Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation

[Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture wa...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 198; pp. 682 - 690
Main Authors Laothanachareon, Thanaporn, Bunterngsook, Benjarat, Suwannarangsee, Surisa, Eurwilaichitr, Lily, Champreda, Verawat
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture was firstly reported.•The quaternary mixture showed 214% glc obtained/FPU compared to ACR alone. Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.
AbstractList Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.
[Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture was firstly reported.•The quaternary mixture showed 214% glc obtained/FPU compared to ACR alone. Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.
Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.
Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.
Author Laothanachareon, Thanaporn
Champreda, Verawat
Eurwilaichitr, Lily
Suwannarangsee, Surisa
Bunterngsook, Benjarat
Author_xml – sequence: 1
  givenname: Thanaporn
  surname: Laothanachareon
  fullname: Laothanachareon, Thanaporn
– sequence: 2
  givenname: Benjarat
  surname: Bunterngsook
  fullname: Bunterngsook, Benjarat
– sequence: 3
  givenname: Surisa
  surname: Suwannarangsee
  fullname: Suwannarangsee, Surisa
– sequence: 4
  givenname: Lily
  surname: Eurwilaichitr
  fullname: Eurwilaichitr, Lily
– sequence: 5
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
  email: verawat@biotec.or.th
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26433794$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFv1D5yCVhHCd2InEAVXxJlThQzpbjTLpeJfZie6nCn-Av4_26cNmTpZn3eWc87w25ct4hIXcMSgZMvNuUvfUhoVmXFbCmhK6Ehr8gK9ZKXlSdFFdkBZ2Aom2q-prcxLgBAM5k9YpcV6LmXHb1ivz9sTgMTzYma6g2yXpH_UgDGj_31mmXctVgjD4sdI2zNThNu8lPywFwA91iptypgO7PMmOkydPHYM3aDxhmne0woqVHVkekeUpuI40p6Gc64FPQg94Pf01ejnqK-Ob03pKfnz893n8tHr5_-Xb_8aEwtZCpaMZaVCP0QncoJWNj07SN4E3PWiZ1A9WIvWyN6VpEU41s5APmBgw947IFzm_J26PvNvhfO4xJzTbu99MO_S4q1taC1x1Ad1kquRAtyIPr3Um662cc1DbYWYdFne-dBe-PAhN8jAFHZWw6fDwfwk6KgdrHqzbqHK_ax6ugUznejIv_8POEi-CHI4j5pr8tBhWNRWdwsDnqpAZvL1n8Aw3Cxwo
CitedBy_id crossref_primary_10_1016_j_jbiosc_2017_11_001
crossref_primary_10_1111_jam_13923
crossref_primary_10_1016_j_eja_2023_126971
crossref_primary_10_1016_j_enzmictec_2019_109442
crossref_primary_10_1016_j_procbio_2020_12_012
crossref_primary_10_1016_j_ijbiomac_2017_11_131
crossref_primary_10_1016_j_enzmictec_2019_109447
crossref_primary_10_3390_catal12040437
crossref_primary_10_1016_j_biortech_2020_124217
crossref_primary_10_3390_ijms241511997
crossref_primary_10_1016_j_biortech_2022_127803
crossref_primary_10_1016_j_funbio_2019_01_007
crossref_primary_10_1007_s13399_016_0226_6
crossref_primary_10_1016_j_jtice_2016_08_016
crossref_primary_10_1186_s12934_016_0507_6
crossref_primary_10_1007_s00436_023_07790_x
crossref_primary_10_1016_j_procbio_2019_01_008
crossref_primary_10_3390_jof9050567
crossref_primary_10_3389_finmi_2023_1202269
crossref_primary_10_1007_s00449_024_03085_2
crossref_primary_10_3389_fmicb_2023_1230738
crossref_primary_10_1186_s12896_016_0312_7
crossref_primary_10_1016_j_biortech_2016_06_094
crossref_primary_10_1016_j_cej_2018_11_023
crossref_primary_10_1016_j_ijbiomac_2024_131968
crossref_primary_10_1016_j_biortech_2016_04_025
crossref_primary_10_1016_j_jbiosc_2019_05_007
crossref_primary_10_1016_j_ijbiomac_2022_10_154
crossref_primary_10_1016_j_procbio_2016_09_010
crossref_primary_10_3390_biom9120753
crossref_primary_10_1016_j_nbt_2022_05_004
crossref_primary_10_1016_j_biortech_2020_123019
crossref_primary_10_1016_j_biombioe_2020_105896
crossref_primary_10_1186_s13068_021_02007_8
crossref_primary_10_1016_j_biotechadv_2017_06_005
crossref_primary_10_1016_j_ibiod_2017_03_014
crossref_primary_10_1007_s00253_016_7555_z
crossref_primary_10_1007_s10570_019_02323_1
crossref_primary_10_1016_j_ijbiomac_2023_127650
crossref_primary_10_1039_C7RA08472B
crossref_primary_10_1016_j_jbiosc_2017_10_014
crossref_primary_10_1038_s41598_024_70144_9
crossref_primary_10_3389_fmicb_2018_00233
crossref_primary_10_1016_j_jtice_2018_04_029
crossref_primary_10_1016_j_tibs_2016_04_006
Cites_doi 10.1016/j.biortech.2015.03.117
10.1002/jsfa.5771
10.1042/bj3190705
10.4155/bfs.11.150
10.1155/2013/435154
10.1016/j.biortech.2007.10.051
10.1146/annurev.micro.57.030502.091022
10.1016/j.fgb.2014.07.003
10.1016/j.biortech.2009.10.056
10.1016/j.funbio.2011.07.005
10.1126/science.1137016
10.1016/j.pep.2005.09.013
10.1016/S0168-1656(97)00096-5
10.1023/A:1010662911148
10.1016/j.enconman.2010.01.015
10.5897/AJB2003.000-1115
10.1128/AEM.05700-11
10.1016/j.biortech.2012.11.064
10.1007/s12033-011-9396-4
10.1016/j.bej.2010.05.003
10.1002/bit.20906
10.1016/j.enzmictec.2013.07.008
10.1186/1754-6834-4-36
10.1016/0076-6879(55)01022-7
10.1038/ncomms6961
10.1021/ac60147a030
10.1042/bj3220845
10.1016/j.biombioe.2005.11.015
10.1016/j.biortech.2013.12.113
10.1016/j.biortech.2011.06.059
10.1016/j.biortech.2010.01.081
10.1038/nature04332
10.1016/j.biortech.2014.11.042
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2015.09.053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 690
ExternalDocumentID 26433794
10_1016_j_biortech_2015_09_053
S0960852415013322
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-5f462f0b6a9e7711f5585635b1817a502feb78cc98eec2f1f3de17a0db1378033
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 22:25:44 EDT 2025
Fri Jul 11 00:00:09 EDT 2025
Thu Apr 03 07:05:45 EDT 2025
Tue Jul 01 02:06:34 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
Fri Feb 23 02:16:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Accessory enzymes
Lignocellulose
Aspergillus aculeatus
Cellulase
Mixture design
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-5f462f0b6a9e7711f5585635b1817a502feb78cc98eec2f1f3de17a0db1378033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26433794
PQID 1736680703
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1846349009
proquest_miscellaneous_1736680703
pubmed_primary_26433794
crossref_citationtrail_10_1016_j_biortech_2015_09_053
crossref_primary_10_1016_j_biortech_2015_09_053
elsevier_sciencedirect_doi_10_1016_j_biortech_2015_09_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
2015-12-00
2015-Dec
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bayer, Belaich, Shoham, Lamed (b0005) 2004; 58
Christgau, Kofod, Halkier, Andersen, Hockauf, Dörreich, Dalbǿge, Kauppinen (b0040) 1996; 319
Jiang, Chen, Yin, Yang (b0095) 2013; 93
Kertez (b0105) 1955; 1
Kostylev, Wilson (b0110) 2012; 3
Zhang, Pakarinen, Viikari (b0170) 2013; 129
Martos, Zubreski, Garro, Hours (b0135) 2013; 2013
Hu, Arantes, Saddler (b0090) 2011; 4
Lee, Wi, Lee, Cho, Chung, Bae (b0115) 2011; 49
Willats, McCartney, Mackie, Knox (b0165) 2001; 47
Fengxia, Mei, Zhaoxin, Xiaomei, Haizhen, Yi (b0060) 2008; 99
Biely, Vrsanska, Tenkanen, Kluepfel (b0015) 1997; 57
Gao, Chundawat, Krishnan, Balan, Dale (b0065) 2010; 101
Miller (b0140) 1959; 31
Glinka, Liao (b0070) 2011; 115
Zhang, Lynd (b0175) 2006; 94
Gottschalk, Oliveira, Bon (b0075) 2010; 51
Edwards, Henriksen, Yomano, Gardner, Sharma, Ingram, Peterson (b0055) 2011; 77
Sluiter, A., Crocker, D., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618.
Li, Zhou, Liu, Xiong, Lin, Xiao, Gong, Liu (b0125) 2014; 155
Himmel, Ding, Johnson, Adney, Nimlos, Brady, Foust (b0080) 2007; 315
Marcolongo, Ionata, La Cara, Amore, Giacobbe, Pepe, Faraco (b0130) 2014; 72
Bussamra, Freitas, da Costa (b0025) 2015; 187
Karimi, Kheradmandinia, Taherzadeh (b0100) 2006; 30
Vincent, Shareck, Dupont, Morosoli, Kluepfel (b0160) 1997; 322
Bunterngsook, Eurwilaichitr, Thamchaipenet, Champreda (b0020) 2015; 176
Cherubini (b0035) 2010; 51
Howard, Abotsi, Jansen van Rensburg, Howard (b0085) 2003; 2
Cornell (b0045) 2002
Nierman, Pain, Anderson, Wortman, Kim, Arroyo (b0145) 2005; 438
Beukes, Pletschke (b0010) 2010; 101
Leggio, Simmons, Poulsen, Frandsen, Hemsworth, Stringer, Freiesleben, Tovborg, Johansen, De Maria, Harris, Soong, Dupree, Tryfona, Lenfant, Henrissat, Davies, Walton (b0120) 2015; 6
Várnai, Huikko, Pere, Siika-Aho, Viikari (b0155) 2011; 102
Chantasingh, Champreda, Kanokratana, Eurwilaichitr (b0030) 2006; 46
De La Mare, Guais, Bonnin, Weber, Francois (b0050) 2013; 53
Hu (10.1016/j.biortech.2015.09.053_b0090) 2011; 4
Zhang (10.1016/j.biortech.2015.09.053_b0175) 2006; 94
Gottschalk (10.1016/j.biortech.2015.09.053_b0075) 2010; 51
Jiang (10.1016/j.biortech.2015.09.053_b0095) 2013; 93
Fengxia (10.1016/j.biortech.2015.09.053_b0060) 2008; 99
Lee (10.1016/j.biortech.2015.09.053_b0115) 2011; 49
Gao (10.1016/j.biortech.2015.09.053_b0065) 2010; 101
Kostylev (10.1016/j.biortech.2015.09.053_b0110) 2012; 3
Marcolongo (10.1016/j.biortech.2015.09.053_b0130) 2014; 72
Li (10.1016/j.biortech.2015.09.053_b0125) 2014; 155
Himmel (10.1016/j.biortech.2015.09.053_b0080) 2007; 315
Zhang (10.1016/j.biortech.2015.09.053_b0170) 2013; 129
Karimi (10.1016/j.biortech.2015.09.053_b0100) 2006; 30
Kertez (10.1016/j.biortech.2015.09.053_b0105) 1955; 1
Bussamra (10.1016/j.biortech.2015.09.053_b0025) 2015; 187
Howard (10.1016/j.biortech.2015.09.053_b0085) 2003; 2
Miller (10.1016/j.biortech.2015.09.053_b0140) 1959; 31
Martos (10.1016/j.biortech.2015.09.053_b0135) 2013; 2013
De La Mare (10.1016/j.biortech.2015.09.053_b0050) 2013; 53
Biely (10.1016/j.biortech.2015.09.053_b0015) 1997; 57
Glinka (10.1016/j.biortech.2015.09.053_b0070) 2011; 115
Bayer (10.1016/j.biortech.2015.09.053_b0005) 2004; 58
Edwards (10.1016/j.biortech.2015.09.053_b0055) 2011; 77
Várnai (10.1016/j.biortech.2015.09.053_b0155) 2011; 102
Beukes (10.1016/j.biortech.2015.09.053_b0010) 2010; 101
Vincent (10.1016/j.biortech.2015.09.053_b0160) 1997; 322
Nierman (10.1016/j.biortech.2015.09.053_b0145) 2005; 438
Cornell (10.1016/j.biortech.2015.09.053_b0045) 2002
Chantasingh (10.1016/j.biortech.2015.09.053_b0030) 2006; 46
Bunterngsook (10.1016/j.biortech.2015.09.053_b0020) 2015; 176
Leggio (10.1016/j.biortech.2015.09.053_b0120) 2015; 6
Willats (10.1016/j.biortech.2015.09.053_b0165) 2001; 47
Christgau (10.1016/j.biortech.2015.09.053_b0040) 1996; 319
Cherubini (10.1016/j.biortech.2015.09.053_b0035) 2010; 51
10.1016/j.biortech.2015.09.053_b0150
References_xml – volume: 30
  start-page: 247
  year: 2006
  end-page: 253
  ident: b0100
  article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis
  publication-title: Biomass Bioenerg.
– volume: 47
  start-page: 9
  year: 2001
  end-page: 27
  ident: b0165
  article-title: Pectin: cell biology for functional analysis
  publication-title: Plant Mol. Biol.
– volume: 101
  start-page: 2770
  year: 2010
  end-page: 2781
  ident: b0065
  article-title: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 9096
  year: 2011
  end-page: 9104
  ident: b0155
  article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood
  publication-title: Bioresour. Technol.
– volume: 94
  start-page: 888
  year: 2006
  end-page: 898
  ident: b0175
  article-title: A functionally based model for hydrolysis of cellulose by fungal cellulase
  publication-title: Biotechnol. Bioeng.
– volume: 46
  start-page: 143
  year: 2006
  end-page: 149
  ident: b0030
  article-title: Cloning, expression and characterization of a xylanase 10 from
  publication-title: Protein Expr. Purif.
– volume: 155
  start-page: 258
  year: 2014
  end-page: 265
  ident: b0125
  article-title: Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies
  publication-title: Bioresour. Technol.
– volume: 322
  start-page: 845
  year: 1997
  end-page: 852
  ident: b0160
  article-title: New α-
  publication-title: Biochem. J.
– volume: 115
  start-page: 1112
  year: 2011
  end-page: 1121
  ident: b0070
  article-title: Purification and partial characterisation of pectin methylesterase produced by
  publication-title: Fungal Biol.
– volume: 51
  start-page: 72
  year: 2010
  end-page: 78
  ident: b0075
  article-title: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by
  publication-title: Biochem. Eng. J.
– volume: 438
  start-page: 1151
  year: 2005
  end-page: 1156
  ident: b0145
  article-title: Genomic sequence of the pathogenic and allergenic filamentous fungus
  publication-title: Nature
– volume: 187
  start-page: 173
  year: 2015
  end-page: 181
  ident: b0025
  article-title: Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 36
  year: 2011
  ident: b0090
  article-title: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
  publication-title: Biotechnol. Biofuels
– volume: 53
  start-page: 351
  year: 2013
  end-page: 358
  ident: b0050
  article-title: Molecular and biochemical characterization of three GH62 α-l-arabinofuranosidases from the soil deuteromycete
  publication-title: Enzyme Microb. Technol.
– volume: 99
  start-page: 5938
  year: 2008
  end-page: 5941
  ident: b0060
  article-title: Purification and characterization of xylanase from
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 61
  year: 2012
  end-page: 70
  ident: b0110
  article-title: Synergistic interactions in cellulose hydrolysis
  publication-title: Biofuels
– volume: 31
  start-page: 426
  year: 1959
  end-page: 428
  ident: b0140
  article-title: Use of dinitrosalicylic acid reagent for determination of reducin sugar
  publication-title: Anal. Chem.
– volume: 176
  start-page: 129
  year: 2015
  end-page: 135
  ident: b0020
  article-title: Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 602
  year: 2003
  end-page: 619
  ident: b0085
  article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production
  publication-title: Afr. J. Biotechnol.
– volume: 101
  start-page: 4472
  year: 2010
  end-page: 4478
  ident: b0010
  article-title: Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 5184
  year: 2011
  end-page: 5191
  ident: b0055
  article-title: Addition of genes for cellobiase and pectinolytic activity in
  publication-title: Appl. Environ. Microbiol.
– year: 2002
  ident: b0045
  article-title: Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data
– volume: 57
  start-page: 151
  year: 1997
  end-page: 166
  ident: b0015
  article-title: Endo-β-1-4-xylanase families: differences in catalytic properties
  publication-title: J. Biotechnol.
– volume: 51
  start-page: 1412
  year: 2010
  end-page: 1421
  ident: b0035
  article-title: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals
  publication-title: Energ. Convers. Manage.
– volume: 49
  start-page: 229
  year: 2011
  end-page: 239
  ident: b0115
  article-title: Characterization of a new α-
  publication-title: Mol. Biotechnol.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  ident: b0135
  article-title: Production of pectinolytic enzymes by the yeast
  publication-title: Biotechnol. Res. Int.
– volume: 319
  start-page: 705
  year: 1996
  end-page: 712
  ident: b0040
  article-title: Pectin methyl esterase from
  publication-title: Biochem. J.
– volume: 129
  start-page: 302
  year: 2013
  end-page: 307
  ident: b0170
  article-title: Synergy between cellulases and pectinases in the hydrolysis of hemp
  publication-title: Bioresour. Technol.
– volume: 72
  start-page: 162
  year: 2014
  end-page: 167
  ident: b0130
  article-title: The effect of
  publication-title: Fungal Genet. Biol.
– volume: 6
  start-page: 5961
  year: 2015
  ident: b0120
  article-title: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase
  publication-title: Nat. Commun.
– volume: 93
  start-page: 375
  year: 2013
  end-page: 381
  ident: b0095
  article-title: Constitutive expression, purification and characterisation of pectin methylesterase from
  publication-title: J. Sci. Food Agric.
– volume: 1
  start-page: 158
  year: 1955
  end-page: 166
  ident: b0105
  article-title: Pectic enzymes
  publication-title: Methods Enzymol.
– reference: Sluiter, A., Crocker, D., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618.
– volume: 58
  start-page: 521
  year: 2004
  end-page: 554
  ident: b0005
  article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
  publication-title: Annu. Rev. Microbiol.
– volume: 315
  start-page: 804
  year: 2007
  end-page: 807
  ident: b0080
  article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production
  publication-title: Science
– volume: 187
  start-page: 173
  year: 2015
  ident: 10.1016/j.biortech.2015.09.053_b0025
  article-title: Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.117
– volume: 93
  start-page: 375
  year: 2013
  ident: 10.1016/j.biortech.2015.09.053_b0095
  article-title: Constitutive expression, purification and characterisation of pectin methylesterase from Aspergillus niger in Pichia pastoris for potential application in the fruit juice industry
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.5771
– volume: 319
  start-page: 705
  year: 1996
  ident: 10.1016/j.biortech.2015.09.053_b0040
  article-title: Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme
  publication-title: Biochem. J.
  doi: 10.1042/bj3190705
– volume: 3
  start-page: 61
  year: 2012
  ident: 10.1016/j.biortech.2015.09.053_b0110
  article-title: Synergistic interactions in cellulose hydrolysis
  publication-title: Biofuels
  doi: 10.4155/bfs.11.150
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.biortech.2015.09.053_b0135
  article-title: Production of pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels
  publication-title: Biotechnol. Res. Int.
  doi: 10.1155/2013/435154
– volume: 99
  start-page: 5938
  year: 2008
  ident: 10.1016/j.biortech.2015.09.053_b0060
  article-title: Purification and characterization of xylanase from Aspergillus ficuum AF-98
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.10.051
– volume: 58
  start-page: 521
  year: 2004
  ident: 10.1016/j.biortech.2015.09.053_b0005
  article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.091022
– volume: 72
  start-page: 162
  year: 2014
  ident: 10.1016/j.biortech.2015.09.053_b0130
  article-title: The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2014.07.003
– volume: 101
  start-page: 2770
  year: 2010
  ident: 10.1016/j.biortech.2015.09.053_b0065
  article-title: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.056
– volume: 115
  start-page: 1112
  year: 2011
  ident: 10.1016/j.biortech.2015.09.053_b0070
  article-title: Purification and partial characterisation of pectin methylesterase produced by Fusarium asiaticum
  publication-title: Fungal Biol.
  doi: 10.1016/j.funbio.2011.07.005
– volume: 315
  start-page: 804
  year: 2007
  ident: 10.1016/j.biortech.2015.09.053_b0080
  article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production
  publication-title: Science
  doi: 10.1126/science.1137016
– volume: 46
  start-page: 143
  year: 2006
  ident: 10.1016/j.biortech.2015.09.053_b0030
  article-title: Cloning, expression and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2005.09.013
– volume: 57
  start-page: 151
  year: 1997
  ident: 10.1016/j.biortech.2015.09.053_b0015
  article-title: Endo-β-1-4-xylanase families: differences in catalytic properties
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(97)00096-5
– volume: 47
  start-page: 9
  year: 2001
  ident: 10.1016/j.biortech.2015.09.053_b0165
  article-title: Pectin: cell biology for functional analysis
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1010662911148
– volume: 51
  start-page: 1412
  year: 2010
  ident: 10.1016/j.biortech.2015.09.053_b0035
  article-title: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2010.01.015
– volume: 2
  start-page: 602
  year: 2003
  ident: 10.1016/j.biortech.2015.09.053_b0085
  article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB2003.000-1115
– volume: 77
  start-page: 5184
  year: 2011
  ident: 10.1016/j.biortech.2015.09.053_b0055
  article-title: Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.05700-11
– volume: 129
  start-page: 302
  year: 2013
  ident: 10.1016/j.biortech.2015.09.053_b0170
  article-title: Synergy between cellulases and pectinases in the hydrolysis of hemp
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.064
– volume: 49
  start-page: 229
  year: 2011
  ident: 10.1016/j.biortech.2015.09.053_b0115
  article-title: Characterization of a new α-l-arabinofuranosidase from Penicillium sp. LYG 0704, and their application in lignocelluloses degradation
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-011-9396-4
– volume: 51
  start-page: 72
  year: 2010
  ident: 10.1016/j.biortech.2015.09.053_b0075
  article-title: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2010.05.003
– volume: 94
  start-page: 888
  year: 2006
  ident: 10.1016/j.biortech.2015.09.053_b0175
  article-title: A functionally based model for hydrolysis of cellulose by fungal cellulase
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20906
– volume: 53
  start-page: 351
  year: 2013
  ident: 10.1016/j.biortech.2015.09.053_b0050
  article-title: Molecular and biochemical characterization of three GH62 α-l-arabinofuranosidases from the soil deuteromycete Penicillium funiculosum
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.07.008
– volume: 4
  start-page: 36
  year: 2011
  ident: 10.1016/j.biortech.2015.09.053_b0090
  article-title: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-4-36
– volume: 1
  start-page: 158
  year: 1955
  ident: 10.1016/j.biortech.2015.09.053_b0105
  article-title: Pectic enzymes
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(55)01022-7
– volume: 6
  start-page: 5961
  year: 2015
  ident: 10.1016/j.biortech.2015.09.053_b0120
  article-title: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6961
– volume: 31
  start-page: 426
  year: 1959
  ident: 10.1016/j.biortech.2015.09.053_b0140
  article-title: Use of dinitrosalicylic acid reagent for determination of reducin sugar
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– ident: 10.1016/j.biortech.2015.09.053_b0150
– volume: 322
  start-page: 845
  year: 1997
  ident: 10.1016/j.biortech.2015.09.053_b0160
  article-title: New α-l-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme
  publication-title: Biochem. J.
  doi: 10.1042/bj3220845
– volume: 30
  start-page: 247
  year: 2006
  ident: 10.1016/j.biortech.2015.09.053_b0100
  article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2005.11.015
– volume: 155
  start-page: 258
  year: 2014
  ident: 10.1016/j.biortech.2015.09.053_b0125
  article-title: Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.113
– year: 2002
  ident: 10.1016/j.biortech.2015.09.053_b0045
– volume: 102
  start-page: 9096
  year: 2011
  ident: 10.1016/j.biortech.2015.09.053_b0155
  article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.059
– volume: 101
  start-page: 4472
  year: 2010
  ident: 10.1016/j.biortech.2015.09.053_b0010
  article-title: Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.081
– volume: 438
  start-page: 1151
  year: 2005
  ident: 10.1016/j.biortech.2015.09.053_b0145
  article-title: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus
  publication-title: Nature
  doi: 10.1038/nature04332
– volume: 176
  start-page: 129
  year: 2015
  ident: 10.1016/j.biortech.2015.09.053_b0020
  article-title: Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.042
SSID ssj0003172
Score 2.3950763
Snippet [Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR...
Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 682
SubjectTerms Accessory enzymes
alpha-N-arabinofuranosidase
Aspergillus - enzymology
Aspergillus aculeatus
Carboxylic Ester Hydrolases - genetics
Carboxylic Ester Hydrolases - metabolism
Cellulase
Cellulase - metabolism
Cellulases - metabolism
Endo-1,4-beta Xylanases - genetics
Endo-1,4-beta Xylanases - metabolism
endo-1,4-beta-glucanase
endo-1,4-beta-xylanase
Enzymes - genetics
Enzymes - metabolism
glucose
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Hydrolysis
Komagataella pastoris
Lignin - chemistry
Lignin - metabolism
Lignocellulose
Mixture design
Oryza - metabolism
pectinesterase
Pichia - genetics
Pichia - metabolism
Plant Shoots - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
rice straw
synergism
Trichoderma - enzymology
Trichoderma reesei
Title Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation
URI https://dx.doi.org/10.1016/j.biortech.2015.09.053
https://www.ncbi.nlm.nih.gov/pubmed/26433794
https://www.proquest.com/docview/1736680703
https://www.proquest.com/docview/1846349009
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONAeKkofbEuRkXoNm6zjOD6uVqBtK3EBJG5WHuN2UTZB-1C1PfQv9C93xkl4HCiHHuN4EiszmfkSz3wD8Fkbh6Epi6BMlA5iF6oglagDxxnvCaa8VcfZFufJ9Cr-eq2ut2DS18JwWmXn-1uf7r11NzLsnubwdjYbXjD4ThVHIIIxZJdcwR5rtvKT3_dpHhQf_U4CTQ549oMq4ZuTfMYZrX5TIlKe71TJpwLUUwDUB6KzPXjVIUgxbhf5Graw3oeX4--LjkUD92F30rdxozMPGAffwJ-LDRf7eXZm0dY0iMYJ_iye5z4phka5cqBZbITnEsCqWldNtfECdSl8ZWbdDWD9azPHpVg14pLu_4Mbq80zuhwucSZaWQqTgu7C5EWC_6v8FCUTVLS9nN7C1dnp5WQadD0ZgoJc6ipQLk5GLsyTzKDWUeQUfW8QaMkJKehMhSOHuU6LwqSIxchFTpZIJ8Iyj6ROQynfwXbd1HgAIiojzIyWBosyLmLuhpUwIZgZKVoDZgNQvSJs0RGWc9-MyvaZaTe2V6BlBdrQWFLgAIZ3crctZcezEqbXs31kfJbiyrOyx71hWNIsP9msxma9tJGWSZKyS_3HHIJ_MjYEdAfwvrWquzUTVJWS3OWH_1jdR3jBR23-zSFsrxZr_EQoapUf-dfkCHbGX75Nz_8CrJMgHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHGgPVUtf26crtceweTmODz0gWrQUyoVF4ubmMaaLsgnah1A49C_0x_AHmXEcSg-UQ8XVziQjjzMzib_5hrGPUhnwVVl4ZSKkFxtfeGkE0jOEeE8gpaM6QlscJKOj-NuxOF5hl30tDMEqne_vfLr11m5k6FZzeDaZDA8p-U4FRSBMY3BfOmTlHrTn-N02_7z7BY38KQx3vo63R55rLeAV6BkWnjBxEho_TzIFUgaBEZg2Y-zNMeDJTPihgVymRaFSgCI0gYlKwAm_zINIpj79BUW_vxaju6C2CZu__uBKMCDbowvUziP1bpQln27mE4LQ2lOQQFiCVRHdFhFvy3ht5Nt5zB65lJVvdavyhK1AvcEebp3MHG0HbLD17b5vHM7coDh8yn4ftlRdaOmgeVdEwRvD6Tt8mlsUDo5SqUIza7klL4CqWlZN1VqBuuS2FLR2A1BftFOY80XDx_j8n9TJbZrh7WAOE97JYlzm-BRiS-L0I-ecl8SI0TWPesaO7sVSz9lq3dTwkvGgDCBTMlJQlHERU_uthBjIVChQB8gGTPSG0IVjSKdGHZXuoXCnujegJgNqX2k04IANr-XOOo6QOyVUb2f9127XGMjulP3QbwyNlqWVzWpolnMdyChJUvLh_7gG880oVphZD9iLbldd64y5cRShf371H9q9Z-uj8fd9vb97sPeaPaCZDvzzhq0uZkt4iyncIn9nXxnOftz3O3oF2hpbOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+action+of+recombinant+accessory+hemicellulolytic+and+pectinolytic+enzymes+to+Trichoderma+reesei+cellulase+on+rice+straw+degradation&rft.jtitle=Bioresource+technology&rft.au=Laothanachareon%2C+Thanaporn&rft.au=Bunterngsook%2C+Benjarat&rft.au=Suwannarangsee%2C+Surisa&rft.au=Eurwilaichitr%2C+Lily&rft.date=2015-12-01&rft.issn=0960-8524&rft.volume=198&rft.spage=682&rft.epage=690&rft_id=info:doi/10.1016%2Fj.biortech.2015.09.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2015_09_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon