA and LDMC and classify plant growth forms within the cerrado and campo rupestre seasonally dry non-forest vegetation types of Southeastern Brazil, filling an existing gap in published assessments of leaf optical properties and plant traits in such environments. We measured leaf reflectance spectra from 1648 individual plants comprising grasses, herbs, shrubs, and trees, developed partial least squares regression (PLSR) models linking LMA and LDMC to leaf spectra (400–2500 nm), and identified the spectral regions with the greatest discriminatory power among growth forms using Bhattacharyya distances. We accurately predicted leaf functional traits and identified different growth forms. LMA was overall more accurately predicted (RMSE = 8.58%) than LDMC (RMSE = 9.75%). Our model including all sampled plants was not biased towards any particular growth form, but growth-form specific models yielded higher accuracies and showed that leaf traits from woody plants can be more accurately estimated than for grasses and forbs, independently of the trait measured. We observed a large range of LMA values (31.80–620.81 g/m2) rarely observed in tropical or temperate forests, and demonstrated that values above 300 g/m2 could not be accurately estimated. Our results suggest that spectroscopy may have an intrinsic saturation point, and/or that PLSR, the current approach of choice for estimating traits from plant spectra, is not able to model the entire range of LMA values. This finding has very important implications to our ability to use field, airborne, and orbital spectroscopic methods to derive generalizable functional information. We thus highlight the need for increasing spectroscopic sampling and research efforts in drier non-forested environments, where environmental pressures lead to leaf adaptations and allocation strategies that are very different from forested ecosystems. Our findings also confirm that leaf reflectance spectra can provide important information regarding differences in leaf metabolism, structure, and chemical composition. Such information enabled us to accurately discriminate plant growth forms in these environments regardless of lack of variation in leaf economic traits, encouraging further adoption of remote sensing methods by ecologists and allowing a more comprehensive assessment of plant functional diversity.
•We measured spectra and leaf traits for an understudied dry tropical grassland;•We could not accurately predict LMA values >300 g/m2 from spectral data•We could infer plant lifeform from spectra despite absence of leaf trait differences•These key findings have seldom been studied due to biases towards humid forests Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) are still lacking for most ecosystems, and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we tested the ability of using leaf reflectance spectra to estimate LMA and LDMC and classify plant growth forms within the cerrado and campo rupestre seasonally dry non-forest vegetation types of Southeastern Brazil, filling an existing gap in published assessments of leaf optical properties and plant traits in such environments. We measured leaf reflectance spectra from 1648 individual plants comprising grasses, herbs, shrubs, and trees, developed partial least squares regression (PLSR) models linking LMA and LDMC to leaf spectra (400–2500 nm), and identified the spectral regions with the greatest discriminatory power among growth forms using Bhattacharyya distances. We accurately predicted leaf functional traits and identified different growth forms. LMA was overall more accurately predicted (RMSE = 8.58%) than LDMC (RMSE = 9.75%). Our model including all sampled plants was not biased towards any particular growth form, but growth-form specific models yielded higher accuracies and showed that leaf traits from woody plants can be more accurately estimated than for grasses and forbs, independently of the trait measured. We observed a large range of LMA values (31.80–620.81 g/m²) rarely observed in tropical or temperate forests, and demonstrated that values above 300 g/m² could not be accurately estimated. Our results suggest that spectroscopy may have an intrinsic saturation point, and/or that PLSR, the current approach of choice for estimating traits from plant spectra, is not able to model the entire range of LMA values. This finding has very important implications to our ability to use field, airborne, and orbital spectroscopic methods to derive generalizable functional information. We thus highlight the need for increasing spectroscopic sampling and research efforts in drier non-forested environments, where environmental pressures lead to leaf adaptations and allocation strategies that are very different from forested ecosystems. Our findings also confirm that leaf reflectance spectra can provide important information regarding differences in leaf metabolism, structure, and chemical composition. Such information enabled us to accurately discriminate plant growth forms in these environments regardless of lack of variation in leaf economic traits, encouraging further adoption of remote sensing methods by ecologists and allowing a more comprehensive assessment of plant functional diversity. Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) are still lacking for most ecosystems, and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we tested the ability of using leaf reflectance spectra to estimate LMA and LDMC and classify plant growth forms within the cerrado and campo rupestre seasonally dry non-forest vegetation types of Southeastern Brazil, filling an existing gap in published assessments of leaf optical properties and plant traits in such environments. We measured leaf reflectance spectra from 1648 individual plants comprising grasses, herbs, shrubs, and trees, developed partial least squares regression (PLSR) models linking LMA and LDMC to leaf spectra (400–2500 nm), and identified the spectral regions with the greatest discriminatory power among growth forms using Bhattacharyya distances. We accurately predicted leaf functional traits and identified different growth forms. LMA was overall more accurately predicted (RMSE = 8.58%) than LDMC (RMSE = 9.75%). Our model including all sampled plants was not biased towards any particular growth form, but growth-form specific models yielded higher accuracies and showed that leaf traits from woody plants can be more accurately estimated than for grasses and forbs, independently of the trait measured. We observed a large range of LMA values (31.80–620.81 g/m2) rarely observed in tropical or temperate forests, and demonstrated that values above 300 g/m2 could not be accurately estimated. Our results suggest that spectroscopy may have an intrinsic saturation point, and/or that PLSR, the current approach of choice for estimating traits from plant spectra, is not able to model the entire range of LMA values. This finding has very important implications to our ability to use field, airborne, and orbital spectroscopic methods to derive generalizable functional information. We thus highlight the need for increasing spectroscopic sampling and research efforts in drier non-forested environments, where environmental pressures lead to leaf adaptations and allocation strategies that are very different from forested ecosystems. Our findings also confirm that leaf reflectance spectra can provide important information regarding differences in leaf metabolism, structure, and chemical composition. Such information enabled us to accurately discriminate plant growth forms in these environments regardless of lack of variation in leaf economic traits, encouraging further adoption of remote sensing methods by ecologists and allowing a more comprehensive assessment of plant functional diversity. |
ArticleNumber | 111828 |
Author | Streher, Annia Susin Torres, Ricardo da Silva Morellato, Leonor Patrícia Cerdeira Silva, Thiago Sanna Freire |
Author_xml | – sequence: 1 givenname: Annia Susin orcidid: 0000-0002-9276-7289 surname: Streher fullname: Streher, Annia Susin email: annia.streher@gmail.com organization: Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de Biodiversidade, Rio Claro, São Paulo, Brazil – sequence: 2 givenname: Ricardo da Silva surname: Torres fullname: Torres, Ricardo da Silva organization: Department of ICT and Natural Sciences, NTNU - Norwegian University of Science and Technology, Ålesund, Norway – sequence: 3 givenname: Leonor Patrícia Cerdeira surname: Morellato fullname: Morellato, Leonor Patrícia Cerdeira organization: Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de Biodiversidade, Phenology Lab, Rio Claro, São Paulo, Brazil – sequence: 4 givenname: Thiago Sanna Freire surname: Silva fullname: Silva, Thiago Sanna Freire organization: Biological and Environmental Sciences, Faculty of Natural Resources, University of Stirling. Stirling, UK, FK9 4LA |
BookMark | eNp9kT1rHDEQhkWwIWfHPyCdIE2aPY-0uyctqYyJE4PBjVMLfYxAh07aSHuG-_fR5ly5cCWGeZ4Bve8VuUg5ISFfGWwZsN3tflsqbjnwNjMmufxENkyKqQMBwwXZAPRDN_BRfCZXte4B2CgF25B4Z-2xaHuiOjkawyEsegk5VepzoXVGu5RcbZ6DpXNBF-y6pdnTiNrTpeiwVBoSrahrTjrGE3Xl1BaroiPF9BpKTgdMS_1CLr2OFW_e3mvy5-Hny_3v7un51-P93VNnh51YuklOxvSjNxb4yP0OvNnp3rDJaofcCAPSWTd55iY0go8gpn4cnYHBAoqe9dfk-_nuXPLfI9ZFHUK1GKNOmI9V8aFnUoJkU0O_vUP3-VjaP_5TYui55NAocaZsC6MW9Mq-5bQGEBUDtbag9qq1oNYW1LmFZrJ35lzCQZfTh86Ps4Mto9eARVUbMNmWfml9KJfDB_Y_iKSjvA |
CitedBy_id | crossref_primary_10_3390_rs13020172 crossref_primary_10_3390_rs16224184 crossref_primary_10_1016_j_patcog_2023_109577 crossref_primary_10_1016_j_rse_2023_113614 crossref_primary_10_1016_j_rse_2021_112406 crossref_primary_10_1016_j_jplph_2022_153831 crossref_primary_10_1111_2041_210X_13958 crossref_primary_10_3390_s21175705 crossref_primary_10_3390_rs13112160 crossref_primary_10_3390_rs15030791 crossref_primary_10_1080_01431161_2021_1975841 crossref_primary_10_3390_rs13173352 crossref_primary_10_3390_s22051695 crossref_primary_10_1109_TGRS_2025_3526186 crossref_primary_10_34133_plantphenomics_0189 crossref_primary_10_1016_j_agwat_2022_108089 crossref_primary_10_1111_nph_19807 crossref_primary_10_3390_rs16061049 crossref_primary_10_1016_j_jsames_2024_105323 crossref_primary_10_3390_rs13050977 |
Cites_doi | 10.1016/j.isprsjprs.2013.10.009 10.1139/cjb-2015-0001 10.3732/ajb.93.4.517 10.3390/rs6042682 10.1016/j.foreco.2010.07.054 10.1109/TCOM.1967.1089532 10.1017/S0266467405002658 10.1007/s11104-015-2637-8 10.1016/0034-4257(92)90133-5 10.1111/j.1469-8137.2011.03708.x 10.1016/j.rse.2004.01.013 10.1078/0176-1617-00887 10.1016/j.isprsjprs.2015.05.005 10.1016/j.rse.2011.08.020 10.1038/nature02403 10.1890/110154 10.1117/1.JRS.7.073502 10.1016/j.rse.2011.05.004 10.1046/j.0269-8463.2001.00563.x 10.1007/s10021-017-0123-2 10.1016/j.jag.2015.11.004 10.1016/j.rse.2018.02.030 10.1111/j.0030-1299.2007.15559.x 10.1007/s00442-010-1800-4 10.1016/S0034-4257(01)00182-1 10.1046/j.1469-8137.1999.00466.x 10.1007/s00442-017-3815-6 10.1111/nph.12895 10.2307/2446360 10.1111/nph.16123 10.1016/j.rse.2009.05.013 10.1890/070152 10.1002/mrd.22489 10.3732/ajb.1700061 10.1093/aob/mcr225 10.1046/j.1365-2745.2003.00777.x 10.1007/s11258-014-0302-6 10.1002/eap.1669 10.1371/journal.pone.0117659 10.1111/j.1365-2435.2006.01218.x 10.1007/s11258-019-00982-5 10.1590/1519-6984.23212 10.1016/j.rse.2010.11.001 10.1016/j.rse.2005.06.014 10.1016/j.flora.2017.12.001 10.1111/gcb.12822 10.1111/j.1469-8137.2010.03284.x 10.1016/j.ecolind.2018.01.012 10.1071/BT12225 10.1073/pnas.0903410106 10.1016/0003-2670(86)80028-9 10.1007/s11104-017-3330-x 10.1111/1365-2435.12462 10.1007/978-4-431-53918-6 10.1002/ece3.932 10.1016/j.ecocom.2013.06.003 10.2307/1930415 10.1038/nature16489 10.1016/S0034-4257(02)00010-X 10.1890/13-2110.1 10.18637/jss.v028.i05 10.1002/2017JG003883 10.1016/j.rse.2018.11.016 10.1080/01431168308948546 10.1890/09-1999.1 10.1890/05-1051 10.1111/nph.14051 10.1111/j.1469-8137.2009.02830.x 10.1038/s41559-018-0551-1 10.1073/pnas.1604863113 10.1109/TSMCB.2003.817107 10.1007/s10531-018-1556-4 10.1016/0034-4257(89)90069-2 10.1111/j.0022-0477.2005.00992.x 10.1016/S0169-7439(01)00155-1 10.1016/j.rse.2015.03.033 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright Elsevier BV Jul 2020 |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier BV Jul 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2020.111828 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2020_111828 S003442572030198X |
GeographicLocations | Cerrado Biome Brazil |
GeographicLocations_xml | – name: Cerrado Biome – name: Brazil |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-989bb35fbc0252f60fb6a3b19cade2b7b08dcd9f1d9eb725079355db04c0e7313 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Tue Aug 05 11:19:00 EDT 2025 Mon Aug 18 14:40:58 EDT 2025 Tue Jul 01 03:51:23 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Fri Feb 23 02:46:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leaf spectroscopy Partial least squares regression (PLSR) LMA Plant functional traits, campo rupestre Cerrado LDMC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-989bb35fbc0252f60fb6a3b19cade2b7b08dcd9f1d9eb725079355db04c0e7313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9276-7289 |
OpenAccessLink | http://dspace.stir.ac.uk/bitstream/1893/31233/1/Streher_et_al_RSE_Reviewed.pdf |
PQID | 2437432820 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2431880819 proquest_journals_2437432820 crossref_citationtrail_10_1016_j_rse_2020_111828 crossref_primary_10_1016_j_rse_2020_111828 elsevier_sciencedirect_doi_10_1016_j_rse_2020_111828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Asner, Knapp, Anderson, Martin, Vaughn (bb0045) 2016; 113 Serbin, Singh, McNeil, Kingdon, Townsend (bb0360) 2014; 24 Hoffmann, Franco (bb0215) 2003; 91 Ali, Darvishzadeh, Skidmore, Duren, Heiden, Heurich (bb0015) 2016; 45 Horler, Dockray, BARBER (bb0225) 1983; 4 Serbin, Wu, Ely, Kruger, Townsend, Meng, Wolfe, Chlus, Wang, Rogers (bb0365) 2019; 224 Schimel, Pavlick, Fisher, Asner, Saatchi, Townsend, Miller, Frankenberg, Hibbard, Cox (bb0345) 2015; 21 Homolová, Malenovský, Clevers, García-Santos, Schaepman (bb0220) 2013; 15 Wu, Chavana-Bryant, Prohaska, Serbin, Guan, Albert, Yang, van Leeuwen, Garnello, Martins, Malhi, Gerard, Oliviera, Saleska (bb0440) 2017; 214 Rossatto, Kolb, Franco (bb0325) 2015; 93 Schaefer, Corrêa, Candido, Arruda, Nunes, Araujo, Rodrigues, Filho, Pereira, Brandão, NeriCarlos (bb0340) 2016 Foley, Rivard, Sanchez-Azofeifa, Calvo (bb0185) 2006; 103 Wang, Gamon, Cavender-Bares, Townsend, Zygielbaum (bb0410) 2018; 28 Kuhn, Johnson (bb0255) 2013 Curran, Dungan, Macler, Plummer, Peterson (bb0110) 1992; 39 Cheng, Rivard, Sánchez-Azofeifa, Féret, Jacquemoud, Ustin (bb0100) 2014; 87 Fernandes, Almeida, Nunes, Xavier, Beirão, Carneiro, Cornelissen, Neves, Ribeiro, Nunes, Pires, Beirão (bb0170) 2016 Ferreira, Grondona, Rolim, Shimabukuro (bb0180) 2013; 7 Geladi, Kowalski (bb0195) 1986; 185 Hodgson, Montserrat-Martí, Charles, Jones, Wilson, Shipley, Sharafi, Cerabolini, Cornelissen, Band, Bogard, Castro-Díez, Guerrero-Campo, Palmer, Pérez-Rontomé, Carter, Hynd, Romo-Díez, de Torres Espuny, Royo Pla (bb0210) 2011; 108 Chen, Hong, Harris, Sharkey (bb0090) 2004; 34 Garnier, Shipley, Roumet, Laurent (bb0190) 2001; 15 Wang, Townsend, Schweiger, Couture, Singh, Hobbie, Cavender-Bares (bb0415) 2019; 221 Mattos, Camargo, Morellato, Batalha (bb0270) 2019; 220 Wright, Reich, Westoby, Ackerly, Baruch, Bongers, Cavender-Bares, Chapin, Cornelissen, Diemer, Flexas, Garnier, Groom, Gulias, Hikosaka, Lamont, Lee, Lee, Lusk, Midgley, Navas, Niinemets, Oleksyn, Osada, Poorter, Poot, Prior, Pyankov, Roumet, Thomas, Tjoelker, Veneklaas, Villar (bb0435) 2004; 428 Alcantara, de Mello-Silva, Teodoro, Drequeceler, Ackerly, Oliveira (bb0010) 2015; 29 Schindelin, Rueden, Hiner, Eliceiri (bb0350) 2015; 82 Oliveira, Abrahão, Pereira, Teodoro, Mauro Brum, Alcantara, Lambers (bb0300) 2016 Roelofsen, van Bodegom, Kooistra, Witte (bb0315) 2014; 4 Bhattacharyya (bb0060) 1943; 35 Santiago, Wright (bb0335) 2007; 21 Simon, Grether, de Queiroz, Skema, Pennington, Hughes (bb0380) 2009; 106 Jetz, Cavender-Bares, Pavlick, Schimel, Davis, Asner, Guralnick, Kattge, Latimer, Moorcroft, Schaepman, Schildhauer, Schneider, Schrodt, Stahl, Ustin (bb0230) 2016; 2 Zappi, Milliken, Nicholas Hind, Biggs, Rando, Malcolm-Tompkins, Mello-Silva (bb0445) 2014 Markesteijn, Poorter, Bongers, Paz, Sack (bb0260) 2011; 191 Rossatto, Franco (bb0320) 2017; 183 Ball, Sanchez-Azofeifa, Portillo-Quintero, Rivard, Castro-Contreras, Fernandes (bb0055) 2015; 10 Castro-Esau, Sánchez-Azofeifa, Caelli (bb0070) 2004; 90 Violle, Navas, Vile, Kazakou, Fortunel, Hummel, Garnier (bb0405) 2007; 116 Pérez-Harguindeguy, Díaz, Garnier, Lavorel, Poorter, Jaureguiberry, Bret-Harte, Cornwell, Craine, Gurvich, Urcelay, Veneklaas, Reich, Poorter, Wright, Ray, Enrico, Pausas, de Vos, Buchmann, Funes, Quétier, Hodgson, Thompson, Morgan, ter Steege, Sack, Blonder, Poschlod, Vaieretti, Conti, Staver, Aquino, Cornelissen (bb0305) 2013; 61 Cheng, Rivard, Sánchez-Azofeifa (bb0095) 2011; 115 Baldeck, Asner (bb0050) 2014; 6 Sánchez-Azofeifa, Castro, Wright, Gamon, Kalacska, Rivard, Schnitzer, Feng (bb0330) 2009; 113 Ustin, Gamon (bb0395) 2010; 186 Cavender-Bares, Gamon, Hobbie, Madritch, Meireles, Schweiger, Townsend (bb0080) 2017; 104 Dansereau (bb5005) 1951; 32 Morellato, Silveira (bb0275) 2018; 238 Negreiros, Le Stradic, Fernandes, Rennó (bb0280) 2014; 215 Niinemets (bb0285) 1999; 144 Niinemets (bb0290) 2010; 260 Asner, Martin, Tupayachi, Emerson, Martinez, Sinca, Powell, Wright, Lugo (bb0035) 2011; 21 Abrahão, de Britto Costa, Lambers, Andrade, Sawaya, Ryan, Oliveira (bb0005) 2018 Poorter, Niinemets, Poorter, Wright, Villar (bb0310) 2009; 182 Wold (bb0425) 1994 Féret, le Maire, Jay, Berveiller, Bendoula, Hmimina, Cheraiet, Oliveira, Ponzoni, Solanki, de Boissieu, Chave, Nouvellon, Porcar-Castell, Proisy, Soudani, Gastellu-Etchegorry, Lefèvre-Fonollosa (bb0160) 2018 Fernandes (bb0165) 2016 Silveira, Negreiros, Barbosa, Buisson, Carmo, Carstensen, Conceição, Cornelissen, Echternacht, Fernandes, Garcia, Guerra, Jacobi, Lemos-Filho, Le Stradic, Morellato, Neves, Oliveira, Schaefer, Viana, Lambers (bb0375) 2016; 403 Asner, Martin, Carranza-Jiménez, Sinca, Tupayachi, Anderson, Martinez (bb0040) 2014; 204 Shipley, Lechowicz, Wright, Reich (bb0370) 2006; 87 Van Cleemput, Vanierschot, Fernández-Castilla, Honnay, Somers (bb0400) 2018; 209 Castro-Esau, Sánchez-Azofeifa, Rivard, Wright, Quesada (bb0075) 2006; 93 Wold, Sjöström, Eriksson (bb0430) 2001; 58 Curran, Dungan, Peterson (bb0115) 2001; 76 Schweiger, Cavender-Bares, Townsend, Hobbie, Madritch, Wang, Tilman, Gamon (bb0355) 2018; 2 Martin, Blossey, Ellis (bb0265) 2012; 10 Alves, Silva, Oliveira, Medeiros (bb0020) 2014; 74 Kailath (bb0235) 1967; 15 Dayrell, Arruda, Pierce, Negreiros, Meyer, Lambers, Silveira (bb0120) 2018 Kuhn (bb0250) 2008; 28 Díaz, Kattge, Cornelissen, Wright, Lavorel, Dray, Reu, Kleyer, Wirth, Colin Prentice, Garnier, Bönisch, Westoby, Poorter, Reich, Moles, Dickie, Gillison, Zanne, Chave, Joseph Wright, Sheremet’ev, Jactel, Baraloto, Cerabolini, Pierce, Shipley, Kirkup, Casanoves, Joswig, Günther, Falczuk, Rüger, Mahecha, Gorné (bb0125) 2016; 529 Fernandes, Barbosa, Alberton, Barbieri, Dirzo, Goulart, Guerra, Morellato, Solar (bb0175) 2018; 27 Knapp, Carter (bb0245) 1998; 85 Brum, Teodoro, Abrahão, Oliveira (bb0065) 2017; 420 Kikuzawa, Lechowicz (bb0240) 2011 Curran (bb0105) 1989; 30 Gitelson, Gritz, Merzlyak (bb0200) 2003; 160 Verrelst, Camps-Valls, Muñoz-Marí, Rivera, Veroustraete, Clevers, Moreno (bb5010) 2015; 108 Doughty, Santos-Andrade, Goldsmith, Blonder, Shenkin, Bentley, Chavana-Bryant, Huaraca-Huasco, Díaz, Salinas, Enquist, Martin, Asner, Malhi (bb0135) 2017; 122 Warming (bb0420) 1908 Falster, Westoby (bb0140) 2005; 93 Féret, Asner (bb0155) 2011; 115 Streher, Sobreiro, Morellato, Silva (bb0390) 2017; 20 Feilhauer, Asner, Martin (bb0145) 2015; 164 Sims, Gamon (bb0385) 2002; 81 Asner, Martin, Knapp, Tupayachi, Anderson, Carranza, Martinez, Houcheime, Sinca, Weiss (bb0030) 2011; 115 Doughty, Asner, Martin (bb0130) 2011; 165 Oliveira, Dawson, Burgess (bb0295) 2005; 21 Feilhauer, Schmid, Faude, Sánchez-Carrillo, Cirujano (bb0150) 2018; 88 Giulietti, Menezes, Pirani, Meguro, Wanderley (bb0205) 1987 Asner, Martin (bb0025) 2009; 7 Chavana-Bryant, Malhi, Wu, Asner, Anastasiou, Enquist, Cosio Caravasi, Doughty, Saleska, Martin, Gerard, Chavana-Bryant, Malhi, Wu, Asner, Anatasiou, Enquist, Saleska, Doughty, Gerard, de la Riva, Olmo, Poorter, Ubera, Villar, Mahowald, Lo, Zheng, Harrison, Funk, Lombardozzi, Goodale, Poorter, Niinemets, Poorter, Wright, Villar, Ke, Im, Park, Gong (bb0085) 2016; 11 Abrahão (10.1016/j.rse.2020.111828_bb0005) 2018 Fernandes (10.1016/j.rse.2020.111828_bb0170) 2016 Geladi (10.1016/j.rse.2020.111828_bb0195) 1986; 185 Ustin (10.1016/j.rse.2020.111828_bb0395) 2010; 186 Baldeck (10.1016/j.rse.2020.111828_bb0050) 2014; 6 Asner (10.1016/j.rse.2020.111828_bb0025) 2009; 7 Verrelst (10.1016/j.rse.2020.111828_bb5010) 2015; 108 Van Cleemput (10.1016/j.rse.2020.111828_bb0400) 2018; 209 Curran (10.1016/j.rse.2020.111828_bb0110) 1992; 39 Chavana-Bryant (10.1016/j.rse.2020.111828_bb0085) 2016; 11 Wu (10.1016/j.rse.2020.111828_bb0440) 2017; 214 Simon (10.1016/j.rse.2020.111828_bb0380) 2009; 106 Ali (10.1016/j.rse.2020.111828_bb0015) 2016; 45 Zappi (10.1016/j.rse.2020.111828_bb0445) 2014 Martin (10.1016/j.rse.2020.111828_bb0265) 2012; 10 Schaefer (10.1016/j.rse.2020.111828_bb0340) 2016 Hodgson (10.1016/j.rse.2020.111828_bb0210) 2011; 108 Castro-Esau (10.1016/j.rse.2020.111828_bb0075) 2006; 93 Cavender-Bares (10.1016/j.rse.2020.111828_bb0080) 2017; 104 Dansereau (10.1016/j.rse.2020.111828_bb5005) 1951; 32 Cheng (10.1016/j.rse.2020.111828_bb0095) 2011; 115 Rossatto (10.1016/j.rse.2020.111828_bb0320) 2017; 183 Foley (10.1016/j.rse.2020.111828_bb0185) 2006; 103 Garnier (10.1016/j.rse.2020.111828_bb0190) 2001; 15 Hoffmann (10.1016/j.rse.2020.111828_bb0215) 2003; 91 Feilhauer (10.1016/j.rse.2020.111828_bb0150) 2018; 88 Homolová (10.1016/j.rse.2020.111828_bb0220) 2013; 15 Santiago (10.1016/j.rse.2020.111828_bb0335) 2007; 21 Fernandes (10.1016/j.rse.2020.111828_bb0175) 2018; 27 Serbin (10.1016/j.rse.2020.111828_bb0365) 2019; 224 Sánchez-Azofeifa (10.1016/j.rse.2020.111828_bb0330) 2009; 113 Schweiger (10.1016/j.rse.2020.111828_bb0355) 2018; 2 Schindelin (10.1016/j.rse.2020.111828_bb0350) 2015; 82 Féret (10.1016/j.rse.2020.111828_bb0160) 2018 Streher (10.1016/j.rse.2020.111828_bb0390) 2017; 20 Asner (10.1016/j.rse.2020.111828_bb0035) 2011; 21 Rossatto (10.1016/j.rse.2020.111828_bb0325) 2015; 93 Gitelson (10.1016/j.rse.2020.111828_bb0200) 2003; 160 Negreiros (10.1016/j.rse.2020.111828_bb0280) 2014; 215 Doughty (10.1016/j.rse.2020.111828_bb0130) 2011; 165 Oliveira (10.1016/j.rse.2020.111828_bb0295) 2005; 21 Violle (10.1016/j.rse.2020.111828_bb0405) 2007; 116 Alcantara (10.1016/j.rse.2020.111828_bb0010) 2015; 29 Pérez-Harguindeguy (10.1016/j.rse.2020.111828_bb0305) 2013; 61 Serbin (10.1016/j.rse.2020.111828_bb0360) 2014; 24 Cheng (10.1016/j.rse.2020.111828_bb0100) 2014; 87 Fernandes (10.1016/j.rse.2020.111828_bb0165) 2016 Asner (10.1016/j.rse.2020.111828_bb0045) 2016; 113 Díaz (10.1016/j.rse.2020.111828_bb0125) 2016; 529 Jetz (10.1016/j.rse.2020.111828_bb0230) 2016; 2 Feilhauer (10.1016/j.rse.2020.111828_bb0145) 2015; 164 Giulietti (10.1016/j.rse.2020.111828_bb0205) 1987 Asner (10.1016/j.rse.2020.111828_bb0040) 2014; 204 Oliveira (10.1016/j.rse.2020.111828_bb0300) 2016 Ball (10.1016/j.rse.2020.111828_bb0055) 2015; 10 Schimel (10.1016/j.rse.2020.111828_bb0345) 2015; 21 Alves (10.1016/j.rse.2020.111828_bb0020) 2014; 74 Curran (10.1016/j.rse.2020.111828_bb0105) 1989; 30 Kailath (10.1016/j.rse.2020.111828_bb0235) 1967; 15 Niinemets (10.1016/j.rse.2020.111828_bb0290) 2010; 260 Mattos (10.1016/j.rse.2020.111828_bb0270) 2019; 220 Horler (10.1016/j.rse.2020.111828_bb0225) 1983; 4 Falster (10.1016/j.rse.2020.111828_bb0140) 2005; 93 Sims (10.1016/j.rse.2020.111828_bb0385) 2002; 81 Morellato (10.1016/j.rse.2020.111828_bb0275) 2018; 238 Shipley (10.1016/j.rse.2020.111828_bb0370) 2006; 87 Warming (10.1016/j.rse.2020.111828_bb0420) 1908 Curran (10.1016/j.rse.2020.111828_bb0115) 2001; 76 Dayrell (10.1016/j.rse.2020.111828_bb0120) 2018 Doughty (10.1016/j.rse.2020.111828_bb0135) 2017; 122 Brum (10.1016/j.rse.2020.111828_bb0065) 2017; 420 Poorter (10.1016/j.rse.2020.111828_bb0310) 2009; 182 Niinemets (10.1016/j.rse.2020.111828_bb0285) 1999; 144 Castro-Esau (10.1016/j.rse.2020.111828_bb0070) 2004; 90 Féret (10.1016/j.rse.2020.111828_bb0155) 2011; 115 Ferreira (10.1016/j.rse.2020.111828_bb0180) 2013; 7 Kuhn (10.1016/j.rse.2020.111828_bb0250) 2008; 28 Roelofsen (10.1016/j.rse.2020.111828_bb0315) 2014; 4 Wold (10.1016/j.rse.2020.111828_bb0430) 2001; 58 Asner (10.1016/j.rse.2020.111828_bb0030) 2011; 115 Knapp (10.1016/j.rse.2020.111828_bb0245) 1998; 85 Bhattacharyya (10.1016/j.rse.2020.111828_bb0060) 1943; 35 Markesteijn (10.1016/j.rse.2020.111828_bb0260) 2011; 191 Wold (10.1016/j.rse.2020.111828_bb0425) 1994 Wang (10.1016/j.rse.2020.111828_bb0415) 2019; 221 Kuhn (10.1016/j.rse.2020.111828_bb0255) 2013 Wright (10.1016/j.rse.2020.111828_bb0435) 2004; 428 Kikuzawa (10.1016/j.rse.2020.111828_bb0240) 2011 Chen (10.1016/j.rse.2020.111828_bb0090) 2004; 34 Silveira (10.1016/j.rse.2020.111828_bb0375) 2016; 403 Wang (10.1016/j.rse.2020.111828_bb0410) 2018; 28 |
References_xml | – volume: 90 start-page: 353 year: 2004 end-page: 372 ident: bb0070 article-title: Discrimination of lianas and trees with leaf-level hyperspectral data publication-title: Remote Sens. Environ. – year: 2013 ident: bb0255 article-title: Applied Predictive Modeling – volume: 39 start-page: 153 year: 1992 end-page: 166 ident: bb0110 article-title: Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration publication-title: Remote Sens. Environ. – volume: 32 start-page: 172 year: 1951 end-page: 229 ident: bb5005 article-title: Description and Recording of Vegetation Upon a Structural Basis publication-title: Ecology – volume: 74 start-page: 355 year: 2014 end-page: 362 ident: bb0020 article-title: Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas publication-title: Brazilian J. Biol. – volume: 115 start-page: 659 year: 2011 end-page: 670 ident: bb0095 article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis publication-title: Remote Sens. Environ. – volume: 21 start-page: 585 year: 2005 end-page: 588 ident: bb0295 article-title: Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of Central Brazil publication-title: J. Trop. Ecol. – volume: 24 start-page: 1651 year: 2014 end-page: 1669 ident: bb0360 article-title: Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species publication-title: Ecol. Appl. – volume: 87 start-page: 28 year: 2014 end-page: 38 ident: bb0100 article-title: Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 215 year: 2016 ident: bb0085 article-title: Leaf aging of Amazonian canopy trees revealed by spectral and physiochemical measurements publication-title: New Phytol. – volume: 164 start-page: 57 year: 2015 end-page: 65 ident: bb0145 article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry publication-title: Remote Sens. Environ. – volume: 144 start-page: 35 year: 1999 end-page: 47 ident: bb0285 article-title: Research review. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants publication-title: New Phytol. – start-page: 228 year: 2016 end-page: 262 ident: bb0300 article-title: Ecophysiology of Campos Rupestres plants publication-title: Ecology and Conservation of Mountain Top Grasslands in Brazil – volume: 182 start-page: 565 year: 2009 end-page: 588 ident: bb0310 article-title: Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis publication-title: New Phytol. – year: 1908 ident: bb0420 article-title: Lagoa Santa: Contribuição para a geographia phytobiologica publication-title: Arq. da Real Soc. Dinamarqueza das Sci. Naturaes e Math. VI – volume: 28 year: 2008 ident: bb0250 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. – volume: 27 start-page: 2587 year: 2018 end-page: 2603 ident: bb0175 article-title: The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands publication-title: Biodivers. Conserv. – start-page: 1 year: 2018 end-page: 14 ident: bb0160 article-title: Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning publication-title: Remote Sens. Environ. – volume: 87 start-page: 535 year: 2006 end-page: 541 ident: bb0370 article-title: Fundamental trade-offs generating the worldwide leaf economics spectrum publication-title: Ecology – volume: 104 start-page: 966 year: 2017 end-page: 969 ident: bb0080 article-title: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales publication-title: Am. J. Bot. – volume: 30 start-page: 271 year: 1989 end-page: 278 ident: bb0105 article-title: Remote sensing of foliar chemistry publication-title: Remote Sens. Environ. – year: 1987 ident: bb0205 article-title: Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies – volume: 15 start-page: 688 year: 2001 end-page: 695 ident: bb0190 article-title: A standardized protocol for the determination of specific leaf area and leaf dry matter content publication-title: Funct. Ecol. – volume: 215 start-page: 379 year: 2014 end-page: 388 ident: bb0280 article-title: CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments publication-title: Plant Ecol. – volume: 21 start-page: 1762 year: 2015 end-page: 1776 ident: bb0345 article-title: Observing terrestrial ecosystems and the carbon cycle from space publication-title: Glob. Chang. Biol. – volume: 214 start-page: 1033 year: 2017 end-page: 1048 ident: bb0440 article-title: Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests publication-title: New Phytol. – volume: 165 start-page: 289 year: 2011 end-page: 299 ident: bb0130 article-title: Predicting tropical plant physiology from leaf and canopy spectroscopy publication-title: Oecologia – volume: 106 start-page: 20359 year: 2009 end-page: 20364 ident: bb0380 article-title: Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire publication-title: Proc. Natl. Acad. Sci. – volume: 93 start-page: 517 year: 2006 end-page: 530 ident: bb0075 article-title: Variability in leaf optical properties of mesoamerican trees and the potential for species classification publication-title: Am. J. Bot. – volume: 260 start-page: 1623 year: 2010 end-page: 1639 ident: bb0290 article-title: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation publication-title: For. Ecol. Manag. – volume: 6 start-page: 2682 year: 2014 end-page: 2698 ident: bb0050 article-title: Improving remote species identification through efficient training data collection publication-title: Remote Sens. – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: bb0195 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 28 start-page: 541 year: 2018 end-page: 556 ident: bb0410 article-title: The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland publication-title: Ecol. Appl. – volume: 183 start-page: 953 year: 2017 end-page: 962 ident: bb0320 article-title: Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form publication-title: Oecologia – volume: 29 start-page: 1499 year: 2015 end-page: 1512 ident: bb0010 article-title: Carbon assimilation and habitat segregation in resurrection plants: a comparison between desiccation- and non-desiccation-tolerant species of Neotropical Velloziaceae (Pandanales) publication-title: Funct. Ecol. – year: 2011 ident: bb0240 article-title: Ecology of Leaf Longevity, Ecological Research Monographs, Ecological Research Monographs – volume: 209 start-page: 747 year: 2018 end-page: 763 ident: bb0400 article-title: The functional characterization of grass- and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables publication-title: Remote Sens. Environ. – year: 2014 ident: bb0445 article-title: Plantas do Setor Noroeste da Serra do Cipó, Minas Gerais - guia ilustrado – year: 2018 ident: bb0005 article-title: Soil types filter for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished publication-title: J. Ecol. – volume: 7 start-page: 269 year: 2009 end-page: 276 ident: bb0025 article-title: Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests publication-title: Front. Ecol. Environ. – year: 2016 ident: bb0165 article-title: Ecology and Conservation of Mountaintop Grasslands in Brazil – volume: 186 start-page: 795 year: 2010 end-page: 816 ident: bb0395 article-title: Remote sensing of plant functional types publication-title: New Phytol. – volume: 20 start-page: 1436 year: 2017 end-page: 1453 ident: bb0390 article-title: Land surface phenology in the tropics: the role of climate and topography in a snow-Free Mountain publication-title: Ecosystems – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bb0430 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. – volume: 15 start-page: 52 year: 1967 end-page: 60 ident: bb0235 article-title: The divergence and Bhattacharyya distance measures in signal selection publication-title: IEEE Trans. Commun. Technol. – volume: 221 start-page: 405 year: 2019 end-page: 416 ident: bb0415 article-title: Mapping foliar functional traits and their uncertainties across three years in a grassland experiment publication-title: Remote Sens. Environ. – volume: 91 start-page: 475 year: 2003 end-page: 484 ident: bb0215 article-title: Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts publication-title: J. Ecol. – volume: 7 year: 2013 ident: bb0180 article-title: Analyzing the spectral variability of tropical tree species using hyperspectral feature selection and leaf optical modeling publication-title: J. Appl. Remote. Sens. – volume: 113 start-page: 2076 year: 2009 end-page: 2088 ident: bb0330 article-title: Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments publication-title: Remote Sens. Environ. – volume: 81 start-page: 337 year: 2002 end-page: 354 ident: bb0385 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. – volume: 4 start-page: 706 year: 2014 end-page: 719 ident: bb0315 article-title: Predicting leaf traits of herbaceous species from their spectral characteristics publication-title: Ecol. Evol. – volume: 10 start-page: 1 year: 2015 end-page: 15 ident: bb0055 article-title: Patterns of leaf biochemical and structural properties of Cerrado life forms: implications for remote sensing publication-title: PLoS One – volume: 420 start-page: 467 year: 2017 end-page: 480 ident: bb0065 article-title: Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot publication-title: Plant Soil – volume: 85 start-page: 940 year: 1998 ident: bb0245 article-title: Variability in Leaf Optical properties among 26 species from a broad range of habitats publication-title: Am. J. Bot. – volume: 108 start-page: 273 year: 2015 end-page: 290 ident: bb5010 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 15 year: 2016 end-page: 53 ident: bb0340 article-title: The physical environment of Rupestrian grasslands (Campos Rupestres) in Brazil: Geological, geomorphological and pedological characteristics, and interplays publication-title: Ecology and Conservation of Mountain Top Grasslands in Brazil – volume: 88 start-page: 232 year: 2018 end-page: 240 ident: bb0150 article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation publication-title: Ecol. Indic. – volume: 191 start-page: 480 year: 2011 end-page: 495 ident: bb0260 article-title: Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance publication-title: New Phytol. – volume: 21 start-page: 85 year: 2011 end-page: 98 ident: bb0035 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. – volume: 4 start-page: 273 year: 1983 end-page: 288 ident: bb0225 article-title: The red edge of plant leaf reflectance publication-title: Int. J. Remote Sens. – volume: 21 start-page: 19 year: 2007 end-page: 27 ident: bb0335 article-title: Leaf functional traits of tropical forest plants in relation to growth form publication-title: Funct. Ecol. – volume: 93 start-page: 521 year: 2005 end-page: 535 ident: bb0140 article-title: Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia publication-title: J. Ecol. – volume: 529 start-page: 167 year: 2016 end-page: 171 ident: bb0125 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 224 start-page: 1557 year: 2019 end-page: 1568 ident: bb0365 article-title: From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance publication-title: New Phytol. – start-page: 345 year: 2016 end-page: 371 ident: bb0170 article-title: Cerrado to Rupestrian grasslands: Patterns of species distribution and the forces shaping them along an altitudinal gradient publication-title: Ecology and Conservation of Mountaintop Grasslands in Brazil – volume: 116 start-page: 882 year: 2007 end-page: 892 ident: bb0405 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 160 start-page: 271 year: 2003 end-page: 282 ident: bb0200 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. – volume: 93 start-page: 507 year: 2015 end-page: 518 ident: bb0325 article-title: Leaf anatomy is associated with the type of growth form in Neotropical savanna plants publication-title: Botany – volume: 76 start-page: 349 year: 2001 end-page: 359 ident: bb0115 article-title: Estimating the foliar biochemical concentration of leaves with reflectance spectrometry publication-title: Remote Sens. Environ. – volume: 34 start-page: 898 year: 2004 end-page: 911 ident: bb0090 article-title: Sparse modeling using orthogonal forward regression with PRESS statistic and regularization publication-title: IEEE Trans. Syst. Man Cybern. Part B – volume: 115 start-page: 2415 year: 2011 end-page: 2422 ident: bb0155 article-title: Spectroscopic classification of tropical forest species using radiative transfer modeling publication-title: Remote Sens. Environ. – volume: 2 start-page: 976 year: 2018 end-page: 982 ident: bb0355 article-title: Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function publication-title: Nat. Ecol. Evol. – volume: 204 start-page: 127 year: 2014 end-page: 139 ident: bb0040 article-title: Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region publication-title: New Phytol. – volume: 10 start-page: 195 year: 2012 end-page: 201 ident: bb0265 article-title: Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations publication-title: Front. Ecol. Environ. – volume: 403 start-page: 129 year: 2016 end-page: 152 ident: bb0375 article-title: Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority publication-title: Plant Soil – volume: 45 start-page: 66 year: 2016 end-page: 76 ident: bb0015 article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 99 year: 1943 end-page: 109 ident: bb0060 article-title: On a measure of divergence between two statistical populations defined by their probability distributions publication-title: Bull. Calcutta Math. Soc. – volume: 108 start-page: 1337 year: 2011 end-page: 1345 ident: bb0210 article-title: Is leaf dry matter content a better predictor of soil fertility than specific leaf area? publication-title: Ann. Bot. – volume: 220 start-page: 1119 year: 2019 end-page: 1129 ident: bb0270 article-title: Plant phylogenetic diversity of tropical mountaintop rocky grasslands: local and regional constraints publication-title: Plant Ecol. – volume: 82 start-page: 518 year: 2015 end-page: 529 ident: bb0350 article-title: The ImageJ ecosystem: an open platform for biomedical image analysis publication-title: Mol. Reprod. Dev. – volume: 238 start-page: 1 year: 2018 end-page: 10 ident: bb0275 article-title: Plant life in campo rupestre: new lessons from an ancient biodiversity hotspot publication-title: Flora – start-page: 195 year: 1994 end-page: 218 ident: bb0425 article-title: PLS for multivariate linear modeling publication-title: Chemometric Methods in Molecular Design – start-page: 0 year: 2018 end-page: 2 ident: bb0120 article-title: Ontogenetic shifts in plant ecological strategies publication-title: Funct. Ecol. – volume: 122 start-page: 2952 year: 2017 end-page: 2965 ident: bb0135 article-title: Can leaf spectroscopy predict leaf and Forest traits along a Peruvian tropical Forest elevation gradient? publication-title: J. Geophys. Res. Biogeosci. – volume: 15 start-page: 1 year: 2013 end-page: 16 ident: bb0220 article-title: Review of optical-based remote sensing for plant trait mapping publication-title: Ecol. Complex. – volume: 61 start-page: 167 year: 2013 ident: bb0305 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 113 start-page: E4043 year: 2016 end-page: E4051 ident: bb0045 article-title: Large-scale climatic and geophysical controls on the leaf economics spectrum publication-title: Proc. Natl. Acad. Sci. – volume: 103 start-page: 265 year: 2006 end-page: 275 ident: bb0185 article-title: Foliar spectral properties following leaf clipping and implications for handling techniques publication-title: Remote Sens. Environ. – volume: 2 year: 2016 ident: bb0230 article-title: Monitoring plant functional diversity from space publication-title: Nat. Plants – volume: 115 start-page: 3587 year: 2011 end-page: 3598 ident: bb0030 article-title: Spectroscopy of canopy chemicals in humid tropical forests publication-title: Remote Sens. Environ. – volume: 428 start-page: 821 year: 2004 end-page: 827 ident: bb0435 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 87 start-page: 28 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0100 article-title: Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.10.009 – year: 1908 ident: 10.1016/j.rse.2020.111828_bb0420 article-title: Lagoa Santa: Contribuição para a geographia phytobiologica – volume: 93 start-page: 507 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0325 article-title: Leaf anatomy is associated with the type of growth form in Neotropical savanna plants publication-title: Botany doi: 10.1139/cjb-2015-0001 – volume: 93 start-page: 517 year: 2006 ident: 10.1016/j.rse.2020.111828_bb0075 article-title: Variability in leaf optical properties of mesoamerican trees and the potential for species classification publication-title: Am. J. Bot. doi: 10.3732/ajb.93.4.517 – volume: 6 start-page: 2682 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0050 article-title: Improving remote species identification through efficient training data collection publication-title: Remote Sens. doi: 10.3390/rs6042682 – start-page: 0 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0120 article-title: Ontogenetic shifts in plant ecological strategies publication-title: Funct. Ecol. – year: 2013 ident: 10.1016/j.rse.2020.111828_bb0255 – year: 1987 ident: 10.1016/j.rse.2020.111828_bb0205 – volume: 260 start-page: 1623 year: 2010 ident: 10.1016/j.rse.2020.111828_bb0290 article-title: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2010.07.054 – year: 2014 ident: 10.1016/j.rse.2020.111828_bb0445 – volume: 15 start-page: 52 year: 1967 ident: 10.1016/j.rse.2020.111828_bb0235 article-title: The divergence and Bhattacharyya distance measures in signal selection publication-title: IEEE Trans. Commun. Technol. doi: 10.1109/TCOM.1967.1089532 – volume: 21 start-page: 585 year: 2005 ident: 10.1016/j.rse.2020.111828_bb0295 article-title: Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of Central Brazil publication-title: J. Trop. Ecol. doi: 10.1017/S0266467405002658 – volume: 403 start-page: 129 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0375 article-title: Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority publication-title: Plant Soil doi: 10.1007/s11104-015-2637-8 – volume: 39 start-page: 153 year: 1992 ident: 10.1016/j.rse.2020.111828_bb0110 article-title: Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90133-5 – volume: 191 start-page: 480 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0260 article-title: Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03708.x – volume: 90 start-page: 353 year: 2004 ident: 10.1016/j.rse.2020.111828_bb0070 article-title: Discrimination of lianas and trees with leaf-level hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.01.013 – year: 2018 ident: 10.1016/j.rse.2020.111828_bb0005 article-title: Soil types filter for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil publication-title: J. Ecol. – volume: 160 start-page: 271 year: 2003 ident: 10.1016/j.rse.2020.111828_bb0200 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 – volume: 108 start-page: 273 year: 2015 ident: 10.1016/j.rse.2020.111828_bb5010 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 115 start-page: 3587 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0030 article-title: Spectroscopy of canopy chemicals in humid tropical forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.020 – volume: 428 start-page: 821 year: 2004 ident: 10.1016/j.rse.2020.111828_bb0435 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – start-page: 195 year: 1994 ident: 10.1016/j.rse.2020.111828_bb0425 article-title: PLS for multivariate linear modeling – volume: 10 start-page: 195 year: 2012 ident: 10.1016/j.rse.2020.111828_bb0265 article-title: Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations publication-title: Front. Ecol. Environ. doi: 10.1890/110154 – volume: 7 year: 2013 ident: 10.1016/j.rse.2020.111828_bb0180 article-title: Analyzing the spectral variability of tropical tree species using hyperspectral feature selection and leaf optical modeling publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.7.073502 – volume: 115 start-page: 2415 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0155 article-title: Spectroscopic classification of tropical forest species using radiative transfer modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.004 – volume: 15 start-page: 688 year: 2001 ident: 10.1016/j.rse.2020.111828_bb0190 article-title: A standardized protocol for the determination of specific leaf area and leaf dry matter content publication-title: Funct. Ecol. doi: 10.1046/j.0269-8463.2001.00563.x – volume: 20 start-page: 1436 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0390 article-title: Land surface phenology in the tropics: the role of climate and topography in a snow-Free Mountain publication-title: Ecosystems doi: 10.1007/s10021-017-0123-2 – start-page: 345 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0170 article-title: Cerrado to Rupestrian grasslands: Patterns of species distribution and the forces shaping them along an altitudinal gradient – volume: 45 start-page: 66 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0015 article-title: Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.11.004 – volume: 35 start-page: 99 year: 1943 ident: 10.1016/j.rse.2020.111828_bb0060 article-title: On a measure of divergence between two statistical populations defined by their probability distributions publication-title: Bull. Calcutta Math. Soc. – volume: 209 start-page: 747 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0400 article-title: The functional characterization of grass- and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.030 – volume: 116 start-page: 882 issue: 5 year: 2007 ident: 10.1016/j.rse.2020.111828_bb0405 article-title: Let the concept of trait be functional! publication-title: Oikos doi: 10.1111/j.0030-1299.2007.15559.x – volume: 165 start-page: 289 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0130 article-title: Predicting tropical plant physiology from leaf and canopy spectroscopy publication-title: Oecologia doi: 10.1007/s00442-010-1800-4 – volume: 76 start-page: 349 year: 2001 ident: 10.1016/j.rse.2020.111828_bb0115 article-title: Estimating the foliar biochemical concentration of leaves with reflectance spectrometry publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00182-1 – volume: 144 start-page: 35 year: 1999 ident: 10.1016/j.rse.2020.111828_bb0285 article-title: Research review. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00466.x – volume: 183 start-page: 953 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0320 article-title: Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form publication-title: Oecologia doi: 10.1007/s00442-017-3815-6 – volume: 204 start-page: 127 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0040 article-title: Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region publication-title: New Phytol. doi: 10.1111/nph.12895 – volume: 85 start-page: 940 year: 1998 ident: 10.1016/j.rse.2020.111828_bb0245 article-title: Variability in Leaf Optical properties among 26 species from a broad range of habitats publication-title: Am. J. Bot. doi: 10.2307/2446360 – volume: 224 start-page: 1557 issue: 4 year: 2019 ident: 10.1016/j.rse.2020.111828_bb0365 article-title: From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance publication-title: New Phytol. doi: 10.1111/nph.16123 – volume: 113 start-page: 2076 year: 2009 ident: 10.1016/j.rse.2020.111828_bb0330 article-title: Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.05.013 – volume: 7 start-page: 269 year: 2009 ident: 10.1016/j.rse.2020.111828_bb0025 article-title: Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests publication-title: Front. Ecol. Environ. doi: 10.1890/070152 – year: 2016 ident: 10.1016/j.rse.2020.111828_bb0165 – volume: 82 start-page: 518 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0350 article-title: The ImageJ ecosystem: an open platform for biomedical image analysis publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22489 – volume: 104 start-page: 966 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0080 article-title: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales publication-title: Am. J. Bot. doi: 10.3732/ajb.1700061 – volume: 108 start-page: 1337 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0210 article-title: Is leaf dry matter content a better predictor of soil fertility than specific leaf area? publication-title: Ann. Bot. doi: 10.1093/aob/mcr225 – volume: 91 start-page: 475 year: 2003 ident: 10.1016/j.rse.2020.111828_bb0215 article-title: Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts publication-title: J. Ecol. doi: 10.1046/j.1365-2745.2003.00777.x – volume: 215 start-page: 379 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0280 article-title: CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments publication-title: Plant Ecol. doi: 10.1007/s11258-014-0302-6 – volume: 28 start-page: 541 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0410 article-title: The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland publication-title: Ecol. Appl. doi: 10.1002/eap.1669 – volume: 10 start-page: 1 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0055 article-title: Patterns of leaf biochemical and structural properties of Cerrado life forms: implications for remote sensing publication-title: PLoS One doi: 10.1371/journal.pone.0117659 – volume: 21 start-page: 19 year: 2007 ident: 10.1016/j.rse.2020.111828_bb0335 article-title: Leaf functional traits of tropical forest plants in relation to growth form publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2006.01218.x – volume: 220 start-page: 1119 issue: 12 year: 2019 ident: 10.1016/j.rse.2020.111828_bb0270 article-title: Plant phylogenetic diversity of tropical mountaintop rocky grasslands: local and regional constraints publication-title: Plant Ecol. doi: 10.1007/s11258-019-00982-5 – volume: 74 start-page: 355 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0020 article-title: Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas publication-title: Brazilian J. Biol. doi: 10.1590/1519-6984.23212 – start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0160 article-title: Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning publication-title: Remote Sens. Environ. – volume: 115 start-page: 659 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0095 article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.11.001 – volume: 11 start-page: 215 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0085 article-title: Leaf aging of Amazonian canopy trees revealed by spectral and physiochemical measurements publication-title: New Phytol. – volume: 103 start-page: 265 year: 2006 ident: 10.1016/j.rse.2020.111828_bb0185 article-title: Foliar spectral properties following leaf clipping and implications for handling techniques publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.06.014 – volume: 238 start-page: 1 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0275 article-title: Plant life in campo rupestre: new lessons from an ancient biodiversity hotspot publication-title: Flora doi: 10.1016/j.flora.2017.12.001 – volume: 21 start-page: 1762 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0345 article-title: Observing terrestrial ecosystems and the carbon cycle from space publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12822 – volume: 186 start-page: 795 year: 2010 ident: 10.1016/j.rse.2020.111828_bb0395 article-title: Remote sensing of plant functional types publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03284.x – volume: 88 start-page: 232 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0150 article-title: Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.01.012 – volume: 61 start-page: 167 year: 2013 ident: 10.1016/j.rse.2020.111828_bb0305 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. doi: 10.1071/BT12225 – volume: 106 start-page: 20359 year: 2009 ident: 10.1016/j.rse.2020.111828_bb0380 article-title: Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0903410106 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.rse.2020.111828_bb0195 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – volume: 420 start-page: 467 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0065 article-title: Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot publication-title: Plant Soil doi: 10.1007/s11104-017-3330-x – volume: 29 start-page: 1499 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0010 article-title: Carbon assimilation and habitat segregation in resurrection plants: a comparison between desiccation- and non-desiccation-tolerant species of Neotropical Velloziaceae (Pandanales) publication-title: Funct. Ecol. doi: 10.1111/1365-2435.12462 – year: 2011 ident: 10.1016/j.rse.2020.111828_bb0240 doi: 10.1007/978-4-431-53918-6 – volume: 4 start-page: 706 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0315 article-title: Predicting leaf traits of herbaceous species from their spectral characteristics publication-title: Ecol. Evol. doi: 10.1002/ece3.932 – volume: 15 start-page: 1 year: 2013 ident: 10.1016/j.rse.2020.111828_bb0220 article-title: Review of optical-based remote sensing for plant trait mapping publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2013.06.003 – volume: 32 start-page: 172 year: 1951 ident: 10.1016/j.rse.2020.111828_bb5005 article-title: Description and Recording of Vegetation Upon a Structural Basis publication-title: Ecology doi: 10.2307/1930415 – volume: 529 start-page: 167 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0125 article-title: The global spectrum of plant form and function publication-title: Nature doi: 10.1038/nature16489 – volume: 81 start-page: 337 year: 2002 ident: 10.1016/j.rse.2020.111828_bb0385 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – volume: 24 start-page: 1651 year: 2014 ident: 10.1016/j.rse.2020.111828_bb0360 article-title: Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species publication-title: Ecol. Appl. doi: 10.1890/13-2110.1 – volume: 28 year: 2008 ident: 10.1016/j.rse.2020.111828_bb0250 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 122 start-page: 2952 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0135 article-title: Can leaf spectroscopy predict leaf and Forest traits along a Peruvian tropical Forest elevation gradient? publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2017JG003883 – volume: 221 start-page: 405 year: 2019 ident: 10.1016/j.rse.2020.111828_bb0415 article-title: Mapping foliar functional traits and their uncertainties across three years in a grassland experiment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.016 – volume: 4 start-page: 273 year: 1983 ident: 10.1016/j.rse.2020.111828_bb0225 article-title: The red edge of plant leaf reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431168308948546 – volume: 21 start-page: 85 year: 2011 ident: 10.1016/j.rse.2020.111828_bb0035 article-title: Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests publication-title: Ecol. Appl. doi: 10.1890/09-1999.1 – volume: 2 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0230 article-title: Monitoring plant functional diversity from space publication-title: Nat. Plants – start-page: 228 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0300 article-title: Ecophysiology of Campos Rupestres plants – volume: 87 start-page: 535 year: 2006 ident: 10.1016/j.rse.2020.111828_bb0370 article-title: Fundamental trade-offs generating the worldwide leaf economics spectrum publication-title: Ecology doi: 10.1890/05-1051 – volume: 214 start-page: 1033 year: 2017 ident: 10.1016/j.rse.2020.111828_bb0440 article-title: Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests publication-title: New Phytol. doi: 10.1111/nph.14051 – volume: 182 start-page: 565 year: 2009 ident: 10.1016/j.rse.2020.111828_bb0310 article-title: Causes and consequences of variation in leaf mass per area (LMA):a meta-analysis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02830.x – volume: 2 start-page: 976 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0355 article-title: Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0551-1 – volume: 113 start-page: E4043 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0045 article-title: Large-scale climatic and geophysical controls on the leaf economics spectrum publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1604863113 – volume: 34 start-page: 898 year: 2004 ident: 10.1016/j.rse.2020.111828_bb0090 article-title: Sparse modeling using orthogonal forward regression with PRESS statistic and regularization publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2003.817107 – volume: 27 start-page: 2587 year: 2018 ident: 10.1016/j.rse.2020.111828_bb0175 article-title: The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands publication-title: Biodivers. Conserv. doi: 10.1007/s10531-018-1556-4 – start-page: 15 year: 2016 ident: 10.1016/j.rse.2020.111828_bb0340 article-title: The physical environment of Rupestrian grasslands (Campos Rupestres) in Brazil: Geological, geomorphological and pedological characteristics, and interplays – volume: 30 start-page: 271 year: 1989 ident: 10.1016/j.rse.2020.111828_bb0105 article-title: Remote sensing of foliar chemistry publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90069-2 – volume: 93 start-page: 521 year: 2005 ident: 10.1016/j.rse.2020.111828_bb0140 article-title: Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia publication-title: J. Ecol. doi: 10.1111/j.0022-0477.2005.00992.x – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.rse.2020.111828_bb0430 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 164 start-page: 57 year: 2015 ident: 10.1016/j.rse.2020.111828_bb0145 article-title: Multi-method ensemble selection of spectral bands related to leaf biochemistry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.033 |
SSID | ssj0015871 |
Score | 2.4392788 |
Snippet | Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits such as leaf mass per area (LMA) and leaf dry matter... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111828 |
SubjectTerms | Adaptation Assessments Brazil Cerrado Chemical composition Dry matter Ecosystems Forbs Forest ecosystems Forest vegetation Forests functional diversity Grasses herbs LDMC leaf dry matter content leaf reflectance Leaf spectroscopy least squares Leaves LMA metabolism Model accuracy Optical properties Partial least squares regression (PLSR) Plant diversity Plant functional traits, campo rupestre Plant growth prediction Reflectance reflectance spectroscopy Regression analysis Remote sensing Shrubs specific leaf weight Spectra Spectroscopy Spectrum analysis Temperate forests trees Tropical environment Tropical environments Vegetation Woody plants |
Title | Accuracy and limitations for spectroscopic prediction of leaf traits in seasonally dry tropical environments |
URI | https://dx.doi.org/10.1016/j.rse.2020.111828 https://www.proquest.com/docview/2437432820 https://www.proquest.com/docview/2431880819 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaKDsN2GdZsxdJ2hQbsNMCrbcmWdQyKtumG9bQCuQnWw1gGwwmc5ODLfntJW84eGHro0RZlSyJFURI_EuCj4r4sVVVG0rk8EhnuWU1ueZTFFS_ymKeJJaDwt7t8fi--LLLFAVyOWBhyqwy6f9DpvbYOby7CaF6sl0vC-HJBEpeSVa-KBSHYhSQp__xr7-aRZIUcsuZxERH1eLPZ-3i1G4qUmfaKo6CE7P9fm_7R0v3Sc_0aXgWbkc2GZh3BgW8mcHz1G6KGhWGObibwIuQ1_9FN4PlNn7i3ewP1zNpdW9qOlY1jNcGahrM6hlYr6_GWFNdytV5atm7p9oZK2apitS8rRpkkthu2bBgdKpL1XnfMtR0WUBVswJ-Iubdwf331_XIehUwLkUVFuY1UoYzhWWUsmkBplceVyUtuEkU--qmRJi6cdapKnPJGotUkKSy7M7GwsZc84cdw2Kwa_w6YyxxPkAiFALlR4oeF8JyrwspcyiyZQjyOsbahq9SHWo_-Zj81skUTW_TAlil82ldZDzE4HiMWI-P0X4KkcY14rNrZyGQdZvFGU7BGwXFTGk_hw74Y5x9dqpSNX-16Ggpph4bVydP-fAov6WlwAT6Dw2278-_R0Nma816Sz-HZ7Pbr_O4BphP-FQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQuCBYqlhYwEiek0CR24vhYVS0LtD210t4sPxKxVZRdZXcPufDbO5M4y0OoB64ZO4k9D3-25wHwUfHSGFWZSHqfRyLDPavNHY-yuOJFHvM0cRQofHWdz27Ft3k234OzMRaG3CqD7R9sem-tw5OTMJsnq8WCYny5IIlLCdWrYv4IHgtUXypj8Pnnzs8jyQo5lM3jIqLm49Vm7-TVrilVZtpbjoIqsv97cfrLTPdrz8VzeBZAIzsd_usF7JXNBA7Pf8WoITEo6XoCB6Gw-Y9uAk--9JV7u5dQnzq3bY3rmGk8qymuaTisYwhbWR9wSYktl6uFY6uWrm-IypYVq0tTMSolsVmzRcPoVJHge90x33ZIoC74A7-HzL2C24vzm7NZFEotRA4t5SZShbKWZ5V1iIHSKo8rmxtuE0VO-qmVNi6886pKvCqtRNgkKS-7t7FwcSl5wg9hv1k25WtgPvM8wUYoBUJIgy8WouRcFU7mUmbJFOJxjrULQ6Ux1Hp0OLvTyBZNbNEDW6bwaddlNSTheKixGBmn_5AkjYvEQ92ORybroMZrTdkaBcddaTyFDzsyKiDdqpimXG77NpTTDpHVm__78ns4mN1cXerLr9ffj-ApUQZ_4GPY37Tb8i2ino1910v1PWeC_6M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+and+limitations+for+spectroscopic+prediction+of+leaf+traits+in+seasonally+dry+tropical+environments&rft.jtitle=Remote+sensing+of+environment&rft.au=Streher%2C+Annia+Susin&rft.au=Torres%2C+Ricardo+da+Silva&rft.au=Morellato%2C+Leonor+Patr%C3%ADcia+Cerdeira&rft.au=Silva%2C+Thiago+Sanna+Freire&rft.date=2020-07-01&rft.issn=0034-4257&rft.volume=244&rft.spage=111828&rft_id=info:doi/10.1016%2Fj.rse.2020.111828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2020_111828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |