Epigenetic Regulation of E-Cadherin Controls Endometrial Receptivity

Key to the success of human reproduction is the capacity of an embryo to attach and implant into the endometrial wall after which a nutrient supply is established through placentation. Herein, we have examined the potential epigenetic regulation of uterine receptivity by use of the receptive RL95-2...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 150; no. 3; pp. 1466 - 1472
Main Authors Rahnama, Fahimeh, Thompson, Bridget, Steiner, Michael, Shafiei, Farhad, Lobie, Peter E, Mitchell, Murray D
Format Journal Article
LanguageEnglish
Published Chevy Chase, MD Endocrine Society 01.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Key to the success of human reproduction is the capacity of an embryo to attach and implant into the endometrial wall after which a nutrient supply is established through placentation. Herein, we have examined the potential epigenetic regulation of uterine receptivity by use of the receptive RL95-2 and nonreceptive AN3-CA endometrial epithelial carcinoma cell lines. Using an in vitro model of embryo implantation, we demonstrate that inhibition of DNA methylation by 5′-aza-2′-deoxycytidine (AZA), resulted in the nonreceptive AN3-CA cell line becoming receptive to BeWo cell spheroid attachment. Examination of components of the adherens junction complex revealed that AZA specifically increased the expression of E-cadherin and plakoglobin at the mRNA and protein levels in AN3-CA cells, and E-cadherin protein expression was found to localize to sites of intercellular contact. Forced expression of E-cadherin in AN3-CA cells significantly enhanced receptivity. Small interfering RNA (siRNA)-mediated depletion of the individual DNA methyltransferase (DNMT) molecules did not induce E-cadherin expression in AN3-CA cells; however, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B induced the expression of E-cadherin. Furthermore, E-cadherin expression was significantly increased after the concomitant siRNA-mediated depletion of DNMT-1, -3A, and -3B in AN3-CA cells. Therefore, we have provided evidence that E-cadherin plays an important role in uterine receptivity and that E-cadherin expression is epigenetically regulated in AN3-CA cells, suppressed by the combined actions of DNMT-1, -3A, and -3B. Inhibition of DNA methylation increases both E-cadherin expression and receptivity in an endometrial cell line, suggesting that endometrial receptivity in human pregnancy is epigenetically regulated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2008-1142