The effect of extrusion processing on the physiochemical properties of extruded orange pomace
•Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF. Soluble dietary fibre (S...
Saved in:
Published in | Food chemistry Vol. 192; pp. 363 - 369 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF.
Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity. |
---|---|
AbstractList | Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity. Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity. Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity. •Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF. Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity. |
Author | Huang, Ya-Ling Ma, Ya-Sheng |
Author_xml | – sequence: 1 givenname: Ya-Ling surname: Huang fullname: Huang, Ya-Ling email: ylhuang@mail.nkmu.edu.tw – sequence: 2 givenname: Ya-Sheng surname: Ma fullname: Ma, Ya-Sheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26304360$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFP3DAQha2KCpYtfwHl2EvCOI7tIPVQhFpAQuJCj5Xl2GPWqyTe2l5U_n29WrYHLnsajeZ7M6P3zsnJHGYk5JJCQ4GKq3XjQrBmhVPTAuUNyAbY9SeyoL1ktQTZnpAFMOjrnnbijJyntAaAwvan5KwVDDomYEF-P6-wQufQ5Cq4Cv_muE0-zNUmBoMp-fmlKl0u1Gb1Via7k97ocQdsMGaP6b_Qoq1C1PNLgcOkDX4hn50eE1681yX59fPH8-19_fh093B781ibTshc97ZzkrWi5xY1UGaRW0dtawbaOtZRjnKgOFwPtvRCcOhaic72lnMwnTVsSb7u95an_mwxZTX5ZHAc9YxhmxTtmRCdEIwfR4t3nHNa_FmSy3d0O0xo1Sb6Scc3dXCvAN_2gIkhpYhOGZ91LvblqP2oKKhdWGqtDmGpXVgKpCphFbn4ID9cOCr8vhdi8fTVY1TJeJwNWh9LkMoGf2zFPyUbs6I |
CitedBy_id | crossref_primary_10_1016_j_jff_2024_106252 crossref_primary_10_1016_j_ijbiomac_2024_131798 crossref_primary_10_1016_j_foostr_2023_100346 crossref_primary_10_1111_1541_4337_12514 crossref_primary_10_1016_j_tifs_2020_08_007 crossref_primary_10_3390_foods10030518 crossref_primary_10_1007_s13197_020_04252_5 crossref_primary_10_1016_j_lwt_2020_110438 crossref_primary_10_3923_biotech_2017_77_84 crossref_primary_10_1016_j_lwt_2019_05_082 crossref_primary_10_3390_foods10112772 crossref_primary_10_1007_s13197_019_03829_z crossref_primary_10_1016_j_lwt_2018_10_018 crossref_primary_10_1111_jfpe_13382 crossref_primary_10_1080_10942912_2018_1528454 crossref_primary_10_1016_j_foodhyd_2022_107836 crossref_primary_10_3390_antiox12071453 crossref_primary_10_1016_j_fbio_2021_101384 crossref_primary_10_1016_j_ultsonch_2016_06_035 crossref_primary_10_1063_1_5054639 crossref_primary_10_1016_j_ifset_2021_102608 crossref_primary_10_1016_j_lwt_2023_114621 crossref_primary_10_1155_2018_9105237 crossref_primary_10_1016_j_lwt_2021_112569 crossref_primary_10_1016_j_lwt_2017_12_042 crossref_primary_10_3390_foods12203720 crossref_primary_10_1016_j_ijbiomac_2018_11_249 crossref_primary_10_1016_j_cofs_2017_10_003 crossref_primary_10_1007_s12010_021_03727_1 crossref_primary_10_1007_s13197_018_3439_9 crossref_primary_10_1111_1750_3841_16742 crossref_primary_10_1016_j_afres_2025_100812 crossref_primary_10_1021_acsomega_4c09704 crossref_primary_10_1007_s11694_020_00678_9 crossref_primary_10_3390_foods9101385 crossref_primary_10_1016_j_lwt_2022_113765 crossref_primary_10_1111_1541_4337_12934 crossref_primary_10_1016_j_lwt_2019_03_094 crossref_primary_10_1016_j_foodchem_2020_127548 crossref_primary_10_1016_j_jfoodeng_2024_112189 crossref_primary_10_1002_jsfa_13161 crossref_primary_10_11648_j_ijfet_20240802_12 crossref_primary_10_1039_C8FO01083H crossref_primary_10_1016_j_foodhyd_2022_107515 crossref_primary_10_3390_md18060334 crossref_primary_10_1016_j_foodchem_2022_133187 crossref_primary_10_1007_s13399_022_02481_6 crossref_primary_10_1016_j_bcdf_2024_100415 crossref_primary_10_1016_j_foodres_2022_112329 crossref_primary_10_1016_j_foodhyd_2020_106222 crossref_primary_10_1016_j_fbio_2019_100452 crossref_primary_10_1016_j_ijbiomac_2024_132214 crossref_primary_10_1080_10408398_2017_1377149 crossref_primary_10_1016_j_foodhyd_2019_03_040 crossref_primary_10_1007_s00217_022_04052_5 crossref_primary_10_1016_j_foodhyd_2019_105321 crossref_primary_10_3389_fnut_2022_1103673 crossref_primary_10_1016_j_jafr_2023_100963 crossref_primary_10_1080_10408398_2022_2143474 crossref_primary_10_1111_jfpp_15014 crossref_primary_10_1016_j_lwt_2023_114486 crossref_primary_10_3390_plants12183276 crossref_primary_10_1007_s13197_020_04588_y crossref_primary_10_1111_jfpp_13917 crossref_primary_10_1016_j_fbio_2023_103012 crossref_primary_10_3390_molecules27238616 crossref_primary_10_3390_foods11223615 crossref_primary_10_1007_s13399_022_03007_w crossref_primary_10_1177_10820132221095458 crossref_primary_10_1590_fst_03820 crossref_primary_10_1080_10498850_2019_1665603 crossref_primary_10_1111_ijfs_15756 crossref_primary_10_3390_foods9081071 crossref_primary_10_1007_s11947_022_02809_0 crossref_primary_10_3390_foods10051096 crossref_primary_10_1007_s13197_020_04439_w crossref_primary_10_3136_fstr_27_35 crossref_primary_10_1016_j_carbpol_2025_123341 crossref_primary_10_1155_2017_9340427 crossref_primary_10_1002_fsn3_1041 crossref_primary_10_1016_j_lwt_2024_115816 crossref_primary_10_1016_j_foodres_2017_02_021 crossref_primary_10_1007_s42452_021_04209_z crossref_primary_10_1111_jfpe_12424 crossref_primary_10_1016_j_tifs_2023_05_004 crossref_primary_10_1016_j_jcs_2020_102941 crossref_primary_10_1080_87559129_2022_2097689 crossref_primary_10_3390_molecules28124677 crossref_primary_10_3390_su16177403 crossref_primary_10_1139_cjas_2022_0127 crossref_primary_10_1088_1755_1315_1076_1_012058 crossref_primary_10_1016_j_fochx_2024_101808 crossref_primary_10_3390_foods10030616 crossref_primary_10_1007_s13197_019_04177_8 crossref_primary_10_1002_bbb_2400 crossref_primary_10_3390_antiox12061253 crossref_primary_10_1080_87559129_2018_1542534 crossref_primary_10_1002_cche_10817 crossref_primary_10_1016_j_afres_2024_100568 crossref_primary_10_1016_j_foodchem_2024_141777 crossref_primary_10_1039_D4FB00215F crossref_primary_10_3390_foods10061330 crossref_primary_10_1016_j_foodhyd_2022_107832 crossref_primary_10_3390_foods9111536 crossref_primary_10_1016_j_foodhyd_2021_107410 crossref_primary_10_1016_j_fbp_2024_12_017 crossref_primary_10_1007_s11947_018_2117_2 crossref_primary_10_1590_0103_8478cr20190154 crossref_primary_10_1016_j_foodchem_2023_138331 crossref_primary_10_1007_s13399_021_01980_2 crossref_primary_10_1007_s13399_021_01791_5 crossref_primary_10_3390_molecules24040697 |
Cites_doi | 10.1039/AN9941901497 10.1016/j.foodhyd.2009.08.002 10.1111/j.1365-2621.2008.01892.x 10.1016/S0144-8617(97)00118-5 10.1016/j.lwt.2014.07.017 10.3136/nskkk.43.231 10.1016/j.ifset.2012.04.009 10.1016/j.cocis.2009.11.011 10.1016/j.foodchem.2012.12.003 10.1016/j.foodchem.2009.12.024 10.1016/S0144-8617(99)00025-9 10.1111/j.1541-4337.2003.tb00020.x 10.1111/j.1365-2621.1997.tb15426.x 10.1016/j.lwt.2013.02.002 10.1016/S0268-005X(86)80007-8 10.1016/j.bcdf.2012.12.001 10.1006/fstl.1999.0587 10.3923/ajft.2013.43.53 10.1023/A:1007941032726 10.1016/j.lwt.2010.11.013 10.1016/j.jcs.2011.04.001 10.1016/j.foodchem.2004.04.036 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2015.07.039 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
EndPage | 369 |
ExternalDocumentID | 26304360 10_1016_j_foodchem_2015_07_039 S0308814615010481 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW SSH VH1 WUQ Y6R CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-8d4f732685dea013de5df1d2cb12f3415e7b1eb9bd12f6650427efd8d550c4dc3 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Jul 11 02:03:27 EDT 2025 Fri Jul 11 13:32:31 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 04:34:05 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Fri Feb 23 02:29:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extrusion Orange pomace Response surface methodology Soluble dietary fibre Physicochemical property |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-8d4f732685dea013de5df1d2cb12f3415e7b1eb9bd12f6650427efd8d550c4dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26304360 |
PQID | 1707555104 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1836646635 proquest_miscellaneous_1707555104 pubmed_primary_26304360 crossref_citationtrail_10_1016_j_foodchem_2015_07_039 crossref_primary_10_1016_j_foodchem_2015_07_039 elsevier_sciencedirect_doi_10_1016_j_foodchem_2015_07_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food chemistry |
PublicationTitleAlternate | Food Chem |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | AOAC (b0010) 1995 Figuerola, Hurtado, Estevez, Chiffelle, Asenjo (b0050) 2005; 91 Long, Ye, Zhao (b0090) 2014; 59 (Ph.D. Dissertation). The Chinese University of Hong Kong. Crizel, Jablonski, Rios, Rech, Flores (b0025) 2013; 53 Englyst, Quigley, Hudson (b0035) 1994; 119 Jing, Chi (b0070) 2013; 138 Myers, Montgomry (b9005) 2002 Ng, Lecain, Parker, Smith, Waldron (b0100) 1999; 39 Stojceska, Ainsworth, Plunkett, Ibanoglu (b0115) 2010; 121 Fernandez-Lopez, Sendra-Nadal, Navarro, Sayas, Viuda-Martos, Perez Alvarez (b0045) 2009; 44 Grigelmo-Miguel, Martin-Belloso (b0060) 1999; 32 Lobato, Anibal, Lazaretti, Grossmann (b0085) 2011; 44 Zhang, Bai, Zhang (b0130) 2011; 54 Li, Long, Peng, Ming, Zhao (b0080) 2012; 16 Kendall, Esfahani, Jenkins (b0075) 2010; 24 Gualberto, Bergman, Kazemzadeh, Weber (b0065) 1997; 51 Anderson, Conway, Pfeifer, Griffin (b0005) 1969; 14 Takeyama, Yokokawa, Tanimura (b0120) 1996; 43 Phillips (b0110) 2013; 1 Furda (b0055) 1990 Ocen, Xu (b0105) 2013; 8 Arrigoni, Caprez, Amado, Neukom (b0015) 1986; 1 Dronnet, Axelos, Renard, Thibault (b0030) 1998; 35 Moraru, Kokini (b0095) 2003; 2 Femenia, Lefebvre, Thebaudin, Robertson, Bourgeois (b0040) 1997; 62 Chau, C. F. (1998). Wolf (b0125) 2010; 15 Moraru (10.1016/j.foodchem.2015.07.039_b0095) 2003; 2 Zhang (10.1016/j.foodchem.2015.07.039_b0130) 2011; 54 Stojceska (10.1016/j.foodchem.2015.07.039_b0115) 2010; 121 Crizel (10.1016/j.foodchem.2015.07.039_b0025) 2013; 53 Furda (10.1016/j.foodchem.2015.07.039_b0055) 1990 Li (10.1016/j.foodchem.2015.07.039_b0080) 2012; 16 Figuerola (10.1016/j.foodchem.2015.07.039_b0050) 2005; 91 Ng (10.1016/j.foodchem.2015.07.039_b0100) 1999; 39 Kendall (10.1016/j.foodchem.2015.07.039_b0075) 2010; 24 Phillips (10.1016/j.foodchem.2015.07.039_b0110) 2013; 1 Takeyama (10.1016/j.foodchem.2015.07.039_b0120) 1996; 43 Femenia (10.1016/j.foodchem.2015.07.039_b0040) 1997; 62 Jing (10.1016/j.foodchem.2015.07.039_b0070) 2013; 138 Arrigoni (10.1016/j.foodchem.2015.07.039_b0015) 1986; 1 Grigelmo-Miguel (10.1016/j.foodchem.2015.07.039_b0060) 1999; 32 Anderson (10.1016/j.foodchem.2015.07.039_b0005) 1969; 14 Wolf (10.1016/j.foodchem.2015.07.039_b0125) 2010; 15 Myers (10.1016/j.foodchem.2015.07.039_b9005) 2002 Dronnet (10.1016/j.foodchem.2015.07.039_b0030) 1998; 35 Gualberto (10.1016/j.foodchem.2015.07.039_b0065) 1997; 51 Lobato (10.1016/j.foodchem.2015.07.039_b0085) 2011; 44 Long (10.1016/j.foodchem.2015.07.039_b0090) 2014; 59 Fernandez-Lopez (10.1016/j.foodchem.2015.07.039_b0045) 2009; 44 Ocen (10.1016/j.foodchem.2015.07.039_b0105) 2013; 8 10.1016/j.foodchem.2015.07.039_b0020 AOAC (10.1016/j.foodchem.2015.07.039_b0010) 1995 Englyst (10.1016/j.foodchem.2015.07.039_b0035) 1994; 119 |
References_xml | – volume: 16 start-page: 80 year: 2012 end-page: 88 ident: b0080 article-title: A novel in-situ enhanced blasting extrusion technique – Extrudate analysis and optimization of processing conditions with okara publication-title: Innovative Food Science & Emerging Technologies – volume: 44 start-page: 933 year: 2011 end-page: 939 ident: b0085 article-title: Extruded puffed functional ingredient with oat bran and soy flour publication-title: LWT-Food Science and Technology – volume: 44 start-page: 748 year: 2009 end-page: 756 ident: b0045 article-title: Storage stability of a high dietary fibre powder from orange by-products publication-title: International Journal of Food Science and Technology – volume: 32 start-page: 503 year: 1999 end-page: 508 ident: b0060 article-title: Comparison of dietary fibre from by-products of processing fruits and greens and from cereals publication-title: LWT-Food Science and Technology – volume: 1 start-page: 3 year: 2013 end-page: 9 ident: b0110 article-title: Dietary fibre: A chemical category or a health ingredient? publication-title: Bioactive Carbohydrates and Dietary Fibre – volume: 138 start-page: 884 year: 2013 end-page: 889 ident: b0070 article-title: Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue publication-title: Food Chemistry – reference: (Ph.D. Dissertation). The Chinese University of Hong Kong. – volume: 53 start-page: 9 year: 2013 end-page: 14 ident: b0025 article-title: Dietary fiber from orange byproducts as a potential fat replacer publication-title: LWT-Food Science and Technology – volume: 8 start-page: 43 year: 2013 end-page: 53 ident: b0105 article-title: Effect of citrus orange ( publication-title: American Journal of Food Technology – year: 1995 ident: b0010 article-title: Official methods of analysis – volume: 91 start-page: 395 year: 2005 end-page: 401 ident: b0050 article-title: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment publication-title: Food Chemistry – volume: 24 start-page: 42 year: 2010 end-page: 48 ident: b0075 article-title: The link between dietary fibre and human health publication-title: Food Hydrocolloids – volume: 35 start-page: 29 year: 1998 end-page: 37 ident: b0030 article-title: Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties publication-title: Carbohydrate Polymers – volume: 51 start-page: 187 year: 1997 end-page: 198 ident: b0065 article-title: Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans publication-title: Plant Foods for Human Nutrition – volume: 54 start-page: 98 year: 2011 end-page: 103 ident: b0130 article-title: Extrusion process improves the functionality of soluble dietary fiber in oat bran publication-title: Journal of Cereal Science – volume: 119 start-page: 1497 year: 1994 end-page: 1509 ident: b0035 article-title: Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars publication-title: Analyst – volume: 121 start-page: 156 year: 2010 end-page: 164 ident: b0115 article-title: The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products publication-title: Food Chemistry – reference: Chau, C. F. (1998). – volume: 14 start-page: 4 year: 1969 end-page: 7 ident: b0005 article-title: Gelatinization of corn grits by roll- and extrusion-cooking publication-title: Cereal Science Today – year: 2002 ident: b9005 article-title: Response surface methodology process and product optimization using designed experiments – volume: 39 start-page: 341 year: 1999 end-page: 349 ident: b0100 article-title: Modification of cell-wall polymers of onion waste III. Effect of extrusion-cooking on cell-wall material of outer fleshy tissues publication-title: Carbohydrate Polymers – volume: 59 start-page: 605 year: 2014 end-page: 611 ident: b0090 article-title: Optimization and characterization of wheat bran modified by in situ enhanced CO publication-title: LWT-Food Science and Technology – volume: 2 start-page: 120 year: 2003 end-page: 137 ident: b0095 article-title: Nucleation and expansion during extrusion and microwave heating of cereal foods publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 43 start-page: 231 year: 1996 end-page: 237 ident: b0120 article-title: Changes in polysaccharide components and metal adsorption ability of soybean dietary fiber on heating publication-title: Journal of the Japanese Society of Food Science and Technology – start-page: 67 year: 1990 end-page: 82 ident: b0055 article-title: Interaction of dietary fiber with lipids mechanistic theories and their limitations publication-title: New developments in dietary fiber – volume: 1 start-page: 57 year: 1986 end-page: 64 ident: b0015 article-title: Chemical composition and physical properties of modified dietary fibre sources publication-title: Food Hydrocolloids – volume: 62 start-page: 635 year: 1997 end-page: 639 ident: b0040 article-title: Physical and sensory properties of model foods supplemented with cauliflower fiber publication-title: Journal of Food Science – volume: 15 start-page: 50 year: 2010 end-page: 54 ident: b0125 article-title: Polysaccharide functionality through extrusion processing publication-title: Current Opinion in Colloid & Interface Science – volume: 119 start-page: 1497 year: 1994 ident: 10.1016/j.foodchem.2015.07.039_b0035 article-title: Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars publication-title: Analyst doi: 10.1039/AN9941901497 – volume: 24 start-page: 42 year: 2010 ident: 10.1016/j.foodchem.2015.07.039_b0075 article-title: The link between dietary fibre and human health publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2009.08.002 – volume: 44 start-page: 748 year: 2009 ident: 10.1016/j.foodchem.2015.07.039_b0045 article-title: Storage stability of a high dietary fibre powder from orange by-products publication-title: International Journal of Food Science and Technology doi: 10.1111/j.1365-2621.2008.01892.x – year: 1995 ident: 10.1016/j.foodchem.2015.07.039_b0010 – year: 2002 ident: 10.1016/j.foodchem.2015.07.039_b9005 – ident: 10.1016/j.foodchem.2015.07.039_b0020 – volume: 35 start-page: 29 year: 1998 ident: 10.1016/j.foodchem.2015.07.039_b0030 article-title: Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties publication-title: Carbohydrate Polymers doi: 10.1016/S0144-8617(97)00118-5 – volume: 59 start-page: 605 year: 2014 ident: 10.1016/j.foodchem.2015.07.039_b0090 article-title: Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion publication-title: LWT-Food Science and Technology doi: 10.1016/j.lwt.2014.07.017 – volume: 43 start-page: 231 year: 1996 ident: 10.1016/j.foodchem.2015.07.039_b0120 article-title: Changes in polysaccharide components and metal adsorption ability of soybean dietary fiber on heating publication-title: Journal of the Japanese Society of Food Science and Technology doi: 10.3136/nskkk.43.231 – volume: 16 start-page: 80 year: 2012 ident: 10.1016/j.foodchem.2015.07.039_b0080 article-title: A novel in-situ enhanced blasting extrusion technique – Extrudate analysis and optimization of processing conditions with okara publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2012.04.009 – volume: 14 start-page: 4 year: 1969 ident: 10.1016/j.foodchem.2015.07.039_b0005 article-title: Gelatinization of corn grits by roll- and extrusion-cooking publication-title: Cereal Science Today – volume: 15 start-page: 50 year: 2010 ident: 10.1016/j.foodchem.2015.07.039_b0125 article-title: Polysaccharide functionality through extrusion processing publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2009.11.011 – volume: 138 start-page: 884 year: 2013 ident: 10.1016/j.foodchem.2015.07.039_b0070 article-title: Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.12.003 – volume: 121 start-page: 156 year: 2010 ident: 10.1016/j.foodchem.2015.07.039_b0115 article-title: The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.12.024 – start-page: 67 year: 1990 ident: 10.1016/j.foodchem.2015.07.039_b0055 article-title: Interaction of dietary fiber with lipids mechanistic theories and their limitations – volume: 39 start-page: 341 year: 1999 ident: 10.1016/j.foodchem.2015.07.039_b0100 article-title: Modification of cell-wall polymers of onion waste III. Effect of extrusion-cooking on cell-wall material of outer fleshy tissues publication-title: Carbohydrate Polymers doi: 10.1016/S0144-8617(99)00025-9 – volume: 2 start-page: 120 year: 2003 ident: 10.1016/j.foodchem.2015.07.039_b0095 article-title: Nucleation and expansion during extrusion and microwave heating of cereal foods publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/j.1541-4337.2003.tb00020.x – volume: 62 start-page: 635 year: 1997 ident: 10.1016/j.foodchem.2015.07.039_b0040 article-title: Physical and sensory properties of model foods supplemented with cauliflower fiber publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1997.tb15426.x – volume: 53 start-page: 9 year: 2013 ident: 10.1016/j.foodchem.2015.07.039_b0025 article-title: Dietary fiber from orange byproducts as a potential fat replacer publication-title: LWT-Food Science and Technology doi: 10.1016/j.lwt.2013.02.002 – volume: 1 start-page: 57 year: 1986 ident: 10.1016/j.foodchem.2015.07.039_b0015 article-title: Chemical composition and physical properties of modified dietary fibre sources publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(86)80007-8 – volume: 1 start-page: 3 year: 2013 ident: 10.1016/j.foodchem.2015.07.039_b0110 article-title: Dietary fibre: A chemical category or a health ingredient? publication-title: Bioactive Carbohydrates and Dietary Fibre doi: 10.1016/j.bcdf.2012.12.001 – volume: 32 start-page: 503 year: 1999 ident: 10.1016/j.foodchem.2015.07.039_b0060 article-title: Comparison of dietary fibre from by-products of processing fruits and greens and from cereals publication-title: LWT-Food Science and Technology doi: 10.1006/fstl.1999.0587 – volume: 8 start-page: 43 year: 2013 ident: 10.1016/j.foodchem.2015.07.039_b0105 article-title: Effect of citrus orange (Citrus sinensis) by-product dietary fiber preparations on the quality characteristics of frozen dough bread publication-title: American Journal of Food Technology doi: 10.3923/ajft.2013.43.53 – volume: 51 start-page: 187 year: 1997 ident: 10.1016/j.foodchem.2015.07.039_b0065 article-title: Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans publication-title: Plant Foods for Human Nutrition doi: 10.1023/A:1007941032726 – volume: 44 start-page: 933 year: 2011 ident: 10.1016/j.foodchem.2015.07.039_b0085 article-title: Extruded puffed functional ingredient with oat bran and soy flour publication-title: LWT-Food Science and Technology doi: 10.1016/j.lwt.2010.11.013 – volume: 54 start-page: 98 year: 2011 ident: 10.1016/j.foodchem.2015.07.039_b0130 article-title: Extrusion process improves the functionality of soluble dietary fiber in oat bran publication-title: Journal of Cereal Science doi: 10.1016/j.jcs.2011.04.001 – volume: 91 start-page: 395 year: 2005 ident: 10.1016/j.foodchem.2015.07.039_b0050 article-title: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.04.036 |
SSID | ssj0002018 |
Score | 2.522194 |
Snippet | •Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process... Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363 |
SubjectTerms | cation exchange capacity Citrus sinensis - chemistry dietary fiber Dietary Fiber - analysis Extrusion Food Analysis - methods Food Handling - methods human health Humans juices Models, Theoretical Monosaccharides - analysis Orange pomace Physicochemical property pomace Response surface methodology Solubility Soluble dietary fibre Temperature uronic acids Water water holding capacity water solubility |
Title | The effect of extrusion processing on the physiochemical properties of extruded orange pomace |
URI | https://dx.doi.org/10.1016/j.foodchem.2015.07.039 https://www.ncbi.nlm.nih.gov/pubmed/26304360 https://www.proquest.com/docview/1707555104 https://www.proquest.com/docview/1836646635 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hcCgX1KYFAi1yJdTbJvvyrnOMQlEKai6AlEtlrV8oEdqNSLj2tzOzuw4gFXLo0ZYtWZ7Zmc-zM98AnOGkyiKrAmWSMEiF5oGylCYW6yx2ReGUo9rh39NscptezvhsB8a-FobSKlvb39j02lq3M4P2NgfL-XxwTUwrFMBCSBMR6wlVsKc5aXn_73OaBzo40fxJEHW460WV8KLvqsrg3VBFesRrEk9qGv5vB_UWAK0d0cVH2G8RJBs1h_wEO7bswoexb9zWhd753K7ZD9ZSft6zqWfcx3W-EHn1Gf6girAmn4NVjqGVfnik2BlbNsUD6NQYjhAhsjr-Qb21anIBWrCkfGy72mw01jDUpvIOF1cUJP8Ctxc_b8aToO22EGg0lutAmNTlCOYEN7ZAYGgsNy4ysVZR7NDXcZsrFOpQGRxnCOzSOLfOCINvHJ0anRxAp6xKewQs5Jq7zBl8PSo0EIUwVhlXJFoMY6tj3gPur1jqloqcOmLcS59ztpBeNJJEI8Ncomh6MNjsWzZkHFt3DL0E5Su1kugxtu797kUuUYL0I6UobfW4klGOQAuhZpi-s0YkWZYSnuvBYaMvmzPHWULM_-Hxf5zuBPZw1CaQf4UOStp-Q3y0Vqf1B3AKu6NfV5PpE-qbErE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcKAXBPRBgLauVHFbsi_vOkeUgkKBXAoSF2StXygR2o1I-P_M7NpRkSgcONprS5bHO_N5PPMNwC_sVEViVaRMFke50DxSlsLEUl2krqqccpQ7fDkpxtf5nxt-swajkAtDYZVe93c6vdXWvmfgd3Mwn04Hf4lphRxYCGkSYj35AOvETsV7sH58dj6erBQy2jjRPSaI1uP1T6Lw7Mg1jcHtoaT0hLc8nlQ3_GUb9T8M2tqi0y3Y9CCSHXfr3IY1W-_AxijUbtuB_u-pXbJD5lk_79kkkO7juJCLvPgEt3hKWBfSwRrHUFE_PJL7jM27_AG0awxbCBJZ6wKh8lotvwANmFNItl2sJhprGB6o-g4HN-Qn_wzXpydXo3HkCy5EGvXlMhImdyXiOcGNrRAbGsuNS0yqVZI6NHfclgrlOlQG2wViuzwtrTPC4DVH50ZnX6BXN7XdBRZzzV3hDF4gFeqIShirjKsyLYap1SnvAw9bLLVnI6eiGPcyhJ3NZBCNJNHIuJQomj4MVvPmHR_HmzOGQYLy2cmSaDTenPsziFyiBOktpapt87iQSYlYC9FmnL8yRmRFkROk68PX7rys1pwWGZH_x3vvWN0P2BhfXV7Ii7PJ-T58xC8-nvwAeih1-w3h0lJ997_DE0KMFWI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+extrusion+processing+on+the+physiochemical+properties+of+extruded+orange+pomace&rft.jtitle=Food+chemistry&rft.au=Huang%2C+Ya-Ling&rft.au=Ma%2C+Ya-Sheng&rft.date=2016-02-01&rft.issn=0308-8146&rft.volume=192&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1016%2Fj.foodchem.2015.07.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodchem_2015_07_039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |