Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots

The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this stud...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 119; no. 5; pp. 885 - 899
Main Authors Petitot, Anne-Sophie, Kyndt, Tina, Haidar, Rana, Dereeper, Alexis, Collin, Myriam, de Almeida Engler, Janice, Gheysen, Godelieve, Fernandez, Diana
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2017
Oxford University Press (OUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
AbstractList Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d postinfection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the ricenematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession.Background and AimsThe root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession.Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction.MethodsPenetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction.Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3.Key ResultsPenetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3.This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.ConclusionsThis study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions.
Author Gheysen, Godelieve
Petitot, Anne-Sophie
de Almeida Engler, Janice
Kyndt, Tina
Collin, Myriam
Haidar, Rana
Dereeper, Alexis
Fernandez, Diana
AuthorAffiliation 2 Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium
4 Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France
1 Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
3 UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France
AuthorAffiliation_xml – name: 4 Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France
– name: 3 UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France
– name: 1 Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
– name: 2 Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium
Author_xml – sequence: 1
  givenname: Anne-Sophie
  surname: Petitot
  fullname: Petitot, Anne-Sophie
  organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
– sequence: 2
  givenname: Tina
  surname: Kyndt
  fullname: Kyndt, Tina
  organization: Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium
– sequence: 3
  givenname: Rana
  surname: Haidar
  fullname: Haidar, Rana
  organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
– sequence: 4
  givenname: Alexis
  surname: Dereeper
  fullname: Dereeper, Alexis
  organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
– sequence: 5
  givenname: Myriam
  surname: Collin
  fullname: Collin, Myriam
  organization: UMR 232 DIADE (IRD-UM2-Cirad) 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France
– sequence: 6
  givenname: Janice
  surname: de Almeida Engler
  fullname: de Almeida Engler, Janice
  organization: Institut National de la Recherche Agronomique, UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes BP167, 06903 Sophia Antipolis Cedex, France
– sequence: 7
  givenname: Godelieve
  surname: Gheysen
  fullname: Gheysen, Godelieve
  organization: Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Gent, Belgium
– sequence: 8
  givenname: Diana
  surname: Fernandez
  fullname: Fernandez, Diana
  organization: Institut de Recherche pour le Développement, UMR 186 IPME (IRD-UM2-Cirad) 911, avenue Agropolis, BP 64501 34394 Montpellier Cedex 5, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28334204$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01602589$$DView record in HAL
BookMark eNqFkstu1DAUhi1URKeFDXuQly1SqC-xk2yQRhVQpEHdlLXlOE7GJfEZbM9UwyvxkniUlkuFxMa2jr__XOz_BB158Bahl5S8paThFxrai8ncMSGfoEWOiKJmDTlCC8KJKCouy2N0EuMtIYTJhj5Dx6zmvGSkXKAfN0H7aILbJJicwdp3eO1ighEGZ_SIg40b8NFGDD1e9iEHPc6rxWfXYf9d42HUrQ3BTfocJ8Cf7Qiug2HvLR6Cnpx3BkaNNwF2rrPY2zvsfHTDOsV8yIoAkIqvHlK-m3SCDOWiuQftcxXn8QQeDKT4HD3t9Rjti_v9FH358P7m8qpYXX_8dLlcFaaUVSqashcNa2vbybbUtTGV0EaUja2oNTWtuqauK0YEF8ZWWug-v6G1Tdfxsu2oZPwUvZvzbrbtZDtjfQp6VJvDjGGvQDv19413azXATglJSklFTnA-J1g_kl0tV-oQI1QSJupmRzN7dl8swLetjUlNLho7jtpb2EbFOBVM0roW_0UzRDNasSqjr_8c4VcTDx-fATIDJkCMwfbKuKSTg8NEblSUqIO3VPaWmr2VJW8eSR6y_hN-NcO32Uvhd30pWFVSzn8CNVvfgA
CitedBy_id crossref_primary_10_1094_PHYTO_07_17_0235_R
crossref_primary_10_1007_s40858_018_0267_4
crossref_primary_10_1007_s43630_023_00379_4
crossref_primary_10_1071_FP23295
crossref_primary_10_1007_s10658_018_1451_6
crossref_primary_10_3390_ijms23158491
crossref_primary_10_7717_peerj_16483
crossref_primary_10_1007_s10343_023_00886_5
crossref_primary_10_1111_nph_18152
crossref_primary_10_3390_ijms21165640
crossref_primary_10_1017_S1479262123000965
crossref_primary_10_1111_pbr_12875
crossref_primary_10_3390_plants8100376
crossref_primary_10_1016_j_rsci_2021_04_008
crossref_primary_10_1186_s12864_018_4979_0
crossref_primary_10_3390_plants12122387
crossref_primary_10_1007_s12892_017_0101_0
crossref_primary_10_3389_fpls_2024_1343097
crossref_primary_10_3390_plants13192813
crossref_primary_10_1007_s00438_020_01677_7
crossref_primary_10_31055_1851_2372_v59_n2_44120
crossref_primary_10_1007_s00344_023_11138_1
crossref_primary_10_1016_j_pmpp_2017_09_001
crossref_primary_10_1094_PHYTO_02_19_0044_R
crossref_primary_10_1093_femsec_fiaa099
crossref_primary_10_1002_ppj2_70013
crossref_primary_10_3389_fpls_2023_1278990
crossref_primary_10_3390_agronomy9040188
crossref_primary_10_1016_j_jprot_2022_104575
crossref_primary_10_1007_s12033_018_0100_9
crossref_primary_10_1093_aob_mcw272
crossref_primary_10_1080_14620316_2024_2404511
crossref_primary_10_1134_S1021443723601635
crossref_primary_10_35709_ory_2022_59_3_15
crossref_primary_10_1007_s11033_024_09573_8
crossref_primary_10_1002_2211_5463_12737
crossref_primary_10_1007_s11032_020_01137_5
crossref_primary_10_1007_s40858_025_00723_2
crossref_primary_10_1163_15685411_bja10155
crossref_primary_10_1093_aob_mcw284
crossref_primary_10_1007_s00425_021_03625_0
crossref_primary_10_1038_s41467_023_39080_6
crossref_primary_10_1111_mpp_13042
crossref_primary_10_1111_mec_16254
crossref_primary_10_1007_s41348_023_00726_8
crossref_primary_10_3389_fpls_2022_854961
crossref_primary_10_1016_j_jia_2022_11_008
crossref_primary_10_3389_fgene_2022_871833
crossref_primary_10_3390_pathogens9080644
crossref_primary_10_1007_s10725_021_00709_5
crossref_primary_10_1007_s13313_023_00926_8
Cites_doi 10.1093/jxb/ert219
10.1371/journal.pone.0118731
10.1163/156854199508397
10.1007/s12571-012-0168-1
10.1111/mpp.12246
10.1007/s10658-010-9603-3
10.1094/PHYTO-01-11-0004
10.1007/s11103-014-0275-9
10.1038/ng.3044
10.1016/S0168-9452(98)00021-1
10.1111/mpp.12014
10.1093/bioinformatics/btp120
10.1111/j.1365-3059.2005.01239.x
10.1371/journal.pone.0140937
10.1111/nph.12255
10.1104/pp.111.177576
10.1186/s12284-014-0023-4
10.1163/156854199508775
10.1016/bs.abr.2014.12.006
10.1186/1471-2164-14-322
10.1111/mpp.12334
10.1093/bioinformatics/btp616
10.1073/pnas.1418307111
10.1111/mpp.12114
10.1163/156854199508027
10.1094/MPMI-21-9-1205
10.1079/9781845934927.0139
10.1111/nph.13933
10.1146/annurev-phyto-102313-050118
10.1007/s00425-013-1923-z
10.1163/156854111X612306
10.1073/pnas.252604599
10.1371/journal.pone.0118269
10.1080/03235408.2013.829627
10.1163/156854103773040781
10.1016/S1369-5266(03)00059-1
10.1016/j.plaphy.2008.06.011
10.1016/j.jplph.2010.08.006
10.1073/pnas.92.10.4076
10.1111/j.1469-8137.2012.04311.x
10.1016/S1360-1385(02)02290-2
10.1038/srep22846
10.1093/mp/ssp106
10.1163/156854111X602613
10.1163/15685411-00002787
10.1007/s00122-003-1285-1
10.1007/s00122-003-1258-4
10.1038/cdd.2011.37
10.1163/15685411-00002712
10.1111/j.1365-313X.2004.02016.x
10.1093/bioinformatics/btu638
ContentType Journal Article
Copyright The Author 2017
The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Attribution - ShareAlike
The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author 2017
– notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: Attribution - ShareAlike
– notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
DOI 10.1093/aob/mcw256
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 899
ExternalDocumentID PMC5604615
oai_HAL_hal_01602589v1
28334204
10_1093_aob_mcw256
26527413
Genre Journal Article
GeographicLocations Asia
Latin America
GeographicLocations_xml – name: Latin America
– name: Asia
GrantInformation_xml – fundername: ; ;
  grantid: 1002-003
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TCN
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AAYXX
CITATION
AACTN
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
M49
NPM
RIG
7X8
7S9
L.6
--K
1B1
1XC
53G
71M
AAEDT
AALCJ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
AAYWO
ABDPE
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABWVN
ABZEO
ACFRR
ACPQN
ACRPL
ACUKT
ACVCV
ACZBC
ADFGL
ADMUD
ADNMO
ADULT
ADXHL
AEHUL
AEKPW
AETEA
AFFNX
AFSHK
AFSWV
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CXTWN
DFGAJ
DM4
ELUNK
FA8
FEDTE
FGOYB
FIRID
HVGLF
IHE
LG5
MBTAY
NEJ
NTWIH
O0~
OHT
OZT
O~Y
PB-
QBD
R2-
RNI
RPZ
RZF
RZO
SSZ
UHS
VH1
XOL
XPP
ZCG
ZMT
5PM
ID FETCH-LOGICAL-c467t-94f592b8ed6b4a8cc75ac549e71ec817d988720535ce7a5af093ee9dd34bd1623
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:32:39 EDT 2025
Thu Aug 14 06:48:10 EDT 2025
Fri Jul 11 00:10:59 EDT 2025
Fri Jul 11 02:01:45 EDT 2025
Wed Feb 19 02:44:44 EST 2025
Tue Jul 01 01:39:18 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Thu Jul 03 22:08:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Oryza sativa
histology
RNA-Seq
hormones
resistance responses
root-knot nematode
Oryza glaberrima
QTL
transcriptomics
differentially expressed genes
monocots
Meloidogyne graminicola
Language English
License The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-94f592b8ed6b4a8cc75ac549e71ec817d988720535ce7a5af093ee9dd34bd1623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5604615
ORCID 0000-0002-8312-672X
0000-0001-8120-8409
0000-0003-1432-3129
OpenAccessLink https://academic.oup.com/aob/article-pdf/119/5/885/18765044/mcw256.pdf
PMID 28334204
PQID 1881261727
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5604615
hal_primary_oai_HAL_hal_01602589v1
proquest_miscellaneous_2315261885
proquest_miscellaneous_1881261727
pubmed_primary_28334204
crossref_citationtrail_10_1093_aob_mcw256
crossref_primary_10_1093_aob_mcw256
jstor_primary_26527413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2017
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References ( key 20170718093358_mcw256-B11) 2010; 9
( key 20170718093358_mcw256-B26) 2013; 15
( key 20170718093358_mcw256-B23) 2015; 73
( key 20170718093358_mcw256-B5) 2015; 31
( key 20170718093358_mcw256-B19) 2011; 18
( key 20170718093358_mcw256-B44) 2016; 17
( key 20170718093358_mcw256-B55) 2004; 37
( key 20170718093358_mcw256-B14) 1998; 133
( key 20170718093358_mcw256-B18) 2014; 15
( key 20170718093358_mcw256-B60) 2010; 3
( key 20170718093358_mcw256-B7) 2002; 34
( key 20170718093358_mcw256-B15) 1983; 15
( key 20170718093358_mcw256-B25) 1979; 2
( key 20170718093358_mcw256-B29) 2013; 14
( key 20170718093358_mcw256-B38) 2002; 99
( key 20170718093358_mcw256-B50) 2016; 211
( key 20170718093358_mcw256-B32) 2011; 101
( key 20170718093358_mcw256-B13) 1982; 10
( key 20170718093358_mcw256-B57) 2015; 87
( key 20170718093358_mcw256-B12) 2002; 7
( key 20170718093358_mcw256-B16) 2012; 14
( key 20170718093358_mcw256-B8) 1995; 18
( key 20170718093358_mcw256-B40) 2011; 157
( key 20170718093358_mcw256-B28) 2015; 10
( key 20170718093358_mcw256-B20) 2009
( key 20170718093358_mcw256-B30) 2013; 64
( key 20170718093358_mcw256-B39) 2003; 107
( key 20170718093358_mcw256-B1) 2012; 4
( key 20170718093358_mcw256-B45) 1999; 1
( key 20170718093358_mcw256-B36) 2013; 238
( key 20170718093358_mcw256-B35) 2012; 14 Suppl 1
( key 20170718093358_mcw256-B22) 2012; 14
( key 20170718093358_mcw256-B56) 2011; 168
( key 20170718093358_mcw256-B34) 2012; 196
( key 20170718093358_mcw256-B53) 2003; 5
( key 20170718093358_mcw256-B2) 2003; 107
( key 20170718093358_mcw256-B43) 2014; 16
( key 20170718093358_mcw256-B27) 2014; 52
( key 20170718093358_mcw256-B49) 2010; 26
( key 20170718093358_mcw256-B62) 2003; 6
( key 20170718093358_mcw256-B3) 2010; 127
( key 20170718093358_mcw256-B21) 2015; 67
( key 20170718093358_mcw256-B9) 2008; 21
( key 20170718093358_mcw256-B52) 2008; 46
( key 20170718093358_mcw256-B61) 2014; 46
( key 20170718093358_mcw256-B31) 2015; 16
( key 20170718093358_mcw256-B46) 2015; 10
( key 20170718093358_mcw256-B6) 2005; 54
( key 20170718093358_mcw256-B4) 2015; 10
( key 20170718093358_mcw256-B42) 2014; 7
( key 20170718093358_mcw256-B24) 2014; 47
( key 20170718093358_mcw256-B37) 1995; 92
( key 20170718093358_mcw256-B58) 2009; 25
( key 20170718093358_mcw256-B10) 2013; 14
( key 20170718093358_mcw256-B51) 2012; 4
( key 20170718093358_mcw256-B63) 2014; 111
( key 20170718093358_mcw256-B17) 2013; 16
( key 20170718093358_mcw256-B48) 1999; 1
( key 20170718093358_mcw256-B54) 1999; 1
( key 20170718093358_mcw256-B59) 2013; 199
( key 20170718093358_mcw256-B33) 2016; 6
( key 20170718093358_mcw256-B41) 2008; 7
( key 20170718093358_mcw256-B47) 2014; 5
23663436 - BMC Genomics. 2013 May 10;14:322
11607533 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076-9
20863592 - J Plant Physiol. 2011 Mar 15;168(5):481-92
24330140 - Mol Plant Pathol. 2014 Aug;15(6):627-36
21475301 - Cell Death Differ. 2011 Aug;18(8):1247-56
21715672 - Plant Physiol. 2011 Sep;157(1):305-16
19265904 - J Nematol. 2002 Mar;34(1):28-33
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
26488731 - PLoS One. 2015 Oct 21;10(10):e0140937
18674922 - Plant Physiol Biochem. 2008 Nov;46(11):941-50
19295781 - J Nematol. 1983 Jan;15(1):142-3
23574394 - New Phytol. 2013 Jul;199(2):505-19
26610268 - Mol Plant Pathol. 2016 Aug;17 (6):860-74
25676661 - Mol Plant Pathol. 2015 Oct;16(8):870-81
23881398 - J Exp Bot. 2013 Sep;64(12):3885-98
25710378 - PLoS One. 2015 Feb 24;10(2):e0118269
25515696 - Plant Mol Biol. 2015 Feb;87(3):273-86
23279209 - Mol Plant Pathol. 2013 May;14(4):379-90
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
26224554 - Rice (N Y). 2014 Dec;7(1):23
18700825 - Mol Plant Microbe Interact. 2008 Sep;21(9):1205-14
25368197 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62
12721640 - Theor Appl Genet. 2003 Aug;107(4):691-6
21446787 - Phytopathology. 2011 Aug;101(8):945-51
24847336 - Front Plant Sci. 2014 May 05;5:160
12461173 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16360-5
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
25730421 - PLoS One. 2015 Mar 02;10(3):e0118731
22985291 - New Phytol. 2012 Nov;196(3):887-900
20035037 - Mol Plant. 2010 Jan;3(1):2-20
23824525 - Planta. 2013 Nov;238(5):807-18
14996223 - Plant J. 2004 Mar;37(6):914-39
12119169 - Trends Plant Sci. 2002 Jul;7(7):315-22
25064006 - Nat Genet. 2014 Sep;46(9):982-8
26961568 - Sci Rep. 2016 Mar 10;6:22846
24906126 - Annu Rev Phytopathol. 2014;52:243-65
22188265 - Plant Biol (Stuttg). 2012 Mar;14 Suppl 1:73-82
12679871 - Theor Appl Genet. 2003 Jul;107(2):371-8
26552884 - J Exp Bot. 2016 Feb;67(4):1191-200
12873526 - Curr Opin Plant Biol. 2003 Aug;6(4):327-33
27128375 - New Phytol. 2016 Jul;211(1):41-56
References_xml – volume: 64
  start-page: 3885
  year: 2013
  ident: key 20170718093358_mcw256-B30
  article-title: Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ert219
– volume: 10
  start-page: e0118731
  year: 2015
  ident: key 20170718093358_mcw256-B4
  article-title: Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118731
– volume: 1
  start-page: 395
  year: 1999
  ident: key 20170718093358_mcw256-B54
  article-title: Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima
  publication-title: Nematology
  doi: 10.1163/156854199508397
– volume: 4
  start-page: 7
  year: 2012
  ident: key 20170718093358_mcw256-B51
  article-title: Crops that feed the world 7: rice
  publication-title: Food Security
  doi: 10.1007/s12571-012-0168-1
– volume: 16
  start-page: 870
  year: 2015
  ident: key 20170718093358_mcw256-B31
  article-title: The role of thionins in rice defence against root pathogens
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12246
– volume: 9
  start-page: 3988
  year: 2010
  ident: key 20170718093358_mcw256-B11
  article-title: Evaluation of Oryza sativa x O. glaberrima derived progenies for resistance to root-knot nematode and identification of introgressed alien chromosome segments using SSR markers
  publication-title: African Journal of Biotechnology
– volume: 127
  start-page: 365
  year: 2010
  ident: key 20170718093358_mcw256-B3
  article-title: Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica
  publication-title: European Journal of Plant Pathology
  doi: 10.1007/s10658-010-9603-3
– volume: 101
  start-page: 945
  year: 2011
  ident: key 20170718093358_mcw256-B32
  article-title: Histological mechanisms of the resistance conferred by the Ma gene against Meloidogyne incognita in Prunus spp
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-01-11-0004
– volume: 87
  start-page: 273
  year: 2015
  ident: key 20170718093358_mcw256-B57
  article-title: Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-014-0275-9
– volume: 7
  start-page: 4219
  year: 2008
  ident: key 20170718093358_mcw256-B41
  article-title: Molecular profiling of interspecific lowland rice populations derived from IR64 (Oryza sativa) and TOG5681 (Oryza glaberrima)
  publication-title: African Journal of Biotechnology
– volume: 46
  start-page: 982
  year: 2014
  ident: key 20170718093358_mcw256-B61
  article-title: The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication
  publication-title: Nature Genetics
  doi: 10.1038/ng.3044
– volume: 133
  start-page: 79
  year: 1998
  ident: key 20170718093358_mcw256-B14
  article-title: The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection
  publication-title: Plant Science
  doi: 10.1016/S0168-9452(98)00021-1
– volume: 14
  start-page: 379
  year: 2013
  ident: key 20170718093358_mcw256-B29
  article-title: Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12014
– volume: 25
  start-page: 1105
  year: 2009
  ident: key 20170718093358_mcw256-B58
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 54
  start-page: 476
  year: 2005
  ident: key 20170718093358_mcw256-B6
  article-title: Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee
  publication-title: Plant Pathology
  doi: 10.1111/j.1365-3059.2005.01239.x
– volume: 10
  start-page: e0140937
  year: 2015
  ident: key 20170718093358_mcw256-B28
  article-title: Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140937
– volume: 199
  start-page: 505
  year: 2013
  ident: key 20170718093358_mcw256-B59
  article-title: Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion
  publication-title: New Phytologist
  doi: 10.1111/nph.12255
– volume: 18
  start-page: 531
  year: 1995
  ident: key 20170718093358_mcw256-B8
  article-title: Histopathogenesis of susceptible and resistant responses of wheat, barley and wild grasses to Meloidogyne naasi
  publication-title: Fundamental and Applied Nematology
– volume: 157
  start-page: 305
  year: 2011
  ident: key 20170718093358_mcw256-B40
  article-title: The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.177576
– volume: 7
  start-page: 23
  year: 2014
  ident: key 20170718093358_mcw256-B42
  article-title: Meloidogyne incognita–rice (Oryza sativa) interaction: a new model system to study plant root-knot nematode interactions in monocotyledons
  publication-title: Rice
  doi: 10.1186/s12284-014-0023-4
– volume: 1
  start-page: 745
  year: 1999
  ident: key 20170718093358_mcw256-B45
  article-title: Resistance to the rice nematodes Heterodera sacchari, Meloidogyne graminicola and M. incognita in Oryza glaberrima and O. glaberrima x O. sativa interspecies hybrids
  publication-title: Nematology
  doi: 10.1163/156854199508775
– volume: 16
  start-page: 73
  year: 2013
  ident: key 20170718093358_mcw256-B17
  article-title: Histopathology of the rice root-knot nematode, Meloidogyne graminicola, on Oryza sativa and O. glaberrima
  publication-title: Nematology
– volume: 73
  start-page: 189
  year: 2015
  ident: key 20170718093358_mcw256-B23
  article-title: Recent advances in understanding plant-nematode interactions in monocots
  publication-title: Advances in Botanical Research
  doi: 10.1016/bs.abr.2014.12.006
– volume: 14
  start-page: 322
  year: 2013
  ident: key 20170718093358_mcw256-B10
  article-title: Transcription profile of soybean root-knot nematode interaction reveals a key role of phytohormones in the resistance reaction
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-322
– volume: 17
  start-page: 860
  year: 2016
  ident: key 20170718093358_mcw256-B44
  article-title: Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12334
– volume: 26
  start-page: 139
  year: 2010
  ident: key 20170718093358_mcw256-B49
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 111
  start-page: E4954
  year: 2014
  ident: key 20170718093358_mcw256-B63
  article-title: Rapid diversification of five Oryza AA genomes associated with rice adaptation
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.1418307111
– volume: 15
  start-page: 627
  year: 2014
  ident: key 20170718093358_mcw256-B18
  article-title: NEMATIC: a simple and versatile tool for the in silico analysis of plant-nematode interactions
  publication-title: Molecular Plant Pathology
  doi: 10.1111/mpp.12114
– volume: 14 Suppl 1
  start-page: 73
  year: 2012
  ident: key 20170718093358_mcw256-B35
  article-title: Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice
  publication-title: Plant Biology (Stuttgart, Germany)
– volume: 1
  start-page: 209
  year: 1999
  ident: key 20170718093358_mcw256-B48
  article-title: A mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory
  publication-title: Nematology
  doi: 10.1163/156854199508027
– volume: 21
  start-page: 1205
  year: 2008
  ident: key 20170718093358_mcw256-B9
  article-title: Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway
  publication-title: Molecular Plant Microbe Interactions
  doi: 10.1094/MPMI-21-9-1205
– start-page: 139
  volume-title: Root-knot nematodes
  year: 2009
  ident: key 20170718093358_mcw256-B20
  doi: 10.1079/9781845934927.0139
– volume: 4
  start-page: 19
  year: 2012
  ident: key 20170718093358_mcw256-B1
  article-title: Molecular profiling of interspecific lowland rice progenies resulting from crosses between TOG5681 and TOG5674 (Oryza glaberrima) and IR64 (Oryza sativa)
  publication-title: International Journal of Biology
– volume: 211
  start-page: 41
  year: 2016
  ident: key 20170718093358_mcw256-B50
  article-title: Resistance to root-knot nematodes Meloidogyne spp. in woody plants
  publication-title: New Phytologist
  doi: 10.1111/nph.13933
– volume: 52
  start-page: 243
  year: 2014
  ident: key 20170718093358_mcw256-B27
  article-title: The activation and suppression of plant innate immunity by parasitic nematodes
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-102313-050118
– volume: 238
  start-page: 807
  year: 2013
  ident: key 20170718093358_mcw256-B36
  article-title: Nematode feeding sites: unique organs in plant roots
  publication-title: Planta
  doi: 10.1007/s00425-013-1923-z
– volume: 5
  start-page: 160
  year: 2014
  ident: key 20170718093358_mcw256-B47
  article-title: On the track of transfer cell formation by specialized plant-parasitic nematodes
  publication-title: Frontiers in Plant Science
– volume: 67
  start-page: 1191
  year: 2015
  ident: key 20170718093358_mcw256-B21
  article-title: A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes
  publication-title: Journal of Experimental Botany
– volume: 15
  start-page: 142
  year: 1983
  ident: key 20170718093358_mcw256-B15
  article-title: An improved technique for clearing and staining plant tissues for detection of nematodes
  publication-title: Journal of Nematology
– volume: 14
  start-page: 309
  year: 2012
  ident: key 20170718093358_mcw256-B22
  article-title: Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola
  publication-title: Nematology
  doi: 10.1163/156854111X612306
– volume: 34
  start-page: 28
  year: 2002
  ident: key 20170718093358_mcw256-B7
  article-title: Developmental response of a resistance-breaking population of Meloidogyne arenaria on Vitis spp
  publication-title: Journal of Nematology
– volume: 99
  start-page: 16360
  year: 2002
  ident: key 20170718093358_mcw256-B38
  article-title: African rice (Oryza glaberrima): history and future potential
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.252604599
– volume: 10
  start-page: e0118269
  year: 2015
  ident: key 20170718093358_mcw256-B46
  article-title: Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118269
– volume: 47
  start-page: 1042
  year: 2014
  ident: key 20170718093358_mcw256-B24
  article-title: Life cycle of the rice root-knot nematode Meloidogyne graminicola at different temperatures under non-flooded and flooded conditions
  publication-title: Archives of Phytopathology and Plant Protection
  doi: 10.1080/03235408.2013.829627
– volume: 5
  start-page: 879
  year: 2003
  ident: key 20170718093358_mcw256-B53
  article-title: Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines
  publication-title: Nematology
  doi: 10.1163/156854103773040781
– volume: 6
  start-page: 327
  year: 2003
  ident: key 20170718093358_mcw256-B62
  article-title: Plant-nematode interactions
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/S1369-5266(03)00059-1
– volume: 46
  start-page: 941
  year: 2008
  ident: key 20170718093358_mcw256-B52
  article-title: Plant pathogenesis-related (PR) proteins: a focus on PR peptides
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2008.06.011
– volume: 168
  start-page: 481
  year: 2011
  ident: key 20170718093358_mcw256-B56
  article-title: Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2010.08.006
– volume: 92
  start-page: 4076
  year: 1995
  ident: key 20170718093358_mcw256-B37
  article-title: Biosynthesis and metabolism of salicylic acid
  publication-title: Proceedings of the National Academy of Sciences of the USA
  doi: 10.1073/pnas.92.10.4076
– volume: 10
  start-page: 81
  year: 1982
  ident: key 20170718093358_mcw256-B13
  article-title: Ultrastructural aspects of the hypersensitive reaction in tomato root cells resistant to Meloidogyne incognita
  publication-title: Nematologia Mediterranea
– volume: 196
  start-page: 887
  year: 2012
  ident: key 20170718093358_mcw256-B34
  article-title: Transcriptional reprogramming by root knot and migratory nematode infection in rice
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04311.x
– volume: 7
  start-page: 315
  year: 2002
  ident: key 20170718093358_mcw256-B12
  article-title: Impact of phyto-oxylipins in plant defense
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(02)02290-2
– volume: 6
  start-page: 22846
  year: 2016
  ident: key 20170718093358_mcw256-B33
  article-title: Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice
  publication-title: Scientific Reports
  doi: 10.1038/srep22846
– volume: 3
  start-page: 2
  year: 2010
  ident: key 20170718093358_mcw256-B60
  article-title: Phenylpropanoid biosynthesis
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssp106
– volume: 14
  start-page: 405
  year: 2012
  ident: key 20170718093358_mcw256-B16
  article-title: Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes
  publication-title: Nematology
  doi: 10.1163/156854111X602613
– volume: 16
  start-page: 555
  year: 2014
  ident: key 20170718093358_mcw256-B43
  article-title: The effect of root-knot nematode, Meloidogyne graminicola, on the quality and vigour of rice seed
  publication-title: Nematology
  doi: 10.1163/15685411-00002787
– volume: 107
  start-page: 691
  year: 2003
  ident: key 20170718093358_mcw256-B39
  article-title: Linkage mapping of Hsa-1Og, a resistance gene of African rice to the cyst nematode, Heterodera sacchari
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-003-1285-1
– volume: 107
  start-page: 371
  year: 2003
  ident: key 20170718093358_mcw256-B2
  article-title: Fine genetic mapping of a gene required for rice yellow mottle virus cell-to-cell movement
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-003-1258-4
– volume: 18
  start-page: 1247
  year: 2011
  ident: key 20170718093358_mcw256-B19
  article-title: Programmed cell death in the plant immune system
  publication-title: Cell Death and Differentiation
  doi: 10.1038/cdd.2011.37
– volume: 15
  start-page: 695
  year: 2013
  ident: key 20170718093358_mcw256-B26
  article-title: Comparative cellular responses in susceptible and resistant soybean cultivars infected by Meloidogyne incognita
  publication-title: Nematology
  doi: 10.1163/15685411-00002712
– volume: 37
  start-page: 914
  year: 2004
  ident: key 20170718093358_mcw256-B55
  article-title: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: Plant Journal
  doi: 10.1111/j.1365-313X.2004.02016.x
– volume: 31
  start-page: 166
  year: 2015
  ident: key 20170718093358_mcw256-B5
  article-title: HTSeq—a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 2
  start-page: 79
  year: 1979
  ident: key 20170718093358_mcw256-B25
  article-title: Root-parasitic nematodes of rice
  publication-title: Revue de Nématologie
– reference: 18674922 - Plant Physiol Biochem. 2008 Nov;46(11):941-50
– reference: 24330140 - Mol Plant Pathol. 2014 Aug;15(6):627-36
– reference: 26961568 - Sci Rep. 2016 Mar 10;6:22846
– reference: 25368197 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62
– reference: 22188265 - Plant Biol (Stuttg). 2012 Mar;14 Suppl 1:73-82
– reference: 23881398 - J Exp Bot. 2013 Sep;64(12):3885-98
– reference: 23574394 - New Phytol. 2013 Jul;199(2):505-19
– reference: 25710378 - PLoS One. 2015 Feb 24;10(2):e0118269
– reference: 12119169 - Trends Plant Sci. 2002 Jul;7(7):315-22
– reference: 26224554 - Rice (N Y). 2014 Dec;7(1):23
– reference: 23824525 - Planta. 2013 Nov;238(5):807-18
– reference: 19265904 - J Nematol. 2002 Mar;34(1):28-33
– reference: 12461173 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16360-5
– reference: 20863592 - J Plant Physiol. 2011 Mar 15;168(5):481-92
– reference: 23663436 - BMC Genomics. 2013 May 10;14:322
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 21475301 - Cell Death Differ. 2011 Aug;18(8):1247-56
– reference: 14996223 - Plant J. 2004 Mar;37(6):914-39
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 24847336 - Front Plant Sci. 2014 May 05;5:160
– reference: 21446787 - Phytopathology. 2011 Aug;101(8):945-51
– reference: 21715672 - Plant Physiol. 2011 Sep;157(1):305-16
– reference: 22985291 - New Phytol. 2012 Nov;196(3):887-900
– reference: 12873526 - Curr Opin Plant Biol. 2003 Aug;6(4):327-33
– reference: 20035037 - Mol Plant. 2010 Jan;3(1):2-20
– reference: 23279209 - Mol Plant Pathol. 2013 May;14(4):379-90
– reference: 27128375 - New Phytol. 2016 Jul;211(1):41-56
– reference: 25064006 - Nat Genet. 2014 Sep;46(9):982-8
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 19295781 - J Nematol. 1983 Jan;15(1):142-3
– reference: 25676661 - Mol Plant Pathol. 2015 Oct;16(8):870-81
– reference: 18700825 - Mol Plant Microbe Interact. 2008 Sep;21(9):1205-14
– reference: 26488731 - PLoS One. 2015 Oct 21;10(10):e0140937
– reference: 24906126 - Annu Rev Phytopathol. 2014;52:243-65
– reference: 12679871 - Theor Appl Genet. 2003 Jul;107(2):371-8
– reference: 12721640 - Theor Appl Genet. 2003 Aug;107(4):691-6
– reference: 25515696 - Plant Mol Biol. 2015 Feb;87(3):273-86
– reference: 11607533 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4076-9
– reference: 25730421 - PLoS One. 2015 Mar 02;10(3):e0118731
– reference: 26610268 - Mol Plant Pathol. 2016 Aug;17 (6):860-74
– reference: 26552884 - J Exp Bot. 2016 Feb;67(4):1191-200
SSID ssj0002691
Score 2.4429617
Snippet The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681...
Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The...
Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 885
SubjectTerms Animals
Asia
Disease Resistance
environmental factors
galls
Gene Expression Regulation, Plant
genes
genotype
giant cells
histology
isoflavones
jasmonic acid
juveniles
Latin America
Life Sciences
Meloidogyne graminicola
microscopy
naringenin-chalcone synthase
Original
Oryza - genetics
Oryza - parasitology
Oryza glaberrima
Oryza sativa
PART OF A SPECIAL ISSUE ON PLANT IMMUNITY
phenylalanine ammonia-lyase
Plant Diseases - parasitology
Plant Proteins - genetics
Plant Proteins - metabolism
quantitative trait loci
reproduction
rice
root-knot nematodes
roots
salicylic acid
Sequence Analysis, RNA
stripe rust
transcription factors
Transcriptome
transcriptomics
Tylenchoidea - physiology
Title Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots
URI https://www.jstor.org/stable/26527413
https://www.ncbi.nlm.nih.gov/pubmed/28334204
https://www.proquest.com/docview/1881261727
https://www.proquest.com/docview/2315261885
https://hal.science/hal-01602589
https://pubmed.ncbi.nlm.nih.gov/PMC5604615
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lKQcuiFchvLQ8DlSR28T2xvYxoY0iSMuBRMrNWu-uSUTrjVIHlP4k-JPMeP2IaZAKF8tajx_yfDsPe_YbQt4FLPK9uCcgLRHSclnALV9IaTm-HTtuIDpc4aeBs_PeaOp-nLFZo_Fzq2ppnUZH4nrnupL_0SqMgV5xlew_aLa8KAzAPugXtqBh2N5Ox-hosmmPa4uz_wAZf3Bhz1amANbwypqOQEkbWYQyktHV5pq3IXqOkJzxkuP3AQhEz9SFXkj9dQPRJ1Zu4cJJSH_b-ZI9bEGOBeyY02MpF5wBsXdqfUt0Cscg_tUSO7FcYVyKRmORtOF9aKENZdTRDeLmSKeFQTIdvsDGGC4EcAHWF72cL0rwfdokMjUQS3hlPBcyLxPn1eiJWim1zHt1Z6yf2x84wGmWFV65TYYo0ML_vTWjnRtag07WXgI2QMo0W8qNsW-aARV-3Ry74TIMnRbXEWwvxQ-b7WDmPv8cDqfjcTg5nU32yL4NKYndJPv9wclgWPp9u5f1ZywftyDDDZxjuPqxuXYt_NmbY_GtqYPdleH8Wai7FflM7pN7ecpC-wZ_D0hDJQ_JnUGmtkfkVx2EFEBIt0FISxBSHdMchBRBSN9nEKQVBA9pqukWAOkWAGkOQAoApAUAKQKQlgCkBQBpBUAQoQUAH5Pp8HTyYWTlHUAsAQ48tQI3ZoEd-Ur2Ipf7QniMC-YGyusq4Xc9GYCPtJGiSCiPMx7Dy1YqkNJxI9mFyP6ANBOdqKeEBsrxfUf1vDjquHEE-64IJHgvh4uIM9kih4ViQpHT42OXlovQlGk4ISgxNEpskbel7NKQwuyUegP6LQWQx33UH4c4hrSONvOD790WOcjUX4rZPYaMUk6LvC7wEILFx994PFF6fRV2fQjKs8Tj7zKQtTGQgRnQIk8Mhqo7-I7j2h23RbwaumpPWj-SLOYZ8zykRy6kQM9ucd_n5G41mV-QZrpaq5cQv6fRq3zi_AbMyv89
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+and+histological+responses+of+African+rice+%28Oryza+glaberrima%29+to+Meloidogyne+graminicola+provide+new+insights+into+root-knot+nematode+resistance+in+monocots&rft.jtitle=Annals+of+botany&rft.au=Petitot%2C+Anne-Sophie&rft.au=Kyndt%2C+Tina&rft.au=Haidar%2C+Rana&rft.au=Dereeper%2C+Alexis&rft.date=2017-03-01&rft.issn=1095-8290&rft.volume=119&rft.issue=5+p.885-899&rft.spage=885&rft.epage=899&rft_id=info:doi/10.1093%2Faob%2Fmcw256&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon