The effect of extrusion processing on the physiochemical properties of extruded orange pomace

•Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF. Soluble dietary fibre (S...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 192; pp. 363 - 369
Main Authors Huang, Ya-Ling, Ma, Ya-Sheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF. Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.
AbstractList Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.
Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.
Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.
•Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process improved physicochemical properties of orange pomace.•Increase in SDF fraction was due to a redistribution of IDF to SDF. Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115–135°C), feed moistures (X2; 10–18g/100g), and screw speeds (X3; 230–350rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129°C; feed moisture, 15%; and screw speed, 299rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.
Author Huang, Ya-Ling
Ma, Ya-Sheng
Author_xml – sequence: 1
  givenname: Ya-Ling
  surname: Huang
  fullname: Huang, Ya-Ling
  email: ylhuang@mail.nkmu.edu.tw
– sequence: 2
  givenname: Ya-Sheng
  surname: Ma
  fullname: Ma, Ya-Sheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26304360$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFP3DAQha2KCpYtfwHl2EvCOI7tIPVQhFpAQuJCj5Xl2GPWqyTe2l5U_n29WrYHLnsajeZ7M6P3zsnJHGYk5JJCQ4GKq3XjQrBmhVPTAuUNyAbY9SeyoL1ktQTZnpAFMOjrnnbijJyntAaAwvan5KwVDDomYEF-P6-wQufQ5Cq4Cv_muE0-zNUmBoMp-fmlKl0u1Gb1Via7k97ocQdsMGaP6b_Qoq1C1PNLgcOkDX4hn50eE1681yX59fPH8-19_fh093B781ibTshc97ZzkrWi5xY1UGaRW0dtawbaOtZRjnKgOFwPtvRCcOhaic72lnMwnTVsSb7u95an_mwxZTX5ZHAc9YxhmxTtmRCdEIwfR4t3nHNa_FmSy3d0O0xo1Sb6Scc3dXCvAN_2gIkhpYhOGZ91LvblqP2oKKhdWGqtDmGpXVgKpCphFbn4ID9cOCr8vhdi8fTVY1TJeJwNWh9LkMoGf2zFPyUbs6I
CitedBy_id crossref_primary_10_1016_j_jff_2024_106252
crossref_primary_10_1016_j_ijbiomac_2024_131798
crossref_primary_10_1016_j_foostr_2023_100346
crossref_primary_10_1111_1541_4337_12514
crossref_primary_10_1016_j_tifs_2020_08_007
crossref_primary_10_3390_foods10030518
crossref_primary_10_1007_s13197_020_04252_5
crossref_primary_10_1016_j_lwt_2020_110438
crossref_primary_10_3923_biotech_2017_77_84
crossref_primary_10_1016_j_lwt_2019_05_082
crossref_primary_10_3390_foods10112772
crossref_primary_10_1007_s13197_019_03829_z
crossref_primary_10_1016_j_lwt_2018_10_018
crossref_primary_10_1111_jfpe_13382
crossref_primary_10_1080_10942912_2018_1528454
crossref_primary_10_1016_j_foodhyd_2022_107836
crossref_primary_10_3390_antiox12071453
crossref_primary_10_1016_j_fbio_2021_101384
crossref_primary_10_1016_j_ultsonch_2016_06_035
crossref_primary_10_1063_1_5054639
crossref_primary_10_1016_j_ifset_2021_102608
crossref_primary_10_1016_j_lwt_2023_114621
crossref_primary_10_1155_2018_9105237
crossref_primary_10_1016_j_lwt_2021_112569
crossref_primary_10_1016_j_lwt_2017_12_042
crossref_primary_10_3390_foods12203720
crossref_primary_10_1016_j_ijbiomac_2018_11_249
crossref_primary_10_1016_j_cofs_2017_10_003
crossref_primary_10_1007_s12010_021_03727_1
crossref_primary_10_1007_s13197_018_3439_9
crossref_primary_10_1111_1750_3841_16742
crossref_primary_10_1016_j_afres_2025_100812
crossref_primary_10_1021_acsomega_4c09704
crossref_primary_10_1007_s11694_020_00678_9
crossref_primary_10_3390_foods9101385
crossref_primary_10_1016_j_lwt_2022_113765
crossref_primary_10_1111_1541_4337_12934
crossref_primary_10_1016_j_lwt_2019_03_094
crossref_primary_10_1016_j_foodchem_2020_127548
crossref_primary_10_1016_j_jfoodeng_2024_112189
crossref_primary_10_1002_jsfa_13161
crossref_primary_10_11648_j_ijfet_20240802_12
crossref_primary_10_1039_C8FO01083H
crossref_primary_10_1016_j_foodhyd_2022_107515
crossref_primary_10_3390_md18060334
crossref_primary_10_1016_j_foodchem_2022_133187
crossref_primary_10_1007_s13399_022_02481_6
crossref_primary_10_1016_j_bcdf_2024_100415
crossref_primary_10_1016_j_foodres_2022_112329
crossref_primary_10_1016_j_foodhyd_2020_106222
crossref_primary_10_1016_j_fbio_2019_100452
crossref_primary_10_1016_j_ijbiomac_2024_132214
crossref_primary_10_1080_10408398_2017_1377149
crossref_primary_10_1016_j_foodhyd_2019_03_040
crossref_primary_10_1007_s00217_022_04052_5
crossref_primary_10_1016_j_foodhyd_2019_105321
crossref_primary_10_3389_fnut_2022_1103673
crossref_primary_10_1016_j_jafr_2023_100963
crossref_primary_10_1080_10408398_2022_2143474
crossref_primary_10_1111_jfpp_15014
crossref_primary_10_1016_j_lwt_2023_114486
crossref_primary_10_3390_plants12183276
crossref_primary_10_1007_s13197_020_04588_y
crossref_primary_10_1111_jfpp_13917
crossref_primary_10_1016_j_fbio_2023_103012
crossref_primary_10_3390_molecules27238616
crossref_primary_10_3390_foods11223615
crossref_primary_10_1007_s13399_022_03007_w
crossref_primary_10_1177_10820132221095458
crossref_primary_10_1590_fst_03820
crossref_primary_10_1080_10498850_2019_1665603
crossref_primary_10_1111_ijfs_15756
crossref_primary_10_3390_foods9081071
crossref_primary_10_1007_s11947_022_02809_0
crossref_primary_10_3390_foods10051096
crossref_primary_10_1007_s13197_020_04439_w
crossref_primary_10_3136_fstr_27_35
crossref_primary_10_1016_j_carbpol_2025_123341
crossref_primary_10_1155_2017_9340427
crossref_primary_10_1002_fsn3_1041
crossref_primary_10_1016_j_lwt_2024_115816
crossref_primary_10_1016_j_foodres_2017_02_021
crossref_primary_10_1007_s42452_021_04209_z
crossref_primary_10_1111_jfpe_12424
crossref_primary_10_1016_j_tifs_2023_05_004
crossref_primary_10_1016_j_jcs_2020_102941
crossref_primary_10_1080_87559129_2022_2097689
crossref_primary_10_3390_molecules28124677
crossref_primary_10_3390_su16177403
crossref_primary_10_1139_cjas_2022_0127
crossref_primary_10_1088_1755_1315_1076_1_012058
crossref_primary_10_1016_j_fochx_2024_101808
crossref_primary_10_3390_foods10030616
crossref_primary_10_1007_s13197_019_04177_8
crossref_primary_10_1002_bbb_2400
crossref_primary_10_3390_antiox12061253
crossref_primary_10_1080_87559129_2018_1542534
crossref_primary_10_1002_cche_10817
crossref_primary_10_1016_j_afres_2024_100568
crossref_primary_10_1016_j_foodchem_2024_141777
crossref_primary_10_1039_D4FB00215F
crossref_primary_10_3390_foods10061330
crossref_primary_10_1016_j_foodhyd_2022_107832
crossref_primary_10_3390_foods9111536
crossref_primary_10_1016_j_foodhyd_2021_107410
crossref_primary_10_1016_j_fbp_2024_12_017
crossref_primary_10_1007_s11947_018_2117_2
crossref_primary_10_1590_0103_8478cr20190154
crossref_primary_10_1016_j_foodchem_2023_138331
crossref_primary_10_1007_s13399_021_01980_2
crossref_primary_10_1007_s13399_021_01791_5
crossref_primary_10_3390_molecules24040697
Cites_doi 10.1039/AN9941901497
10.1016/j.foodhyd.2009.08.002
10.1111/j.1365-2621.2008.01892.x
10.1016/S0144-8617(97)00118-5
10.1016/j.lwt.2014.07.017
10.3136/nskkk.43.231
10.1016/j.ifset.2012.04.009
10.1016/j.cocis.2009.11.011
10.1016/j.foodchem.2012.12.003
10.1016/j.foodchem.2009.12.024
10.1016/S0144-8617(99)00025-9
10.1111/j.1541-4337.2003.tb00020.x
10.1111/j.1365-2621.1997.tb15426.x
10.1016/j.lwt.2013.02.002
10.1016/S0268-005X(86)80007-8
10.1016/j.bcdf.2012.12.001
10.1006/fstl.1999.0587
10.3923/ajft.2013.43.53
10.1023/A:1007941032726
10.1016/j.lwt.2010.11.013
10.1016/j.jcs.2011.04.001
10.1016/j.foodchem.2004.04.036
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2015.07.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 369
ExternalDocumentID 26304360
10_1016_j_foodchem_2015_07_039
S0308814615010481
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
SSH
VH1
WUQ
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-8d4f732685dea013de5df1d2cb12f3415e7b1eb9bd12f6650427efd8d550c4dc3
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 02:03:27 EDT 2025
Fri Jul 11 13:32:31 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 04:34:05 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Fri Feb 23 02:29:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extrusion
Orange pomace
Response surface methodology
Soluble dietary fibre
Physicochemical property
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-8d4f732685dea013de5df1d2cb12f3415e7b1eb9bd12f6650427efd8d550c4dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26304360
PQID 1707555104
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1836646635
proquest_miscellaneous_1707555104
pubmed_primary_26304360
crossref_citationtrail_10_1016_j_foodchem_2015_07_039
crossref_primary_10_1016_j_foodchem_2015_07_039
elsevier_sciencedirect_doi_10_1016_j_foodchem_2015_07_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References AOAC (b0010) 1995
Figuerola, Hurtado, Estevez, Chiffelle, Asenjo (b0050) 2005; 91
Long, Ye, Zhao (b0090) 2014; 59
(Ph.D. Dissertation). The Chinese University of Hong Kong.
Crizel, Jablonski, Rios, Rech, Flores (b0025) 2013; 53
Englyst, Quigley, Hudson (b0035) 1994; 119
Jing, Chi (b0070) 2013; 138
Myers, Montgomry (b9005) 2002
Ng, Lecain, Parker, Smith, Waldron (b0100) 1999; 39
Stojceska, Ainsworth, Plunkett, Ibanoglu (b0115) 2010; 121
Fernandez-Lopez, Sendra-Nadal, Navarro, Sayas, Viuda-Martos, Perez Alvarez (b0045) 2009; 44
Grigelmo-Miguel, Martin-Belloso (b0060) 1999; 32
Lobato, Anibal, Lazaretti, Grossmann (b0085) 2011; 44
Zhang, Bai, Zhang (b0130) 2011; 54
Li, Long, Peng, Ming, Zhao (b0080) 2012; 16
Kendall, Esfahani, Jenkins (b0075) 2010; 24
Gualberto, Bergman, Kazemzadeh, Weber (b0065) 1997; 51
Anderson, Conway, Pfeifer, Griffin (b0005) 1969; 14
Takeyama, Yokokawa, Tanimura (b0120) 1996; 43
Phillips (b0110) 2013; 1
Furda (b0055) 1990
Ocen, Xu (b0105) 2013; 8
Arrigoni, Caprez, Amado, Neukom (b0015) 1986; 1
Dronnet, Axelos, Renard, Thibault (b0030) 1998; 35
Moraru, Kokini (b0095) 2003; 2
Femenia, Lefebvre, Thebaudin, Robertson, Bourgeois (b0040) 1997; 62
Chau, C. F. (1998).
Wolf (b0125) 2010; 15
Moraru (10.1016/j.foodchem.2015.07.039_b0095) 2003; 2
Zhang (10.1016/j.foodchem.2015.07.039_b0130) 2011; 54
Stojceska (10.1016/j.foodchem.2015.07.039_b0115) 2010; 121
Crizel (10.1016/j.foodchem.2015.07.039_b0025) 2013; 53
Furda (10.1016/j.foodchem.2015.07.039_b0055) 1990
Li (10.1016/j.foodchem.2015.07.039_b0080) 2012; 16
Figuerola (10.1016/j.foodchem.2015.07.039_b0050) 2005; 91
Ng (10.1016/j.foodchem.2015.07.039_b0100) 1999; 39
Kendall (10.1016/j.foodchem.2015.07.039_b0075) 2010; 24
Phillips (10.1016/j.foodchem.2015.07.039_b0110) 2013; 1
Takeyama (10.1016/j.foodchem.2015.07.039_b0120) 1996; 43
Femenia (10.1016/j.foodchem.2015.07.039_b0040) 1997; 62
Jing (10.1016/j.foodchem.2015.07.039_b0070) 2013; 138
Arrigoni (10.1016/j.foodchem.2015.07.039_b0015) 1986; 1
Grigelmo-Miguel (10.1016/j.foodchem.2015.07.039_b0060) 1999; 32
Anderson (10.1016/j.foodchem.2015.07.039_b0005) 1969; 14
Wolf (10.1016/j.foodchem.2015.07.039_b0125) 2010; 15
Myers (10.1016/j.foodchem.2015.07.039_b9005) 2002
Dronnet (10.1016/j.foodchem.2015.07.039_b0030) 1998; 35
Gualberto (10.1016/j.foodchem.2015.07.039_b0065) 1997; 51
Lobato (10.1016/j.foodchem.2015.07.039_b0085) 2011; 44
Long (10.1016/j.foodchem.2015.07.039_b0090) 2014; 59
Fernandez-Lopez (10.1016/j.foodchem.2015.07.039_b0045) 2009; 44
Ocen (10.1016/j.foodchem.2015.07.039_b0105) 2013; 8
10.1016/j.foodchem.2015.07.039_b0020
AOAC (10.1016/j.foodchem.2015.07.039_b0010) 1995
Englyst (10.1016/j.foodchem.2015.07.039_b0035) 1994; 119
References_xml – volume: 16
  start-page: 80
  year: 2012
  end-page: 88
  ident: b0080
  article-title: A novel in-situ enhanced blasting extrusion technique – Extrudate analysis and optimization of processing conditions with okara
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 44
  start-page: 933
  year: 2011
  end-page: 939
  ident: b0085
  article-title: Extruded puffed functional ingredient with oat bran and soy flour
  publication-title: LWT-Food Science and Technology
– volume: 44
  start-page: 748
  year: 2009
  end-page: 756
  ident: b0045
  article-title: Storage stability of a high dietary fibre powder from orange by-products
  publication-title: International Journal of Food Science and Technology
– volume: 32
  start-page: 503
  year: 1999
  end-page: 508
  ident: b0060
  article-title: Comparison of dietary fibre from by-products of processing fruits and greens and from cereals
  publication-title: LWT-Food Science and Technology
– volume: 1
  start-page: 3
  year: 2013
  end-page: 9
  ident: b0110
  article-title: Dietary fibre: A chemical category or a health ingredient?
  publication-title: Bioactive Carbohydrates and Dietary Fibre
– volume: 138
  start-page: 884
  year: 2013
  end-page: 889
  ident: b0070
  article-title: Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue
  publication-title: Food Chemistry
– reference: (Ph.D. Dissertation). The Chinese University of Hong Kong.
– volume: 53
  start-page: 9
  year: 2013
  end-page: 14
  ident: b0025
  article-title: Dietary fiber from orange byproducts as a potential fat replacer
  publication-title: LWT-Food Science and Technology
– volume: 8
  start-page: 43
  year: 2013
  end-page: 53
  ident: b0105
  article-title: Effect of citrus orange (
  publication-title: American Journal of Food Technology
– year: 1995
  ident: b0010
  article-title: Official methods of analysis
– volume: 91
  start-page: 395
  year: 2005
  end-page: 401
  ident: b0050
  article-title: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment
  publication-title: Food Chemistry
– volume: 24
  start-page: 42
  year: 2010
  end-page: 48
  ident: b0075
  article-title: The link between dietary fibre and human health
  publication-title: Food Hydrocolloids
– volume: 35
  start-page: 29
  year: 1998
  end-page: 37
  ident: b0030
  article-title: Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties
  publication-title: Carbohydrate Polymers
– volume: 51
  start-page: 187
  year: 1997
  end-page: 198
  ident: b0065
  article-title: Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans
  publication-title: Plant Foods for Human Nutrition
– volume: 54
  start-page: 98
  year: 2011
  end-page: 103
  ident: b0130
  article-title: Extrusion process improves the functionality of soluble dietary fiber in oat bran
  publication-title: Journal of Cereal Science
– volume: 119
  start-page: 1497
  year: 1994
  end-page: 1509
  ident: b0035
  article-title: Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars
  publication-title: Analyst
– volume: 121
  start-page: 156
  year: 2010
  end-page: 164
  ident: b0115
  article-title: The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products
  publication-title: Food Chemistry
– reference: Chau, C. F. (1998).
– volume: 14
  start-page: 4
  year: 1969
  end-page: 7
  ident: b0005
  article-title: Gelatinization of corn grits by roll- and extrusion-cooking
  publication-title: Cereal Science Today
– year: 2002
  ident: b9005
  article-title: Response surface methodology process and product optimization using designed experiments
– volume: 39
  start-page: 341
  year: 1999
  end-page: 349
  ident: b0100
  article-title: Modification of cell-wall polymers of onion waste III. Effect of extrusion-cooking on cell-wall material of outer fleshy tissues
  publication-title: Carbohydrate Polymers
– volume: 59
  start-page: 605
  year: 2014
  end-page: 611
  ident: b0090
  article-title: Optimization and characterization of wheat bran modified by in situ enhanced CO
  publication-title: LWT-Food Science and Technology
– volume: 2
  start-page: 120
  year: 2003
  end-page: 137
  ident: b0095
  article-title: Nucleation and expansion during extrusion and microwave heating of cereal foods
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 43
  start-page: 231
  year: 1996
  end-page: 237
  ident: b0120
  article-title: Changes in polysaccharide components and metal adsorption ability of soybean dietary fiber on heating
  publication-title: Journal of the Japanese Society of Food Science and Technology
– start-page: 67
  year: 1990
  end-page: 82
  ident: b0055
  article-title: Interaction of dietary fiber with lipids mechanistic theories and their limitations
  publication-title: New developments in dietary fiber
– volume: 1
  start-page: 57
  year: 1986
  end-page: 64
  ident: b0015
  article-title: Chemical composition and physical properties of modified dietary fibre sources
  publication-title: Food Hydrocolloids
– volume: 62
  start-page: 635
  year: 1997
  end-page: 639
  ident: b0040
  article-title: Physical and sensory properties of model foods supplemented with cauliflower fiber
  publication-title: Journal of Food Science
– volume: 15
  start-page: 50
  year: 2010
  end-page: 54
  ident: b0125
  article-title: Polysaccharide functionality through extrusion processing
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 119
  start-page: 1497
  year: 1994
  ident: 10.1016/j.foodchem.2015.07.039_b0035
  article-title: Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars
  publication-title: Analyst
  doi: 10.1039/AN9941901497
– volume: 24
  start-page: 42
  year: 2010
  ident: 10.1016/j.foodchem.2015.07.039_b0075
  article-title: The link between dietary fibre and human health
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2009.08.002
– volume: 44
  start-page: 748
  year: 2009
  ident: 10.1016/j.foodchem.2015.07.039_b0045
  article-title: Storage stability of a high dietary fibre powder from orange by-products
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/j.1365-2621.2008.01892.x
– year: 1995
  ident: 10.1016/j.foodchem.2015.07.039_b0010
– year: 2002
  ident: 10.1016/j.foodchem.2015.07.039_b9005
– ident: 10.1016/j.foodchem.2015.07.039_b0020
– volume: 35
  start-page: 29
  year: 1998
  ident: 10.1016/j.foodchem.2015.07.039_b0030
  article-title: Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties
  publication-title: Carbohydrate Polymers
  doi: 10.1016/S0144-8617(97)00118-5
– volume: 59
  start-page: 605
  year: 2014
  ident: 10.1016/j.foodchem.2015.07.039_b0090
  article-title: Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2014.07.017
– volume: 43
  start-page: 231
  year: 1996
  ident: 10.1016/j.foodchem.2015.07.039_b0120
  article-title: Changes in polysaccharide components and metal adsorption ability of soybean dietary fiber on heating
  publication-title: Journal of the Japanese Society of Food Science and Technology
  doi: 10.3136/nskkk.43.231
– volume: 16
  start-page: 80
  year: 2012
  ident: 10.1016/j.foodchem.2015.07.039_b0080
  article-title: A novel in-situ enhanced blasting extrusion technique – Extrudate analysis and optimization of processing conditions with okara
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2012.04.009
– volume: 14
  start-page: 4
  year: 1969
  ident: 10.1016/j.foodchem.2015.07.039_b0005
  article-title: Gelatinization of corn grits by roll- and extrusion-cooking
  publication-title: Cereal Science Today
– volume: 15
  start-page: 50
  year: 2010
  ident: 10.1016/j.foodchem.2015.07.039_b0125
  article-title: Polysaccharide functionality through extrusion processing
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2009.11.011
– volume: 138
  start-page: 884
  year: 2013
  ident: 10.1016/j.foodchem.2015.07.039_b0070
  article-title: Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.12.003
– volume: 121
  start-page: 156
  year: 2010
  ident: 10.1016/j.foodchem.2015.07.039_b0115
  article-title: The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.12.024
– start-page: 67
  year: 1990
  ident: 10.1016/j.foodchem.2015.07.039_b0055
  article-title: Interaction of dietary fiber with lipids mechanistic theories and their limitations
– volume: 39
  start-page: 341
  year: 1999
  ident: 10.1016/j.foodchem.2015.07.039_b0100
  article-title: Modification of cell-wall polymers of onion waste III. Effect of extrusion-cooking on cell-wall material of outer fleshy tissues
  publication-title: Carbohydrate Polymers
  doi: 10.1016/S0144-8617(99)00025-9
– volume: 2
  start-page: 120
  year: 2003
  ident: 10.1016/j.foodchem.2015.07.039_b0095
  article-title: Nucleation and expansion during extrusion and microwave heating of cereal foods
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/j.1541-4337.2003.tb00020.x
– volume: 62
  start-page: 635
  year: 1997
  ident: 10.1016/j.foodchem.2015.07.039_b0040
  article-title: Physical and sensory properties of model foods supplemented with cauliflower fiber
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.1997.tb15426.x
– volume: 53
  start-page: 9
  year: 2013
  ident: 10.1016/j.foodchem.2015.07.039_b0025
  article-title: Dietary fiber from orange byproducts as a potential fat replacer
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2013.02.002
– volume: 1
  start-page: 57
  year: 1986
  ident: 10.1016/j.foodchem.2015.07.039_b0015
  article-title: Chemical composition and physical properties of modified dietary fibre sources
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(86)80007-8
– volume: 1
  start-page: 3
  year: 2013
  ident: 10.1016/j.foodchem.2015.07.039_b0110
  article-title: Dietary fibre: A chemical category or a health ingredient?
  publication-title: Bioactive Carbohydrates and Dietary Fibre
  doi: 10.1016/j.bcdf.2012.12.001
– volume: 32
  start-page: 503
  year: 1999
  ident: 10.1016/j.foodchem.2015.07.039_b0060
  article-title: Comparison of dietary fibre from by-products of processing fruits and greens and from cereals
  publication-title: LWT-Food Science and Technology
  doi: 10.1006/fstl.1999.0587
– volume: 8
  start-page: 43
  year: 2013
  ident: 10.1016/j.foodchem.2015.07.039_b0105
  article-title: Effect of citrus orange (Citrus sinensis) by-product dietary fiber preparations on the quality characteristics of frozen dough bread
  publication-title: American Journal of Food Technology
  doi: 10.3923/ajft.2013.43.53
– volume: 51
  start-page: 187
  year: 1997
  ident: 10.1016/j.foodchem.2015.07.039_b0065
  article-title: Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans
  publication-title: Plant Foods for Human Nutrition
  doi: 10.1023/A:1007941032726
– volume: 44
  start-page: 933
  year: 2011
  ident: 10.1016/j.foodchem.2015.07.039_b0085
  article-title: Extruded puffed functional ingredient with oat bran and soy flour
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2010.11.013
– volume: 54
  start-page: 98
  year: 2011
  ident: 10.1016/j.foodchem.2015.07.039_b0130
  article-title: Extrusion process improves the functionality of soluble dietary fiber in oat bran
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2011.04.001
– volume: 91
  start-page: 395
  year: 2005
  ident: 10.1016/j.foodchem.2015.07.039_b0050
  article-title: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2004.04.036
SSID ssj0002018
Score 2.522194
Snippet •Optimum extrusion processing of SDF from orange pomace has been studied.•Extrusion process enhanced the yield of SDF in orange pomace.•Extrusion process...
Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms cation exchange capacity
Citrus sinensis - chemistry
dietary fiber
Dietary Fiber - analysis
Extrusion
Food Analysis - methods
Food Handling - methods
human health
Humans
juices
Models, Theoretical
Monosaccharides - analysis
Orange pomace
Physicochemical property
pomace
Response surface methodology
Solubility
Soluble dietary fibre
Temperature
uronic acids
Water
water holding capacity
water solubility
Title The effect of extrusion processing on the physiochemical properties of extruded orange pomace
URI https://dx.doi.org/10.1016/j.foodchem.2015.07.039
https://www.ncbi.nlm.nih.gov/pubmed/26304360
https://www.proquest.com/docview/1707555104
https://www.proquest.com/docview/1836646635
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hcCgX1KYFAi1yJdTbJvvyrnOMQlEKai6AlEtlrV8oEdqNSLj2tzOzuw4gFXLo0ZYtWZ7Zmc-zM98AnOGkyiKrAmWSMEiF5oGylCYW6yx2ReGUo9rh39NscptezvhsB8a-FobSKlvb39j02lq3M4P2NgfL-XxwTUwrFMBCSBMR6wlVsKc5aXn_73OaBzo40fxJEHW460WV8KLvqsrg3VBFesRrEk9qGv5vB_UWAK0d0cVH2G8RJBs1h_wEO7bswoexb9zWhd753K7ZD9ZSft6zqWfcx3W-EHn1Gf6girAmn4NVjqGVfnik2BlbNsUD6NQYjhAhsjr-Qb21anIBWrCkfGy72mw01jDUpvIOF1cUJP8Ctxc_b8aToO22EGg0lutAmNTlCOYEN7ZAYGgsNy4ysVZR7NDXcZsrFOpQGRxnCOzSOLfOCINvHJ0anRxAp6xKewQs5Jq7zBl8PSo0EIUwVhlXJFoMY6tj3gPur1jqloqcOmLcS59ztpBeNJJEI8Ncomh6MNjsWzZkHFt3DL0E5Su1kugxtu797kUuUYL0I6UobfW4klGOQAuhZpi-s0YkWZYSnuvBYaMvmzPHWULM_-Hxf5zuBPZw1CaQf4UOStp-Q3y0Vqf1B3AKu6NfV5PpE-qbErE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcKAXBPRBgLauVHFbsi_vOkeUgkKBXAoSF2StXygR2o1I-P_M7NpRkSgcONprS5bHO_N5PPMNwC_sVEViVaRMFke50DxSlsLEUl2krqqccpQ7fDkpxtf5nxt-swajkAtDYZVe93c6vdXWvmfgd3Mwn04Hf4lphRxYCGkSYj35AOvETsV7sH58dj6erBQy2jjRPSaI1uP1T6Lw7Mg1jcHtoaT0hLc8nlQ3_GUb9T8M2tqi0y3Y9CCSHXfr3IY1W-_AxijUbtuB_u-pXbJD5lk_79kkkO7juJCLvPgEt3hKWBfSwRrHUFE_PJL7jM27_AG0awxbCBJZ6wKh8lotvwANmFNItl2sJhprGB6o-g4HN-Qn_wzXpydXo3HkCy5EGvXlMhImdyXiOcGNrRAbGsuNS0yqVZI6NHfclgrlOlQG2wViuzwtrTPC4DVH50ZnX6BXN7XdBRZzzV3hDF4gFeqIShirjKsyLYap1SnvAw9bLLVnI6eiGPcyhJ3NZBCNJNHIuJQomj4MVvPmHR_HmzOGQYLy2cmSaDTenPsziFyiBOktpapt87iQSYlYC9FmnL8yRmRFkROk68PX7rys1pwWGZH_x3vvWN0P2BhfXV7Ii7PJ-T58xC8-nvwAeih1-w3h0lJ997_DE0KMFWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+extrusion+processing+on+the+physiochemical+properties+of+extruded+orange+pomace&rft.jtitle=Food+chemistry&rft.au=Huang%2C+Ya-Ling&rft.au=Ma%2C+Ya-Sheng&rft.date=2016-02-01&rft.issn=0308-8146&rft.volume=192&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1016%2Fj.foodchem.2015.07.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodchem_2015_07_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon