Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion

[Display omitted] •Advancements in Ionic Liquid usage for biomass pretreatment as a green alternative.•Comparative analysis of Ionic Liquid pretreatment with other common methodologies.•Critical analysis of pretreatment modeling and Ionic Liquid solvation parameters.•Techno-economic viability of Ion...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 304; p. 123003
Main Authors Usmani, Zeba, Sharma, Minaxi, Gupta, Pratishtha, Karpichev, Yevgen, Gathergood, Nicholas, Bhat, Rajeev, Gupta, Vijai Kumar
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2020.123003

Cover

Loading…
Abstract [Display omitted] •Advancements in Ionic Liquid usage for biomass pretreatment as a green alternative.•Comparative analysis of Ionic Liquid pretreatment with other common methodologies.•Critical analysis of pretreatment modeling and Ionic Liquid solvation parameters.•Techno-economic viability of Ionic liquid based commercial scale pretreatment plant.•SWOT analysis with identification of knowledge gaps and future research directions. Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as ‘greener and recyclable’ alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.
AbstractList Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as 'greener and recyclable' alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as 'greener and recyclable' alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.
Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as 'greener and recyclable' alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.
[Display omitted] •Advancements in Ionic Liquid usage for biomass pretreatment as a green alternative.•Comparative analysis of Ionic Liquid pretreatment with other common methodologies.•Critical analysis of pretreatment modeling and Ionic Liquid solvation parameters.•Techno-economic viability of Ionic liquid based commercial scale pretreatment plant.•SWOT analysis with identification of knowledge gaps and future research directions. Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as ‘greener and recyclable’ alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.
ArticleNumber 123003
Author Karpichev, Yevgen
Bhat, Rajeev
Gupta, Vijai Kumar
Usmani, Zeba
Sharma, Minaxi
Gathergood, Nicholas
Gupta, Pratishtha
Author_xml – sequence: 1
  givenname: Zeba
  surname: Usmani
  fullname: Usmani, Zeba
  organization: Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
– sequence: 2
  givenname: Minaxi
  surname: Sharma
  fullname: Sharma, Minaxi
  organization: ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
– sequence: 3
  givenname: Pratishtha
  surname: Gupta
  fullname: Gupta, Pratishtha
  organization: Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad 826001, India
– sequence: 4
  givenname: Yevgen
  surname: Karpichev
  fullname: Karpichev, Yevgen
  organization: Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
– sequence: 5
  givenname: Nicholas
  surname: Gathergood
  fullname: Gathergood, Nicholas
  organization: Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
– sequence: 6
  givenname: Rajeev
  surname: Bhat
  fullname: Bhat, Rajeev
  organization: ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
– sequence: 7
  givenname: Vijai Kumar
  surname: Gupta
  fullname: Gupta, Vijai Kumar
  email: vijaifzd@gmail.com
  organization: Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32081446$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OJCEUhclEM7bOvIKppZtq-SsokllozMxoYuJG1wSoWyOdKmiBMvHth07bGze9Ijl851445xydhBgAoUuC1wQTcb1ZWx9TAfe6pphWkTKM2Te0Ir1kLVVSnKAVVgK3fUf5GTrPeYMrQST9js4YxT3hXKzQy0MM3jWTf1v80FiTYWi2CUoCU2YIpYljvfwXooNpWqaYK1w3zybnZoypgfBqgqumKroY3iFlH8MPdDqaKcPPz_MCvfz5_Xx33z4-_X24u31sHReytMLKzolOOtsN_ShIz6ySQw_CAAAdlLVV4c5KZgVWIKVgikgjHCeOYdezC3S1n7tN8W2BXPTs8-6lJkBcsqacKaYEVew4yqRknPcdr-jlJ7rYGQa9TX426UMfUqvArz3gUsw5waidL6bUj5dk_KQJ1ruS9EYfStK7kvS-pGoXX-yHDUeNN3sj1EzfPSSdnYdd_D6BK3qI_tiI_-SKsC8
CitedBy_id crossref_primary_10_1039_D1GC02507D
crossref_primary_10_1021_acs_chemrev_3c00420
crossref_primary_10_3390_resources10120118
crossref_primary_10_1016_j_biortech_2022_128045
crossref_primary_10_1038_s41598_023_39441_7
crossref_primary_10_1039_D2GC01423H
crossref_primary_10_3390_app13106159
crossref_primary_10_1016_j_cej_2024_159039
crossref_primary_10_1016_j_jclepro_2022_131840
crossref_primary_10_1002_adsu_202400074
crossref_primary_10_1039_D3GC03439A
crossref_primary_10_1186_s13068_021_01949_3
crossref_primary_10_1016_j_scitotenv_2024_172646
crossref_primary_10_3389_fenrg_2020_00152
crossref_primary_10_3390_catal13111439
crossref_primary_10_1021_acssuschemeng_0c09330
crossref_primary_10_1016_j_indcrop_2024_118591
crossref_primary_10_1016_j_watres_2021_117161
crossref_primary_10_1016_j_wasman_2022_12_026
crossref_primary_10_3390_bioengineering9010017
crossref_primary_10_1016_j_molliq_2021_118292
crossref_primary_10_1016_j_microc_2020_105571
crossref_primary_10_1039_D2GC01871C
crossref_primary_10_1016_j_biortech_2021_124768
crossref_primary_10_3390_en15103544
crossref_primary_10_1016_j_molliq_2022_118546
crossref_primary_10_1080_07388551_2022_2157241
crossref_primary_10_1007_s10098_023_02710_0
crossref_primary_10_1016_j_biortech_2023_128587
crossref_primary_10_1021_acs_jpcb_3c02125
crossref_primary_10_3390_en15228413
crossref_primary_10_1016_j_biortech_2021_126123
crossref_primary_10_1016_j_renene_2022_11_104
crossref_primary_10_1177_27533735241284221
crossref_primary_10_1016_j_biortech_2021_126122
crossref_primary_10_1016_j_biortech_2021_125399
crossref_primary_10_1016_j_jenvman_2023_117291
crossref_primary_10_3390_molecules27196278
crossref_primary_10_1016_j_jclepro_2021_129275
crossref_primary_10_1039_D1GC02245H
crossref_primary_10_1016_j_cej_2022_136733
crossref_primary_10_1007_s13399_024_06194_w
crossref_primary_10_1016_j_jenvman_2024_122372
crossref_primary_10_1016_j_biortech_2022_128180
crossref_primary_10_1039_D0GC01066A
crossref_primary_10_1016_j_eti_2022_102679
crossref_primary_10_3389_fenrg_2022_868181
crossref_primary_10_1016_j_cej_2023_142881
crossref_primary_10_2139_ssrn_4158408
crossref_primary_10_1016_j_biortech_2023_129560
crossref_primary_10_1016_j_biortech_2021_126013
crossref_primary_10_1021_acs_chemrev_3c00339
crossref_primary_10_1016_j_biteb_2023_101739
crossref_primary_10_1016_j_rser_2021_111368
crossref_primary_10_1007_s13399_023_03946_y
crossref_primary_10_1016_j_biombioe_2022_106447
crossref_primary_10_1016_j_chempr_2020_12_006
crossref_primary_10_1016_j_ijbiomac_2024_138318
crossref_primary_10_1080_09553002_2023_2295962
crossref_primary_10_1016_j_indcrop_2023_116571
crossref_primary_10_1016_j_jece_2021_105798
crossref_primary_10_1016_j_enbenv_2024_04_002
crossref_primary_10_1021_acssuschemeng_2c03603
crossref_primary_10_1016_j_biortech_2022_128481
crossref_primary_10_1016_j_enconman_2022_116271
crossref_primary_10_1016_j_indcrop_2021_113927
crossref_primary_10_1016_j_joei_2022_101161
crossref_primary_10_1016_j_biortech_2021_126460
crossref_primary_10_1021_acssuschemeng_0c06414
crossref_primary_10_1039_D3GC01878D
crossref_primary_10_1002_slct_202102841
crossref_primary_10_1016_j_biombioe_2024_107349
crossref_primary_10_1016_j_biortech_2020_123225
crossref_primary_10_1016_j_rser_2021_111258
crossref_primary_10_1007_s13399_024_06388_2
crossref_primary_10_1016_j_carbpol_2020_117164
crossref_primary_10_1155_ijce_3120449
crossref_primary_10_3390_nano15040309
crossref_primary_10_1016_j_biortech_2022_128471
crossref_primary_10_1007_s12221_023_00192_x
crossref_primary_10_1186_s13065_025_01407_3
crossref_primary_10_1039_D3GC03693F
crossref_primary_10_1088_1361_6528_ac1752
crossref_primary_10_1016_j_ijbiomac_2022_08_186
crossref_primary_10_1016_j_ijbiomac_2022_12_301
crossref_primary_10_1016_j_molliq_2024_126834
crossref_primary_10_1016_j_biortech_2020_124548
crossref_primary_10_1016_j_jclepro_2020_122386
crossref_primary_10_1007_s11356_024_33135_x
crossref_primary_10_1016_j_indcrop_2022_115969
crossref_primary_10_1016_j_psep_2023_11_053
crossref_primary_10_1016_j_seppur_2022_121455
crossref_primary_10_1007_s13762_024_05736_z
crossref_primary_10_1016_j_cscee_2022_100229
crossref_primary_10_1016_j_scca_2024_100053
crossref_primary_10_1016_j_cej_2023_146657
crossref_primary_10_1007_s13399_022_02685_w
crossref_primary_10_1016_j_jil_2024_100119
crossref_primary_10_1016_j_rser_2022_112322
crossref_primary_10_3389_fchem_2022_823005
crossref_primary_10_1016_j_jenvman_2021_114333
crossref_primary_10_1007_s12155_022_10425_1
crossref_primary_10_1016_j_jil_2024_100124
crossref_primary_10_1016_j_biteb_2021_100887
crossref_primary_10_1016_j_rser_2024_114535
crossref_primary_10_1016_j_scitotenv_2024_173095
crossref_primary_10_1016_j_procbio_2024_08_024
crossref_primary_10_1016_j_jclepro_2021_129189
crossref_primary_10_1038_s41598_021_99956_9
crossref_primary_10_1007_s00253_025_13408_2
crossref_primary_10_1016_j_indcrop_2021_114317
crossref_primary_10_1016_j_arabjc_2022_103838
crossref_primary_10_1016_j_jiec_2024_03_025
crossref_primary_10_1016_j_jclepro_2020_125447
crossref_primary_10_1016_j_cej_2023_142278
crossref_primary_10_1016_j_seppur_2020_117651
crossref_primary_10_1016_j_seta_2024_104065
crossref_primary_10_1016_j_biortech_2020_124519
crossref_primary_10_1016_j_biortech_2021_125693
crossref_primary_10_3390_molecules29010098
crossref_primary_10_1007_s11705_023_2316_x
crossref_primary_10_1080_10242422_2021_1882430
crossref_primary_10_1016_j_biortech_2022_128328
crossref_primary_10_1080_02773813_2024_2303403
crossref_primary_10_1016_j_biortech_2020_124522
crossref_primary_10_1039_D2GC03207D
crossref_primary_10_1039_D2GC04404H
crossref_primary_10_1016_j_jics_2021_100147
crossref_primary_10_1007_s13399_023_04413_4
crossref_primary_10_1080_15583724_2024_2374929
crossref_primary_10_3390_app10217698
crossref_primary_10_3390_molecules28041620
crossref_primary_10_1021_acs_chemrev_3c00391
crossref_primary_10_1039_D4NJ01394H
crossref_primary_10_1021_acs_iecr_3c01231
crossref_primary_10_1007_s10570_023_05554_5
crossref_primary_10_1016_j_biortech_2022_128315
crossref_primary_10_1039_D3GC05208G
crossref_primary_10_3390_molecules28104185
crossref_primary_10_1016_j_biortech_2020_124625
crossref_primary_10_3390_app13052953
crossref_primary_10_1016_j_cej_2020_127708
crossref_primary_10_1016_j_jece_2024_114900
crossref_primary_10_1016_j_cbi_2023_110735
crossref_primary_10_1016_j_chemosphere_2023_140833
crossref_primary_10_3390_su12156015
crossref_primary_10_2139_ssrn_3978498
crossref_primary_10_1016_j_indcrop_2022_114956
crossref_primary_10_1016_j_indcrop_2024_118877
crossref_primary_10_1080_07388551_2021_1873240
crossref_primary_10_1016_j_molstruc_2021_129917
crossref_primary_10_1016_j_indcrop_2024_120281
crossref_primary_10_1007_s13399_022_02746_0
crossref_primary_10_1016_j_indcrop_2023_117272
crossref_primary_10_32933_ActaInnovations_38_3
crossref_primary_10_1016_j_rser_2021_111079
crossref_primary_10_1016_j_rser_2021_111078
crossref_primary_10_3390_en16176384
crossref_primary_10_1007_s13726_021_00996_9
crossref_primary_10_1016_j_jenvman_2024_121439
crossref_primary_10_1039_D2GC00092J
crossref_primary_10_1016_j_indcrop_2023_116627
crossref_primary_10_1016_j_seppur_2023_124000
crossref_primary_10_1016_j_rser_2020_110370
crossref_primary_10_1016_j_indcrop_2023_117036
crossref_primary_10_1063_5_0214791
crossref_primary_10_1002_cplu_202200348
crossref_primary_10_1088_1755_1315_724_1_012055
crossref_primary_10_1016_j_jenvman_2021_113607
crossref_primary_10_1007_s12155_024_10762_3
crossref_primary_10_3389_fchem_2022_861379
crossref_primary_10_1016_j_cjche_2023_09_013
crossref_primary_10_1002_slct_202003577
crossref_primary_10_1016_j_psep_2020_12_013
crossref_primary_10_1016_j_trechm_2021_12_001
crossref_primary_10_3390_fermentation11030121
crossref_primary_10_1016_j_fuel_2021_120133
crossref_primary_10_1021_acssuschemeng_2c03572
crossref_primary_10_1049_enb2_12017
crossref_primary_10_1016_j_biortech_2021_125564
crossref_primary_10_1016_j_biortech_2021_126536
crossref_primary_10_1016_j_biortech_2022_128339
crossref_primary_10_1021_acssuschemeng_2c00063
crossref_primary_10_1016_j_cej_2022_137677
crossref_primary_10_1128_aem_02123_24
crossref_primary_10_1016_j_biortech_2020_123882
crossref_primary_10_1016_j_greenca_2024_01_003
crossref_primary_10_1016_j_scp_2023_101219
crossref_primary_10_1016_j_indcrop_2024_119625
crossref_primary_10_1007_s12155_020_10221_9
crossref_primary_10_1016_j_gce_2021_11_003
crossref_primary_10_1016_j_chemosphere_2021_133297
crossref_primary_10_1016_j_biortech_2023_129332
crossref_primary_10_35812_CelluloseChemTechnol_2021_55_21
crossref_primary_10_3389_fenrg_2023_1212719
crossref_primary_10_1016_j_biortech_2022_128084
crossref_primary_10_1007_s10904_023_02623_x
crossref_primary_10_3389_fchem_2021_727382
crossref_primary_10_3390_fluids8020037
crossref_primary_10_3390_fermentation8080371
crossref_primary_10_1016_j_apenergy_2023_121097
crossref_primary_10_1080_15567036_2020_1773969
crossref_primary_10_3389_fchem_2021_696030
crossref_primary_10_1016_j_ecmx_2021_100137
crossref_primary_10_1021_acs_chemrev_3c00512
crossref_primary_10_1007_s42824_020_00010_2
crossref_primary_10_1080_10643389_2021_1877045
crossref_primary_10_1007_s13399_023_04141_9
crossref_primary_10_1016_j_rser_2023_113445
crossref_primary_10_1007_s11356_024_35265_8
crossref_primary_10_1051_e3sconf_202450304001
crossref_primary_10_1016_j_rser_2021_111789
crossref_primary_10_1016_j_indcrop_2024_119808
crossref_primary_10_1016_j_isci_2022_104610
crossref_primary_10_1016_j_fuel_2023_130145
crossref_primary_10_1016_j_indcrop_2023_117685
crossref_primary_10_1016_j_biortech_2024_131397
crossref_primary_10_1039_D1PY00694K
crossref_primary_10_1080_01614940_2022_2074359
crossref_primary_10_1016_j_jece_2024_115303
crossref_primary_10_1016_j_jil_2022_100037
crossref_primary_10_1038_s41578_021_00407_8
crossref_primary_10_1016_j_biortech_2022_127219
crossref_primary_10_1016_j_indcrop_2023_116822
crossref_primary_10_1021_acssuschemeng_2c05172
crossref_primary_10_1016_j_biortech_2021_125505
crossref_primary_10_1016_j_fuel_2022_123444
crossref_primary_10_3390_fermentation9020093
crossref_primary_10_1007_s11696_021_01732_6
crossref_primary_10_1016_j_rser_2020_110172
crossref_primary_10_3390_ijms231810966
crossref_primary_10_1016_j_seppur_2024_126308
crossref_primary_10_3390_catal11030309
crossref_primary_10_3389_fceng_2023_1266904
crossref_primary_10_3390_polym16071010
crossref_primary_10_1016_j_foodchem_2025_143172
crossref_primary_10_1016_j_cjche_2020_11_004
crossref_primary_10_2139_ssrn_4048715
crossref_primary_10_1002_tcr_202400249
crossref_primary_10_1186_s13068_022_02203_0
crossref_primary_10_1007_s10570_024_05768_1
crossref_primary_10_1039_D0SE01802C
crossref_primary_10_1016_j_scitotenv_2020_144429
crossref_primary_10_1016_j_indcrop_2022_115788
crossref_primary_10_1016_j_scitotenv_2020_140630
crossref_primary_10_1007_s13399_023_05156_y
crossref_primary_10_1007_s13399_020_01064_7
crossref_primary_10_1021_acssuschemeng_0c01941
crossref_primary_10_1016_j_indcrop_2023_117904
crossref_primary_10_1007_s12155_024_10777_w
crossref_primary_10_3390_polym14091662
crossref_primary_10_1007_s13399_021_01730_4
crossref_primary_10_1002_wene_473
crossref_primary_10_1007_s13399_021_02111_7
crossref_primary_10_1016_j_indcrop_2022_115542
Cites_doi 10.3390/molecules23020309
10.1016/j.biortech.2014.02.016
10.1016/j.indcrop.2017.08.019
10.1002/bbb.1336
10.1039/C5CS00444F
10.1016/j.biortech.2017.03.081
10.1039/C8GC02155D
10.1016/j.biortech.2016.03.103
10.1016/j.ijbiomac.2017.11.137
10.1016/j.fuel.2016.11.066
10.1016/j.cogsc.2019.07.004
10.1021/jp4115755
10.1002/bbb.25
10.1016/j.cej.2016.09.117
10.1007/s12010-011-9315-y
10.1002/jctb.4492
10.1039/c3gc40445e
10.1016/j.fuproc.2016.02.038
10.1016/j.rser.2018.06.016
10.1016/j.biortech.2016.10.089
10.3390/app9183721
10.1016/j.biortech.2015.08.051
10.1002/cssc.201601047
10.1515/polyeng-2016-0272
10.1016/j.renene.2016.12.033
10.1016/j.seppur.2011.12.032
10.1016/j.biortech.2019.122725
10.1016/j.biortech.2017.10.089
10.1016/j.biortech.2017.12.034
10.1016/j.renene.2017.03.093
10.1016/j.indcrop.2017.08.063
10.1016/j.carbpol.2018.01.110
10.1016/j.jclepro.2017.09.050
10.1016/j.procbio.2014.03.024
10.1039/C7SC05392D
10.1016/j.serj.2016.04.012
10.1016/j.cogsc.2017.03.003
10.1021/acssuschemeng.6b00639
10.3389/fchem.2019.00078
10.1016/j.biortech.2017.01.061
10.1039/C3GC42401D
10.1016/j.biortech.2017.09.202
10.1016/j.carbpol.2018.02.043
10.1016/j.jenvman.2016.04.006
10.1016/j.cej.2016.03.103
10.1016/j.fuproc.2017.05.017
10.1021/acs.iecr.8b00914
10.1002/app.31273
10.1021/acs.jpcb.6b04309
10.1039/C6GC01827K
10.1016/j.ejbt.2019.07.004
10.1016/j.carbpol.2016.04.099
10.1016/j.renene.2019.07.091
10.1021/sc300172v
10.1002/bbb.303
10.1149/2.0112003JES
10.1016/j.tibs.2016.04.006
10.1021/acs.energyfuels.7b02045
10.1016/j.biortech.2017.05.167
10.1016/j.renene.2017.02.030
10.1039/C4GC00016A
10.1039/C7GC01179B
10.1186/s40643-017-0137-9
10.1039/C7GC00705A
10.1016/j.wasman.2018.07.017
10.1016/j.jclepro.2015.12.037
10.1016/j.fuel.2016.11.057
10.1016/j.enconman.2018.09.090
10.1002/jctb.4168
10.1186/1754-6834-7-86
10.1002/bit.25831
10.3390/challe8010011
10.1016/j.carbpol.2014.12.075
10.1016/j.biortech.2018.03.117
10.1039/C4GC01888E
10.1016/j.cej.2013.09.031
10.1016/j.fuproc.2016.12.007
10.1016/j.seppur.2016.09.019
10.1002/bit.24522
10.1186/s13068-016-0578-y
10.15376/biores.12.3.5749-5774
10.1039/C5CP02009C
10.1038/s41598-019-53523-5
10.1007/s10098-018-01663-z
10.1016/j.biotechadv.2019.02.003
10.3390/biom9060220
10.1002/bbb.1622
10.1016/j.molliq.2019.01.093
10.1016/j.carbpol.2016.07.092
10.1016/j.biortech.2015.05.029
10.1039/C6RA22055J
10.1016/j.biortech.2018.04.099
10.3390/catal9080675
10.1007/s13399-018-0364-0
10.1016/j.carbpol.2015.05.028
10.1016/j.biortech.2018.09.122
10.1016/j.renene.2017.06.050
10.1016/j.bej.2016.02.008
10.1016/j.biortech.2019.122214
10.1016/j.jiec.2012.08.003
10.1016/j.biortech.2018.07.070
10.1007/978-3-319-70548-4_333
10.1186/s13068-016-0561-7
10.1016/j.rser.2019.109353
10.1016/j.fuproc.2017.01.029
10.3389/fchem.2018.00548
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.123003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 32081446
10_1016_j_biortech_2020_123003
S0960852420302728
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c467t-6b75c657cb5d8f6183b97d8e6aeee2d9bb83b4cb73b609e7763917a6c41c30c83
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 04:08:57 EDT 2025
Tue Aug 05 08:47:58 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Tue Jul 01 03:18:40 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Fri Feb 23 02:48:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ionic liquids
Biorefinery
Pretreatment
Lignocellulosic biomass
Enzymatic hydrolysis
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-6b75c657cb5d8f6183b97d8e6aeee2d9bb83b4cb73b609e7763917a6c41c30c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 32081446
PQID 2377344854
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439396293
proquest_miscellaneous_2377344854
pubmed_primary_32081446
crossref_citationtrail_10_1016_j_biortech_2020_123003
crossref_primary_10_1016_j_biortech_2020_123003
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Singh, Sharma, Ghosh, Kumar, Khan (b0460) 2018; 6
Saha, Sikder, Diwedi, Ghosh, Chakraborty, Mukherjee, Calabro (b0440) 2018
Tomimatsu, Suetsugu, Yoshimura, Shimizu (b0505) 2019; 279
Parthasarathi, Sun, Dutta, Sun, Pattathil, Murthy Konda (b0385) 2016; 9
Konda, Shi, Singh, Blanch, Simmons, Klein-Marcuschamer (b0235) 2014; 7
Xue, Zhao, Sun, Mu (b0545) 2016; 4
Stepan, Monshizadeh, Hummel, Roselli, Sixta (b0480) 2016; 150
Duque, Manzanares, Ballesteros (b0105) 2017; 114B
Mussatto, Bikaki (b0355) 2016
Liu, Li, Liu, Xu (b0275) 2018; 260
Perez-Pimienta, Flores-Gomez, Ruiz, Sathitsuksanoh, Balan, Sousa, Dale, Singh, Simmons (b0400) 2016; 211
Alexandropoulou, Antonopoulou, Fragkou, Ntaikou, Lyberatos (b0015) 2017; 203
Cai (b0060) 2014; 89
Jordan, Gathergood (b0205) 2015; 44
Alayoubi, Mehmood, Husson, Kouzayha, Tabcheh, Chaveriat, Sarazi, Gosselin (b0010) 2020; 145
Hassan, Gwilym, Williams (b0165) 2018; 262
Yu, Paterson, Blamey, Millan (b0565) 2017; 191
Rabideau, Agarwal, Ismail (b0410) 2014; 118
Xiong, Zhang, Wang, Liu, Lin (b0535) 2014; 235
Vieiraa, Barros, Sydney, Piekarski, de Francisco, Vandenberghe, Sydney (b0520) 2019
Srivastava, Rathour, Jha, Pandey, Srivastava, Thakur, Sengar, Gupta, Mazumder, Khan, Mishra (b0470) 2019; 9
Carrozza, Papa, Citterio, Simmons, Singh (b0070) 2019; 294
Tu, Hallett (b0195) 2019; 20
Shah, Ullah (b0455) 2019
Sun, Sun, Zhang (b0495) 2016; 6
Financie, Moniruzzaman, Uemura (b0115) 2016; 110
de Paula, Antonieto, Ribeiro, Srivastava, Donovan, Mishra, Gupta, Silva (b0100) 2019; 37
Li, Liu, Zhang, Yao, Yao, Xu (b0255) 2015; 17
Mohtar, Busu, Md Noor, Shaari, Yusoff, Khalil (b0335) 2015; 192
Hamada, Yoshida, Asai, Hayase, Nokami, Izumi (b0150) 2013; 15
Huang, Chiueh, Lo (b0190) 2016; 26
Mao, Abushammala, Pereira, Laborie (b0310) 2016; 153
Bhatia, Joo, Yang (b0050) 2018; 177
Yavir, Marcinkowski, Marcinkowska, Namiesnik, Kloskowski (b0555) 2018
Mai, Ha, Koo (b0300) 2014; 49
Li, Chen, Wang, Sun, Sun (b0250) 2016; 9
Zhang, Hu, Lee (b0580) 2017; 111
Zhang, Huo, Wang, Xia, Tan, Zhang, He (b0585) 2019; 7
Casas, Oliet, Alonso, Rodriguez (b0075) 2012; 97
Paul, Muthukumar, Prasad (b0390) 2020; 167
Cao, Peng, Sun, Zhong, Wang, Lu, Sun (b0065) 2014; 116
Sen, Binder, Raines, Maravelias (b0445) 2012; 6
Sun, Parthasarathi, Socha, Shi, Zhang, Stavila, Sale, Simmons, Singh (b0490) 2014; 16
Gschwend, Brandt, Chambon, Tu, Weigand, Hallett (b0135) 2016; 114
Ralph (b0425) 2014
Perez-Rodriguez, Garcia-Bernet, Dominguez (b0405) 2017; 107
Raj, Gaur, Lamba, Singh, Gupta, Kumar (b0415) 2018; 249
Baral, Shah (b0035) 2017; 166
Muhammad, Man, Bustam, Mutalib, Rafq (b0340) 2013; 19
Zhang, Li, Tang, Lin, Long (b0575) 2015; 130
Hashmi, Sun, Tao, Wells, Shah, Labbe, Ragauskas (b0160) 2017; 224
da Silva, Giuliano, Errico (b0095) 2019; 21
Luo, Tian, Shen, Hu, Zhang, Yang, Zeng, Deng, Hu (b0280) 2019; 9
Rigual, Santos, Dominguez, Alonso, Oliet, Rodriguez (b0435) 2017; 251
Wright, Brown (b0530) 2007; 1
Minnick, Flores, DeStefano, Scurto (b0320) 2016; 120
Stanton, Xue, Pandher, Malek, Brown, Hu (b0475) 2018; 108
Reddy, Maheswari, Dhlamini, Mothudi, Kommula, Zhang (b0430) 2018; 188
Pedersen, Perez, Guo (b0395) 2019; 9
Gogoi, Hazarika (b0130) 2017; 173
Ninomiya, Abe, Tsukegi, Kuroda, Omichi, Takada (b0370) 2017; 109
Liu, Guo, Wang, Zhan, Zhou (b0265) 2017; 232
Madanayake, Gan, Eastwick, Ng (b0295) 2017; 159
Hou, Li, Zong (b0180) 2013; 1
Jedvert, Heinze (b0200) 2017; 37
Farhat, Venditti, Hubbe, Taha, Becquart, Ayoub (b0110) 2017; 10
Naghshbandi, Tabatabaei, Aghbashlo, Gupta, Sulaiman, Karimi, Moghimi, Maleki (b0360) 2019; 115
Papa, Feldmana, Sale, Adani, Singh, Simmons (b0380) 2017; 241
Smuga-Kogut, Zgorska, Kogut, Kukielka, Wojdalski, Kupczyk (b0465) 2017; 191
Alvarez, Cachero, Gonzalez-Sanchez, Montejo-Bernardo, Pizarro, Bueno (b0020) 2018; 189
Lavarda, Morales-delaRosa, Centomo, Campos-Martin, Zecca, Fierro (b0245) 2019; 9
Yang, Shi, Xiong (b0550) 2016; 61
Muhammad, Man, Bustam, Mutalib, Wilfred, Rafq (b0345) 2011; 165
Kalita, Nath, Deb, Agan, Islam, Saikia (b0210) 2015; 122
Ma, Zhang, Zhang, Li, Gao, Hu (b0285) 2016; 148
Tsapekos, Kougias, Angelidaki (b0515) 2018; 78
Sun, Konda, Parthasarathi, Dutta, Valiev, Xu, Simmons, Singh (b0485) 2017; 19
Cheng, Zhao, Hu (b0085) 2018; 249
Raj, Kapoor, Semwal, Sadula, Pandey, Gupta, Kumar, Tuli, Das (b0420) 2016; 13
Bhatia, Jagtap, Bedekar, Bhatia, Patel, Pant, Banu, Rao, Kim, Yang (b0040) 2019
Kang, Fu, Zhang (b0215) 2018; 94
Dahadha, Amin, Lakeh, Elbeshbishy (b0090) 2017; 31
Torr, Love, Simmons, Hill (b0510) 2016; 113
Hernandez-Beltran, Lira, Cruz-Santos, Saucedo-Luevanos, Hernandez-Teran, Balagurusamy (b0170) 2019; 9
Yoo, Pu, Ragauskas (b0560) 2017; 5
Muranaka, Nakagawa, Hasegawa, Maki, Hosokawa, Ikuta, Mae (b0350) 2017; 308
Kim (b0225) 2018; 23
Tiong, Yap, Gan, Yap (b0500) 2017; 168
Gupta, Kubicek, Berrin, Wilson, Couturier, Berlin, Filho, Ezeji (b0145) 2016; 41
Brandt-Talbot, Gschwend, Fennell, Lammens, Tan, Weale (b0055) 2017; 19
Zakaria, Idris, Alias (b0570) 2017; 12
Mohan, Deshavath, Banerjee, Goud, Dasu (b0330) 2018; 57
Anugwom, Rujana, Warna, Hedenstrom, Mikkola (b0025) 2016; 297
Kassaye, Pant, Jain (b0220) 2017; 104
Nargotra, Sharma, Gupta, Kour, Kumar Bajaj (b0365) 2018; 267
Glas, Van Doorslaer, Depuydt, Liebner, Rosenau, Binnemans, De Vos (b0125) 2014; 90
Ma, Long, Duan, Lin, Cao, Chen, Ni (b0290) 2017; 109
Masiutin, Golyshkin, Litvin, Novikov, Kotelev, Ivanov, Vinokurov (b0315) 2018; 52
Hou, Smith, Li, Zong (b0185) 2012; 109
Hart, Harper, Aldous (b0155) 2015; 17
Oleskowicz-Popiel, Klein-Marcuschamer, Simmons, Blanch (b0375) 2014; 158
Chen, Liu, Chang, Chen, Xue, Liu (b0080) 2017; 160
Liu, Thomsen, Nie, Zhang, Meyer (b0270) 2016; 18
Chen, Sharifzadeh, Dowell, Welton, Shah, Hallett (b0450) 2014; 16
Williams, Li, Hu, Allen, Thomas (b0525) 2018
Gschwend, Chambon, Biedka, Brandt-Talbot, Fennell, Hallett (b0140) 2019; 21
Hossain, Rawal, Aldous (b0175) 2019; 7
Bhatia, Gaurav, Choi, Jung, Yang, Moon, Song, Jeon, Choi, Yang (b0045) 2019; 271
Zhuang, Wang, Yu, Qi, Wang, Tan, Zhou, Yuan (b0590) 2016; 199
Mohammadi, Shafiei, Karimi, Abdolmaleki, Mikkola, Larrson (b0325) 2019; 41
Abraham, Mathew, Park, Choi, Sindhu, Parameswaran, Pandey, Park, Sanga (b0005) 2020
Klein-Marcuschamer, Simmons, Blanch (b0230) 2011; 5
Xu, Liu, Hou, Hu (b0540) 2017; 234
Kumar, Sharma (b0240) 2017; 4
Li, Wang, Liu, Zhang (b0260) 2018; 9
Baral, Shah (b0030) 2016; 10
Francesco, Simonetti, Gorgi, Appetecchi (b0120) 2017; 8
Bhatia (10.1016/j.biortech.2020.123003_b0050) 2018; 177
Chen (10.1016/j.biortech.2020.123003_b0450) 2014; 16
Hou (10.1016/j.biortech.2020.123003_b0180) 2013; 1
Mai (10.1016/j.biortech.2020.123003_b0300) 2014; 49
Rabideau (10.1016/j.biortech.2020.123003_b0410) 2014; 118
Brandt-Talbot (10.1016/j.biortech.2020.123003_b0055) 2017; 19
Li (10.1016/j.biortech.2020.123003_b0250) 2016; 9
Kang (10.1016/j.biortech.2020.123003_b0215) 2018; 94
Ninomiya (10.1016/j.biortech.2020.123003_b0370) 2017; 109
Nargotra (10.1016/j.biortech.2020.123003_b0365) 2018; 267
Alexandropoulou (10.1016/j.biortech.2020.123003_b0015) 2017; 203
Oleskowicz-Popiel (10.1016/j.biortech.2020.123003_b0375) 2014; 158
Hashmi (10.1016/j.biortech.2020.123003_b0160) 2017; 224
Xiong (10.1016/j.biortech.2020.123003_b0535) 2014; 235
Naghshbandi (10.1016/j.biortech.2020.123003_b0360) 2019; 115
Chen (10.1016/j.biortech.2020.123003_b0080) 2017; 160
Srivastava (10.1016/j.biortech.2020.123003_b0470) 2019; 9
Farhat (10.1016/j.biortech.2020.123003_b0110) 2017; 10
Wright (10.1016/j.biortech.2020.123003_b0530) 2007; 1
Klein-Marcuschamer (10.1016/j.biortech.2020.123003_b0230) 2011; 5
Parthasarathi (10.1016/j.biortech.2020.123003_b0385) 2016; 9
Mohtar (10.1016/j.biortech.2020.123003_b0335) 2015; 192
Gogoi (10.1016/j.biortech.2020.123003_b0130) 2017; 173
Bhatia (10.1016/j.biortech.2020.123003_b0040) 2019
Stepan (10.1016/j.biortech.2020.123003_b0480) 2016; 150
Huang (10.1016/j.biortech.2020.123003_b0190) 2016; 26
Kumar (10.1016/j.biortech.2020.123003_b0240) 2017; 4
Williams (10.1016/j.biortech.2020.123003_b0525) 2018
Francesco (10.1016/j.biortech.2020.123003_b0120) 2017; 8
Hou (10.1016/j.biortech.2020.123003_b0185) 2012; 109
Jedvert (10.1016/j.biortech.2020.123003_b0200) 2017; 37
Mussatto (10.1016/j.biortech.2020.123003_b0355) 2016
Sen (10.1016/j.biortech.2020.123003_b0445) 2012; 6
Hamada (10.1016/j.biortech.2020.123003_b0150) 2013; 15
Jordan (10.1016/j.biortech.2020.123003_b0205) 2015; 44
Yu (10.1016/j.biortech.2020.123003_b0565) 2017; 191
Hart (10.1016/j.biortech.2020.123003_b0155) 2015; 17
Perez-Rodriguez (10.1016/j.biortech.2020.123003_b0405) 2017; 107
Ma (10.1016/j.biortech.2020.123003_b0290) 2017; 109
Stanton (10.1016/j.biortech.2020.123003_b0475) 2018; 108
da Silva (10.1016/j.biortech.2020.123003_b0095) 2019; 21
Zhang (10.1016/j.biortech.2020.123003_b0580) 2017; 111
Tiong (10.1016/j.biortech.2020.123003_b0500) 2017; 168
Zhang (10.1016/j.biortech.2020.123003_b0585) 2019; 7
Luo (10.1016/j.biortech.2020.123003_b0280) 2019; 9
Papa (10.1016/j.biortech.2020.123003_b0380) 2017; 241
Minnick (10.1016/j.biortech.2020.123003_b0320) 2016; 120
Liu (10.1016/j.biortech.2020.123003_b0265) 2017; 232
Zhang (10.1016/j.biortech.2020.123003_b0575) 2015; 130
Yoo (10.1016/j.biortech.2020.123003_b0560) 2017; 5
Li (10.1016/j.biortech.2020.123003_b0255) 2015; 17
Masiutin (10.1016/j.biortech.2020.123003_b0315) 2018; 52
Cao (10.1016/j.biortech.2020.123003_b0065) 2014; 116
Zhuang (10.1016/j.biortech.2020.123003_b0590) 2016; 199
Sun (10.1016/j.biortech.2020.123003_b0490) 2014; 16
Zakaria (10.1016/j.biortech.2020.123003_b0570) 2017; 12
Hernandez-Beltran (10.1016/j.biortech.2020.123003_b0170) 2019; 9
Mohammadi (10.1016/j.biortech.2020.123003_b0325) 2019; 41
Reddy (10.1016/j.biortech.2020.123003_b0430) 2018; 188
Sun (10.1016/j.biortech.2020.123003_b0495) 2016; 6
Singh (10.1016/j.biortech.2020.123003_b0460) 2018; 6
Muhammad (10.1016/j.biortech.2020.123003_b0340) 2013; 19
Smuga-Kogut (10.1016/j.biortech.2020.123003_b0465) 2017; 191
Kalita (10.1016/j.biortech.2020.123003_b0210) 2015; 122
Sun (10.1016/j.biortech.2020.123003_b0485) 2017; 19
Alvarez (10.1016/j.biortech.2020.123003_b0020) 2018; 189
Madanayake (10.1016/j.biortech.2020.123003_b0295) 2017; 159
Yang (10.1016/j.biortech.2020.123003_b0550) 2016; 61
Pedersen (10.1016/j.biortech.2020.123003_b0395) 2019; 9
Hassan (10.1016/j.biortech.2020.123003_b0165) 2018; 262
Konda (10.1016/j.biortech.2020.123003_b0235) 2014; 7
Ralph (10.1016/j.biortech.2020.123003_b0425) 2014
Gschwend (10.1016/j.biortech.2020.123003_b0140) 2019; 21
Raj (10.1016/j.biortech.2020.123003_b0415) 2018; 249
Kassaye (10.1016/j.biortech.2020.123003_b0220) 2017; 104
de Paula (10.1016/j.biortech.2020.123003_b0100) 2019; 37
Liu (10.1016/j.biortech.2020.123003_b0270) 2016; 18
Liu (10.1016/j.biortech.2020.123003_b0275) 2018; 260
Vieiraa (10.1016/j.biortech.2020.123003_b0520) 2019
Torr (10.1016/j.biortech.2020.123003_b0510) 2016; 113
Alayoubi (10.1016/j.biortech.2020.123003_b0010) 2020; 145
Kim (10.1016/j.biortech.2020.123003_b0225) 2018; 23
Xue (10.1016/j.biortech.2020.123003_b0545) 2016; 4
Anugwom (10.1016/j.biortech.2020.123003_b0025) 2016; 297
Lavarda (10.1016/j.biortech.2020.123003_b0245) 2019; 9
Hossain (10.1016/j.biortech.2020.123003_b0175) 2019; 7
Baral (10.1016/j.biortech.2020.123003_b0030) 2016; 10
Xu (10.1016/j.biortech.2020.123003_b0540) 2017; 234
Dahadha (10.1016/j.biortech.2020.123003_b0090) 2017; 31
Tu (10.1016/j.biortech.2020.123003_b0195) 2019; 20
Gschwend (10.1016/j.biortech.2020.123003_b0135) 2016; 114
Muhammad (10.1016/j.biortech.2020.123003_b0345) 2011; 165
Ma (10.1016/j.biortech.2020.123003_b0285) 2016; 148
Tomimatsu (10.1016/j.biortech.2020.123003_b0505) 2019; 279
Casas (10.1016/j.biortech.2020.123003_b0075) 2012; 97
Tsapekos (10.1016/j.biortech.2020.123003_b0515) 2018; 78
Baral (10.1016/j.biortech.2020.123003_b0035) 2017; 166
Duque (10.1016/j.biortech.2020.123003_b0105) 2017; 114B
Financie (10.1016/j.biortech.2020.123003_b0115) 2016; 110
Mao (10.1016/j.biortech.2020.123003_b0310) 2016; 153
Gupta (10.1016/j.biortech.2020.123003_b0145) 2016; 41
Saha (10.1016/j.biortech.2020.123003_b0440) 2018
Cheng (10.1016/j.biortech.2020.123003_b0085) 2018; 249
Muranaka (10.1016/j.biortech.2020.123003_b0350) 2017; 308
Mohan (10.1016/j.biortech.2020.123003_b0330) 2018; 57
Paul (10.1016/j.biortech.2020.123003_b0390) 2020; 167
Glas (10.1016/j.biortech.2020.123003_b0125) 2014; 90
Li (10.1016/j.biortech.2020.123003_b0260) 2018; 9
Abraham (10.1016/j.biortech.2020.123003_b0005) 2020
Cai (10.1016/j.biortech.2020.123003_b0060) 2014; 89
Bhatia (10.1016/j.biortech.2020.123003_b0045) 2019; 271
Perez-Pimienta (10.1016/j.biortech.2020.123003_b0400) 2016; 211
Raj (10.1016/j.biortech.2020.123003_b0420) 2016; 13
Rigual (10.1016/j.biortech.2020.123003_b0435) 2017; 251
Yavir (10.1016/j.biortech.2020.123003_b0555) 2018
Carrozza (10.1016/j.biortech.2020.123003_b0070) 2019; 294
Shah (10.1016/j.biortech.2020.123003_b0455) 2019
References_xml – volume: 4
  start-page: 7
  year: 2017
  ident: b0240
  article-title: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review
  publication-title: Bioresour. Bioprocess
– volume: 37
  start-page: 845
  year: 2017
  end-page: 860
  ident: b0200
  article-title: Cellulose modification and shaping-a review
  publication-title: J. Polym. Eng.
– volume: 120
  start-page: 7906
  year: 2016
  end-page: 7919
  ident: b0320
  article-title: Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 220
  year: 2019
  ident: b0470
  article-title: Microbial beta glucosidase enzyme: recent advances in biomass conversation for biofuels application
  publication-title: Biomolecules
– volume: 10
  start-page: 305
  year: 2017
  end-page: 323
  ident: b0110
  article-title: A review of water-resistant hemicellulose-based materials: processing and applications
  publication-title: Chem. Sus. Chem.
– volume: 4
  start-page: 3864
  year: 2016
  end-page: 3870
  ident: b0545
  article-title: Biomass-derived r-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 78
  year: 2019
  ident: b0585
  article-title: Theoretical elucidation of β-O-4 bond cleavage of lignin model compound promoted by sulfonic acid-functionalized ionic liquid
  publication-title: Front. Chem.
– volume: 297
  start-page: 256
  year: 2016
  end-page: 264
  ident: b0025
  article-title: In quest for the optimal delignification of lignocellulosic biomass using hydrated, SO
  publication-title: Chem. Eng. J.
– volume: 153
  start-page: 284
  year: 2016
  end-page: 291
  ident: b0310
  article-title: Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions
  publication-title: Carbohydr. Polym.
– volume: 8
  start-page: 11
  year: 2017
  ident: b0120
  article-title: About the purification route of ionic liquid precursors
  publication-title: Challenges
– year: 2020
  ident: b0005
  article-title: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass
  publication-title: Bioresour. Technol.
– volume: 18
  start-page: 6246
  year: 2016
  end-page: 6254
  ident: b0270
  article-title: Predictive screening of ionic liquids for dissolving cellulose and experimental verification
  publication-title: Green Chem.
– volume: 113
  start-page: 540
  year: 2016
  end-page: 549
  ident: b0510
  article-title: Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids
  publication-title: Biotechnol. Bioeng.
– year: 2019
  ident: b0520
  article-title: Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol
  publication-title: Bioresour. Technol.
– volume: 191
  start-page: 140
  year: 2017
  end-page: 149
  ident: b0565
  article-title: Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass
  publication-title: Fuel
– volume: 192
  start-page: 212
  year: 2015
  end-page: 218
  ident: b0335
  article-title: Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes
  publication-title: Bioresour. Technol.
– volume: 94
  start-page: 340
  year: 2018
  end-page: 362
  ident: b0215
  article-title: From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis
  publication-title: Renew. Sustain. Energy Rev.
– volume: 19
  start-page: 3152
  year: 2017
  end-page: 3163
  ident: b0485
  article-title: One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
  publication-title: Green. Chem.
– volume: 17
  start-page: 17894
  year: 2015
  end-page: 17905
  ident: b0255
  article-title: Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 251
  start-page: 197
  year: 2017
  end-page: 203
  ident: b0435
  article-title: Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood
  publication-title: Bioresour. Technol.
– volume: 145
  start-page: 1808
  year: 2020
  end-page: 1816
  ident: b0010
  article-title: Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield
  publication-title: Renew. Energy
– volume: 110
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0115
  article-title: Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment
  publication-title: Biochem. Eng. J.
– volume: 224
  start-page: 714
  year: 2017
  end-page: 720
  ident: b0160
  article-title: Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 107
  start-page: 597
  year: 2017
  end-page: 603
  ident: b0405
  article-title: Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production
  publication-title: Renew. Energy
– volume: 122
  start-page: 308
  year: 2015
  end-page: 313
  ident: b0210
  article-title: High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 321
  year: 2019
  end-page: 331
  ident: b0280
  article-title: Comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis
  publication-title: Biomass Convers. Bior.
– volume: 168
  start-page: 1251
  year: 2017
  end-page: 1261
  ident: b0500
  article-title: One-pot conversion of oil palm empty fruit bunch and mesocarp fiber biomass to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids
  publication-title: J. Clean Prod.
– volume: 10
  start-page: 70
  year: 2016
  end-page: 88
  ident: b0030
  article-title: Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production
  publication-title: Biofuels Bioprod. Bioref.
– volume: 279
  start-page: 120
  year: 2019
  end-page: 126
  ident: b0505
  article-title: The solubility of cellulose in binary mixtures of ionic liquids and dimethyl sulfoxide: influence of the anion
  publication-title: J. Mol. Liq.
– start-page: 1
  year: 2019
  end-page: 12
  ident: b0455
  article-title: Pretreatment of wheat straw with ligninolytic fungi for increased biogas productivity
  publication-title: Int. J. Environ. Sci. Technol.
– start-page: 587
  year: 2016
  end-page: 610
  ident: b0355
  article-title: Technoeconomic consideration from biomass fractionation in a biorefinery context
– volume: 308
  start-page: 754
  year: 2017
  end-page: 759
  ident: b0350
  article-title: Lignin-based resin production from lignocellulosic biomass combining acidic saccharification and acetone-water treatment
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 637
  year: 2019
  end-page: 654
  ident: b0095
  article-title: Economic value and environmental impact analysis of lignocellulosic ethanol production: assessment of different pretreatment processes
  publication-title: Clean Techn. Environ. Policy
– volume: 44
  start-page: 8200
  year: 2015
  ident: b0205
  article-title: Biodegradation of ionic liquids – a critical review
  publication-title: Chem. Soc. Rev.
– volume: 158
  start-page: 294
  year: 2014
  end-page: 299
  ident: b0375
  article-title: Lignocellulosic ethanol production without enzymes – technoeconomic analysis of ionic liquid pretreatment followed by acidolysis
  publication-title: Bioresour. Technol.
– volume: 109
  start-page: 459
  year: 2017
  end-page: 463
  ident: b0290
  article-title: Facilitate hemicelluloses separation from chemical pulp in ionic liquid/water by xylanase pretreatment
  publication-title: Ind. Crops Prod.
– volume: 262
  start-page: 310
  year: 2018
  end-page: 318
  ident: b0165
  article-title: Emerging technologies for the pretreatment of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 166
  year: 2016
  ident: b0250
  article-title: Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of eucalyptus: chemical and anatomical changes
  publication-title: Biotechnol. Biofuels
– volume: 7
  start-page: 86
  year: 2014
  ident: b0235
  article-title: Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production
  publication-title: Biotechnol. Biofuels
– volume: 52
  start-page: 1
  year: 2018
  end-page: 2
  ident: b0315
  article-title: Pretreatment of cellulosic substrates with acetate-and chloride-based ionic liquids and their mixtures
  publication-title: Cell. Chem. Technol.
– volume: 9
  year: 2019
  ident: b0395
  article-title: Stability of cellulase in ionic liquids: correlations between enzyme activity and COSMO-RS descriptors
  publication-title: Sci. Rep.
– volume: 115
  year: 2019
  ident: b0360
  article-title: Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches
  publication-title: Renew. Sustain. Energy Rev.
– volume: 6
  start-page: 444
  year: 2012
  end-page: 452
  ident: b0445
  article-title: Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation
  publication-title: Biofuels Bioprod. Bioref.
– volume: 165
  start-page: 998
  year: 2011
  end-page: 1009
  ident: b0345
  article-title: Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid
  publication-title: Appl. Biochem. Biotechnol.
– volume: 189
  start-page: 250
  year: 2018
  end-page: 256
  ident: b0020
  article-title: Novel method for holocellulose analysis of non-woody biomass wastes
  publication-title: Carbohydr. Polym.
– volume: 234
  start-page: 406
  year: 2017
  end-page: 414
  ident: b0540
  article-title: Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery
  publication-title: Bioresour. Technol.
– year: 2018
  ident: b0555
  article-title: Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review
  publication-title: Anal. Chim. Acta
– volume: 232
  start-page: 270
  year: 2017
  end-page: 277
  ident: b0265
  article-title: Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass
  publication-title: Bioresour. Technol.
– volume: 249
  start-page: 969
  year: 2018
  end-page: 975
  ident: b0085
  article-title: Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 207
  year: 2013
  end-page: 214
  ident: b0340
  article-title: Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass
  publication-title: J. Ind. Eng. Chem.
– year: 2019
  ident: b0040
  article-title: Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges
  publication-title: Bioresour. Technol.
– start-page: 6
  year: 2018
  ident: b0525
  article-title: Three way comparison of hydrophilic ionic liquid, hydrophobic ionic liquid, and dilute acid for the pretreatment of herbaceous and woody biomass
  publication-title: Front. Energy. Res.
– volume: 191
  start-page: 266
  year: 2017
  end-page: 274
  ident: b0465
  article-title: The use of ionic liquid pre-treatment of rye straw for bioethanol production
  publication-title: Fuel
– volume: 203
  start-page: 704
  year: 2017
  end-page: 713
  ident: b0015
  article-title: Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production
  publication-title: J. Environ. Manage.
– volume: 1
  start-page: 191
  year: 2007
  end-page: 200
  ident: b0530
  article-title: Establishing the optimal sizes of different kinds of biorefineries
  publication-title: Biofuels Bioprod. Bioref.
– volume: 249
  start-page: 139
  year: 2018
  end-page: 145
  ident: b0415
  article-title: Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 214
  year: 2015
  end-page: 218
  ident: b0155
  article-title: The effect of changing the components of an ionic liquid upon the solubility of lignin
  publication-title: Green Chem.
– start-page: 1155
  year: 2018
  end-page: 1156
  ident: b0440
  article-title: Improving cellulose structure for bioconversion: sugarcane bagasse pretreatment accompanied by lignin recovery and ionic liquid recycle
  publication-title: Adv. Sci. Technol. Innov.
– volume: 89
  start-page: 2
  year: 2014
  end-page: 10
  ident: b0060
  article-title: Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 199
  start-page: 68
  year: 2016
  end-page: 75
  ident: b0590
  article-title: Liquid hot water pre-treatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products
  publication-title: Bioresour. Technol.
– volume: 150
  start-page: 99
  year: 2016
  end-page: 106
  ident: b0480
  article-title: Cellulose fractionation with IONCELL-P
  publication-title: Carbohyd. Polym.
– volume: 118
  start-page: 1621
  year: 2014
  end-page: 1629
  ident: b0410
  article-title: The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids
  publication-title: J. Phys. Chem. B.
– volume: 9
  start-page: 675
  year: 2019
  ident: b0245
  article-title: Gel-Type and macroporous cross-linked copolymers functionalized with acid groups for the hydrolysis of wheat straw pretreated with an ionic liquid
  publication-title: Catalysts
– volume: 61
  start-page: 83
  year: 2016
  end-page: 94
  ident: b0550
  article-title: Ionic liquids assisted alkaline fractionation enhanced triploid poplar bioconversion for bioethanol production
  publication-title: Wood Res.
– start-page: 198
  year: 2014
  ident: b0425
  publication-title: Bioenergy Options for a Cleaner Environment: In Developed and Developing Countries
– volume: 109
  start-page: 158
  year: 2017
  end-page: 162
  ident: b0370
  article-title: Ionic liquid pre-treatment of bagasse improves mechanical property of bagasse/polypropylene composites
  publication-title: Ind. Crops Prod.
– volume: 114
  year: 2016
  ident: b0135
  article-title: Pretreatment of lignocellulosic biomass with low-cost ionic liquids
  publication-title: J. Vis. Exp.
– volume: 78
  start-page: 903
  year: 2018
  end-page: 910
  ident: b0515
  article-title: Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components
  publication-title: Waste Manage.
– volume: 104
  start-page: 177
  year: 2017
  end-page: 184
  ident: b0220
  article-title: Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps
  publication-title: Renew. Energy
– volume: 97
  start-page: 115
  year: 2012
  end-page: 122
  ident: b0075
  article-title: Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization
  publication-title: Sep. Purif. Technol.
– volume: 116
  start-page: 547
  year: 2014
  end-page: 554
  ident: b0065
  article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr. Polym. 111, 400–403
  publication-title: J. Appl. Polym. Sci.
– volume: 1
  start-page: 519
  year: 2013
  end-page: 526
  ident: b0180
  article-title: Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures
  publication-title: ACS Sustainable Chem. Eng.
– volume: 41
  start-page: 95
  year: 2019
  end-page: 99
  ident: b0325
  article-title: Improvement of ethanol production from birch and spruce pretreated with 1-H-3-methylmorpholinium chloride
  publication-title: Electron. J. Biotechn.
– volume: 9
  start-page: 4027
  year: 2018
  end-page: 4043
  ident: b0260
  article-title: Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects
  publication-title: Chem. Sci.
– volume: 159
  start-page: 287
  year: 2017
  end-page: 305
  ident: b0295
  article-title: Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques
  publication-title: Fuel Process. Technol.
– volume: 166
  start-page: 59
  year: 2017
  end-page: 68
  ident: b0035
  article-title: Techno-economic analysis of utilization of stillage from a cellulosic biorefinery
  publication-title: Fuel Process. Technol.
– volume: 37
  year: 2019
  ident: b0100
  article-title: Engineered microbial host selection for value-added bioproducts from lignocellulose
  publication-title: Biotechnol. Adv.
– volume: 7
  start-page: 11928
  year: 2019
  end-page: 11936
  ident: b0175
  article-title: Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: anion effects, enzymatic hydrolysis, solid-state nmr, distillation, and recycle
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 5
  year: 2017
  end-page: 11
  ident: b0560
  article-title: Ionic liquids: promising green solvents for lignocellulosic biomass utilization
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 6
  start-page: 548
  year: 2018
  ident: b0460
  article-title: Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction
  publication-title: Front. Chem.
– volume: 114B
  start-page: 1427
  year: 2017
  end-page: 1441
  ident: b0105
  article-title: Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications
  publication-title: Renew. Energy
– volume: 108
  start-page: 333
  year: 2018
  end-page: 341
  ident: b0475
  article-title: Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  start-page: 309
  year: 2018
  ident: b0225
  article-title: Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review
  publication-title: Molecules
– volume: 57
  start-page: 10105
  year: 2018
  end-page: 10117
  ident: b0330
  article-title: Ionic liquid and sulfuric acid-based pretreatment of bamboo: biomass delignification and enzymatic hydrolysis for the production of reducing sugars
  publication-title: Ind. Eng. Chem. Res.
– volume: 167
  year: 2020
  ident: b0390
  article-title: Review room-temperature ionic liquids for electrochemical application with special focus on gas sensors
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 3098
  year: 2014
  end-page: 3106
  ident: b0450
  article-title: Inexpensive ionic liquids: [HSO4]
  publication-title: Green Chem.
– volume: 15
  start-page: 1863
  year: 2013
  end-page: 1868
  ident: b0150
  article-title: A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid
  publication-title: Green Chem.
– volume: 5
  start-page: 562
  year: 2011
  end-page: 569
  ident: b0230
  article-title: Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment
  publication-title: Biofuels Bioprod. Bioref.
– volume: 260
  start-page: 417
  year: 2018
  end-page: 420
  ident: b0275
  article-title: Pretreatment of corn straw using the alkaline solution of ionic liquids
  publication-title: Bioresour. Technol.
– volume: 271
  start-page: 306
  year: 2019
  end-page: 315
  ident: b0045
  article-title: Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using
  publication-title: Bioresour. Technol.
– volume: 20
  start-page: 11
  year: 2019
  end-page: 17
  ident: b0195
  article-title: Recent advances in the pretreatment of lignocellulosic biomass
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 9
  start-page: 160
  year: 2016
  ident: b0385
  article-title: Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions
  publication-title: Biotechnol. Biofuels
– volume: 177
  start-page: 640
  year: 2018
  end-page: 660
  ident: b0050
  article-title: Biowaste-to-bioenergy using biological methods – a mini-review
  publication-title: Energy. Convers. Manage.
– volume: 49
  start-page: 1144
  year: 2014
  end-page: 1151
  ident: b0300
  article-title: Efficient pretreatment of lignocellulose in ionic liquids/cosolvent for enzymatic hydrolysis enhancement into fermentable sugars
  publication-title: Process. Biochem.
– volume: 111
  start-page: 77
  year: 2017
  end-page: 84
  ident: b0580
  article-title: Pre-treatment of biomass using ionic liquids: research updates
  publication-title: Renew. Energy.
– volume: 9
  start-page: 3721
  year: 2019
  ident: b0170
  article-title: Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities
  publication-title: Appl. Sci.
– volume: 31
  start-page: 10335
  year: 2017
  end-page: 10347
  ident: b0090
  article-title: Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production
  publication-title: Energy Fuel
– volume: 211
  start-page: 216
  year: 2016
  end-page: 223
  ident: b0400
  article-title: Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments
  publication-title: Bioresour. Technol.
– volume: 160
  start-page: 196
  year: 2017
  end-page: 206
  ident: b0080
  article-title: A review on the pre-treatment of lignocellulose for high-value chemicals
  publication-title: Fuel Process. Technol.
– volume: 188
  start-page: 85
  year: 2018
  end-page: 91
  ident: b0430
  article-title: Extraction and characterization of cellulose single fibers from native African napier grass
  publication-title: Carbohydr. Polym.
– volume: 41
  start-page: 633
  year: 2016
  end-page: 645
  ident: b0145
  article-title: Fungal enzymes for bio-products from sustainable and waste biomass
  publication-title: Trends Biochem. Sci. Cell Press
– volume: 267
  start-page: 560
  year: 2018
  end-page: 568
  ident: b0365
  article-title: Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production
  publication-title: Bioresour. Technol.
– volume: 241
  start-page: 627
  year: 2017
  end-page: 637
  ident: b0380
  article-title: Parametric study for the optimization of ionic liquid pretreatment of corn stover
  publication-title: Bioresour. Technol.
– volume: 109
  start-page: 2484
  year: 2012
  end-page: 2493
  ident: b0185
  article-title: Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin
  publication-title: Biotechnol. Bioeng.
– volume: 294
  year: 2019
  ident: b0070
  article-title: One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: a promising approach affecting the morphology and quality of lignin of switchgrass and poplar
  publication-title: Bioresour. Technol.
– volume: 148
  start-page: 138
  year: 2016
  end-page: 145
  ident: b0285
  article-title: An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids
  publication-title: Fuel Process. Technol.
– volume: 6
  start-page: 99455
  year: 2016
  end-page: 99466
  ident: b0495
  article-title: Combined pretreatment of lignocellulosic biomass by solid base (calcined Na
  publication-title: RSC Adv.
– volume: 13
  start-page: 1005
  year: 2016
  end-page: 1014
  ident: b0420
  article-title: The cellulose structural transformation for higher enzymatic hydrolysis by ionic liquids and predicting their solvating capabilities
  publication-title: J. Clean. Prod.
– volume: 130
  start-page: 420
  year: 2015
  end-page: 428
  ident: b0575
  article-title: Advances in catalytic production of bio-based polyester monomer 2, 5 furan dicarboxylic acid derived from lignocellulosic biomass
  publication-title: Carbohydr. Polym.
– volume: 16
  start-page: 2546
  year: 2014
  end-page: 2557
  ident: b0490
  article-title: Understanding pre-treatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation
  publication-title: Green Chem.
– volume: 19
  start-page: 3078
  year: 2017
  end-page: 3102
  ident: b0055
  article-title: An economically viable ionic liquid for the fractionation of lignocellulosic biomass
  publication-title: Green Chem.
– volume: 26
  start-page: 103
  year: 2016
  end-page: 109
  ident: b0190
  article-title: A review on microwave pyrolysis of lignocellulosic biomass
  publication-title: Sustain. Environ. Res.
– volume: 12
  start-page: 5749
  year: 2017
  end-page: 5774
  ident: b0570
  article-title: Lignin extraction from coconut shell using aprotic ionic liquids
  publication-title: BioResources
– volume: 90
  start-page: 1821
  year: 2014
  end-page: 1826
  ident: b0125
  article-title: Lignin solubility in non-imidazolium ionic liquids
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 235
  start-page: 349
  year: 2014
  end-page: 355
  ident: b0535
  article-title: Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst
  publication-title: Chem. Eng. J.
– volume: 173
  start-page: 113
  year: 2017
  end-page: 120
  ident: b0130
  article-title: Coupling of ionic liquid treatment and membrane filtration for recovery of lignin from lignocellulosic biomass
  publication-title: Sep. Purif. Technol.
– volume: 21
  start-page: 692
  year: 2019
  end-page: 703
  ident: b0140
  article-title: Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids
  publication-title: Green. Chem.
– volume: 23
  start-page: 309
  issue: 2
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0225
  article-title: Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review
  publication-title: Molecules
  doi: 10.3390/molecules23020309
– volume: 158
  start-page: 294
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0375
  article-title: Lignocellulosic ethanol production without enzymes – technoeconomic analysis of ionic liquid pretreatment followed by acidolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.016
– start-page: 587
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0355
– volume: 109
  start-page: 158
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0370
  article-title: Ionic liquid pre-treatment of bagasse improves mechanical property of bagasse/polypropylene composites
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2017.08.019
– volume: 6
  start-page: 444
  year: 2012
  ident: 10.1016/j.biortech.2020.123003_b0445
  article-title: Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation
  publication-title: Biofuels Bioprod. Bioref.
  doi: 10.1002/bbb.1336
– volume: 44
  start-page: 8200
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0205
  article-title: Biodegradation of ionic liquids – a critical review
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00444F
– volume: 234
  start-page: 406
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0540
  article-title: Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.081
– start-page: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0455
  article-title: Pretreatment of wheat straw with ligninolytic fungi for increased biogas productivity
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 21
  start-page: 692
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0140
  article-title: Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids
  publication-title: Green. Chem.
  doi: 10.1039/C8GC02155D
– volume: 211
  start-page: 216
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0400
  article-title: Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.103
– volume: 108
  start-page: 333
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0475
  article-title: Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.11.137
– volume: 191
  start-page: 266
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0465
  article-title: The use of ionic liquid pre-treatment of rye straw for bioethanol production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.11.066
– volume: 20
  start-page: 11
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0195
  article-title: Recent advances in the pretreatment of lignocellulosic biomass
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2019.07.004
– volume: 118
  start-page: 1621
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0410
  article-title: The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp4115755
– volume: 1
  start-page: 191
  year: 2007
  ident: 10.1016/j.biortech.2020.123003_b0530
  article-title: Establishing the optimal sizes of different kinds of biorefineries
  publication-title: Biofuels Bioprod. Bioref.
  doi: 10.1002/bbb.25
– volume: 61
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0550
  article-title: Ionic liquids assisted alkaline fractionation enhanced triploid poplar bioconversion for bioethanol production
  publication-title: Wood Res.
– volume: 308
  start-page: 754
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0350
  article-title: Lignin-based resin production from lignocellulosic biomass combining acidic saccharification and acetone-water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.117
– volume: 165
  start-page: 998
  year: 2011
  ident: 10.1016/j.biortech.2020.123003_b0345
  article-title: Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-011-9315-y
– volume: 90
  start-page: 1821
  issue: 10
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0125
  article-title: Lignin solubility in non-imidazolium ionic liquids
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4492
– volume: 15
  start-page: 1863
  issue: 7
  year: 2013
  ident: 10.1016/j.biortech.2020.123003_b0150
  article-title: A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid
  publication-title: Green Chem.
  doi: 10.1039/c3gc40445e
– volume: 148
  start-page: 138
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0285
  article-title: An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.02.038
– volume: 94
  start-page: 340
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0215
  article-title: From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.016
– volume: 224
  start-page: 714
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0160
  article-title: Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.10.089
– volume: 9
  start-page: 3721
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0170
  article-title: Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities
  publication-title: Appl. Sci.
  doi: 10.3390/app9183721
– year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0520
  article-title: Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol
  publication-title: Bioresour. Technol.
– volume: 52
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0315
  article-title: Pretreatment of cellulosic substrates with acetate-and chloride-based ionic liquids and their mixtures
  publication-title: Cell. Chem. Technol.
– volume: 199
  start-page: 68
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0590
  article-title: Liquid hot water pre-treatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.051
– volume: 10
  start-page: 305
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0110
  article-title: A review of water-resistant hemicellulose-based materials: processing and applications
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201601047
– start-page: 198
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0425
– volume: 37
  start-page: 845
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0200
  article-title: Cellulose modification and shaping-a review
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2016-0272
– volume: 104
  start-page: 177
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0220
  article-title: Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.033
– volume: 97
  start-page: 115
  year: 2012
  ident: 10.1016/j.biortech.2020.123003_b0075
  article-title: Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.12.032
– year: 2020
  ident: 10.1016/j.biortech.2020.123003_b0005
  article-title: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122725
– volume: 249
  start-page: 969
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0085
  article-title: Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.089
– volume: 251
  start-page: 197
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0435
  article-title: Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.12.034
– volume: 111
  start-page: 77
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0580
  article-title: Pre-treatment of biomass using ionic liquids: research updates
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2017.03.093
– volume: 109
  start-page: 459
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0290
  article-title: Facilitate hemicelluloses separation from chemical pulp in ionic liquid/water by xylanase pretreatment
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2017.08.063
– volume: 188
  start-page: 85
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0430
  article-title: Extraction and characterization of cellulose single fibers from native African napier grass
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.01.110
– volume: 168
  start-page: 1251
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0500
  article-title: One-pot conversion of oil palm empty fruit bunch and mesocarp fiber biomass to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2017.09.050
– volume: 49
  start-page: 1144
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0300
  article-title: Efficient pretreatment of lignocellulose in ionic liquids/cosolvent for enzymatic hydrolysis enhancement into fermentable sugars
  publication-title: Process. Biochem.
  doi: 10.1016/j.procbio.2014.03.024
– volume: 9
  start-page: 4027
  issue: 17
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0260
  article-title: Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05392D
– volume: 26
  start-page: 103
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0190
  article-title: A review on microwave pyrolysis of lignocellulosic biomass
  publication-title: Sustain. Environ. Res.
  doi: 10.1016/j.serj.2016.04.012
– volume: 5
  start-page: 5
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0560
  article-title: Ionic liquids: promising green solvents for lignocellulosic biomass utilization
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2017.03.003
– volume: 4
  start-page: 3864
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0545
  article-title: Biomass-derived r-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00639
– volume: 7
  start-page: 78
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0585
  article-title: Theoretical elucidation of β-O-4 bond cleavage of lignin model compound promoted by sulfonic acid-functionalized ionic liquid
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00078
– volume: 232
  start-page: 270
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0265
  article-title: Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.061
– volume: 16
  start-page: 2546
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0490
  article-title: Understanding pre-treatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation
  publication-title: Green Chem.
  doi: 10.1039/C3GC42401D
– volume: 249
  start-page: 139
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0415
  article-title: Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.202
– volume: 189
  start-page: 250
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0020
  article-title: Novel method for holocellulose analysis of non-woody biomass wastes
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.02.043
– volume: 203
  start-page: 704
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0015
  article-title: Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.04.006
– year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0040
  article-title: Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges
  publication-title: Bioresour. Technol.
– volume: 297
  start-page: 256
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0025
  article-title: In quest for the optimal delignification of lignocellulosic biomass using hydrated, SO2 switched DBU MEASIL switchable ionic liquid
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.103
– volume: 166
  start-page: 59
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0035
  article-title: Techno-economic analysis of utilization of stillage from a cellulosic biorefinery
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.05.017
– volume: 57
  start-page: 10105
  issue: 31
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0330
  article-title: Ionic liquid and sulfuric acid-based pretreatment of bamboo: biomass delignification and enzymatic hydrolysis for the production of reducing sugars
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00914
– volume: 116
  start-page: 547
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0065
  article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr. Polym. 111, 400–403
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.31273
– volume: 120
  start-page: 7906
  issue: 32
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0320
  article-title: Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b04309
– volume: 18
  start-page: 6246
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0270
  article-title: Predictive screening of ionic liquids for dissolving cellulose and experimental verification
  publication-title: Green Chem.
  doi: 10.1039/C6GC01827K
– volume: 7
  start-page: 11928
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0175
  article-title: Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: anion effects, enzymatic hydrolysis, solid-state nmr, distillation, and recycle
  publication-title: ACS Sustainable Chem. Eng.
– volume: 41
  start-page: 95
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0325
  article-title: Improvement of ethanol production from birch and spruce pretreated with 1-H-3-methylmorpholinium chloride
  publication-title: Electron. J. Biotechn.
  doi: 10.1016/j.ejbt.2019.07.004
– volume: 150
  start-page: 99
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0480
  article-title: Cellulose fractionation with IONCELL-P
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2016.04.099
– volume: 145
  start-page: 1808
  year: 2020
  ident: 10.1016/j.biortech.2020.123003_b0010
  article-title: Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.091
– volume: 1
  start-page: 519
  issue: 5
  year: 2013
  ident: 10.1016/j.biortech.2020.123003_b0180
  article-title: Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc300172v
– volume: 5
  start-page: 562
  year: 2011
  ident: 10.1016/j.biortech.2020.123003_b0230
  article-title: Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment
  publication-title: Biofuels Bioprod. Bioref.
  doi: 10.1002/bbb.303
– volume: 167
  year: 2020
  ident: 10.1016/j.biortech.2020.123003_b0390
  article-title: Review room-temperature ionic liquids for electrochemical application with special focus on gas sensors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0112003JES
– volume: 41
  start-page: 633
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0145
  article-title: Fungal enzymes for bio-products from sustainable and waste biomass
  publication-title: Trends Biochem. Sci. Cell Press
  doi: 10.1016/j.tibs.2016.04.006
– volume: 31
  start-page: 10335
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0090
  article-title: Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.7b02045
– volume: 241
  start-page: 627
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0380
  article-title: Parametric study for the optimization of ionic liquid pretreatment of corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.167
– volume: 107
  start-page: 597
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0405
  article-title: Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.02.030
– volume: 16
  start-page: 3098
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0450
  article-title: Inexpensive ionic liquids: [HSO4]- based solvent production at bulk scale
  publication-title: Green Chem.
  doi: 10.1039/C4GC00016A
– volume: 19
  start-page: 3152
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0485
  article-title: One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
  publication-title: Green. Chem.
  doi: 10.1039/C7GC01179B
– volume: 4
  start-page: 7
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0240
  article-title: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review
  publication-title: Bioresour. Bioprocess
  doi: 10.1186/s40643-017-0137-9
– volume: 19
  start-page: 3078
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0055
  article-title: An economically viable ionic liquid for the fractionation of lignocellulosic biomass
  publication-title: Green Chem.
  doi: 10.1039/C7GC00705A
– year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0555
  article-title: Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review
  publication-title: Anal. Chim. Acta
– volume: 78
  start-page: 903
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0515
  article-title: Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2018.07.017
– volume: 13
  start-page: 1005
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0420
  article-title: The cellulose structural transformation for higher enzymatic hydrolysis by ionic liquids and predicting their solvating capabilities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.12.037
– volume: 191
  start-page: 140
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0565
  article-title: Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.11.057
– volume: 177
  start-page: 640
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0050
  article-title: Biowaste-to-bioenergy using biological methods – a mini-review
  publication-title: Energy. Convers. Manage.
  doi: 10.1016/j.enconman.2018.09.090
– volume: 89
  start-page: 2
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0060
  article-title: Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4168
– volume: 7
  start-page: 86
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0235
  article-title: Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-86
– volume: 113
  start-page: 540
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0510
  article-title: Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25831
– volume: 8
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0120
  article-title: About the purification route of ionic liquid precursors
  publication-title: Challenges
  doi: 10.3390/challe8010011
– volume: 122
  start-page: 308
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0210
  article-title: High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.12.075
– volume: 260
  start-page: 417
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0275
  article-title: Pretreatment of corn straw using the alkaline solution of ionic liquids
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.03.117
– volume: 17
  start-page: 214
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0155
  article-title: The effect of changing the components of an ionic liquid upon the solubility of lignin
  publication-title: Green Chem.
  doi: 10.1039/C4GC01888E
– volume: 235
  start-page: 349
  year: 2014
  ident: 10.1016/j.biortech.2020.123003_b0535
  article-title: Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.031
– volume: 160
  start-page: 196
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0080
  article-title: A review on the pre-treatment of lignocellulose for high-value chemicals
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.12.007
– volume: 173
  start-page: 113
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0130
  article-title: Coupling of ionic liquid treatment and membrane filtration for recovery of lignin from lignocellulosic biomass
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.09.019
– volume: 109
  start-page: 2484
  issue: 10
  year: 2012
  ident: 10.1016/j.biortech.2020.123003_b0185
  article-title: Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24522
– volume: 9
  start-page: 166
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0250
  article-title: Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of eucalyptus: chemical and anatomical changes
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0578-y
– volume: 12
  start-page: 5749
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0570
  article-title: Lignin extraction from coconut shell using aprotic ionic liquids
  publication-title: BioResources
  doi: 10.15376/biores.12.3.5749-5774
– volume: 17
  start-page: 17894
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0255
  article-title: Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02009C
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0395
  article-title: Stability of cellulase in ionic liquids: correlations between enzyme activity and COSMO-RS descriptors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53523-5
– volume: 21
  start-page: 637
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0095
  article-title: Economic value and environmental impact analysis of lignocellulosic ethanol production: assessment of different pretreatment processes
  publication-title: Clean Techn. Environ. Policy
  doi: 10.1007/s10098-018-01663-z
– volume: 37
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0100
  article-title: Engineered microbial host selection for value-added bioproducts from lignocellulose
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.02.003
– volume: 9
  start-page: 220
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0470
  article-title: Microbial beta glucosidase enzyme: recent advances in biomass conversation for biofuels application
  publication-title: Biomolecules
  doi: 10.3390/biom9060220
– volume: 10
  start-page: 70
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0030
  article-title: Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production
  publication-title: Biofuels Bioprod. Bioref.
  doi: 10.1002/bbb.1622
– volume: 279
  start-page: 120
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0505
  article-title: The solubility of cellulose in binary mixtures of ionic liquids and dimethyl sulfoxide: influence of the anion
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.01.093
– volume: 153
  start-page: 284
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0310
  article-title: Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.07.092
– volume: 192
  start-page: 212
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0335
  article-title: Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.029
– volume: 6
  start-page: 99455
  issue: 101
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0495
  article-title: Combined pretreatment of lignocellulosic biomass by solid base (calcined Na2SiO3) and ionic liquid for enhanced enzymatic saccharification
  publication-title: RSC Adv.
  doi: 10.1039/C6RA22055J
– volume: 262
  start-page: 310
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0165
  article-title: Emerging technologies for the pretreatment of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.04.099
– volume: 9
  start-page: 675
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0245
  article-title: Gel-Type and macroporous cross-linked copolymers functionalized with acid groups for the hydrolysis of wheat straw pretreated with an ionic liquid
  publication-title: Catalysts
  doi: 10.3390/catal9080675
– start-page: 6
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0525
  article-title: Three way comparison of hydrophilic ionic liquid, hydrophobic ionic liquid, and dilute acid for the pretreatment of herbaceous and woody biomass
  publication-title: Front. Energy. Res.
– volume: 114
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0135
  article-title: Pretreatment of lignocellulosic biomass with low-cost ionic liquids
  publication-title: J. Vis. Exp.
– volume: 9
  start-page: 321
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0280
  article-title: Comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis
  publication-title: Biomass Convers. Bior.
  doi: 10.1007/s13399-018-0364-0
– volume: 130
  start-page: 420
  year: 2015
  ident: 10.1016/j.biortech.2020.123003_b0575
  article-title: Advances in catalytic production of bio-based polyester monomer 2, 5 furan dicarboxylic acid derived from lignocellulosic biomass
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.05.028
– volume: 271
  start-page: 306
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0045
  article-title: Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.122
– volume: 114B
  start-page: 1427
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0105
  article-title: Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.06.050
– volume: 110
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0115
  article-title: Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.02.008
– volume: 294
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0070
  article-title: One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: a promising approach affecting the morphology and quality of lignin of switchgrass and poplar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122214
– volume: 19
  start-page: 207
  year: 2013
  ident: 10.1016/j.biortech.2020.123003_b0340
  article-title: Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2012.08.003
– volume: 267
  start-page: 560
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0365
  article-title: Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.070
– start-page: 1155
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0440
  article-title: Improving cellulose structure for bioconversion: sugarcane bagasse pretreatment accompanied by lignin recovery and ionic liquid recycle
  publication-title: Adv. Sci. Technol. Innov.
  doi: 10.1007/978-3-319-70548-4_333
– volume: 9
  start-page: 160
  year: 2016
  ident: 10.1016/j.biortech.2020.123003_b0385
  article-title: Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0561-7
– volume: 115
  year: 2019
  ident: 10.1016/j.biortech.2020.123003_b0360
  article-title: Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109353
– volume: 159
  start-page: 287
  year: 2017
  ident: 10.1016/j.biortech.2020.123003_b0295
  article-title: Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.01.029
– volume: 6
  start-page: 548
  year: 2018
  ident: 10.1016/j.biortech.2020.123003_b0460
  article-title: Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00548
SSID ssj0003172
Score 2.676143
SecondaryResourceType review_article
Snippet [Display omitted] •Advancements in Ionic Liquid usage for biomass pretreatment as a green alternative.•Comparative analysis of Ionic Liquid pretreatment with...
Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123003
SubjectTerms Biofuels
Biomass
Biorefinery
biorefining
biotransformation
cations
economies of scale
Enzymatic hydrolysis
fractionation
green chemistry
Hydrolysis
Ionic Liquids
Lignin
lignocellulose
Lignocellulosic biomass
Pretreatment
toxicity
volatile organic compounds
Title Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion
URI https://dx.doi.org/10.1016/j.biortech.2020.123003
https://www.ncbi.nlm.nih.gov/pubmed/32081446
https://www.proquest.com/docview/2377344854
https://www.proquest.com/docview/2439396293
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAcUFseXQqVkbimm40TOzmuVlRbEL3ASr1ZsT0pqVZJKbtXfjszTlyKEPTQY_xILI8z8439eQbgvUsbJO8YE59al-Teq6T0WCVN1ZA1UFjVYSv787larvKPF8XFDiziXRimVY66f9DpQVuPJdNxNqfXbTv9wuC7LMjEpHz2lvGF3zzXvMpPfv6meZB9DCcJ1Djh1nduCV-d2JYZreFQIuNACzKNybP-NlD_AqDBEJ3uwbMRQYr5MMh92MHuAJ7OL2_GKBp4AI8XMY0b1dyJOPgcVmccCles2-_b1gs2YV4w5TDSzUXfUOVl1_OG_nbdkwwF39AniC0I3grsvgXKABcGwnrYbXsBq9MPXxfLZMyskDhSjJtEWV04VWhnC182in5rW2lfoqoRMfOVtVSSO6ulVWmFmpQQuXW1cvnMydSV8iXsdn2HhyCw0XlRalnPGuqBqa05T2FKr5nRR0o9gSJOp3Fj2HHOfrE2kV92ZaIYDIvBDGKYwPS23_UQeOPeHlWUlvljCRmyDvf2fRfFa0g-PMd1h_32h8mk1pJ82CL_TxtCdbJShJwm8GpYG7djlhmBLvK5Xz9gdEfwhJ8GnuUb2N3cbPEtYaGNPQ6L_Rgezc8-Lc9_AbRnCiE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5BeYA9TIxtrBvbPGmvWdM4tpPHqhpqB_RlVOLNin8EgqqEsfb_310SV0zT4IFXO5dYPufuO_vzHcBXG5ceo2MfudjYKHVORpnzeVTmJXoD6fOi3cq-WMjZMv1xJa52YBruwhCtsrf9nU1vrXXfMupnc3RXVaOfBL4zgS4mprO3JNuFPcpOJQawN5mfzRZbg4wusj1MwOcjEnhwUfj2m6mI1NqeSySUa4HHoX7Wvz7qfxi09UWnh_CyB5Fs0o3zFez4-gheTK7v-0Qa_gj2p6GSG_Y8SDr4GpZzyobLVtWvTeUYeTHHiHUYGOesKbHzum5oT3-zalCNjC7pI8pmiHCZr29a1gA1tpz1dsPtDSxPv19OZ1FfXCGyaBvXkTRKWCmUNcJlpcQ_2-TKZV4W3vvE5cZgS2qN4kbGuVdohzCyK6RNx5bHNuNvYVA3tX8HzJcqFZnixbhECR-bgkoVxviaMX4kU0MQYTq17TOPUwGMlQ4Us1sd1KBJDbpTwxBGW7m7LvfGkxJ50Jb-axVpdBBPyn4J6tWoH5rjovbN5rdOuFIcw1iRPvIMAjueSwRPQzju1sZ2zDxB3IVh9_tnjO4z7M8uL871-Xxx9gEOqKejXZ7AYH2_8R8RGq3Np37p_wHH2wzS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+liquid+based+pretreatment+of+lignocellulosic+biomass+for+enhanced+bioconversion&rft.jtitle=Bioresource+technology&rft.au=Usmani%2C+Zeba&rft.au=Sharma%2C+Minaxi&rft.au=Gupta%2C+Pratishtha&rft.au=Karpichev%2C+Yevgen&rft.date=2020-05-01&rft.issn=0960-8524&rft.volume=304&rft.spage=123003&rft_id=info:doi/10.1016%2Fj.biortech.2020.123003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_123003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon