Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent

This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: where is the fractional –Laplacian with 0 &l...

Full description

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 9; no. 1; pp. 690 - 709
Main Authors Xiang, Mingqi, Zhang, Binlin, Rădulescu, Vicenţiu D.
Format Journal Article
LanguageEnglish
Published De Gruyter 01.01.2020
Subjects
Online AccessGet full text
ISSN2191-950X
2191-950X
DOI10.1515/anona-2020-0021

Cover

Loading…
Abstract This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: where is the fractional –Laplacian with 0 < < 1 < < , is the critical fractional Sobolev exponent, > 0 is a real parameter, and : ℝ × ℝ ℝ is a Carathéodory function satisfying superlinear growth conditions. For by using the concentration compactness principle in fractional Sobolev spaces, we show that if , ) is odd with respect to , for any ∈ ℕ there exists a > 0 such that the above problem has pairs of solutions for all ∈ (0, ]. For by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf ) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in –Laplacian case.
AbstractList This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: ‖ u ‖ λ ( θ − 1 ) p [ λ ( − Δ ) p s u + V ( x ) | u | p − 2 u ] = | u | p s ⋆ − 2 u + f ( x , u )   i n   ℝ N , ‖ u ‖ λ = ( λ ∫ ℝ ∫ 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y + ∫ ℝ N V ( x ) | u | p d x ) 1 / p $$\begin{align}& \left\| u \right\|_{\lambda }^{\left( \theta -1 \right)p}\left[ \lambda \left( -\Delta \right)_{p}^{s}u+V\left( x \right){{\left| u \right|}^{p-2}}u \right]={{\left| u \right|}^{p_{s}^{\star }-2}}u+f\left( x,u \right)\,in\,{{\mathbb{R}}^{N}}, \\ & {{\left\| u \right\|}_{\lambda }}={{\left( \lambda \int\limits_{\mathbb{R}}{\int\limits_{2N}{\frac{{{\left| u\left( x \right)-u\left( y \right) \right|}^{p}}}{{{\left| x-y \right|}^{N+ps}}}dxdy+\int\limits_{{{\mathbb{R}}^{N}}}{V\left( x \right){{\left| u \right|}^{p}}dx}} \right)}^{{1}/{p}\;}} \\ \end{align}$$ where ( − Δ ) p s $\left( -\Delta \right)_{p}^{s}$ is the fractional p –Laplacian with 0 < s < 1 < p < N / s , p s ⋆ = N p / ( N − p s ) $p_{s}^{\star }={Np}/{\left( N-ps \right)}\;$ is the critical fractional Sobolev exponent, λ > 0 is a real parameter, 1 < θ ≤ p s ⋆ / p , $1<\theta \le {p_{s}^{\star }}/{p}\;,$ and f : ℝ N × ℝ → ℝ is a Carathéodory function satisfying superlinear growth conditions. For θ ∈ ( 1 , p s ⋆ / p ) , $\theta \in \left( 1,{p_{s}^{\star }}/{p}\; \right),$ by using the concentration compactness principle in fractional Sobolev spaces, we show that if f ( x , t ) is odd with respect to t , for any m ∈ ℕ + there exists a Λ m > 0 such that the above problem has m pairs of solutions for all λ ∈ (0, Λ m ]. For θ = p s ⋆ / p , $\theta ={p_{s}^{\star }}/{p}\;,$ by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for λ large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf x ∈ℝ V ( x ) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in p –Laplacian case.
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: where is the fractional –Laplacian with 0 < < 1 < < , is the critical fractional Sobolev exponent, > 0 is a real parameter, and : ℝ × ℝ ℝ is a Carathéodory function satisfying superlinear growth conditions. For by using the concentration compactness principle in fractional Sobolev spaces, we show that if , ) is odd with respect to , for any ∈ ℕ there exists a > 0 such that the above problem has pairs of solutions for all ∈ (0, ]. For by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf ) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in –Laplacian case.
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem:
Author Zhang, Binlin
Rădulescu, Vicenţiu D.
Xiang, Mingqi
Author_xml – sequence: 1
  givenname: Mingqi
  surname: Xiang
  fullname: Xiang, Mingqi
  email: xiangmingqi_hit@163.com
  organization: College of Science, Civil Aviation University of China, Tianjin, 300300, P.R. China
– sequence: 2
  givenname: Binlin
  surname: Zhang
  fullname: Zhang, Binlin
  email: zhangbinlin2012@163.com
  organization: College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
– sequence: 3
  givenname: Vicenţiu D.
  surname: Rădulescu
  fullname: Rădulescu, Vicenţiu D.
  email: vicentiu.radulescu@imar.ro
  organization: Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland and Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania
BookMark eNp1kU1qHDEQhZtgQxzH62x1gY71rxFkE0x-TAaysAPeiWqpNKOh3WrUPU5mlzv4Lr5AbpKTRONJIBisjaokfU9Peq-aoyEP2DRvGH3LFFPnUHtoOeW0pZSzF80JZ5a1VtGbo__ql83ZNG1oHQvFjKEnTb7ajlj6NCAUcuXX5ddDSMMKy--f919S8et1jpHMuxHJWHLX4-1E0nCX-7t6isxrJLGAn1O9vidjhZYw9uATDASGQHxJc_J1C3-M1fEwv26OI_QTnv2dT5tvHz9cX3xul18_XV68X7ZeajO3RiCVQHmnFZWiEzEKri0P1AYfAyAYYYyOqKyOXBmwgkngJkixENgtOnHaXB50Q4aNG0u6hbJzGZJ7XMhl5aBUaz06KQ1HpoORGqSWAizXiBAUcolByKqlDlq-5GkqGJ1PM-zfPBdIvWPU7UNwjyG4fQhuH0Llzp9w_3w8T7w7EN-hn7EEXJXtrhZuk7el_vD0HGmZtlT8AeIfpYk
CitedBy_id crossref_primary_10_1007_s12220_021_00722_0
crossref_primary_10_3934_math_20241376
crossref_primary_10_14232_ejqtde_2023_1_45
crossref_primary_10_3233_ASY_211680
crossref_primary_10_1016_j_na_2020_111852
crossref_primary_10_1016_j_jmaa_2024_129194
crossref_primary_10_1080_17476933_2022_2069757
crossref_primary_10_1016_j_jmaa_2023_127214
crossref_primary_10_1080_17476933_2020_1779237
crossref_primary_10_1515_anona_2022_0317
crossref_primary_10_3934_math_2022336
crossref_primary_10_1186_s13661_019_1279_9
crossref_primary_10_1515_anona_2022_0318
crossref_primary_10_1186_s13661_023_01816_0
crossref_primary_10_1080_17476933_2020_1731737
crossref_primary_10_1002_mma_6995
crossref_primary_10_1007_s10473_022_0323_5
crossref_primary_10_1515_anona_2020_0150
crossref_primary_10_3233_ASY_221809
crossref_primary_10_1007_s40840_023_01480_8
crossref_primary_10_1080_17476933_2019_1652281
crossref_primary_10_1080_17476933_2021_1890051
crossref_primary_10_1186_s13661_020_01443_z
crossref_primary_10_1007_s40590_021_00368_6
crossref_primary_10_1080_17476933_2022_2069760
crossref_primary_10_1080_17476933_2023_2293800
crossref_primary_10_1186_s13661_020_01404_6
crossref_primary_10_1186_s13661_020_01408_2
crossref_primary_10_1007_s13540_022_00089_1
crossref_primary_10_1080_17476933_2021_1916918
crossref_primary_10_1186_s13661_021_01550_5
crossref_primary_10_1007_s00245_020_09666_3
crossref_primary_10_1007_s13163_021_00388_w
crossref_primary_10_3934_math_2023048
crossref_primary_10_1002_mma_6862
crossref_primary_10_1186_s13662_020_03014_z
crossref_primary_10_1007_s12220_022_00880_9
crossref_primary_10_1016_j_jmaa_2020_123899
crossref_primary_10_3233_ASY_191590
crossref_primary_10_1007_s13348_021_00316_7
crossref_primary_10_1515_forum_2023_0183
crossref_primary_10_3390_sym13101819
crossref_primary_10_1515_anona_2022_0270
crossref_primary_10_1007_s13324_021_00643_9
crossref_primary_10_1186_s13661_022_01603_3
crossref_primary_10_1016_j_na_2020_111831
crossref_primary_10_1007_s41808_023_00247_3
crossref_primary_10_1016_j_na_2020_111835
crossref_primary_10_1007_s00009_021_01733_5
crossref_primary_10_1002_mma_6057
crossref_primary_10_5269_bspm_62706
crossref_primary_10_1002_mma_9203
crossref_primary_10_1515_anona_2020_0052
crossref_primary_10_1515_anona_2022_0265
crossref_primary_10_1007_s10957_020_01752_4
crossref_primary_10_1016_j_na_2019_111735
crossref_primary_10_1016_j_na_2020_111791
crossref_primary_10_3390_fractalfract8100598
crossref_primary_10_1016_j_na_2020_111784
crossref_primary_10_1080_17476933_2020_1870453
crossref_primary_10_1080_17476933_2022_2040022
crossref_primary_10_2989_16073606_2024_2329338
crossref_primary_10_3233_ASY_201621
crossref_primary_10_1515_anona_2021_0203
crossref_primary_10_1016_j_na_2020_111828
crossref_primary_10_1155_2020_3186135
crossref_primary_10_1002_mma_8991
crossref_primary_10_1002_mma_5993
crossref_primary_10_1007_s12215_020_00573_8
crossref_primary_10_1016_j_jmaa_2020_124205
crossref_primary_10_1216_jie_2022_34_1
crossref_primary_10_1007_s41808_023_00239_3
crossref_primary_10_3934_dcds_2020379
crossref_primary_10_1007_s00033_020_01455_w
crossref_primary_10_1080_17476933_2020_1857370
crossref_primary_10_14232_ejqtde_2021_1_37
crossref_primary_10_1515_anona_2020_0103
crossref_primary_10_1063_5_0014915
crossref_primary_10_1016_j_na_2020_112102
crossref_primary_10_1007_s12220_021_00740_y
crossref_primary_10_1016_j_na_2020_111899
crossref_primary_10_1515_agms_2024_0006
crossref_primary_10_1080_17476933_2020_1756270
crossref_primary_10_1515_forum_2023_0385
crossref_primary_10_1016_j_na_2020_111779
crossref_primary_10_1186_s13661_020_01370_z
crossref_primary_10_1186_s13660_021_02569_z
crossref_primary_10_1002_mma_7762
crossref_primary_10_1002_mma_6157
crossref_primary_10_1016_j_na_2019_111635
crossref_primary_10_1007_s00009_020_01661_w
crossref_primary_10_1016_j_aml_2020_106593
crossref_primary_10_1007_s13324_020_00441_9
crossref_primary_10_1515_anona_2020_0119
crossref_primary_10_1007_s41808_020_00081_x
crossref_primary_10_1016_j_na_2020_111886
crossref_primary_10_1515_dema_2023_0124
crossref_primary_10_1002_mma_8172
crossref_primary_10_1007_s13324_020_00386_z
crossref_primary_10_12677_PM_2021_114072
crossref_primary_10_3934_dcdsb_2021115
crossref_primary_10_1007_s12215_023_00984_3
crossref_primary_10_1002_mma_7873
crossref_primary_10_1016_j_jmaa_2020_124269
crossref_primary_10_1007_s12220_023_01247_4
crossref_primary_10_1016_j_jmaa_2022_126205
crossref_primary_10_1515_anona_2022_0234
crossref_primary_10_3390_sym17010021
crossref_primary_10_1007_s00009_020_01619_y
crossref_primary_10_1515_anona_2020_0127
crossref_primary_10_1007_s00245_019_09612_y
crossref_primary_10_1080_17476933_2020_1788003
crossref_primary_10_1007_s10473_021_0418_4
crossref_primary_10_2478_auom_2023_0015
crossref_primary_10_1007_s13324_021_00564_7
crossref_primary_10_1007_s40590_022_00419_6
crossref_primary_10_1080_17476933_2021_1951719
crossref_primary_10_14232_ejqtde_2020_1_7
crossref_primary_10_1002_mma_9497
crossref_primary_10_3390_fractalfract6120696
crossref_primary_10_1007_s12215_022_00763_6
crossref_primary_10_58997_ejde_2021_19
crossref_primary_10_1007_s11868_024_00611_4
crossref_primary_10_1007_s12215_024_01070_y
crossref_primary_10_1016_j_jmaa_2020_124355
crossref_primary_10_1515_anona_2022_0226
crossref_primary_10_3233_ASY_201660
crossref_primary_10_3233_ASY_191564
crossref_primary_10_58997_ejde_2021_100
crossref_primary_10_1007_s11868_020_00331_5
crossref_primary_10_1007_s12220_024_01707_5
crossref_primary_10_1007_s12220_020_00546_4
crossref_primary_10_1016_j_na_2020_111864
crossref_primary_10_1016_j_na_2020_111749
crossref_primary_10_1016_j_na_2020_111900
crossref_primary_10_1016_j_na_2019_111664
crossref_primary_10_1002_mma_7335
crossref_primary_10_1002_mma_7213
crossref_primary_10_1186_s13661_020_01355_y
crossref_primary_10_1007_s10883_020_09507_0
crossref_primary_10_1216_rmj_2020_50_1151
crossref_primary_10_1007_s00009_022_02076_5
crossref_primary_10_1515_math_2021_0125
Cites_doi 10.1090/cbms/065
10.4171/RMI/6
10.1007/s13324-017-0174-8
10.1098/rspa.2015.0034
10.1063/1.4918791
10.1016/j.na.2013.08.011
10.1017/CBO9781316282397
10.1016/j.na.2015.06.014
10.1007/s00245-017-9458-5
10.1007/978-3-642-25361-4_3
10.1016/j.nonrwa.2016.11.004
10.1016/j.na.2012.12.003
10.1103/PhysRevE.66.056108
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2020-0021
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 709
ExternalDocumentID oai_doaj_org_article_4472e16d746a4643a926eead5e24ed34
10_1515_anona_2020_0021
10_1515_anona_2020_002191690
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
AAWFC
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACMKP
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AEKEB
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AIKXB
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
M48
O9-
OK1
QD8
SA.
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c467t-73e04a02b65043b3ff32692d09dcfdaea73776fe596f257a9314a27d4383eb8b3
IEDL.DBID M48
ISSN 2191-950X
IngestDate Wed Aug 27 01:31:40 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Tue Jul 01 00:37:48 EDT 2025
Thu Jul 10 10:37:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-73e04a02b65043b3ff32692d09dcfdaea73776fe596f257a9314a27d4383eb8b3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/anona-2020-0021
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_4472e16d746a4643a926eead5e24ed34
crossref_citationtrail_10_1515_anona_2020_0021
crossref_primary_10_1515_anona_2020_0021
walterdegruyter_journals_10_1515_anona_2020_002191690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2020
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2021020917373173021_j_anona-2020-0021_ref_031
2021020917373173021_j_anona-2020-0021_ref_010
2021020917373173021_j_anona-2020-0021_ref_032
2021020917373173021_j_anona-2020-0021_ref_030
2021020917373173021_j_anona-2020-0021_ref_013
2021020917373173021_j_anona-2020-0021_ref_035
2021020917373173021_j_anona-2020-0021_ref_014
2021020917373173021_j_anona-2020-0021_ref_036
2021020917373173021_j_anona-2020-0021_ref_011
2021020917373173021_j_anona-2020-0021_ref_033
2021020917373173021_j_anona-2020-0021_ref_012
2021020917373173021_j_anona-2020-0021_ref_034
2021020917373173021_j_anona-2020-0021_ref_017
2021020917373173021_j_anona-2020-0021_ref_039
2021020917373173021_j_anona-2020-0021_ref_018
2021020917373173021_j_anona-2020-0021_ref_015
2021020917373173021_j_anona-2020-0021_ref_037
2021020917373173021_j_anona-2020-0021_ref_016
2021020917373173021_j_anona-2020-0021_ref_038
2021020917373173021_j_anona-2020-0021_ref_019
2021020917373173021_j_anona-2020-0021_ref_020
2021020917373173021_j_anona-2020-0021_ref_042
2021020917373173021_j_anona-2020-0021_ref_021
2021020917373173021_j_anona-2020-0021_ref_043
2021020917373173021_j_anona-2020-0021_ref_040
2021020917373173021_j_anona-2020-0021_ref_041
2021020917373173021_j_anona-2020-0021_ref_002
2021020917373173021_j_anona-2020-0021_ref_024
2021020917373173021_j_anona-2020-0021_ref_046
2021020917373173021_j_anona-2020-0021_ref_003
2021020917373173021_j_anona-2020-0021_ref_025
2021020917373173021_j_anona-2020-0021_ref_022
2021020917373173021_j_anona-2020-0021_ref_044
2021020917373173021_j_anona-2020-0021_ref_001
2021020917373173021_j_anona-2020-0021_ref_023
2021020917373173021_j_anona-2020-0021_ref_045
2021020917373173021_j_anona-2020-0021_ref_006
2021020917373173021_j_anona-2020-0021_ref_028
2021020917373173021_j_anona-2020-0021_ref_007
2021020917373173021_j_anona-2020-0021_ref_029
2021020917373173021_j_anona-2020-0021_ref_004
2021020917373173021_j_anona-2020-0021_ref_026
2021020917373173021_j_anona-2020-0021_ref_005
2021020917373173021_j_anona-2020-0021_ref_027
2021020917373173021_j_anona-2020-0021_ref_008
2021020917373173021_j_anona-2020-0021_ref_009
References_xml – ident: 2021020917373173021_j_anona-2020-0021_ref_045
  doi: 10.1090/cbms/065
– ident: 2021020917373173021_j_anona-2020-0021_ref_018
– ident: 2021020917373173021_j_anona-2020-0021_ref_016
– ident: 2021020917373173021_j_anona-2020-0021_ref_020
– ident: 2021020917373173021_j_anona-2020-0021_ref_024
– ident: 2021020917373173021_j_anona-2020-0021_ref_026
– ident: 2021020917373173021_j_anona-2020-0021_ref_035
  doi: 10.4171/RMI/6
– ident: 2021020917373173021_j_anona-2020-0021_ref_007
– ident: 2021020917373173021_j_anona-2020-0021_ref_043
  doi: 10.1007/s13324-017-0174-8
– ident: 2021020917373173021_j_anona-2020-0021_ref_034
– ident: 2021020917373173021_j_anona-2020-0021_ref_005
– ident: 2021020917373173021_j_anona-2020-0021_ref_030
– ident: 2021020917373173021_j_anona-2020-0021_ref_003
– ident: 2021020917373173021_j_anona-2020-0021_ref_011
– ident: 2021020917373173021_j_anona-2020-0021_ref_001
– ident: 2021020917373173021_j_anona-2020-0021_ref_028
  doi: 10.1098/rspa.2015.0034
– ident: 2021020917373173021_j_anona-2020-0021_ref_038
– ident: 2021020917373173021_j_anona-2020-0021_ref_041
  doi: 10.1063/1.4918791
– ident: 2021020917373173021_j_anona-2020-0021_ref_022
  doi: 10.1016/j.na.2013.08.011
– ident: 2021020917373173021_j_anona-2020-0021_ref_017
– ident: 2021020917373173021_j_anona-2020-0021_ref_042
– ident: 2021020917373173021_j_anona-2020-0021_ref_019
– ident: 2021020917373173021_j_anona-2020-0021_ref_044
– ident: 2021020917373173021_j_anona-2020-0021_ref_023
– ident: 2021020917373173021_j_anona-2020-0021_ref_040
– ident: 2021020917373173021_j_anona-2020-0021_ref_013
  doi: 10.1017/CBO9781316282397
– ident: 2021020917373173021_j_anona-2020-0021_ref_025
– ident: 2021020917373173021_j_anona-2020-0021_ref_032
  doi: 10.1016/j.na.2015.06.014
– ident: 2021020917373173021_j_anona-2020-0021_ref_027
– ident: 2021020917373173021_j_anona-2020-0021_ref_046
– ident: 2021020917373173021_j_anona-2020-0021_ref_031
  doi: 10.1007/s00245-017-9458-5
– ident: 2021020917373173021_j_anona-2020-0021_ref_006
– ident: 2021020917373173021_j_anona-2020-0021_ref_008
– ident: 2021020917373173021_j_anona-2020-0021_ref_009
  doi: 10.1007/978-3-642-25361-4_3
– ident: 2021020917373173021_j_anona-2020-0021_ref_029
– ident: 2021020917373173021_j_anona-2020-0021_ref_033
– ident: 2021020917373173021_j_anona-2020-0021_ref_036
  doi: 10.1016/j.nonrwa.2016.11.004
– ident: 2021020917373173021_j_anona-2020-0021_ref_021
  doi: 10.1016/j.na.2012.12.003
– ident: 2021020917373173021_j_anona-2020-0021_ref_004
– ident: 2021020917373173021_j_anona-2020-0021_ref_010
– ident: 2021020917373173021_j_anona-2020-0021_ref_015
  doi: 10.1103/PhysRevE.66.056108
– ident: 2021020917373173021_j_anona-2020-0021_ref_002
– ident: 2021020917373173021_j_anona-2020-0021_ref_012
– ident: 2021020917373173021_j_anona-2020-0021_ref_037
– ident: 2021020917373173021_j_anona-2020-0021_ref_014
– ident: 2021020917373173021_j_anona-2020-0021_ref_039
SSID ssj0000851770
Score 2.525693
Snippet This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical...
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p –Laplacian and critical...
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 690
SubjectTerms 35A15
35R11
47G20
Critical exponent
Fractional
fractional p–laplacian
Laplacian
Multiple solutions
Principle of concentration compactness
Schrödinger–Kirchhoff problem
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJzpUPEV5yQMDS6jjOHYzAqJCvBao1C1yYpsWoTbqQ8DGP_Av_AB_wpdwrxNQQUIsrJEjJ8fHvg_b5xKyp0KewzKHCgAxC0SuZaDBzgdtF1tmY2FMiHeHL6_kaVec9eLeXKkvPBNWygOXwLWEUNyG0ightQDzqRMuLfx-bLmwJvJKoGDz5oKpu_L0VagUq7R8wGa3NETTGjjB8SI1D7-ZIa_WXyeNB79DbeztePY0_dwR9Yams0QalYdID8svWyYLdrhC6nO6gatkdD0rvEwV0JRe5_3x26vx6bn355fzATC3P3KOYnaVVgVjJnQwhIUIswcUXD7qxuWFBuiogJcuNJ7NAqZQPTQ0r8ofUPtYjIZgldZIt3Nyc3waVJUTghwWvmmgIsuEZjyTKFCWRc6Bl5ZwwxKTO6OtVpFS0tk4kQ7mrE6iUGiuDOqW2qydReukBnjZDUIFZ045BzPXtYXQOgsNU5xJzQ1EerlokoNPINO8khXH6hb3KYYXgHzqkU8R-RSRb5L9rxeKUlHj96ZHODJfzVAK2z8AgqQVQdK_CNIk8Y9xTatpOvmt3wT3Djf_o_MtslhSDnM226Q2Hc_sDngx02zXE_YDZp7ztQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent
URI https://www.degruyter.com/doi/10.1515/anona-2020-0021
https://doaj.org/article/4472e16d746a4643a926eead5e24ed34
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQNFAgTnHLBQVNwHEce1MgBAiEuBpYiS5yYptDq90l7Aro-Af-hR_gT_gSZhwvl6ChjTxyNIfnsOcNIasq5iUcc4gAkLJIlFpGGvx81HCpZTYVxsTYO3xyKg-a4vAivfgcBxQYePdraofzpJpVa_3h9nELDH7TT--J0w0NibIGcXPskcam8hFwSwqt9CTE-jf1g6xYKRbgfX6h--aZPID_GBm_95fWxl5W_cfe4JLU-579CTIegka6XUt5kgzZ9hQZ-wIlOE06Z_2uR64CzaVn5VX1-mJ8xe7t6fnoGpT5quMcxYIrDTNk7uh1G84mLChQiAKpq-oeB9ioC0THGp9rgfJQ3Ta0DBMRqH3odtrgqGZIc3_vfPcgCsMUohLOwl6kEsuEZryQiFlWJM5B4JZxwzJTOqOtVolS0tk0kw7MWGdJLDRXBqFMbdEoklkyDPyyc4QKzpxyDozZNYTQuogNU5xJzQ0kf6WYJ-sDRuZlQBrHgRetHDMO4HzuOZ8j53Pk_DxZ-yDo1iAbfy_dQcl8LEN0bP-hU13mwdhyIRS3sTRKSC0g5NIZlxZMJrVcWJPAD6Y_5JoPFO-vfTO8Tlz4J90iGa21DCs3S2S4V_XtMsQyvWLF1wBWvKa-A0i79_I
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbocmg5oP4KCm196KGXdB3HsTdHQKXbstDDgsTNcvzDItHNKmQF3PoOfZe-QN-kT9KZxES0KpdeLY9szY9nPPZ8Q8hblXILxxwiAOQsEdbIxICfT0Yh98znwrkUa4cPj-T4RHw-zU9XyN5tLQx-q3T-rF7eNB1C6tBVdomJsh5rADzw0MDd2ICEOZZF83Q4a75ePCCrEsL_0YCs7ow_Tr_0qRaMKpRiEdjnH-R_-KQWun-NrF-1z9X9Xu54nf3HZD2Gi3Snk-8TsuLnT8naHRDBZ6SaLhctZhXoLJ3aWf3zh2tzdb--fT84BzWeVSFQTLXS2D3mkp7P4VTCVAKF-I-GuqtugIUWQDQx-FEL1IaauaM29kKg_npRzYFDz8nJ_ofjvXES2ygkFk7BJlGZZ8IwXkpEKyuzECBkK7hjhbPBGW9UppQMPi9kAAM2RZYKw5VDEFNfjsrsBRkAv_wGoYKzoEIAMw4jIYwpU8cUZ9JwB9c-KzbJ-1tGahsxxrHVxYXGuwZwXrec18h5jZzfJO96gkUHr3H_1F2UTD8NcbHbgao-09HMtBCK-1Q6JaQREGyZgksPxpJ7LrzLYIP5X3LV0WYv71u3wIfEl_9J94Y8HB8fTvTk09HBFnnUaRzmb7bJoKmX_hVENE35Omrsb7uY9_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZgKyF6qPgVhUJ94NBLWMdx7M2xLSxb-gPSUqk3y_FPWwltonRXwI136Lv0BXgTnqQziYm2iF56tTyyNT-e8djzDSFvVcotHHOIAJCzRFgjEwN-PhmF3DOfC-dSrB0-PJKTY_HpJD9ZqoXBb5XOnzaLn_MOIXXoKrvARFmPNQAeeGjgbmxAwhzLonk6rF24T1akLDIxICvbk4_Tz32mBYMKpVjE9fkP9Q2X1CL3r5K17-1rdb-VJaczfkTWYrRItzvxPib3_OwJWV3CEHxKqumibiGrQGXp1J41v69cm6r78-ty_xy0-KwKgWKmlcbmMRf0fAaHEmYSKIR_NDRdcQMsVAPRgcF_WqA11MwctbEVAvU_6moGDHpGjscfvu5OkthFIbFwCM4TlXkmDOOlRLCyMgsBIraCO1Y4G5zxRmVKyeDzQgawX1NkqTBcOcQw9eWozJ6TAfDLvyBUcBZUCGDFYSSEMWXqmOJMGu7g1mfFOnn3l5HaRohx7HTxTeNVAzivW85r5LxGzq-TrZ6g7tA1bp-6g5LppyEsdjtQNac6WpkWQnGfSqeENAJiLVNw6cFWcs-FdxlsMP9Hrjqa7MVt6xb4jvjyjnSb5MGX92N9sHe0_4o87BQOszcbZDBvFv41xDPz8k1U2GtAHPch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superlinear+Schr%C3%B6dinger%E2%80%93Kirchhoff+type+problems+involving+the+fractional+p%E2%80%93Laplacian+and+critical+exponent&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Xiang%2C+Mingqi&rft.au=Zhang%2C+Binlin&rft.au=R%C4%83dulescu%2C+Vicen%C5%A3iu+D.&rft.date=2020-01-01&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=9&rft.issue=1&rft.spage=690&rft.epage=709&rft_id=info:doi/10.1515%2Fanona-2020-0021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2020_002191690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon