Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: where is the fractional –Laplacian with 0 &l...
Saved in:
Published in | Advances in nonlinear analysis Vol. 9; no. 1; pp. 690 - 709 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2191-950X 2191-950X |
DOI | 10.1515/anona-2020-0021 |
Cover
Loading…
Abstract | This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional
–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem:
where
is the fractional
–Laplacian with 0 <
< 1 <
<
,
is the critical fractional Sobolev exponent,
> 0 is a real parameter,
and
: ℝ
× ℝ
ℝ is a Carathéodory function satisfying superlinear growth conditions. For
by using the concentration compactness principle in fractional Sobolev spaces, we show that if
,
) is odd with respect to
, for any
∈ ℕ
there exists a
> 0 such that the above problem has
pairs of solutions for all
∈ (0,
]. For
by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for
large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf
) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in
–Laplacian case. |
---|---|
AbstractList | This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional
p
–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem:
‖
u
‖
λ
(
θ
−
1
)
p
[
λ
(
−
Δ
)
p
s
u
+
V
(
x
)
|
u
|
p
−
2
u
]
=
|
u
|
p
s
⋆
−
2
u
+
f
(
x
,
u
)
i
n
ℝ
N
,
‖
u
‖
λ
=
(
λ
∫
ℝ
∫
2
N
|
u
(
x
)
−
u
(
y
)
|
p
|
x
−
y
|
N
+
p
s
d
x
d
y
+
∫
ℝ
N
V
(
x
)
|
u
|
p
d
x
)
1
/
p
$$\begin{align}& \left\| u \right\|_{\lambda }^{\left( \theta -1 \right)p}\left[ \lambda \left( -\Delta \right)_{p}^{s}u+V\left( x \right){{\left| u \right|}^{p-2}}u \right]={{\left| u \right|}^{p_{s}^{\star }-2}}u+f\left( x,u \right)\,in\,{{\mathbb{R}}^{N}}, \\ & {{\left\| u \right\|}_{\lambda }}={{\left( \lambda \int\limits_{\mathbb{R}}{\int\limits_{2N}{\frac{{{\left| u\left( x \right)-u\left( y \right) \right|}^{p}}}{{{\left| x-y \right|}^{N+ps}}}dxdy+\int\limits_{{{\mathbb{R}}^{N}}}{V\left( x \right){{\left| u \right|}^{p}}dx}} \right)}^{{1}/{p}\;}} \\ \end{align}$$
where
(
−
Δ
)
p
s
$\left( -\Delta \right)_{p}^{s}$
is the fractional
p
–Laplacian with 0 <
s
< 1 <
p
<
N
/
s
,
p
s
⋆
=
N
p
/
(
N
−
p
s
)
$p_{s}^{\star }={Np}/{\left( N-ps \right)}\;$
is the critical fractional Sobolev exponent,
λ
> 0 is a real parameter,
1
<
θ
≤
p
s
⋆
/
p
,
$1<\theta \le {p_{s}^{\star }}/{p}\;,$
and
f
: ℝ
N
× ℝ
→
ℝ is a Carathéodory function satisfying superlinear growth conditions. For
θ
∈
(
1
,
p
s
⋆
/
p
)
,
$\theta \in \left( 1,{p_{s}^{\star }}/{p}\; \right),$
by using the concentration compactness principle in fractional Sobolev spaces, we show that if
f
(
x
,
t
) is odd with respect to
t
, for any
m
∈ ℕ
+
there exists a
Λ
m
> 0 such that the above problem has
m
pairs of solutions for all
λ
∈ (0,
Λ
m
]. For
θ
=
p
s
⋆
/
p
,
$\theta ={p_{s}^{\star }}/{p}\;,$
by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for
λ
large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf
x
∈ℝ
V
(
x
) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in
p
–Laplacian case. This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional –Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: where is the fractional –Laplacian with 0 < < 1 < < , is the critical fractional Sobolev exponent, > 0 is a real parameter, and : ℝ × ℝ ℝ is a Carathéodory function satisfying superlinear growth conditions. For by using the concentration compactness principle in fractional Sobolev spaces, we show that if , ) is odd with respect to , for any ∈ ℕ there exists a > 0 such that the above problem has pairs of solutions for all ∈ (0, ]. For by using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem for large enough. The main features, as well as the main difficulties, of this paper are the facts that the Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf ) = 0. In particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even in –Laplacian case. This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: |
Author | Zhang, Binlin Rădulescu, Vicenţiu D. Xiang, Mingqi |
Author_xml | – sequence: 1 givenname: Mingqi surname: Xiang fullname: Xiang, Mingqi email: xiangmingqi_hit@163.com organization: College of Science, Civil Aviation University of China, Tianjin, 300300, P.R. China – sequence: 2 givenname: Binlin surname: Zhang fullname: Zhang, Binlin email: zhangbinlin2012@163.com organization: College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, P.R. China – sequence: 3 givenname: Vicenţiu D. surname: Rădulescu fullname: Rădulescu, Vicenţiu D. email: vicentiu.radulescu@imar.ro organization: Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland and Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania |
BookMark | eNp1kU1qHDEQhZtgQxzH62x1gY71rxFkE0x-TAaysAPeiWqpNKOh3WrUPU5mlzv4Lr5AbpKTRONJIBisjaokfU9Peq-aoyEP2DRvGH3LFFPnUHtoOeW0pZSzF80JZ5a1VtGbo__ql83ZNG1oHQvFjKEnTb7ajlj6NCAUcuXX5ddDSMMKy--f919S8et1jpHMuxHJWHLX4-1E0nCX-7t6isxrJLGAn1O9vidjhZYw9uATDASGQHxJc_J1C3-M1fEwv26OI_QTnv2dT5tvHz9cX3xul18_XV68X7ZeajO3RiCVQHmnFZWiEzEKri0P1AYfAyAYYYyOqKyOXBmwgkngJkixENgtOnHaXB50Q4aNG0u6hbJzGZJ7XMhl5aBUaz06KQ1HpoORGqSWAizXiBAUcolByKqlDlq-5GkqGJ1PM-zfPBdIvWPU7UNwjyG4fQhuH0Llzp9w_3w8T7w7EN-hn7EEXJXtrhZuk7el_vD0HGmZtlT8AeIfpYk |
CitedBy_id | crossref_primary_10_1007_s12220_021_00722_0 crossref_primary_10_3934_math_20241376 crossref_primary_10_14232_ejqtde_2023_1_45 crossref_primary_10_3233_ASY_211680 crossref_primary_10_1016_j_na_2020_111852 crossref_primary_10_1016_j_jmaa_2024_129194 crossref_primary_10_1080_17476933_2022_2069757 crossref_primary_10_1016_j_jmaa_2023_127214 crossref_primary_10_1080_17476933_2020_1779237 crossref_primary_10_1515_anona_2022_0317 crossref_primary_10_3934_math_2022336 crossref_primary_10_1186_s13661_019_1279_9 crossref_primary_10_1515_anona_2022_0318 crossref_primary_10_1186_s13661_023_01816_0 crossref_primary_10_1080_17476933_2020_1731737 crossref_primary_10_1002_mma_6995 crossref_primary_10_1007_s10473_022_0323_5 crossref_primary_10_1515_anona_2020_0150 crossref_primary_10_3233_ASY_221809 crossref_primary_10_1007_s40840_023_01480_8 crossref_primary_10_1080_17476933_2019_1652281 crossref_primary_10_1080_17476933_2021_1890051 crossref_primary_10_1186_s13661_020_01443_z crossref_primary_10_1007_s40590_021_00368_6 crossref_primary_10_1080_17476933_2022_2069760 crossref_primary_10_1080_17476933_2023_2293800 crossref_primary_10_1186_s13661_020_01404_6 crossref_primary_10_1186_s13661_020_01408_2 crossref_primary_10_1007_s13540_022_00089_1 crossref_primary_10_1080_17476933_2021_1916918 crossref_primary_10_1186_s13661_021_01550_5 crossref_primary_10_1007_s00245_020_09666_3 crossref_primary_10_1007_s13163_021_00388_w crossref_primary_10_3934_math_2023048 crossref_primary_10_1002_mma_6862 crossref_primary_10_1186_s13662_020_03014_z crossref_primary_10_1007_s12220_022_00880_9 crossref_primary_10_1016_j_jmaa_2020_123899 crossref_primary_10_3233_ASY_191590 crossref_primary_10_1007_s13348_021_00316_7 crossref_primary_10_1515_forum_2023_0183 crossref_primary_10_3390_sym13101819 crossref_primary_10_1515_anona_2022_0270 crossref_primary_10_1007_s13324_021_00643_9 crossref_primary_10_1186_s13661_022_01603_3 crossref_primary_10_1016_j_na_2020_111831 crossref_primary_10_1007_s41808_023_00247_3 crossref_primary_10_1016_j_na_2020_111835 crossref_primary_10_1007_s00009_021_01733_5 crossref_primary_10_1002_mma_6057 crossref_primary_10_5269_bspm_62706 crossref_primary_10_1002_mma_9203 crossref_primary_10_1515_anona_2020_0052 crossref_primary_10_1515_anona_2022_0265 crossref_primary_10_1007_s10957_020_01752_4 crossref_primary_10_1016_j_na_2019_111735 crossref_primary_10_1016_j_na_2020_111791 crossref_primary_10_3390_fractalfract8100598 crossref_primary_10_1016_j_na_2020_111784 crossref_primary_10_1080_17476933_2020_1870453 crossref_primary_10_1080_17476933_2022_2040022 crossref_primary_10_2989_16073606_2024_2329338 crossref_primary_10_3233_ASY_201621 crossref_primary_10_1515_anona_2021_0203 crossref_primary_10_1016_j_na_2020_111828 crossref_primary_10_1155_2020_3186135 crossref_primary_10_1002_mma_8991 crossref_primary_10_1002_mma_5993 crossref_primary_10_1007_s12215_020_00573_8 crossref_primary_10_1016_j_jmaa_2020_124205 crossref_primary_10_1216_jie_2022_34_1 crossref_primary_10_1007_s41808_023_00239_3 crossref_primary_10_3934_dcds_2020379 crossref_primary_10_1007_s00033_020_01455_w crossref_primary_10_1080_17476933_2020_1857370 crossref_primary_10_14232_ejqtde_2021_1_37 crossref_primary_10_1515_anona_2020_0103 crossref_primary_10_1063_5_0014915 crossref_primary_10_1016_j_na_2020_112102 crossref_primary_10_1007_s12220_021_00740_y crossref_primary_10_1016_j_na_2020_111899 crossref_primary_10_1515_agms_2024_0006 crossref_primary_10_1080_17476933_2020_1756270 crossref_primary_10_1515_forum_2023_0385 crossref_primary_10_1016_j_na_2020_111779 crossref_primary_10_1186_s13661_020_01370_z crossref_primary_10_1186_s13660_021_02569_z crossref_primary_10_1002_mma_7762 crossref_primary_10_1002_mma_6157 crossref_primary_10_1016_j_na_2019_111635 crossref_primary_10_1007_s00009_020_01661_w crossref_primary_10_1016_j_aml_2020_106593 crossref_primary_10_1007_s13324_020_00441_9 crossref_primary_10_1515_anona_2020_0119 crossref_primary_10_1007_s41808_020_00081_x crossref_primary_10_1016_j_na_2020_111886 crossref_primary_10_1515_dema_2023_0124 crossref_primary_10_1002_mma_8172 crossref_primary_10_1007_s13324_020_00386_z crossref_primary_10_12677_PM_2021_114072 crossref_primary_10_3934_dcdsb_2021115 crossref_primary_10_1007_s12215_023_00984_3 crossref_primary_10_1002_mma_7873 crossref_primary_10_1016_j_jmaa_2020_124269 crossref_primary_10_1007_s12220_023_01247_4 crossref_primary_10_1016_j_jmaa_2022_126205 crossref_primary_10_1515_anona_2022_0234 crossref_primary_10_3390_sym17010021 crossref_primary_10_1007_s00009_020_01619_y crossref_primary_10_1515_anona_2020_0127 crossref_primary_10_1007_s00245_019_09612_y crossref_primary_10_1080_17476933_2020_1788003 crossref_primary_10_1007_s10473_021_0418_4 crossref_primary_10_2478_auom_2023_0015 crossref_primary_10_1007_s13324_021_00564_7 crossref_primary_10_1007_s40590_022_00419_6 crossref_primary_10_1080_17476933_2021_1951719 crossref_primary_10_14232_ejqtde_2020_1_7 crossref_primary_10_1002_mma_9497 crossref_primary_10_3390_fractalfract6120696 crossref_primary_10_1007_s12215_022_00763_6 crossref_primary_10_58997_ejde_2021_19 crossref_primary_10_1007_s11868_024_00611_4 crossref_primary_10_1007_s12215_024_01070_y crossref_primary_10_1016_j_jmaa_2020_124355 crossref_primary_10_1515_anona_2022_0226 crossref_primary_10_3233_ASY_201660 crossref_primary_10_3233_ASY_191564 crossref_primary_10_58997_ejde_2021_100 crossref_primary_10_1007_s11868_020_00331_5 crossref_primary_10_1007_s12220_024_01707_5 crossref_primary_10_1007_s12220_020_00546_4 crossref_primary_10_1016_j_na_2020_111864 crossref_primary_10_1016_j_na_2020_111749 crossref_primary_10_1016_j_na_2020_111900 crossref_primary_10_1016_j_na_2019_111664 crossref_primary_10_1002_mma_7335 crossref_primary_10_1002_mma_7213 crossref_primary_10_1186_s13661_020_01355_y crossref_primary_10_1007_s10883_020_09507_0 crossref_primary_10_1216_rmj_2020_50_1151 crossref_primary_10_1007_s00009_022_02076_5 crossref_primary_10_1515_math_2021_0125 |
Cites_doi | 10.1090/cbms/065 10.4171/RMI/6 10.1007/s13324-017-0174-8 10.1098/rspa.2015.0034 10.1063/1.4918791 10.1016/j.na.2013.08.011 10.1017/CBO9781316282397 10.1016/j.na.2015.06.014 10.1007/s00245-017-9458-5 10.1007/978-3-642-25361-4_3 10.1016/j.nonrwa.2016.11.004 10.1016/j.na.2012.12.003 10.1103/PhysRevE.66.056108 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/anona-2020-0021 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-950X |
EndPage | 709 |
ExternalDocumentID | oai_doaj_org_article_4472e16d746a4643a926eead5e24ed34 10_1515_anona_2020_0021 10_1515_anona_2020_002191690 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH AAWFC ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACMKP ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AEKEB AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AIKXB AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 J9A M48 O9- OK1 QD8 SA. SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c467t-73e04a02b65043b3ff32692d09dcfdaea73776fe596f257a9314a27d4383eb8b3 |
IEDL.DBID | M48 |
ISSN | 2191-950X |
IngestDate | Wed Aug 27 01:31:40 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Tue Jul 01 00:37:48 EDT 2025 Thu Jul 10 10:37:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-73e04a02b65043b3ff32692d09dcfdaea73776fe596f257a9314a27d4383eb8b3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/anona-2020-0021 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4472e16d746a4643a926eead5e24ed34 crossref_citationtrail_10_1515_anona_2020_0021 crossref_primary_10_1515_anona_2020_0021 walterdegruyter_journals_10_1515_anona_2020_002191690 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in nonlinear analysis |
PublicationYear | 2020 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2021020917373173021_j_anona-2020-0021_ref_031 2021020917373173021_j_anona-2020-0021_ref_010 2021020917373173021_j_anona-2020-0021_ref_032 2021020917373173021_j_anona-2020-0021_ref_030 2021020917373173021_j_anona-2020-0021_ref_013 2021020917373173021_j_anona-2020-0021_ref_035 2021020917373173021_j_anona-2020-0021_ref_014 2021020917373173021_j_anona-2020-0021_ref_036 2021020917373173021_j_anona-2020-0021_ref_011 2021020917373173021_j_anona-2020-0021_ref_033 2021020917373173021_j_anona-2020-0021_ref_012 2021020917373173021_j_anona-2020-0021_ref_034 2021020917373173021_j_anona-2020-0021_ref_017 2021020917373173021_j_anona-2020-0021_ref_039 2021020917373173021_j_anona-2020-0021_ref_018 2021020917373173021_j_anona-2020-0021_ref_015 2021020917373173021_j_anona-2020-0021_ref_037 2021020917373173021_j_anona-2020-0021_ref_016 2021020917373173021_j_anona-2020-0021_ref_038 2021020917373173021_j_anona-2020-0021_ref_019 2021020917373173021_j_anona-2020-0021_ref_020 2021020917373173021_j_anona-2020-0021_ref_042 2021020917373173021_j_anona-2020-0021_ref_021 2021020917373173021_j_anona-2020-0021_ref_043 2021020917373173021_j_anona-2020-0021_ref_040 2021020917373173021_j_anona-2020-0021_ref_041 2021020917373173021_j_anona-2020-0021_ref_002 2021020917373173021_j_anona-2020-0021_ref_024 2021020917373173021_j_anona-2020-0021_ref_046 2021020917373173021_j_anona-2020-0021_ref_003 2021020917373173021_j_anona-2020-0021_ref_025 2021020917373173021_j_anona-2020-0021_ref_022 2021020917373173021_j_anona-2020-0021_ref_044 2021020917373173021_j_anona-2020-0021_ref_001 2021020917373173021_j_anona-2020-0021_ref_023 2021020917373173021_j_anona-2020-0021_ref_045 2021020917373173021_j_anona-2020-0021_ref_006 2021020917373173021_j_anona-2020-0021_ref_028 2021020917373173021_j_anona-2020-0021_ref_007 2021020917373173021_j_anona-2020-0021_ref_029 2021020917373173021_j_anona-2020-0021_ref_004 2021020917373173021_j_anona-2020-0021_ref_026 2021020917373173021_j_anona-2020-0021_ref_005 2021020917373173021_j_anona-2020-0021_ref_027 2021020917373173021_j_anona-2020-0021_ref_008 2021020917373173021_j_anona-2020-0021_ref_009 |
References_xml | – ident: 2021020917373173021_j_anona-2020-0021_ref_045 doi: 10.1090/cbms/065 – ident: 2021020917373173021_j_anona-2020-0021_ref_018 – ident: 2021020917373173021_j_anona-2020-0021_ref_016 – ident: 2021020917373173021_j_anona-2020-0021_ref_020 – ident: 2021020917373173021_j_anona-2020-0021_ref_024 – ident: 2021020917373173021_j_anona-2020-0021_ref_026 – ident: 2021020917373173021_j_anona-2020-0021_ref_035 doi: 10.4171/RMI/6 – ident: 2021020917373173021_j_anona-2020-0021_ref_007 – ident: 2021020917373173021_j_anona-2020-0021_ref_043 doi: 10.1007/s13324-017-0174-8 – ident: 2021020917373173021_j_anona-2020-0021_ref_034 – ident: 2021020917373173021_j_anona-2020-0021_ref_005 – ident: 2021020917373173021_j_anona-2020-0021_ref_030 – ident: 2021020917373173021_j_anona-2020-0021_ref_003 – ident: 2021020917373173021_j_anona-2020-0021_ref_011 – ident: 2021020917373173021_j_anona-2020-0021_ref_001 – ident: 2021020917373173021_j_anona-2020-0021_ref_028 doi: 10.1098/rspa.2015.0034 – ident: 2021020917373173021_j_anona-2020-0021_ref_038 – ident: 2021020917373173021_j_anona-2020-0021_ref_041 doi: 10.1063/1.4918791 – ident: 2021020917373173021_j_anona-2020-0021_ref_022 doi: 10.1016/j.na.2013.08.011 – ident: 2021020917373173021_j_anona-2020-0021_ref_017 – ident: 2021020917373173021_j_anona-2020-0021_ref_042 – ident: 2021020917373173021_j_anona-2020-0021_ref_019 – ident: 2021020917373173021_j_anona-2020-0021_ref_044 – ident: 2021020917373173021_j_anona-2020-0021_ref_023 – ident: 2021020917373173021_j_anona-2020-0021_ref_040 – ident: 2021020917373173021_j_anona-2020-0021_ref_013 doi: 10.1017/CBO9781316282397 – ident: 2021020917373173021_j_anona-2020-0021_ref_025 – ident: 2021020917373173021_j_anona-2020-0021_ref_032 doi: 10.1016/j.na.2015.06.014 – ident: 2021020917373173021_j_anona-2020-0021_ref_027 – ident: 2021020917373173021_j_anona-2020-0021_ref_046 – ident: 2021020917373173021_j_anona-2020-0021_ref_031 doi: 10.1007/s00245-017-9458-5 – ident: 2021020917373173021_j_anona-2020-0021_ref_006 – ident: 2021020917373173021_j_anona-2020-0021_ref_008 – ident: 2021020917373173021_j_anona-2020-0021_ref_009 doi: 10.1007/978-3-642-25361-4_3 – ident: 2021020917373173021_j_anona-2020-0021_ref_029 – ident: 2021020917373173021_j_anona-2020-0021_ref_033 – ident: 2021020917373173021_j_anona-2020-0021_ref_036 doi: 10.1016/j.nonrwa.2016.11.004 – ident: 2021020917373173021_j_anona-2020-0021_ref_021 doi: 10.1016/j.na.2012.12.003 – ident: 2021020917373173021_j_anona-2020-0021_ref_004 – ident: 2021020917373173021_j_anona-2020-0021_ref_010 – ident: 2021020917373173021_j_anona-2020-0021_ref_015 doi: 10.1103/PhysRevE.66.056108 – ident: 2021020917373173021_j_anona-2020-0021_ref_002 – ident: 2021020917373173021_j_anona-2020-0021_ref_012 – ident: 2021020917373173021_j_anona-2020-0021_ref_037 – ident: 2021020917373173021_j_anona-2020-0021_ref_014 – ident: 2021020917373173021_j_anona-2020-0021_ref_039 |
SSID | ssj0000851770 |
Score | 2.525693 |
Snippet | This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional
–Laplacian and critical... This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p –Laplacian and critical... This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 690 |
SubjectTerms | 35A15 35R11 47G20 Critical exponent Fractional fractional p–laplacian Laplacian Multiple solutions Principle of concentration compactness Schrödinger–Kirchhoff problem |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJzpUPEV5yQMDS6jjOHYzAqJCvBao1C1yYpsWoTbqQ8DGP_Av_AB_wpdwrxNQQUIsrJEjJ8fHvg_b5xKyp0KewzKHCgAxC0SuZaDBzgdtF1tmY2FMiHeHL6_kaVec9eLeXKkvPBNWygOXwLWEUNyG0ightQDzqRMuLfx-bLmwJvJKoGDz5oKpu_L0VagUq7R8wGa3NETTGjjB8SI1D7-ZIa_WXyeNB79DbeztePY0_dwR9Yams0QalYdID8svWyYLdrhC6nO6gatkdD0rvEwV0JRe5_3x26vx6bn355fzATC3P3KOYnaVVgVjJnQwhIUIswcUXD7qxuWFBuiogJcuNJ7NAqZQPTQ0r8ofUPtYjIZgldZIt3Nyc3waVJUTghwWvmmgIsuEZjyTKFCWRc6Bl5ZwwxKTO6OtVpFS0tk4kQ7mrE6iUGiuDOqW2qydReukBnjZDUIFZ045BzPXtYXQOgsNU5xJzQ1EerlokoNPINO8khXH6hb3KYYXgHzqkU8R-RSRb5L9rxeKUlHj96ZHODJfzVAK2z8AgqQVQdK_CNIk8Y9xTatpOvmt3wT3Djf_o_MtslhSDnM226Q2Hc_sDngx02zXE_YDZp7ztQ priority: 102 providerName: Directory of Open Access Journals |
Title | Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
URI | https://www.degruyter.com/doi/10.1515/anona-2020-0021 https://doaj.org/article/4472e16d746a4643a926eead5e24ed34 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQNFAgTnHLBQVNwHEce1MgBAiEuBpYiS5yYptDq90l7Aro-Af-hR_gT_gSZhwvl6ChjTxyNIfnsOcNIasq5iUcc4gAkLJIlFpGGvx81HCpZTYVxsTYO3xyKg-a4vAivfgcBxQYePdraofzpJpVa_3h9nELDH7TT--J0w0NibIGcXPskcam8hFwSwqt9CTE-jf1g6xYKRbgfX6h--aZPID_GBm_95fWxl5W_cfe4JLU-579CTIegka6XUt5kgzZ9hQZ-wIlOE06Z_2uR64CzaVn5VX1-mJ8xe7t6fnoGpT5quMcxYIrDTNk7uh1G84mLChQiAKpq-oeB9ioC0THGp9rgfJQ3Ta0DBMRqH3odtrgqGZIc3_vfPcgCsMUohLOwl6kEsuEZryQiFlWJM5B4JZxwzJTOqOtVolS0tk0kw7MWGdJLDRXBqFMbdEoklkyDPyyc4QKzpxyDozZNYTQuogNU5xJzQ0kf6WYJ-sDRuZlQBrHgRetHDMO4HzuOZ8j53Pk_DxZ-yDo1iAbfy_dQcl8LEN0bP-hU13mwdhyIRS3sTRKSC0g5NIZlxZMJrVcWJPAD6Y_5JoPFO-vfTO8Tlz4J90iGa21DCs3S2S4V_XtMsQyvWLF1wBWvKa-A0i79_I |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbocmg5oP4KCm196KGXdB3HsTdHQKXbstDDgsTNcvzDItHNKmQF3PoOfZe-QN-kT9KZxES0KpdeLY9szY9nPPZ8Q8hblXILxxwiAOQsEdbIxICfT0Yh98znwrkUa4cPj-T4RHw-zU9XyN5tLQx-q3T-rF7eNB1C6tBVdomJsh5rADzw0MDd2ICEOZZF83Q4a75ePCCrEsL_0YCs7ow_Tr_0qRaMKpRiEdjnH-R_-KQWun-NrF-1z9X9Xu54nf3HZD2Gi3Snk-8TsuLnT8naHRDBZ6SaLhctZhXoLJ3aWf3zh2tzdb--fT84BzWeVSFQTLXS2D3mkp7P4VTCVAKF-I-GuqtugIUWQDQx-FEL1IaauaM29kKg_npRzYFDz8nJ_ofjvXES2ygkFk7BJlGZZ8IwXkpEKyuzECBkK7hjhbPBGW9UppQMPi9kAAM2RZYKw5VDEFNfjsrsBRkAv_wGoYKzoEIAMw4jIYwpU8cUZ9JwB9c-KzbJ-1tGahsxxrHVxYXGuwZwXrec18h5jZzfJO96gkUHr3H_1F2UTD8NcbHbgao-09HMtBCK-1Q6JaQREGyZgksPxpJ7LrzLYIP5X3LV0WYv71u3wIfEl_9J94Y8HB8fTvTk09HBFnnUaRzmb7bJoKmX_hVENE35Omrsb7uY9_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZgKyF6qPgVhUJ94NBLWMdx7M2xLSxb-gPSUqk3y_FPWwltonRXwI136Lv0BXgTnqQziYm2iF56tTyyNT-e8djzDSFvVcotHHOIAJCzRFgjEwN-PhmF3DOfC-dSrB0-PJKTY_HpJD9ZqoXBb5XOnzaLn_MOIXXoKrvARFmPNQAeeGjgbmxAwhzLonk6rF24T1akLDIxICvbk4_Tz32mBYMKpVjE9fkP9Q2X1CL3r5K17-1rdb-VJaczfkTWYrRItzvxPib3_OwJWV3CEHxKqumibiGrQGXp1J41v69cm6r78-ty_xy0-KwKgWKmlcbmMRf0fAaHEmYSKIR_NDRdcQMsVAPRgcF_WqA11MwctbEVAvU_6moGDHpGjscfvu5OkthFIbFwCM4TlXkmDOOlRLCyMgsBIraCO1Y4G5zxRmVKyeDzQgawX1NkqTBcOcQw9eWozJ6TAfDLvyBUcBZUCGDFYSSEMWXqmOJMGu7g1mfFOnn3l5HaRohx7HTxTeNVAzivW85r5LxGzq-TrZ6g7tA1bp-6g5LppyEsdjtQNac6WpkWQnGfSqeENAJiLVNw6cFWcs-FdxlsMP9Hrjqa7MVt6xb4jvjyjnSb5MGX92N9sHe0_4o87BQOszcbZDBvFv41xDPz8k1U2GtAHPch |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superlinear+Schr%C3%B6dinger%E2%80%93Kirchhoff+type+problems+involving+the+fractional+p%E2%80%93Laplacian+and+critical+exponent&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Xiang%2C+Mingqi&rft.au=Zhang%2C+Binlin&rft.au=R%C4%83dulescu%2C+Vicen%C5%A3iu+D.&rft.date=2020-01-01&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=9&rft.issue=1&rft.spage=690&rft.epage=709&rft_id=info:doi/10.1515%2Fanona-2020-0021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2020_002191690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon |