Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation
[Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture wa...
Saved in:
Published in | Bioresource technology Vol. 198; pp. 682 - 690 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture was firstly reported.•The quaternary mixture showed 214% glc obtained/FPU compared to ACR alone.
Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. |
---|---|
AbstractList | Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. [Display omitted] •Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR cellulase was found.•Removal of ara side chain by arabinofuranosidase enhanced cellulase activity.•Synergy of pectin esterase to cellulase mixture was firstly reported.•The quaternary mixture showed 214% glc obtained/FPU compared to ACR alone. Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry.Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173gglc/FPU, higher than the binary ACR:XYL mixture (0.122gglc/FPU) and ACR alone (0.081gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. |
Author | Laothanachareon, Thanaporn Champreda, Verawat Eurwilaichitr, Lily Suwannarangsee, Surisa Bunterngsook, Benjarat |
Author_xml | – sequence: 1 givenname: Thanaporn surname: Laothanachareon fullname: Laothanachareon, Thanaporn – sequence: 2 givenname: Benjarat surname: Bunterngsook fullname: Bunterngsook, Benjarat – sequence: 3 givenname: Surisa surname: Suwannarangsee fullname: Suwannarangsee, Surisa – sequence: 4 givenname: Lily surname: Eurwilaichitr fullname: Eurwilaichitr, Lily – sequence: 5 givenname: Verawat surname: Champreda fullname: Champreda, Verawat email: verawat@biotec.or.th |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26433794$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFv1D5yCVhHCd2InEAVXxJlThQzpbjTLpeJfZie6nCn-Av4_26cNmTpZn3eWc87w25ct4hIXcMSgZMvNuUvfUhoVmXFbCmhK6Ehr8gK9ZKXlSdFFdkBZ2Aom2q-prcxLgBAM5k9YpcV6LmXHb1ivz9sTgMTzYma6g2yXpH_UgDGj_31mmXctVgjD4sdI2zNThNu8lPywFwA91iptypgO7PMmOkydPHYM3aDxhmne0woqVHVkekeUpuI40p6Gc64FPQg94Pf01ejnqK-Ob03pKfnz893n8tHr5_-Xb_8aEwtZCpaMZaVCP0QncoJWNj07SN4E3PWiZ1A9WIvWyN6VpEU41s5APmBgw947IFzm_J26PvNvhfO4xJzTbu99MO_S4q1taC1x1Ad1kquRAtyIPr3Um662cc1DbYWYdFne-dBe-PAhN8jAFHZWw6fDwfwk6KgdrHqzbqHK_ax6ugUznejIv_8POEi-CHI4j5pr8tBhWNRWdwsDnqpAZvL1n8Aw3Cxwo |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2017_11_001 crossref_primary_10_1111_jam_13923 crossref_primary_10_1016_j_eja_2023_126971 crossref_primary_10_1016_j_enzmictec_2019_109442 crossref_primary_10_1016_j_procbio_2020_12_012 crossref_primary_10_1016_j_ijbiomac_2017_11_131 crossref_primary_10_1016_j_enzmictec_2019_109447 crossref_primary_10_3390_catal12040437 crossref_primary_10_1016_j_biortech_2020_124217 crossref_primary_10_3390_ijms241511997 crossref_primary_10_1016_j_biortech_2022_127803 crossref_primary_10_1016_j_funbio_2019_01_007 crossref_primary_10_1007_s13399_016_0226_6 crossref_primary_10_1016_j_jtice_2016_08_016 crossref_primary_10_1186_s12934_016_0507_6 crossref_primary_10_1007_s00436_023_07790_x crossref_primary_10_1016_j_procbio_2019_01_008 crossref_primary_10_3390_jof9050567 crossref_primary_10_3389_finmi_2023_1202269 crossref_primary_10_1007_s00449_024_03085_2 crossref_primary_10_3389_fmicb_2023_1230738 crossref_primary_10_1186_s12896_016_0312_7 crossref_primary_10_1016_j_biortech_2016_06_094 crossref_primary_10_1016_j_cej_2018_11_023 crossref_primary_10_1016_j_ijbiomac_2024_131968 crossref_primary_10_1016_j_biortech_2016_04_025 crossref_primary_10_1016_j_jbiosc_2019_05_007 crossref_primary_10_1016_j_ijbiomac_2022_10_154 crossref_primary_10_1016_j_procbio_2016_09_010 crossref_primary_10_3390_biom9120753 crossref_primary_10_1016_j_nbt_2022_05_004 crossref_primary_10_1016_j_biortech_2020_123019 crossref_primary_10_1016_j_biombioe_2020_105896 crossref_primary_10_1186_s13068_021_02007_8 crossref_primary_10_1016_j_biotechadv_2017_06_005 crossref_primary_10_1016_j_ibiod_2017_03_014 crossref_primary_10_1007_s00253_016_7555_z crossref_primary_10_1007_s10570_019_02323_1 crossref_primary_10_1016_j_ijbiomac_2023_127650 crossref_primary_10_1039_C7RA08472B crossref_primary_10_1016_j_jbiosc_2017_10_014 crossref_primary_10_1038_s41598_024_70144_9 crossref_primary_10_3389_fmicb_2018_00233 crossref_primary_10_1016_j_jtice_2018_04_029 crossref_primary_10_1016_j_tibs_2016_04_006 |
Cites_doi | 10.1016/j.biortech.2015.03.117 10.1002/jsfa.5771 10.1042/bj3190705 10.4155/bfs.11.150 10.1155/2013/435154 10.1016/j.biortech.2007.10.051 10.1146/annurev.micro.57.030502.091022 10.1016/j.fgb.2014.07.003 10.1016/j.biortech.2009.10.056 10.1016/j.funbio.2011.07.005 10.1126/science.1137016 10.1016/j.pep.2005.09.013 10.1016/S0168-1656(97)00096-5 10.1023/A:1010662911148 10.1016/j.enconman.2010.01.015 10.5897/AJB2003.000-1115 10.1128/AEM.05700-11 10.1016/j.biortech.2012.11.064 10.1007/s12033-011-9396-4 10.1016/j.bej.2010.05.003 10.1002/bit.20906 10.1016/j.enzmictec.2013.07.008 10.1186/1754-6834-4-36 10.1016/0076-6879(55)01022-7 10.1038/ncomms6961 10.1021/ac60147a030 10.1042/bj3220845 10.1016/j.biombioe.2005.11.015 10.1016/j.biortech.2013.12.113 10.1016/j.biortech.2011.06.059 10.1016/j.biortech.2010.01.081 10.1038/nature04332 10.1016/j.biortech.2014.11.042 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2015.09.053 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 690 |
ExternalDocumentID | 26433794 10_1016_j_biortech_2015_09_053 S0960852415013322 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-5f462f0b6a9e7711f5585635b1817a502feb78cc98eec2f1f3de17a0db1378033 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 22:25:44 EDT 2025 Fri Jul 11 00:00:09 EDT 2025 Thu Apr 03 07:05:45 EDT 2025 Tue Jul 01 02:06:34 EDT 2025 Thu Apr 24 23:13:22 EDT 2025 Fri Feb 23 02:16:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Accessory enzymes Lignocellulose Aspergillus aculeatus Cellulase Mixture design |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-5f462f0b6a9e7711f5585635b1817a502feb78cc98eec2f1f3de17a0db1378033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26433794 |
PQID | 1736680703 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1846349009 proquest_miscellaneous_1736680703 pubmed_primary_26433794 crossref_citationtrail_10_1016_j_biortech_2015_09_053 crossref_primary_10_1016_j_biortech_2015_09_053 elsevier_sciencedirect_doi_10_1016_j_biortech_2015_09_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 2015-12-00 2015-Dec 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bayer, Belaich, Shoham, Lamed (b0005) 2004; 58 Christgau, Kofod, Halkier, Andersen, Hockauf, Dörreich, Dalbǿge, Kauppinen (b0040) 1996; 319 Jiang, Chen, Yin, Yang (b0095) 2013; 93 Kertez (b0105) 1955; 1 Kostylev, Wilson (b0110) 2012; 3 Zhang, Pakarinen, Viikari (b0170) 2013; 129 Martos, Zubreski, Garro, Hours (b0135) 2013; 2013 Hu, Arantes, Saddler (b0090) 2011; 4 Lee, Wi, Lee, Cho, Chung, Bae (b0115) 2011; 49 Willats, McCartney, Mackie, Knox (b0165) 2001; 47 Fengxia, Mei, Zhaoxin, Xiaomei, Haizhen, Yi (b0060) 2008; 99 Biely, Vrsanska, Tenkanen, Kluepfel (b0015) 1997; 57 Gao, Chundawat, Krishnan, Balan, Dale (b0065) 2010; 101 Miller (b0140) 1959; 31 Glinka, Liao (b0070) 2011; 115 Zhang, Lynd (b0175) 2006; 94 Gottschalk, Oliveira, Bon (b0075) 2010; 51 Edwards, Henriksen, Yomano, Gardner, Sharma, Ingram, Peterson (b0055) 2011; 77 Sluiter, A., Crocker, D., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618. Li, Zhou, Liu, Xiong, Lin, Xiao, Gong, Liu (b0125) 2014; 155 Himmel, Ding, Johnson, Adney, Nimlos, Brady, Foust (b0080) 2007; 315 Marcolongo, Ionata, La Cara, Amore, Giacobbe, Pepe, Faraco (b0130) 2014; 72 Bussamra, Freitas, da Costa (b0025) 2015; 187 Karimi, Kheradmandinia, Taherzadeh (b0100) 2006; 30 Vincent, Shareck, Dupont, Morosoli, Kluepfel (b0160) 1997; 322 Bunterngsook, Eurwilaichitr, Thamchaipenet, Champreda (b0020) 2015; 176 Cherubini (b0035) 2010; 51 Howard, Abotsi, Jansen van Rensburg, Howard (b0085) 2003; 2 Cornell (b0045) 2002 Nierman, Pain, Anderson, Wortman, Kim, Arroyo (b0145) 2005; 438 Beukes, Pletschke (b0010) 2010; 101 Leggio, Simmons, Poulsen, Frandsen, Hemsworth, Stringer, Freiesleben, Tovborg, Johansen, De Maria, Harris, Soong, Dupree, Tryfona, Lenfant, Henrissat, Davies, Walton (b0120) 2015; 6 Várnai, Huikko, Pere, Siika-Aho, Viikari (b0155) 2011; 102 Chantasingh, Champreda, Kanokratana, Eurwilaichitr (b0030) 2006; 46 De La Mare, Guais, Bonnin, Weber, Francois (b0050) 2013; 53 Hu (10.1016/j.biortech.2015.09.053_b0090) 2011; 4 Zhang (10.1016/j.biortech.2015.09.053_b0175) 2006; 94 Gottschalk (10.1016/j.biortech.2015.09.053_b0075) 2010; 51 Jiang (10.1016/j.biortech.2015.09.053_b0095) 2013; 93 Fengxia (10.1016/j.biortech.2015.09.053_b0060) 2008; 99 Lee (10.1016/j.biortech.2015.09.053_b0115) 2011; 49 Gao (10.1016/j.biortech.2015.09.053_b0065) 2010; 101 Kostylev (10.1016/j.biortech.2015.09.053_b0110) 2012; 3 Marcolongo (10.1016/j.biortech.2015.09.053_b0130) 2014; 72 Li (10.1016/j.biortech.2015.09.053_b0125) 2014; 155 Himmel (10.1016/j.biortech.2015.09.053_b0080) 2007; 315 Zhang (10.1016/j.biortech.2015.09.053_b0170) 2013; 129 Karimi (10.1016/j.biortech.2015.09.053_b0100) 2006; 30 Kertez (10.1016/j.biortech.2015.09.053_b0105) 1955; 1 Bussamra (10.1016/j.biortech.2015.09.053_b0025) 2015; 187 Howard (10.1016/j.biortech.2015.09.053_b0085) 2003; 2 Miller (10.1016/j.biortech.2015.09.053_b0140) 1959; 31 Martos (10.1016/j.biortech.2015.09.053_b0135) 2013; 2013 De La Mare (10.1016/j.biortech.2015.09.053_b0050) 2013; 53 Biely (10.1016/j.biortech.2015.09.053_b0015) 1997; 57 Glinka (10.1016/j.biortech.2015.09.053_b0070) 2011; 115 Bayer (10.1016/j.biortech.2015.09.053_b0005) 2004; 58 Edwards (10.1016/j.biortech.2015.09.053_b0055) 2011; 77 Várnai (10.1016/j.biortech.2015.09.053_b0155) 2011; 102 Beukes (10.1016/j.biortech.2015.09.053_b0010) 2010; 101 Vincent (10.1016/j.biortech.2015.09.053_b0160) 1997; 322 Nierman (10.1016/j.biortech.2015.09.053_b0145) 2005; 438 Cornell (10.1016/j.biortech.2015.09.053_b0045) 2002 Chantasingh (10.1016/j.biortech.2015.09.053_b0030) 2006; 46 Bunterngsook (10.1016/j.biortech.2015.09.053_b0020) 2015; 176 Leggio (10.1016/j.biortech.2015.09.053_b0120) 2015; 6 Willats (10.1016/j.biortech.2015.09.053_b0165) 2001; 47 Christgau (10.1016/j.biortech.2015.09.053_b0040) 1996; 319 Cherubini (10.1016/j.biortech.2015.09.053_b0035) 2010; 51 10.1016/j.biortech.2015.09.053_b0150 |
References_xml | – volume: 30 start-page: 247 year: 2006 end-page: 253 ident: b0100 article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis publication-title: Biomass Bioenerg. – volume: 47 start-page: 9 year: 2001 end-page: 27 ident: b0165 article-title: Pectin: cell biology for functional analysis publication-title: Plant Mol. Biol. – volume: 101 start-page: 2770 year: 2010 end-page: 2781 ident: b0065 article-title: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover publication-title: Bioresour. Technol. – volume: 102 start-page: 9096 year: 2011 end-page: 9104 ident: b0155 article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood publication-title: Bioresour. Technol. – volume: 94 start-page: 888 year: 2006 end-page: 898 ident: b0175 article-title: A functionally based model for hydrolysis of cellulose by fungal cellulase publication-title: Biotechnol. Bioeng. – volume: 46 start-page: 143 year: 2006 end-page: 149 ident: b0030 article-title: Cloning, expression and characterization of a xylanase 10 from publication-title: Protein Expr. Purif. – volume: 155 start-page: 258 year: 2014 end-page: 265 ident: b0125 article-title: Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies publication-title: Bioresour. Technol. – volume: 322 start-page: 845 year: 1997 end-page: 852 ident: b0160 article-title: New α- publication-title: Biochem. J. – volume: 115 start-page: 1112 year: 2011 end-page: 1121 ident: b0070 article-title: Purification and partial characterisation of pectin methylesterase produced by publication-title: Fungal Biol. – volume: 51 start-page: 72 year: 2010 end-page: 78 ident: b0075 article-title: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by publication-title: Biochem. Eng. J. – volume: 438 start-page: 1151 year: 2005 end-page: 1156 ident: b0145 article-title: Genomic sequence of the pathogenic and allergenic filamentous fungus publication-title: Nature – volume: 187 start-page: 173 year: 2015 end-page: 181 ident: b0025 article-title: Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail publication-title: Bioresour. Technol. – volume: 4 start-page: 36 year: 2011 ident: b0090 article-title: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? publication-title: Biotechnol. Biofuels – volume: 53 start-page: 351 year: 2013 end-page: 358 ident: b0050 article-title: Molecular and biochemical characterization of three GH62 α-l-arabinofuranosidases from the soil deuteromycete publication-title: Enzyme Microb. Technol. – volume: 99 start-page: 5938 year: 2008 end-page: 5941 ident: b0060 article-title: Purification and characterization of xylanase from publication-title: Bioresour. Technol. – volume: 3 start-page: 61 year: 2012 end-page: 70 ident: b0110 article-title: Synergistic interactions in cellulose hydrolysis publication-title: Biofuels – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: b0140 article-title: Use of dinitrosalicylic acid reagent for determination of reducin sugar publication-title: Anal. Chem. – volume: 176 start-page: 129 year: 2015 end-page: 135 ident: b0020 article-title: Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates publication-title: Bioresour. Technol. – volume: 2 start-page: 602 year: 2003 end-page: 619 ident: b0085 article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production publication-title: Afr. J. Biotechnol. – volume: 101 start-page: 4472 year: 2010 end-page: 4478 ident: b0010 article-title: Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases publication-title: Bioresour. Technol. – volume: 77 start-page: 5184 year: 2011 end-page: 5191 ident: b0055 article-title: Addition of genes for cellobiase and pectinolytic activity in publication-title: Appl. Environ. Microbiol. – year: 2002 ident: b0045 article-title: Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data – volume: 57 start-page: 151 year: 1997 end-page: 166 ident: b0015 article-title: Endo-β-1-4-xylanase families: differences in catalytic properties publication-title: J. Biotechnol. – volume: 51 start-page: 1412 year: 2010 end-page: 1421 ident: b0035 article-title: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals publication-title: Energ. Convers. Manage. – volume: 49 start-page: 229 year: 2011 end-page: 239 ident: b0115 article-title: Characterization of a new α- publication-title: Mol. Biotechnol. – volume: 2013 start-page: 1 year: 2013 end-page: 7 ident: b0135 article-title: Production of pectinolytic enzymes by the yeast publication-title: Biotechnol. Res. Int. – volume: 319 start-page: 705 year: 1996 end-page: 712 ident: b0040 article-title: Pectin methyl esterase from publication-title: Biochem. J. – volume: 129 start-page: 302 year: 2013 end-page: 307 ident: b0170 article-title: Synergy between cellulases and pectinases in the hydrolysis of hemp publication-title: Bioresour. Technol. – volume: 72 start-page: 162 year: 2014 end-page: 167 ident: b0130 article-title: The effect of publication-title: Fungal Genet. Biol. – volume: 6 start-page: 5961 year: 2015 ident: b0120 article-title: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase publication-title: Nat. Commun. – volume: 93 start-page: 375 year: 2013 end-page: 381 ident: b0095 article-title: Constitutive expression, purification and characterisation of pectin methylesterase from publication-title: J. Sci. Food Agric. – volume: 1 start-page: 158 year: 1955 end-page: 166 ident: b0105 article-title: Pectic enzymes publication-title: Methods Enzymol. – reference: Sluiter, A., Crocker, D., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618. – volume: 58 start-page: 521 year: 2004 end-page: 554 ident: b0005 article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides publication-title: Annu. Rev. Microbiol. – volume: 315 start-page: 804 year: 2007 end-page: 807 ident: b0080 article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production publication-title: Science – volume: 187 start-page: 173 year: 2015 ident: 10.1016/j.biortech.2015.09.053_b0025 article-title: Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.117 – volume: 93 start-page: 375 year: 2013 ident: 10.1016/j.biortech.2015.09.053_b0095 article-title: Constitutive expression, purification and characterisation of pectin methylesterase from Aspergillus niger in Pichia pastoris for potential application in the fruit juice industry publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.5771 – volume: 319 start-page: 705 year: 1996 ident: 10.1016/j.biortech.2015.09.053_b0040 article-title: Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme publication-title: Biochem. J. doi: 10.1042/bj3190705 – volume: 3 start-page: 61 year: 2012 ident: 10.1016/j.biortech.2015.09.053_b0110 article-title: Synergistic interactions in cellulose hydrolysis publication-title: Biofuels doi: 10.4155/bfs.11.150 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.biortech.2015.09.053_b0135 article-title: Production of pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels publication-title: Biotechnol. Res. Int. doi: 10.1155/2013/435154 – volume: 99 start-page: 5938 year: 2008 ident: 10.1016/j.biortech.2015.09.053_b0060 article-title: Purification and characterization of xylanase from Aspergillus ficuum AF-98 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.10.051 – volume: 58 start-page: 521 year: 2004 ident: 10.1016/j.biortech.2015.09.053_b0005 article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.091022 – volume: 72 start-page: 162 year: 2014 ident: 10.1016/j.biortech.2015.09.053_b0130 article-title: The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.07.003 – volume: 101 start-page: 2770 year: 2010 ident: 10.1016/j.biortech.2015.09.053_b0065 article-title: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.056 – volume: 115 start-page: 1112 year: 2011 ident: 10.1016/j.biortech.2015.09.053_b0070 article-title: Purification and partial characterisation of pectin methylesterase produced by Fusarium asiaticum publication-title: Fungal Biol. doi: 10.1016/j.funbio.2011.07.005 – volume: 315 start-page: 804 year: 2007 ident: 10.1016/j.biortech.2015.09.053_b0080 article-title: Biomass recalcitrance: engineering plants and enzymes for biofuels production publication-title: Science doi: 10.1126/science.1137016 – volume: 46 start-page: 143 year: 2006 ident: 10.1016/j.biortech.2015.09.053_b0030 article-title: Cloning, expression and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2005.09.013 – volume: 57 start-page: 151 year: 1997 ident: 10.1016/j.biortech.2015.09.053_b0015 article-title: Endo-β-1-4-xylanase families: differences in catalytic properties publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(97)00096-5 – volume: 47 start-page: 9 year: 2001 ident: 10.1016/j.biortech.2015.09.053_b0165 article-title: Pectin: cell biology for functional analysis publication-title: Plant Mol. Biol. doi: 10.1023/A:1010662911148 – volume: 51 start-page: 1412 year: 2010 ident: 10.1016/j.biortech.2015.09.053_b0035 article-title: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2010.01.015 – volume: 2 start-page: 602 year: 2003 ident: 10.1016/j.biortech.2015.09.053_b0085 article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB2003.000-1115 – volume: 77 start-page: 5184 year: 2011 ident: 10.1016/j.biortech.2015.09.053_b0055 article-title: Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.05700-11 – volume: 129 start-page: 302 year: 2013 ident: 10.1016/j.biortech.2015.09.053_b0170 article-title: Synergy between cellulases and pectinases in the hydrolysis of hemp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.064 – volume: 49 start-page: 229 year: 2011 ident: 10.1016/j.biortech.2015.09.053_b0115 article-title: Characterization of a new α-l-arabinofuranosidase from Penicillium sp. LYG 0704, and their application in lignocelluloses degradation publication-title: Mol. Biotechnol. doi: 10.1007/s12033-011-9396-4 – volume: 51 start-page: 72 year: 2010 ident: 10.1016/j.biortech.2015.09.053_b0075 article-title: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2010.05.003 – volume: 94 start-page: 888 year: 2006 ident: 10.1016/j.biortech.2015.09.053_b0175 article-title: A functionally based model for hydrolysis of cellulose by fungal cellulase publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20906 – volume: 53 start-page: 351 year: 2013 ident: 10.1016/j.biortech.2015.09.053_b0050 article-title: Molecular and biochemical characterization of three GH62 α-l-arabinofuranosidases from the soil deuteromycete Penicillium funiculosum publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2013.07.008 – volume: 4 start-page: 36 year: 2011 ident: 10.1016/j.biortech.2015.09.053_b0090 article-title: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-4-36 – volume: 1 start-page: 158 year: 1955 ident: 10.1016/j.biortech.2015.09.053_b0105 article-title: Pectic enzymes publication-title: Methods Enzymol. doi: 10.1016/0076-6879(55)01022-7 – volume: 6 start-page: 5961 year: 2015 ident: 10.1016/j.biortech.2015.09.053_b0120 article-title: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase publication-title: Nat. Commun. doi: 10.1038/ncomms6961 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.biortech.2015.09.053_b0140 article-title: Use of dinitrosalicylic acid reagent for determination of reducin sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – ident: 10.1016/j.biortech.2015.09.053_b0150 – volume: 322 start-page: 845 year: 1997 ident: 10.1016/j.biortech.2015.09.053_b0160 article-title: New α-l-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme publication-title: Biochem. J. doi: 10.1042/bj3220845 – volume: 30 start-page: 247 year: 2006 ident: 10.1016/j.biortech.2015.09.053_b0100 article-title: Conversion of rice straw to sugars by dilute-acid hydrolysis publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2005.11.015 – volume: 155 start-page: 258 year: 2014 ident: 10.1016/j.biortech.2015.09.053_b0125 article-title: Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.113 – year: 2002 ident: 10.1016/j.biortech.2015.09.053_b0045 – volume: 102 start-page: 9096 year: 2011 ident: 10.1016/j.biortech.2015.09.053_b0155 article-title: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.059 – volume: 101 start-page: 4472 year: 2010 ident: 10.1016/j.biortech.2015.09.053_b0010 article-title: Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.081 – volume: 438 start-page: 1151 year: 2005 ident: 10.1016/j.biortech.2015.09.053_b0145 article-title: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus publication-title: Nature doi: 10.1038/nature04332 – volume: 176 start-page: 129 year: 2015 ident: 10.1016/j.biortech.2015.09.053_b0020 article-title: Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.042 |
SSID | ssj0003172 |
Score | 2.3950763 |
Snippet | [Display omitted]
•Synergy of accessory hemicellulase and pectinase to core cellulase was shown.•A varying degree of synergism of ARA, PEC, XYL to ACR... Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 682 |
SubjectTerms | Accessory enzymes alpha-N-arabinofuranosidase Aspergillus - enzymology Aspergillus aculeatus Carboxylic Ester Hydrolases - genetics Carboxylic Ester Hydrolases - metabolism Cellulase Cellulase - metabolism Cellulases - metabolism Endo-1,4-beta Xylanases - genetics Endo-1,4-beta Xylanases - metabolism endo-1,4-beta-glucanase endo-1,4-beta-xylanase Enzymes - genetics Enzymes - metabolism glucose Glycoside Hydrolases - genetics Glycoside Hydrolases - metabolism Hydrolysis Komagataella pastoris Lignin - chemistry Lignin - metabolism Lignocellulose Mixture design Oryza - metabolism pectinesterase Pichia - genetics Pichia - metabolism Plant Shoots - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism rice straw synergism Trichoderma - enzymology Trichoderma reesei |
Title | Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation |
URI | https://dx.doi.org/10.1016/j.biortech.2015.09.053 https://www.ncbi.nlm.nih.gov/pubmed/26433794 https://www.proquest.com/docview/1736680703 https://www.proquest.com/docview/1846349009 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONAeKkofbEuRkXoNm6zjOD6uVqBtK3EBJG5WHuN2UTZB-1C1PfQv9C93xkl4HCiHHuN4EiszmfkSz3wD8Fkbh6Epi6BMlA5iF6oglagDxxnvCaa8VcfZFufJ9Cr-eq2ut2DS18JwWmXn-1uf7r11NzLsnubwdjYbXjD4ThVHIIIxZJdcwR5rtvKT3_dpHhQf_U4CTQ549oMq4ZuTfMYZrX5TIlKe71TJpwLUUwDUB6KzPXjVIUgxbhf5Graw3oeX4--LjkUD92F30rdxozMPGAffwJ-LDRf7eXZm0dY0iMYJ_iye5z4phka5cqBZbITnEsCqWldNtfECdSl8ZWbdDWD9azPHpVg14pLu_4Mbq80zuhwucSZaWQqTgu7C5EWC_6v8FCUTVLS9nN7C1dnp5WQadD0ZgoJc6ipQLk5GLsyTzKDWUeQUfW8QaMkJKehMhSOHuU6LwqSIxchFTpZIJ8Iyj6ROQynfwXbd1HgAIiojzIyWBosyLmLuhpUwIZgZKVoDZgNQvSJs0RGWc9-MyvaZaTe2V6BlBdrQWFLgAIZ3crctZcezEqbXs31kfJbiyrOyx71hWNIsP9msxma9tJGWSZKyS_3HHIJ_MjYEdAfwvrWquzUTVJWS3OWH_1jdR3jBR23-zSFsrxZr_EQoapUf-dfkCHbGX75Nz_8CrJMgHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHGgPVUtf26crtceweTmODz0gWrQUyoVF4ubmMaaLsgnah1A49C_0x_AHmXEcSg-UQ8XVziQjjzMzib_5hrGPUhnwVVl4ZSKkFxtfeGkE0jOEeE8gpaM6QlscJKOj-NuxOF5hl30tDMEqne_vfLr11m5k6FZzeDaZDA8p-U4FRSBMY3BfOmTlHrTn-N02_7z7BY38KQx3vo63R55rLeAV6BkWnjBxEho_TzIFUgaBEZg2Y-zNMeDJTPihgVymRaFSgCI0gYlKwAm_zINIpj79BUW_vxaju6C2CZu__uBKMCDbowvUziP1bpQln27mE4LQ2lOQQFiCVRHdFhFvy3ht5Nt5zB65lJVvdavyhK1AvcEebp3MHG0HbLD17b5vHM7coDh8yn4ftlRdaOmgeVdEwRvD6Tt8mlsUDo5SqUIza7klL4CqWlZN1VqBuuS2FLR2A1BftFOY80XDx_j8n9TJbZrh7WAOE97JYlzm-BRiS-L0I-ecl8SI0TWPesaO7sVSz9lq3dTwkvGgDCBTMlJQlHERU_uthBjIVChQB8gGTPSG0IVjSKdGHZXuoXCnujegJgNqX2k04IANr-XOOo6QOyVUb2f9127XGMjulP3QbwyNlqWVzWpolnMdyChJUvLh_7gG880oVphZD9iLbldd64y5cRShf371H9q9Z-uj8fd9vb97sPeaPaCZDvzzhq0uZkt4iyncIn9nXxnOftz3O3oF2hpbOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+action+of+recombinant+accessory+hemicellulolytic+and+pectinolytic+enzymes+to+Trichoderma+reesei+cellulase+on+rice+straw+degradation&rft.jtitle=Bioresource+technology&rft.au=Laothanachareon%2C+Thanaporn&rft.au=Bunterngsook%2C+Benjarat&rft.au=Suwannarangsee%2C+Surisa&rft.au=Eurwilaichitr%2C+Lily&rft.date=2015-12-01&rft.issn=0960-8524&rft.volume=198&rft.spage=682&rft.epage=690&rft_id=info:doi/10.1016%2Fj.biortech.2015.09.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2015_09_053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |