Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots
The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this stud...
Saved in:
Published in | Annals of botany Vol. 119; no. 5; pp. 885 - 899 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2017
Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession.
Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction.
Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3.
This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. |
---|---|
AbstractList | Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d postinfection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the ricenematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession.Background and AimsThe root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession.Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction.MethodsPenetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction.Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3.Key ResultsPenetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3.This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.ConclusionsThis study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. |
Author | Gheysen, Godelieve Petitot, Anne-Sophie de Almeida Engler, Janice Kyndt, Tina Collin, Myriam Haidar, Rana Dereeper, Alexis Fernandez, Diana |
AuthorAffiliation | 2 Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium 4 Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France 1 Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France 3 UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France |
AuthorAffiliation_xml | – name: 4 Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France – name: 3 UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France – name: 1 Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France – name: 2 Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium |
Author_xml | – sequence: 1 givenname: Anne-Sophie surname: Petitot fullname: Petitot, Anne-Sophie organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France – sequence: 2 givenname: Tina surname: Kyndt fullname: Kyndt, Tina organization: Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium – sequence: 3 givenname: Rana surname: Haidar fullname: Haidar, Rana organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France – sequence: 4 givenname: Alexis surname: Dereeper fullname: Dereeper, Alexis organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France – sequence: 5 givenname: Myriam surname: Collin fullname: Collin, Myriam organization: UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France – sequence: 6 givenname: Janice surname: de Almeida Engler fullname: de Almeida Engler, Janice organization: Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France – sequence: 7 givenname: Godelieve surname: Gheysen fullname: Gheysen, Godelieve organization: Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium – sequence: 8 givenname: Diana surname: Fernandez fullname: Fernandez, Diana organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28334204$$D View this record in MEDLINE/PubMed https://hal.science/hal-01602589$$DView record in HAL |
BookMark | eNqFkstu1DAUhi1URKeFDXuQly1SqC-xk2yQRhVQpEHdlLXlOE7GJfEZbM9UwyvxkniUlkuFxMa2jr__XOz_BB158Bahl5S8paThFxrai8ncMSGfoEWOiKJmDTlCC8KJKCouy2N0EuMtIYTJhj5Dx6zmvGSkXKAfN0H7aILbJJicwdp3eO1ighEGZ_SIg40b8NFGDD1e9iEHPc6rxWfXYf9d42HUrQ3BTfocJ8Cf7Qiug2HvLR6Cnpx3BkaNNwF2rrPY2zvsfHTDOsV8yIoAkIqvHlK-m3SCDOWiuQftcxXn8QQeDKT4HD3t9Rjti_v9FH358P7m8qpYXX_8dLlcFaaUVSqashcNa2vbybbUtTGV0EaUja2oNTWtuqauK0YEF8ZWWug-v6G1Tdfxsu2oZPwUvZvzbrbtZDtjfQp6VJvDjGGvQDv19413azXATglJSklFTnA-J1g_kl0tV-oQI1QSJupmRzN7dl8swLetjUlNLho7jtpb2EbFOBVM0roW_0UzRDNasSqjr_8c4VcTDx-fATIDJkCMwfbKuKSTg8NEblSUqIO3VPaWmr2VJW8eSR6y_hN-NcO32Uvhd30pWFVSzn8CNVvfgA |
CitedBy_id | crossref_primary_10_1094_PHYTO_07_17_0235_R crossref_primary_10_1007_s40858_018_0267_4 crossref_primary_10_1007_s43630_023_00379_4 crossref_primary_10_1071_FP23295 crossref_primary_10_1007_s10658_018_1451_6 crossref_primary_10_3390_ijms23158491 crossref_primary_10_7717_peerj_16483 crossref_primary_10_1007_s10343_023_00886_5 crossref_primary_10_1111_nph_18152 crossref_primary_10_3390_ijms21165640 crossref_primary_10_1017_S1479262123000965 crossref_primary_10_1111_pbr_12875 crossref_primary_10_3390_plants8100376 crossref_primary_10_1016_j_rsci_2021_04_008 crossref_primary_10_1186_s12864_018_4979_0 crossref_primary_10_3390_plants12122387 crossref_primary_10_1007_s12892_017_0101_0 crossref_primary_10_3389_fpls_2024_1343097 crossref_primary_10_3390_plants13192813 crossref_primary_10_1007_s00438_020_01677_7 crossref_primary_10_31055_1851_2372_v59_n2_44120 crossref_primary_10_1007_s00344_023_11138_1 crossref_primary_10_1016_j_pmpp_2017_09_001 crossref_primary_10_1094_PHYTO_02_19_0044_R crossref_primary_10_1093_femsec_fiaa099 crossref_primary_10_1002_ppj2_70013 crossref_primary_10_3389_fpls_2023_1278990 crossref_primary_10_3390_agronomy9040188 crossref_primary_10_1016_j_jprot_2022_104575 crossref_primary_10_1007_s12033_018_0100_9 crossref_primary_10_1093_aob_mcw272 crossref_primary_10_1080_14620316_2024_2404511 crossref_primary_10_1134_S1021443723601635 crossref_primary_10_35709_ory_2022_59_3_15 crossref_primary_10_1007_s11033_024_09573_8 crossref_primary_10_1002_2211_5463_12737 crossref_primary_10_1007_s11032_020_01137_5 crossref_primary_10_1007_s40858_025_00723_2 crossref_primary_10_1163_15685411_bja10155 crossref_primary_10_1093_aob_mcw284 crossref_primary_10_1007_s00425_021_03625_0 crossref_primary_10_1038_s41467_023_39080_6 crossref_primary_10_1111_mpp_13042 crossref_primary_10_1111_mec_16254 crossref_primary_10_1007_s41348_023_00726_8 crossref_primary_10_3389_fpls_2022_854961 crossref_primary_10_1016_j_jia_2022_11_008 crossref_primary_10_3389_fgene_2022_871833 crossref_primary_10_3390_pathogens9080644 crossref_primary_10_1007_s10725_021_00709_5 crossref_primary_10_1007_s13313_023_00926_8 |
Cites_doi | 10.1093/jxb/ert219 10.1371/journal.pone.0118731 10.1163/156854199508397 10.1007/s12571-012-0168-1 10.1111/mpp.12246 10.1007/s10658-010-9603-3 10.1094/PHYTO-01-11-0004 10.1007/s11103-014-0275-9 10.1038/ng.3044 10.1016/S0168-9452(98)00021-1 10.1111/mpp.12014 10.1093/bioinformatics/btp120 10.1111/j.1365-3059.2005.01239.x 10.1371/journal.pone.0140937 10.1111/nph.12255 10.1104/pp.111.177576 10.1186/s12284-014-0023-4 10.1163/156854199508775 10.1016/bs.abr.2014.12.006 10.1186/1471-2164-14-322 10.1111/mpp.12334 10.1093/bioinformatics/btp616 10.1073/pnas.1418307111 10.1111/mpp.12114 10.1163/156854199508027 10.1094/MPMI-21-9-1205 10.1079/9781845934927.0139 10.1111/nph.13933 10.1146/annurev-phyto-102313-050118 10.1007/s00425-013-1923-z 10.1163/156854111X612306 10.1073/pnas.252604599 10.1371/journal.pone.0118269 10.1080/03235408.2013.829627 10.1163/156854103773040781 10.1016/S1369-5266(03)00059-1 10.1016/j.plaphy.2008.06.011 10.1016/j.jplph.2010.08.006 10.1073/pnas.92.10.4076 10.1111/j.1469-8137.2012.04311.x 10.1016/S1360-1385(02)02290-2 10.1038/srep22846 10.1093/mp/ssp106 10.1163/156854111X602613 10.1163/15685411-00002787 10.1007/s00122-003-1285-1 10.1007/s00122-003-1258-4 10.1038/cdd.2011.37 10.1163/15685411-00002712 10.1111/j.1365-313X.2004.02016.x 10.1093/bioinformatics/btu638 |
ContentType | Journal Article |
Copyright | The Author 2017 The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com Attribution - ShareAlike The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
Copyright_xml | – notice: The Author 2017 – notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: Attribution - ShareAlike – notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1093/aob/mcw256 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 899 |
ExternalDocumentID | PMC5604615 oai_HAL_hal_01602589v1 28334204 10_1093_aob_mcw256 26527413 |
Genre | Journal Article |
GeographicLocations | Asia Latin America |
GeographicLocations_xml | – name: Latin America – name: Asia |
GrantInformation_xml | – fundername: ; ; grantid: 1002-003 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACHIC ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE COF CS3 CZ4 DAKXR DATOO DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- NVLIB O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RPM RUSNO RW1 RXO SA0 SV3 TCN TEORI TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AAYXX CITATION AACTN ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM RIG 7X8 7S9 L.6 --K 1B1 1XC 53G 71M AAEDT AALCJ AALRI AAQFI AAQXK AAWDT AAXUO AAYWO ABDPE ABEFU ABIME ABNGD ABPIB ABSMQ ABWVN ABZEO ACFRR ACPQN ACRPL ACUKT ACVCV ACZBC ADFGL ADMUD ADNMO ADULT ADXHL AEHUL AEKPW AETEA AFFNX AFSHK AFSWV AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CXTWN DFGAJ DM4 ELUNK FA8 FEDTE FGOYB FIRID HVGLF IHE LG5 MBTAY NEJ NTWIH O0~ OHT OZT O~Y PB- QBD R2- RNI RPZ RZF RZO SSZ UHS VH1 XOL XPP ZCG ZMT 5PM |
ID | FETCH-LOGICAL-c467t-94f592b8ed6b4a8cc75ac549e71ec817d988720535ce7a5af093ee9dd34bd1623 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 18:32:39 EDT 2025 Thu Aug 14 06:48:10 EDT 2025 Fri Jul 11 00:10:59 EDT 2025 Fri Jul 11 02:01:45 EDT 2025 Wed Feb 19 02:44:44 EST 2025 Tue Jul 01 01:39:18 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Thu Jul 03 22:08:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Oryza sativa histology RNA-Seq hormones resistance responses root-knot nematode Oryza glaberrima QTL transcriptomics differentially expressed genes monocots Meloidogyne graminicola |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-94f592b8ed6b4a8cc75ac549e71ec817d988720535ce7a5af093ee9dd34bd1623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5604615 |
ORCID | 0000-0002-8312-672X 0000-0001-8120-8409 0000-0003-1432-3129 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/119/5/885/18765044/mcw256.pdf |
PMID | 28334204 |
PQID | 1881261727 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5604615 hal_primary_oai_HAL_hal_01602589v1 proquest_miscellaneous_2315261885 proquest_miscellaneous_1881261727 pubmed_primary_28334204 crossref_citationtrail_10_1093_aob_mcw256 crossref_primary_10_1093_aob_mcw256 jstor_primary_26527413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2017 |
Publisher | Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
References | ( key 20170718093358_mcw256-B11) 2010; 9 ( key 20170718093358_mcw256-B26) 2013; 15 ( key 20170718093358_mcw256-B23) 2015; 73 ( key 20170718093358_mcw256-B5) 2015; 31 ( key 20170718093358_mcw256-B19) 2011; 18 ( key 20170718093358_mcw256-B44) 2016; 17 ( key 20170718093358_mcw256-B55) 2004; 37 ( key 20170718093358_mcw256-B14) 1998; 133 ( key 20170718093358_mcw256-B18) 2014; 15 ( key 20170718093358_mcw256-B60) 2010; 3 ( key 20170718093358_mcw256-B7) 2002; 34 ( key 20170718093358_mcw256-B15) 1983; 15 ( key 20170718093358_mcw256-B25) 1979; 2 ( key 20170718093358_mcw256-B29) 2013; 14 ( key 20170718093358_mcw256-B38) 2002; 99 ( key 20170718093358_mcw256-B50) 2016; 211 ( key 20170718093358_mcw256-B32) 2011; 101 ( key 20170718093358_mcw256-B13) 1982; 10 ( key 20170718093358_mcw256-B57) 2015; 87 ( key 20170718093358_mcw256-B12) 2002; 7 ( key 20170718093358_mcw256-B16) 2012; 14 ( key 20170718093358_mcw256-B8) 1995; 18 ( key 20170718093358_mcw256-B40) 2011; 157 ( key 20170718093358_mcw256-B28) 2015; 10 ( key 20170718093358_mcw256-B20) 2009 ( key 20170718093358_mcw256-B30) 2013; 64 ( key 20170718093358_mcw256-B39) 2003; 107 ( key 20170718093358_mcw256-B1) 2012; 4 ( key 20170718093358_mcw256-B45) 1999; 1 ( key 20170718093358_mcw256-B36) 2013; 238 ( key 20170718093358_mcw256-B35) 2012; 14 Suppl 1 ( key 20170718093358_mcw256-B22) 2012; 14 ( key 20170718093358_mcw256-B56) 2011; 168 ( key 20170718093358_mcw256-B34) 2012; 196 ( key 20170718093358_mcw256-B53) 2003; 5 ( key 20170718093358_mcw256-B2) 2003; 107 ( key 20170718093358_mcw256-B43) 2014; 16 ( key 20170718093358_mcw256-B27) 2014; 52 ( key 20170718093358_mcw256-B49) 2010; 26 ( key 20170718093358_mcw256-B62) 2003; 6 ( key 20170718093358_mcw256-B3) 2010; 127 ( key 20170718093358_mcw256-B21) 2015; 67 ( key 20170718093358_mcw256-B9) 2008; 21 ( key 20170718093358_mcw256-B52) 2008; 46 ( key 20170718093358_mcw256-B61) 2014; 46 ( key 20170718093358_mcw256-B31) 2015; 16 ( key 20170718093358_mcw256-B46) 2015; 10 ( key 20170718093358_mcw256-B6) 2005; 54 ( key 20170718093358_mcw256-B4) 2015; 10 ( key 20170718093358_mcw256-B42) 2014; 7 ( key 20170718093358_mcw256-B24) 2014; 47 ( key 20170718093358_mcw256-B37) 1995; 92 ( key 20170718093358_mcw256-B58) 2009; 25 ( key 20170718093358_mcw256-B10) 2013; 14 ( key 20170718093358_mcw256-B51) 2012; 4 ( key 20170718093358_mcw256-B63) 2014; 111 ( key 20170718093358_mcw256-B17) 2013; 16 ( key 20170718093358_mcw256-B48) 1999; 1 ( key 20170718093358_mcw256-B54) 1999; 1 ( key 20170718093358_mcw256-B59) 2013; 199 ( key 20170718093358_mcw256-B33) 2016; 6 ( key 20170718093358_mcw256-B41) 2008; 7 ( key 20170718093358_mcw256-B47) 2014; 5 23663436 - BMC Genomics. 2013 May 10;14:322 11607533 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076-9 20863592 - J Plant Physiol. 2011 Mar 15;168(5):481-92 24330140 - Mol Plant Pathol. 2014 Aug;15(6):627-36 21475301 - Cell Death Differ. 2011 Aug;18(8):1247-56 21715672 - Plant Physiol. 2011 Sep;157(1):305-16 19265904 - J Nematol. 2002 Mar;34(1):28-33 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 26488731 - PLoS One. 2015 Oct 21;10(10):e0140937 18674922 - Plant Physiol Biochem. 2008 Nov;46(11):941-50 19295781 - J Nematol. 1983 Jan;15(1):142-3 23574394 - New Phytol. 2013 Jul;199(2):505-19 26610268 - Mol Plant Pathol. 2016 Aug;17 (6):860-74 25676661 - Mol Plant Pathol. 2015 Oct;16(8):870-81 23881398 - J Exp Bot. 2013 Sep;64(12):3885-98 25710378 - PLoS One. 2015 Feb 24;10(2):e0118269 25515696 - Plant Mol Biol. 2015 Feb;87(3):273-86 23279209 - Mol Plant Pathol. 2013 May;14(4):379-90 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 26224554 - Rice (N Y). 2014 Dec;7(1):23 18700825 - Mol Plant Microbe Interact. 2008 Sep;21(9):1205-14 25368197 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62 12721640 - Theor Appl Genet. 2003 Aug;107(4):691-6 21446787 - Phytopathology. 2011 Aug;101(8):945-51 24847336 - Front Plant Sci. 2014 May 05;5:160 12461173 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16360-5 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 25730421 - PLoS One. 2015 Mar 02;10(3):e0118731 22985291 - New Phytol. 2012 Nov;196(3):887-900 20035037 - Mol Plant. 2010 Jan;3(1):2-20 23824525 - Planta. 2013 Nov;238(5):807-18 14996223 - Plant J. 2004 Mar;37(6):914-39 12119169 - Trends Plant Sci. 2002 Jul;7(7):315-22 25064006 - Nat Genet. 2014 Sep;46(9):982-8 26961568 - Sci Rep. 2016 Mar 10;6:22846 24906126 - Annu Rev Phytopathol. 2014;52:243-65 22188265 - Plant Biol (Stuttg). 2012 Mar;14 Suppl 1:73-82 12679871 - Theor Appl Genet. 2003 Jul;107(2):371-8 26552884 - J Exp Bot. 2016 Feb;67(4):1191-200 12873526 - Curr Opin Plant Biol. 2003 Aug;6(4):327-33 27128375 - New Phytol. 2016 Jul;211(1):41-56 |
References_xml | – volume: 64 start-page: 3885 year: 2013 ident: key 20170718093358_mcw256-B30 article-title: Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ert219 – volume: 10 start-page: e0118731 year: 2015 ident: key 20170718093358_mcw256-B4 article-title: Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis publication-title: PLoS One doi: 10.1371/journal.pone.0118731 – volume: 1 start-page: 395 year: 1999 ident: key 20170718093358_mcw256-B54 article-title: Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima publication-title: Nematology doi: 10.1163/156854199508397 – volume: 4 start-page: 7 year: 2012 ident: key 20170718093358_mcw256-B51 article-title: Crops that feed the world 7: rice publication-title: Food Security doi: 10.1007/s12571-012-0168-1 – volume: 16 start-page: 870 year: 2015 ident: key 20170718093358_mcw256-B31 article-title: The role of thionins in rice defence against root pathogens publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12246 – volume: 9 start-page: 3988 year: 2010 ident: key 20170718093358_mcw256-B11 article-title: Evaluation of Oryza sativa x O. glaberrima derived progenies for resistance to root-knot nematode and identification of introgressed alien chromosome segments using SSR markers publication-title: African Journal of Biotechnology – volume: 127 start-page: 365 year: 2010 ident: key 20170718093358_mcw256-B3 article-title: Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica publication-title: European Journal of Plant Pathology doi: 10.1007/s10658-010-9603-3 – volume: 101 start-page: 945 year: 2011 ident: key 20170718093358_mcw256-B32 article-title: Histological mechanisms of the resistance conferred by the Ma gene against Meloidogyne incognita in Prunus spp publication-title: Phytopathology doi: 10.1094/PHYTO-01-11-0004 – volume: 87 start-page: 273 year: 2015 ident: key 20170718093358_mcw256-B57 article-title: Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance publication-title: Plant Molecular Biology doi: 10.1007/s11103-014-0275-9 – volume: 7 start-page: 4219 year: 2008 ident: key 20170718093358_mcw256-B41 article-title: Molecular profiling of interspecific lowland rice populations derived from IR64 (Oryza sativa) and TOG5681 (Oryza glaberrima) publication-title: African Journal of Biotechnology – volume: 46 start-page: 982 year: 2014 ident: key 20170718093358_mcw256-B61 article-title: The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication publication-title: Nature Genetics doi: 10.1038/ng.3044 – volume: 133 start-page: 79 year: 1998 ident: key 20170718093358_mcw256-B14 article-title: The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection publication-title: Plant Science doi: 10.1016/S0168-9452(98)00021-1 – volume: 14 start-page: 379 year: 2013 ident: key 20170718093358_mcw256-B29 article-title: Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12014 – volume: 25 start-page: 1105 year: 2009 ident: key 20170718093358_mcw256-B58 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 54 start-page: 476 year: 2005 ident: key 20170718093358_mcw256-B6 article-title: Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee publication-title: Plant Pathology doi: 10.1111/j.1365-3059.2005.01239.x – volume: 10 start-page: e0140937 year: 2015 ident: key 20170718093358_mcw256-B28 article-title: Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance publication-title: PLoS One doi: 10.1371/journal.pone.0140937 – volume: 199 start-page: 505 year: 2013 ident: key 20170718093358_mcw256-B59 article-title: Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion publication-title: New Phytologist doi: 10.1111/nph.12255 – volume: 18 start-page: 531 year: 1995 ident: key 20170718093358_mcw256-B8 article-title: Histopathogenesis of susceptible and resistant responses of wheat, barley and wild grasses to Meloidogyne naasi publication-title: Fundamental and Applied Nematology – volume: 157 start-page: 305 year: 2011 ident: key 20170718093358_mcw256-B40 article-title: The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice publication-title: Plant Physiology doi: 10.1104/pp.111.177576 – volume: 7 start-page: 23 year: 2014 ident: key 20170718093358_mcw256-B42 article-title: Meloidogyne incognita–rice (Oryza sativa) interaction: a new model system to study plant root-knot nematode interactions in monocotyledons publication-title: Rice doi: 10.1186/s12284-014-0023-4 – volume: 1 start-page: 745 year: 1999 ident: key 20170718093358_mcw256-B45 article-title: Resistance to the rice nematodes Heterodera sacchari, Meloidogyne graminicola and M. incognita in Oryza glaberrima and O. glaberrima x O. sativa interspecies hybrids publication-title: Nematology doi: 10.1163/156854199508775 – volume: 16 start-page: 73 year: 2013 ident: key 20170718093358_mcw256-B17 article-title: Histopathology of the rice root-knot nematode, Meloidogyne graminicola, on Oryza sativa and O. glaberrima publication-title: Nematology – volume: 73 start-page: 189 year: 2015 ident: key 20170718093358_mcw256-B23 article-title: Recent advances in understanding plant-nematode interactions in monocots publication-title: Advances in Botanical Research doi: 10.1016/bs.abr.2014.12.006 – volume: 14 start-page: 322 year: 2013 ident: key 20170718093358_mcw256-B10 article-title: Transcription profile of soybean root-knot nematode interaction reveals a key role of phytohormones in the resistance reaction publication-title: BMC Genomics doi: 10.1186/1471-2164-14-322 – volume: 17 start-page: 860 year: 2016 ident: key 20170718093358_mcw256-B44 article-title: Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12334 – volume: 26 start-page: 139 year: 2010 ident: key 20170718093358_mcw256-B49 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 111 start-page: E4954 year: 2014 ident: key 20170718093358_mcw256-B63 article-title: Rapid diversification of five Oryza AA genomes associated with rice adaptation publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.1418307111 – volume: 15 start-page: 627 year: 2014 ident: key 20170718093358_mcw256-B18 article-title: NEMATIC: a simple and versatile tool for the in silico analysis of plant-nematode interactions publication-title: Molecular Plant Pathology doi: 10.1111/mpp.12114 – volume: 14 Suppl 1 start-page: 73 year: 2012 ident: key 20170718093358_mcw256-B35 article-title: Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice publication-title: Plant Biology (Stuttgart, Germany) – volume: 1 start-page: 209 year: 1999 ident: key 20170718093358_mcw256-B48 article-title: A mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory publication-title: Nematology doi: 10.1163/156854199508027 – volume: 21 start-page: 1205 year: 2008 ident: key 20170718093358_mcw256-B9 article-title: Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway publication-title: Molecular Plant Microbe Interactions doi: 10.1094/MPMI-21-9-1205 – start-page: 139 volume-title: Root-knot nematodes year: 2009 ident: key 20170718093358_mcw256-B20 doi: 10.1079/9781845934927.0139 – volume: 4 start-page: 19 year: 2012 ident: key 20170718093358_mcw256-B1 article-title: Molecular profiling of interspecific lowland rice progenies resulting from crosses between TOG5681 and TOG5674 (Oryza glaberrima) and IR64 (Oryza sativa) publication-title: International Journal of Biology – volume: 211 start-page: 41 year: 2016 ident: key 20170718093358_mcw256-B50 article-title: Resistance to root-knot nematodes Meloidogyne spp. in woody plants publication-title: New Phytologist doi: 10.1111/nph.13933 – volume: 52 start-page: 243 year: 2014 ident: key 20170718093358_mcw256-B27 article-title: The activation and suppression of plant innate immunity by parasitic nematodes publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-102313-050118 – volume: 238 start-page: 807 year: 2013 ident: key 20170718093358_mcw256-B36 article-title: Nematode feeding sites: unique organs in plant roots publication-title: Planta doi: 10.1007/s00425-013-1923-z – volume: 5 start-page: 160 year: 2014 ident: key 20170718093358_mcw256-B47 article-title: On the track of transfer cell formation by specialized plant-parasitic nematodes publication-title: Frontiers in Plant Science – volume: 67 start-page: 1191 year: 2015 ident: key 20170718093358_mcw256-B21 article-title: A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes publication-title: Journal of Experimental Botany – volume: 15 start-page: 142 year: 1983 ident: key 20170718093358_mcw256-B15 article-title: An improved technique for clearing and staining plant tissues for detection of nematodes publication-title: Journal of Nematology – volume: 14 start-page: 309 year: 2012 ident: key 20170718093358_mcw256-B22 article-title: Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola publication-title: Nematology doi: 10.1163/156854111X612306 – volume: 34 start-page: 28 year: 2002 ident: key 20170718093358_mcw256-B7 article-title: Developmental response of a resistance-breaking population of Meloidogyne arenaria on Vitis spp publication-title: Journal of Nematology – volume: 99 start-page: 16360 year: 2002 ident: key 20170718093358_mcw256-B38 article-title: African rice (Oryza glaberrima): history and future potential publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.252604599 – volume: 10 start-page: e0118269 year: 2015 ident: key 20170718093358_mcw256-B46 article-title: Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita publication-title: PLoS One doi: 10.1371/journal.pone.0118269 – volume: 47 start-page: 1042 year: 2014 ident: key 20170718093358_mcw256-B24 article-title: Life cycle of the rice root-knot nematode Meloidogyne graminicola at different temperatures under non-flooded and flooded conditions publication-title: Archives of Phytopathology and Plant Protection doi: 10.1080/03235408.2013.829627 – volume: 5 start-page: 879 year: 2003 ident: key 20170718093358_mcw256-B53 article-title: Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines publication-title: Nematology doi: 10.1163/156854103773040781 – volume: 6 start-page: 327 year: 2003 ident: key 20170718093358_mcw256-B62 article-title: Plant-nematode interactions publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(03)00059-1 – volume: 46 start-page: 941 year: 2008 ident: key 20170718093358_mcw256-B52 article-title: Plant pathogenesis-related (PR) proteins: a focus on PR peptides publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2008.06.011 – volume: 168 start-page: 481 year: 2011 ident: key 20170718093358_mcw256-B56 article-title: Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2010.08.006 – volume: 92 start-page: 4076 year: 1995 ident: key 20170718093358_mcw256-B37 article-title: Biosynthesis and metabolism of salicylic acid publication-title: Proceedings of the National Academy of Sciences of the USA doi: 10.1073/pnas.92.10.4076 – volume: 10 start-page: 81 year: 1982 ident: key 20170718093358_mcw256-B13 article-title: Ultrastructural aspects of the hypersensitive reaction in tomato root cells resistant to Meloidogyne incognita publication-title: Nematologia Mediterranea – volume: 196 start-page: 887 year: 2012 ident: key 20170718093358_mcw256-B34 article-title: Transcriptional reprogramming by root knot and migratory nematode infection in rice publication-title: New Phytologist doi: 10.1111/j.1469-8137.2012.04311.x – volume: 7 start-page: 315 year: 2002 ident: key 20170718093358_mcw256-B12 article-title: Impact of phyto-oxylipins in plant defense publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(02)02290-2 – volume: 6 start-page: 22846 year: 2016 ident: key 20170718093358_mcw256-B33 article-title: Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice publication-title: Scientific Reports doi: 10.1038/srep22846 – volume: 3 start-page: 2 year: 2010 ident: key 20170718093358_mcw256-B60 article-title: Phenylpropanoid biosynthesis publication-title: Molecular Plant doi: 10.1093/mp/ssp106 – volume: 14 start-page: 405 year: 2012 ident: key 20170718093358_mcw256-B16 article-title: Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes publication-title: Nematology doi: 10.1163/156854111X602613 – volume: 16 start-page: 555 year: 2014 ident: key 20170718093358_mcw256-B43 article-title: The effect of root-knot nematode, Meloidogyne graminicola, on the quality and vigour of rice seed publication-title: Nematology doi: 10.1163/15685411-00002787 – volume: 107 start-page: 691 year: 2003 ident: key 20170718093358_mcw256-B39 article-title: Linkage mapping of Hsa-1Og, a resistance gene of African rice to the cyst nematode, Heterodera sacchari publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-003-1285-1 – volume: 107 start-page: 371 year: 2003 ident: key 20170718093358_mcw256-B2 article-title: Fine genetic mapping of a gene required for rice yellow mottle virus cell-to-cell movement publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-003-1258-4 – volume: 18 start-page: 1247 year: 2011 ident: key 20170718093358_mcw256-B19 article-title: Programmed cell death in the plant immune system publication-title: Cell Death and Differentiation doi: 10.1038/cdd.2011.37 – volume: 15 start-page: 695 year: 2013 ident: key 20170718093358_mcw256-B26 article-title: Comparative cellular responses in susceptible and resistant soybean cultivars infected by Meloidogyne incognita publication-title: Nematology doi: 10.1163/15685411-00002712 – volume: 37 start-page: 914 year: 2004 ident: key 20170718093358_mcw256-B55 article-title: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes publication-title: Plant Journal doi: 10.1111/j.1365-313X.2004.02016.x – volume: 31 start-page: 166 year: 2015 ident: key 20170718093358_mcw256-B5 article-title: HTSeq—a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 2 start-page: 79 year: 1979 ident: key 20170718093358_mcw256-B25 article-title: Root-parasitic nematodes of rice publication-title: Revue de Nématologie – reference: 18674922 - Plant Physiol Biochem. 2008 Nov;46(11):941-50 – reference: 24330140 - Mol Plant Pathol. 2014 Aug;15(6):627-36 – reference: 26961568 - Sci Rep. 2016 Mar 10;6:22846 – reference: 25368197 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62 – reference: 22188265 - Plant Biol (Stuttg). 2012 Mar;14 Suppl 1:73-82 – reference: 23881398 - J Exp Bot. 2013 Sep;64(12):3885-98 – reference: 23574394 - New Phytol. 2013 Jul;199(2):505-19 – reference: 25710378 - PLoS One. 2015 Feb 24;10(2):e0118269 – reference: 12119169 - Trends Plant Sci. 2002 Jul;7(7):315-22 – reference: 26224554 - Rice (N Y). 2014 Dec;7(1):23 – reference: 23824525 - Planta. 2013 Nov;238(5):807-18 – reference: 19265904 - J Nematol. 2002 Mar;34(1):28-33 – reference: 12461173 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16360-5 – reference: 20863592 - J Plant Physiol. 2011 Mar 15;168(5):481-92 – reference: 23663436 - BMC Genomics. 2013 May 10;14:322 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 21475301 - Cell Death Differ. 2011 Aug;18(8):1247-56 – reference: 14996223 - Plant J. 2004 Mar;37(6):914-39 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 24847336 - Front Plant Sci. 2014 May 05;5:160 – reference: 21446787 - Phytopathology. 2011 Aug;101(8):945-51 – reference: 21715672 - Plant Physiol. 2011 Sep;157(1):305-16 – reference: 22985291 - New Phytol. 2012 Nov;196(3):887-900 – reference: 12873526 - Curr Opin Plant Biol. 2003 Aug;6(4):327-33 – reference: 20035037 - Mol Plant. 2010 Jan;3(1):2-20 – reference: 23279209 - Mol Plant Pathol. 2013 May;14(4):379-90 – reference: 27128375 - New Phytol. 2016 Jul;211(1):41-56 – reference: 25064006 - Nat Genet. 2014 Sep;46(9):982-8 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 19295781 - J Nematol. 1983 Jan;15(1):142-3 – reference: 25676661 - Mol Plant Pathol. 2015 Oct;16(8):870-81 – reference: 18700825 - Mol Plant Microbe Interact. 2008 Sep;21(9):1205-14 – reference: 26488731 - PLoS One. 2015 Oct 21;10(10):e0140937 – reference: 24906126 - Annu Rev Phytopathol. 2014;52:243-65 – reference: 12679871 - Theor Appl Genet. 2003 Jul;107(2):371-8 – reference: 12721640 - Theor Appl Genet. 2003 Aug;107(4):691-6 – reference: 25515696 - Plant Mol Biol. 2015 Feb;87(3):273-86 – reference: 11607533 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076-9 – reference: 25730421 - PLoS One. 2015 Mar 02;10(3):e0118731 – reference: 26610268 - Mol Plant Pathol. 2016 Aug;17 (6):860-74 – reference: 26552884 - J Exp Bot. 2016 Feb;67(4):1191-200 |
SSID | ssj0002691 |
Score | 2.4429617 |
Snippet | The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681... Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The... Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 885 |
SubjectTerms | Animals Asia Disease Resistance environmental factors galls Gene Expression Regulation, Plant genes genotype giant cells histology isoflavones jasmonic acid juveniles Latin America Life Sciences Meloidogyne graminicola microscopy naringenin-chalcone synthase Original Oryza - genetics Oryza - parasitology Oryza glaberrima Oryza sativa PART OF A SPECIAL ISSUE ON PLANT IMMUNITY phenylalanine ammonia-lyase Plant Diseases - parasitology Plant Proteins - genetics Plant Proteins - metabolism quantitative trait loci reproduction rice root-knot nematodes roots salicylic acid Sequence Analysis, RNA stripe rust transcription factors Transcriptome transcriptomics Tylenchoidea - physiology |
Title | Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots |
URI | https://www.jstor.org/stable/26527413 https://www.ncbi.nlm.nih.gov/pubmed/28334204 https://www.proquest.com/docview/1881261727 https://www.proquest.com/docview/2315261885 https://hal.science/hal-01602589 https://pubmed.ncbi.nlm.nih.gov/PMC5604615 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lKQcuiFchvLQ8DlSR28T2xvYxoY0iSMuBRMrNWu-uSUTrjVIHlP4k-JPMeP2IaZAKF8tajx_yfDsPe_YbQt4FLPK9uCcgLRHSclnALV9IaTm-HTtuIDpc4aeBs_PeaOp-nLFZo_Fzq2ppnUZH4nrnupL_0SqMgV5xlew_aLa8KAzAPugXtqBh2N5Ox-hosmmPa4uz_wAZf3Bhz1amANbwypqOQEkbWYQyktHV5pq3IXqOkJzxkuP3AQhEz9SFXkj9dQPRJ1Zu4cJJSH_b-ZI9bEGOBeyY02MpF5wBsXdqfUt0Cscg_tUSO7FcYVyKRmORtOF9aKENZdTRDeLmSKeFQTIdvsDGGC4EcAHWF72cL0rwfdokMjUQS3hlPBcyLxPn1eiJWim1zHt1Z6yf2x84wGmWFV65TYYo0ML_vTWjnRtag07WXgI2QMo0W8qNsW-aARV-3Ry74TIMnRbXEWwvxQ-b7WDmPv8cDqfjcTg5nU32yL4NKYndJPv9wclgWPp9u5f1ZywftyDDDZxjuPqxuXYt_NmbY_GtqYPdleH8Wai7FflM7pN7ecpC-wZ_D0hDJQ_JnUGmtkfkVx2EFEBIt0FISxBSHdMchBRBSN9nEKQVBA9pqukWAOkWAGkOQAoApAUAKQKQlgCkBQBpBUAQoQUAH5Pp8HTyYWTlHUAsAQ48tQI3ZoEd-Ur2Ipf7QniMC-YGyusq4Xc9GYCPtJGiSCiPMx7Dy1YqkNJxI9mFyP6ANBOdqKeEBsrxfUf1vDjquHEE-64IJHgvh4uIM9kih4ViQpHT42OXlovQlGk4ISgxNEpskbel7NKQwuyUegP6LQWQx33UH4c4hrSONvOD790WOcjUX4rZPYaMUk6LvC7wEILFx994PFF6fRV2fQjKs8Tj7zKQtTGQgRnQIk8Mhqo7-I7j2h23RbwaumpPWj-SLOYZ8zykRy6kQM9ucd_n5G41mV-QZrpaq5cQv6fRq3zi_AbMyv89 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+and+histological+responses+of+African+rice+%28Oryza+glaberrima%29+to+Meloidogyne+graminicola+provide+new+insights+into+root-knot+nematode+resistance+in+monocots&rft.jtitle=Annals+of+botany&rft.au=Petitot%2C+Anne-Sophie&rft.au=Kyndt%2C+Tina&rft.au=Haidar%2C+Rana&rft.au=Dereeper%2C+Alexis&rft.date=2017-03-01&rft.issn=1095-8290&rft.volume=119&rft.issue=5+p.885-899&rft.spage=885&rft.epage=899&rft_id=info:doi/10.1093%2Faob%2Fmcw256&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |