Reversibly core-crosslinked PEG-P(HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery
[Display omitted] The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug deliv...
Saved in:
Published in | Journal of colloid and interface science Vol. 535; pp. 505 - 515 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery.
A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies.
The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. |
---|---|
AbstractList | The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery.HYPOTHESISThe presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery.A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies.EXPERIMENTSA new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies.The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform.FINDINGSThe introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery. A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)] was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies. The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. [Display omitted] The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery. A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies. The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. HypothesisThe presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery.ExperimentsA new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies.FindingsThe introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery.A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies.The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform. |
Author | Bethry, Audrey Buwalda, Sytze Nottelet, Benjamin Kok, Robbert Jan Sijbrandi, Niels Coudane, Jean |
Author_xml | – sequence: 1 givenname: Sytze orcidid: 0000-0002-7145-5323 surname: Buwalda fullname: Buwalda, Sytze email: sijtze.buwalda@umontpellier.fr organization: IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France – sequence: 2 givenname: Benjamin surname: Nottelet fullname: Nottelet, Benjamin email: benjamin.nottelet@umontpellier.fr organization: IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France – sequence: 3 givenname: Audrey surname: Bethry fullname: Bethry, Audrey email: audrey.bethry@univ-montp1.fr organization: IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France – sequence: 4 givenname: Robbert Jan surname: Kok fullname: Kok, Robbert Jan email: r.j.kok@uu.nl organization: Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands – sequence: 5 givenname: Niels surname: Sijbrandi fullname: Sijbrandi, Niels email: sijbrandi@linxispharmaceuticals.com organization: LinXis B.V., Boelelaan 1085c, Amsterdam 1081 HV, the Netherlands – sequence: 6 givenname: Jean surname: Coudane fullname: Coudane, Jean email: jean.coudane@umontpellier.fr organization: IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30340170$$D View this record in MEDLINE/PubMed https://hal.umontpellier.fr/hal-02385350$$DView record in HAL |
BookMark | eNqNkUFvEzEQhS1URNPCH-CA9tgeNthee71GXKKqNEhBRKh3y2tPUgfvOti7kXLjp-NtWg4cKk6WZ773NDPvAp31oQeE3hM8J5jUH3fznXFpTjFpcmGOMXmFZgRLXgqCqzM0w5iSUgopztFFSrsMEM7lG3Re4YphIvAM_f4BB4jJtf5YmBChNDGk5F3_E2yxvr0r11fL9bfFddE5A95D-lSsvR5cP3aZD9G6Pv9CX5gH6Fwa4rHYhJhb3R4GN7gDlN5tdW_LCNsxK7OtjeO2sOBzMx7fotcb7RO8e3ov0f2X2_ubZbn6fvf1ZrEqDavFUHJRU9uKWjJS81ozIltNGy5sXo9LUjOCWb2xphFVU2uwzBpGia4sM8y0tLpE1yfbB-3VPrpOx6MK2qnlYqWmGqZVwyuODySzVyd2H8OvEdKg8mbT9rqHMCZFKcUNl1j-B0poJUiTzTP64Qkd2w7s3yGes8hAcwIeI4iwUcYNj8cdonZeEaym2NVOTbGrKfapllPNUvqP9Nn9RdHnkwjy2Q8OokrGQW_AughmUDa4l-R_AOrGxWY |
CitedBy_id | crossref_primary_10_1039_C9TB00155G crossref_primary_10_1039_D0DT01730B crossref_primary_10_1016_j_ijpharm_2020_119305 crossref_primary_10_1021_acsami_1c03191 crossref_primary_10_1016_j_ijbiomac_2024_129726 crossref_primary_10_1039_C8TB02505C crossref_primary_10_1016_j_ccr_2023_215594 crossref_primary_10_1007_s10904_020_01456_2 crossref_primary_10_1016_j_ccr_2020_213716 crossref_primary_10_1016_j_msec_2020_110811 crossref_primary_10_1039_D1TB02675E crossref_primary_10_1088_2399_7532_ab80d6 crossref_primary_10_1016_j_eurpolymj_2020_110018 crossref_primary_10_1080_17425247_2019_1645118 crossref_primary_10_1016_j_msec_2020_111626 crossref_primary_10_1039_D4NR01483A crossref_primary_10_1016_j_ccr_2021_213977 crossref_primary_10_1002_ppsc_201900236 crossref_primary_10_1021_acsami_2c21152 crossref_primary_10_1039_D1RA02226A crossref_primary_10_3390_pharmaceutics12060580 crossref_primary_10_1016_j_colsurfb_2021_111833 crossref_primary_10_1016_j_mtchem_2022_100996 |
Cites_doi | 10.1021/ic030045b 10.1021/mp800051m 10.1002/jbm.820211106 10.1016/j.jconrel.2012.04.009 10.1021/acs.macromol.7b01475 10.1002/macp.201700380 10.1039/c2sc21315j 10.1016/S0168-3659(99)00141-8 10.1016/j.jconrel.2005.12.010 10.1002/mabi.201100019 10.1039/C6PY01113F 10.1039/C4PY01759E 10.2217/nnm.14.170 10.1039/C6TB01841F 10.1021/ma011198q 10.1002/mabi.201100277 10.1016/j.ejpb.2015.06.010 10.1007/s00775-008-0456-6 10.1021/ja067940p 10.1016/j.jconrel.2004.12.009 10.1016/j.molimm.2008.08.276 10.1038/nnano.2011.166 10.1021/ma3001719 10.1021/bm3006819 10.1016/j.addr.2012.09.016 10.1002/jps.2600830432 10.1016/j.jcis.2010.10.024 10.1016/j.ijpharm.2008.04.040 10.1016/j.nantod.2015.01.005 10.1016/j.addr.2009.11.029 10.1016/S0731-7085(96)02024-9 10.1039/b805464a 10.1021/acs.biomac.5b01252 10.1021/acsami.6b09425 10.1021/ja500939m 10.1021/bm400234c 10.1002/mabi.201600160 10.1021/acsnano.5b00929 10.1039/c3tb21091j 10.1016/j.reactfunctpolym.2016.07.018 10.1021/la048354h 10.1021/bp970024i 10.1039/C6RA02300B 10.1158/0008-5472.CAN-16-1900 10.1002/cmdc.201402496 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.jcis.2018.10.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 515 |
ExternalDocumentID | oai_HAL_hal_02385350v1 30340170 10_1016_j_jcis_2018_10_001 S0021979718311895 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c467t-5762db76941656a419ba2857d979591641046fdc87386aed4dc421a3d4c4cb23 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Aug 14 06:48:12 EDT 2025 Fri Jul 11 00:03:52 EDT 2025 Fri Jul 11 00:19:12 EDT 2025 Wed Feb 19 02:33:39 EST 2025 Tue Jul 01 01:18:37 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 Fri Feb 23 02:24:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PEG-P(HPMA) Stimulus-responsive Controlled drug delivery Core-crosslinked micelle Coordination chemistry |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-5762db76941656a419ba2857d979591641046fdc87386aed4dc421a3d4c4cb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7145-5323 0000-0002-8577-9273 0000-0002-1073-5882 |
OpenAccessLink | https://hal.umontpellier.fr/hal-02385350 |
PMID | 30340170 |
PQID | 2123718023 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02385350v1 proquest_miscellaneous_2220859091 proquest_miscellaneous_2123718023 pubmed_primary_30340170 crossref_citationtrail_10_1016_j_jcis_2018_10_001 crossref_primary_10_1016_j_jcis_2018_10_001 elsevier_sciencedirect_doi_10_1016_j_jcis_2018_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 2019-02-00 2019-Feb-01 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Wang, Pan, Cheng, Lin, Ho, Hsieh, Lin (b0135) 1997; 15 Gonzalo, Talman, van de Ven, Temming, Greupink, Beljaars, Reker-Smit, Meijer, Molema, Poelstra, Kok (b0195) 2006; 111 Shi, Kunjachan, Wu, Gremse, Moeckel, Van Zandvoort, Kiessling, Storm, Van Nostrum, Hennink, Lammers (b0145) 2015; 10 Cabral, Matsumoto, Mizuno, Chen, Murakami, Kimura, Terada, Kano, Miyazono, Uesaka, Nishiyama, Kataoka (b0200) 2011; 6 Du, Guo, Yu, Guan, Guo, Shen, Tang, Gan (b0165) 2016; 7 Dolman, van Dorenmalen, Pieters, Sparidans, Lacombe, Szokol, Orfi, Kéri, Bovenschen, Storm, Hennink, Kok (b0105) 2012; 12 Wu, Yang, Cao (b0120) 2006; 128 Soga, van Nostrum, Fens, Rijcken, Schiffelers, Storm, Hennink (b0065) 2005; 103 Soga, Van Nostrum, Ramzi, Visser, Soulimani, Frederik, Bomans, Hennink (b0160) 2004; 20 Xin, Li, Lu, Meng, Deng, Kong, Ding, Wang, Zhao (b0035) 2017; 9 Shi, Lammers, Storm, Hennink (b0030) 2017; 17 Song, Feng, Sun, Guo, Gao, Li, Zhai (b0190) 2011; 354 Dai, Zhang, Zhuo (b0045) 2016; 6 Talelli, Rijcken, van Nostrum, Storm, Hennink (b0060) 2010; 62 Oehlsen, Qu, Farrell (b0180) 2003; 42 Talelli, Barz, Rijcken, Kiessling, Hennink, Lammers (b0010) 2015; 10 Cao, Gu, Meineck, Li, Xu (b0055) 2014; 136 Yamaoka, Tabata, Ikada (b0205) 1994; 83 Waalboer, Muns, Sijbrandi, Schasfoort, Haselberg, Somsen, Houthoff, van Dongen (b0100) 2015; 10 Seymour, Duncan, Strohalm, Kopeček (b0210) 1987; 21 Sijbrandi, Merkul, Muns, Waalboer, Adamzek, Bolijn, Montserrat, Somsen, Haselberg, Steverink, Houthoff, van Dongen (b0095) 2017; 77 Kwon, Kataoka (b0005) 2012; 64 Kasherman, Sturup, Gibson (b0185) 2009; 14 Al Samad, Bethry, Koziolová, Netopilik, Etrych, Bakkour, Coudane, El Omar, Nottelet (b0215) 2016; 4 Fliervoet, Najafi, Hembury, Vermonden (b0140) 2017; 50 Alexis, Pridgen, Molnar, Farokhzad (b0025) 2008; 5 Shi, Van Der Meel, Theek, Oude Blenke, Pieters, Fens, Ehling, Schiffelers, Storm, Van Nostrum (b0090) 2015; 9 Neradovic, Van Nostrum, Hennink (b0125) 2001; 34 Hamad, Hunter, Szebeni, Moghimi (b0020) 2008; 46 Ulbrich, Šubr, Strohalm, Plocova, Jelınková, Řı́hová (b0115) 2000; 64 Shi, Cardoso, Van Nostrum, Hennink (b0075) 2015; 6 Kasmi, Louage, Nuhn, Van Driessche, Van Deun, Karalic, Risseeuw, Van Calenbergh, Hoogenboom, De Rycke (b0080) 2015; 17 Matyjaszewski (b0155) 2012; 45 Ren, Wang, Sun (b0040) 2016; 106 Gao, Zheng, Guo, Liu, Fan, Qian, Huang, Wei (b0130) 2013; 1 Mahon, Salvati, Baldelli Bombelli, Lynch, Dawson (b0015) 2012; 161 Shi, Van Steenbergen, Teunissen, Novo, Gradmann, Baldus, Van Nostrum, Hennink (b0070) 2013; 14 Stenzel (b0150) 2008 Sponchioni, Palmiero, Moscatelli (b0220) 2017; 218 Cao, Li, Yi, Ji, Zeng, Sun, Xu (b0050) 2012; 3 Krimmer, Pan, Liu, Yang, Kopecek (b0225) 2011; 11 Chaudhary, Lopez, Beckman, Russell (b0170) 1997; 13 Naksuriya, Shi, van Nostrum, Anuchapreeda, Hennink, Okonogi (b0175) 2015; 94 Wei, Cheng, Zheng, Cheng, Meng, Deng, Zhong (b0085) 2012; 13 Dolman, Fretz, Segers, Lacombe, Prakash, Storm, Hennink, Kok (b0110) 2008; 364 Matyjaszewski (10.1016/j.jcis.2018.10.001_b0155) 2012; 45 Song (10.1016/j.jcis.2018.10.001_b0190) 2011; 354 Shi (10.1016/j.jcis.2018.10.001_b0090) 2015; 9 Soga (10.1016/j.jcis.2018.10.001_b0065) 2005; 103 Dai (10.1016/j.jcis.2018.10.001_b0045) 2016; 6 Waalboer (10.1016/j.jcis.2018.10.001_b0100) 2015; 10 Fliervoet (10.1016/j.jcis.2018.10.001_b0140) 2017; 50 Shi (10.1016/j.jcis.2018.10.001_b0070) 2013; 14 Ulbrich (10.1016/j.jcis.2018.10.001_b0115) 2000; 64 Kasherman (10.1016/j.jcis.2018.10.001_b0185) 2009; 14 Cao (10.1016/j.jcis.2018.10.001_b0055) 2014; 136 Yamaoka (10.1016/j.jcis.2018.10.001_b0205) 1994; 83 Sijbrandi (10.1016/j.jcis.2018.10.001_b0095) 2017; 77 Naksuriya (10.1016/j.jcis.2018.10.001_b0175) 2015; 94 Wei (10.1016/j.jcis.2018.10.001_b0085) 2012; 13 Krimmer (10.1016/j.jcis.2018.10.001_b0225) 2011; 11 Kasmi (10.1016/j.jcis.2018.10.001_b0080) 2015; 17 Oehlsen (10.1016/j.jcis.2018.10.001_b0180) 2003; 42 Ren (10.1016/j.jcis.2018.10.001_b0040) 2016; 106 Dolman (10.1016/j.jcis.2018.10.001_b0105) 2012; 12 Xin (10.1016/j.jcis.2018.10.001_b0035) 2017; 9 Shi (10.1016/j.jcis.2018.10.001_b0145) 2015; 10 Sponchioni (10.1016/j.jcis.2018.10.001_b0220) 2017; 218 Wu (10.1016/j.jcis.2018.10.001_b0120) 2006; 128 Hamad (10.1016/j.jcis.2018.10.001_b0020) 2008; 46 Shi (10.1016/j.jcis.2018.10.001_b0030) 2017; 17 Gonzalo (10.1016/j.jcis.2018.10.001_b0195) 2006; 111 Talelli (10.1016/j.jcis.2018.10.001_b0060) 2010; 62 Dolman (10.1016/j.jcis.2018.10.001_b0110) 2008; 364 Wang (10.1016/j.jcis.2018.10.001_b0135) 1997; 15 Soga (10.1016/j.jcis.2018.10.001_b0160) 2004; 20 Kwon (10.1016/j.jcis.2018.10.001_b0005) 2012; 64 Talelli (10.1016/j.jcis.2018.10.001_b0010) 2015; 10 Du (10.1016/j.jcis.2018.10.001_b0165) 2016; 7 Chaudhary (10.1016/j.jcis.2018.10.001_b0170) 1997; 13 Mahon (10.1016/j.jcis.2018.10.001_b0015) 2012; 161 Seymour (10.1016/j.jcis.2018.10.001_b0210) 1987; 21 Shi (10.1016/j.jcis.2018.10.001_b0075) 2015; 6 Al Samad (10.1016/j.jcis.2018.10.001_b0215) 2016; 4 Neradovic (10.1016/j.jcis.2018.10.001_b0125) 2001; 34 Stenzel (10.1016/j.jcis.2018.10.001_b0150) 2008 Gao (10.1016/j.jcis.2018.10.001_b0130) 2013; 1 Cabral (10.1016/j.jcis.2018.10.001_b0200) 2011; 6 Cao (10.1016/j.jcis.2018.10.001_b0050) 2012; 3 Alexis (10.1016/j.jcis.2018.10.001_b0025) 2008; 5 |
References_xml | – volume: 106 start-page: 57 year: 2016 end-page: 61 ident: b0040 article-title: Design, synthesis, characterization and magnetic studies of the metal-quinolate PHEMA-b-HQ polymer micelles publication-title: React. Funct. Polym. – volume: 136 start-page: 5132 year: 2014 end-page: 5137 ident: b0055 article-title: Tellurium-containing polymer micelles: Competitive-ligand-regulated coordination responsive systems publication-title: JACS – volume: 21 start-page: 1341 year: 1987 end-page: 1358 ident: b0210 article-title: Effect of molecular weight (mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats publication-title: J. Biomed. Mater. Res. – volume: 50 start-page: 8390 year: 2017 end-page: 8397 ident: b0140 article-title: Heterofunctional poly(ethylene glycol) (PEG) macroinitiator enabling controlled synthesis of ABC triblock copolymers publication-title: Macromolecules – volume: 111 start-page: 193 year: 2006 end-page: 203 ident: b0195 article-title: Selective targeting of pentoxifylline to hepatic stellate cells using a novel platinum-based linker technology publication-title: J. Controll. Release – start-page: 3486 year: 2008 end-page: 3503 ident: b0150 article-title: RAFT polymerization: an avenue to functional polymeric micelles for drug delivery publication-title: Chem. Commun. – volume: 17 start-page: 119 year: 2015 end-page: 127 ident: b0080 article-title: Transiently responsive block copolymer micelles based on N-(2-hydroxypropyl) methacrylamide engineered with hydrolyzable ethylcarbonate side chains publication-title: Biomacromolecules – volume: 64 start-page: 237 year: 2012 end-page: 245 ident: b0005 article-title: Block copolymer micelles as long-circulating drug vehicles publication-title: Adv. Drug Delivery Rev. – volume: 42 start-page: 5498 year: 2003 end-page: 5506 ident: b0180 article-title: Reaction of polynuclear platinum antitumor compounds with reduced glutathione studied by multinuclear (1H, 1H–15N gradient heteronuclear single-quantum coherence, and 195Pt) NMR spectroscopy publication-title: Inorg. Chem. – volume: 218 start-page: 1700380 year: 2017 ident: b0220 article-title: HPMA-PEG surfmers and their use in stabilizing fully biodegradable polymer nanoparticles publication-title: Macromol. Chem. Phys. – volume: 10 start-page: 93 year: 2015 end-page: 117 ident: b0010 article-title: Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation publication-title: Nano Today – volume: 15 start-page: 1867 year: 1997 end-page: 1876 ident: b0135 article-title: Stability of curcumin in buffer solutions and characterization of its degradation products publication-title: J. Pharm. Biomed. Anal. – volume: 128 start-page: 16522 year: 2006 end-page: 16523 ident: b0120 article-title: Synthesis of colloidal uranium-dioxide nanocrystals publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 4015 year: 2012 end-page: 4039 ident: b0155 article-title: Atom transfer radical polymerization (ATRP): Current status and future perspectives publication-title: Macromolecules – volume: 6 start-page: 22964 year: 2016 end-page: 22968 ident: b0045 article-title: Polymeric micelles stabilized by polyethylenimine-copper (C2H5N-Cu) coordination for sustained drug release publication-title: RSC Adv. – volume: 364 start-page: 249 year: 2008 end-page: 257 ident: b0110 article-title: Renal targeting of kinase inhibitors publication-title: Int. J. Pharm. – volume: 46 start-page: 225 year: 2008 end-page: 232 ident: b0020 article-title: Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process publication-title: Mol. Immunol. – volume: 103 start-page: 341 year: 2005 end-page: 353 ident: b0065 article-title: Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery publication-title: J. Controll. Release – volume: 14 start-page: 1826 year: 2013 end-page: 1837 ident: b0070 article-title: Π-Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs publication-title: Biomacromolecules – volume: 94 start-page: 501 year: 2015 end-page: 512 ident: b0175 article-title: HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth publication-title: Eur. J. Pharm. Biopharm. – volume: 5 start-page: 505 year: 2008 end-page: 515 ident: b0025 article-title: Factors affecting the clearance and biodistribution of polymeric nanoparticles publication-title: Mol. Pharmaceut. – volume: 17 start-page: 1600160 year: 2017 ident: b0030 article-title: Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery publication-title: Macromol. Biosci. – volume: 13 start-page: 2429 year: 2012 end-page: 2438 ident: b0085 article-title: Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release publication-title: Biomacromolecules – volume: 1 start-page: 5778 year: 2013 end-page: 5790 ident: b0130 article-title: Improving the anti-colon cancer activity of curcumin with biodegradable nano-micelles publication-title: J. Mater. Chem. B – volume: 20 start-page: 9388 year: 2004 end-page: 9395 ident: b0160 article-title: Physicochemical characterization of degradable thermosensitive polymeric micelles publication-title: Langmuir – volume: 62 start-page: 231 year: 2010 end-page: 239 ident: b0060 article-title: Micelles based on HPMA copolymers publication-title: Adv. Drug Delivery Rev. – volume: 77 start-page: 257 year: 2017 end-page: 267 ident: b0095 article-title: A novel platinum(II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab publication-title: Cancer Res. – volume: 11 start-page: 1041 year: 2011 end-page: 1051 ident: b0225 article-title: Synthesis and characterization of poly(e-caprolactone)-block-poly[N-(2-hydroxypropyl)methacrylamide] micelles for drug delivery publication-title: Macromol. Biosci. – volume: 6 start-page: 815 year: 2011 end-page: 823 ident: b0200 article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nat. Nanotechnol. – volume: 3 start-page: 3403 year: 2012 end-page: 3408 ident: b0050 article-title: Coordination-responsive selenium-containing polymer micelles for controlled drug release publication-title: Chem. Sci. – volume: 9 start-page: 3740 year: 2015 end-page: 3752 ident: b0090 article-title: Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles publication-title: ACS Nano – volume: 12 start-page: 93 year: 2012 end-page: 103 ident: b0105 article-title: Dendrimer-based macromolecular conjugate for the kidney-directed delivery of a multitargeted sunitinib analogue publication-title: Macromol. Biosci. – volume: 14 start-page: 387 year: 2009 end-page: 399 ident: b0185 article-title: Trans labilization of am(m)ine ligands from platinum (II) complexes by cancer cell extracts publication-title: JBIC, J. Biol. Inorg. Chem. – volume: 7 start-page: 5719 year: 2016 end-page: 5729 ident: b0165 article-title: Poly(D, L-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy publication-title: Polym. Chem. – volume: 354 start-page: 116 year: 2011 end-page: 123 ident: b0190 article-title: Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo publication-title: J. Colloid Interface Sci. – volume: 83 start-page: 601 year: 1994 end-page: 606 ident: b0205 article-title: Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice publication-title: J. Pharm. Sci. – volume: 10 start-page: 1111 year: 2015 end-page: 1125 ident: b0145 article-title: Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging publication-title: Nanomedicine – volume: 13 start-page: 318 year: 1997 end-page: 325 ident: b0170 article-title: Biocatalytic solvent-free polymerization to produce high molecular weight polyesters publication-title: Biotechnol. Prog. – volume: 161 start-page: 164 year: 2012 end-page: 174 ident: b0015 article-title: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery” publication-title: J. Controll. Release – volume: 10 start-page: 797 year: 2015 end-page: 803 ident: b0100 article-title: Platinum(II) as bifunctional linker in antibody-drug conjugate formation: coupling of a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore to trastuzumab as a model publication-title: ChemMedChem – volume: 4 start-page: 6228 year: 2016 end-page: 6239 ident: b0215 article-title: CL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems publication-title: J. Mater. Chem. B – volume: 9 start-page: 80 year: 2017 end-page: 91 ident: b0035 article-title: Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces – volume: 64 start-page: 63 year: 2000 end-page: 79 ident: b0115 article-title: Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation publication-title: J. Controll. Release – volume: 6 start-page: 2048 year: 2015 end-page: 2053 ident: b0075 article-title: Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles publication-title: Polym. Chem. – volume: 34 start-page: 7589 year: 2001 end-page: 7591 ident: b0125 article-title: Thermoresponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers publication-title: Macromolecules – volume: 42 start-page: 5498 year: 2003 ident: 10.1016/j.jcis.2018.10.001_b0180 article-title: Reaction of polynuclear platinum antitumor compounds with reduced glutathione studied by multinuclear (1H, 1H–15N gradient heteronuclear single-quantum coherence, and 195Pt) NMR spectroscopy publication-title: Inorg. Chem. doi: 10.1021/ic030045b – volume: 5 start-page: 505 year: 2008 ident: 10.1016/j.jcis.2018.10.001_b0025 article-title: Factors affecting the clearance and biodistribution of polymeric nanoparticles publication-title: Mol. Pharmaceut. doi: 10.1021/mp800051m – volume: 21 start-page: 1341 year: 1987 ident: 10.1016/j.jcis.2018.10.001_b0210 article-title: Effect of molecular weight (mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820211106 – volume: 161 start-page: 164 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0015 article-title: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery” publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2012.04.009 – volume: 50 start-page: 8390 year: 2017 ident: 10.1016/j.jcis.2018.10.001_b0140 article-title: Heterofunctional poly(ethylene glycol) (PEG) macroinitiator enabling controlled synthesis of ABC triblock copolymers publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01475 – volume: 218 start-page: 1700380 year: 2017 ident: 10.1016/j.jcis.2018.10.001_b0220 article-title: HPMA-PEG surfmers and their use in stabilizing fully biodegradable polymer nanoparticles publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201700380 – volume: 3 start-page: 3403 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0050 article-title: Coordination-responsive selenium-containing polymer micelles for controlled drug release publication-title: Chem. Sci. doi: 10.1039/c2sc21315j – volume: 64 start-page: 63 year: 2000 ident: 10.1016/j.jcis.2018.10.001_b0115 article-title: Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation publication-title: J. Controll. Release doi: 10.1016/S0168-3659(99)00141-8 – volume: 111 start-page: 193 year: 2006 ident: 10.1016/j.jcis.2018.10.001_b0195 article-title: Selective targeting of pentoxifylline to hepatic stellate cells using a novel platinum-based linker technology publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2005.12.010 – volume: 11 start-page: 1041 year: 2011 ident: 10.1016/j.jcis.2018.10.001_b0225 article-title: Synthesis and characterization of poly(e-caprolactone)-block-poly[N-(2-hydroxypropyl)methacrylamide] micelles for drug delivery publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100019 – volume: 7 start-page: 5719 year: 2016 ident: 10.1016/j.jcis.2018.10.001_b0165 article-title: Poly(D, L-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy publication-title: Polym. Chem. doi: 10.1039/C6PY01113F – volume: 6 start-page: 2048 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0075 article-title: Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles publication-title: Polym. Chem. doi: 10.1039/C4PY01759E – volume: 10 start-page: 1111 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0145 article-title: Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging publication-title: Nanomedicine doi: 10.2217/nnm.14.170 – volume: 4 start-page: 6228 year: 2016 ident: 10.1016/j.jcis.2018.10.001_b0215 article-title: CL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01841F – volume: 34 start-page: 7589 year: 2001 ident: 10.1016/j.jcis.2018.10.001_b0125 article-title: Thermoresponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers publication-title: Macromolecules doi: 10.1021/ma011198q – volume: 12 start-page: 93 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0105 article-title: Dendrimer-based macromolecular conjugate for the kidney-directed delivery of a multitargeted sunitinib analogue publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100277 – volume: 94 start-page: 501 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0175 article-title: HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.06.010 – volume: 14 start-page: 387 year: 2009 ident: 10.1016/j.jcis.2018.10.001_b0185 article-title: Trans labilization of am(m)ine ligands from platinum (II) complexes by cancer cell extracts publication-title: JBIC, J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0456-6 – volume: 128 start-page: 16522 year: 2006 ident: 10.1016/j.jcis.2018.10.001_b0120 article-title: Synthesis of colloidal uranium-dioxide nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067940p – volume: 103 start-page: 341 year: 2005 ident: 10.1016/j.jcis.2018.10.001_b0065 article-title: Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2004.12.009 – volume: 46 start-page: 225 year: 2008 ident: 10.1016/j.jcis.2018.10.001_b0020 article-title: Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2008.08.276 – volume: 6 start-page: 815 year: 2011 ident: 10.1016/j.jcis.2018.10.001_b0200 article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.166 – volume: 45 start-page: 4015 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0155 article-title: Atom transfer radical polymerization (ATRP): Current status and future perspectives publication-title: Macromolecules doi: 10.1021/ma3001719 – volume: 13 start-page: 2429 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0085 article-title: Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release publication-title: Biomacromolecules doi: 10.1021/bm3006819 – volume: 64 start-page: 237 year: 2012 ident: 10.1016/j.jcis.2018.10.001_b0005 article-title: Block copolymer micelles as long-circulating drug vehicles publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2012.09.016 – volume: 83 start-page: 601 year: 1994 ident: 10.1016/j.jcis.2018.10.001_b0205 article-title: Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600830432 – volume: 354 start-page: 116 year: 2011 ident: 10.1016/j.jcis.2018.10.001_b0190 article-title: Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.10.024 – volume: 364 start-page: 249 year: 2008 ident: 10.1016/j.jcis.2018.10.001_b0110 article-title: Renal targeting of kinase inhibitors publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.04.040 – volume: 10 start-page: 93 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0010 article-title: Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation publication-title: Nano Today doi: 10.1016/j.nantod.2015.01.005 – volume: 62 start-page: 231 year: 2010 ident: 10.1016/j.jcis.2018.10.001_b0060 article-title: Micelles based on HPMA copolymers publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2009.11.029 – volume: 15 start-page: 1867 year: 1997 ident: 10.1016/j.jcis.2018.10.001_b0135 article-title: Stability of curcumin in buffer solutions and characterization of its degradation products publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(96)02024-9 – start-page: 3486 year: 2008 ident: 10.1016/j.jcis.2018.10.001_b0150 article-title: RAFT polymerization: an avenue to functional polymeric micelles for drug delivery publication-title: Chem. Commun. doi: 10.1039/b805464a – volume: 17 start-page: 119 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0080 article-title: Transiently responsive block copolymer micelles based on N-(2-hydroxypropyl) methacrylamide engineered with hydrolyzable ethylcarbonate side chains publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01252 – volume: 9 start-page: 80 year: 2017 ident: 10.1016/j.jcis.2018.10.001_b0035 article-title: Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09425 – volume: 136 start-page: 5132 year: 2014 ident: 10.1016/j.jcis.2018.10.001_b0055 article-title: Tellurium-containing polymer micelles: Competitive-ligand-regulated coordination responsive systems publication-title: JACS doi: 10.1021/ja500939m – volume: 14 start-page: 1826 year: 2013 ident: 10.1016/j.jcis.2018.10.001_b0070 article-title: Π-Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs publication-title: Biomacromolecules doi: 10.1021/bm400234c – volume: 17 start-page: 1600160 year: 2017 ident: 10.1016/j.jcis.2018.10.001_b0030 article-title: Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600160 – volume: 9 start-page: 3740 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0090 article-title: Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles publication-title: ACS Nano doi: 10.1021/acsnano.5b00929 – volume: 1 start-page: 5778 year: 2013 ident: 10.1016/j.jcis.2018.10.001_b0130 article-title: Improving the anti-colon cancer activity of curcumin with biodegradable nano-micelles publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21091j – volume: 106 start-page: 57 year: 2016 ident: 10.1016/j.jcis.2018.10.001_b0040 article-title: Design, synthesis, characterization and magnetic studies of the metal-quinolate PHEMA-b-HQ polymer micelles publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2016.07.018 – volume: 20 start-page: 9388 year: 2004 ident: 10.1016/j.jcis.2018.10.001_b0160 article-title: Physicochemical characterization of degradable thermosensitive polymeric micelles publication-title: Langmuir doi: 10.1021/la048354h – volume: 13 start-page: 318 year: 1997 ident: 10.1016/j.jcis.2018.10.001_b0170 article-title: Biocatalytic solvent-free polymerization to produce high molecular weight polyesters publication-title: Biotechnol. Prog. doi: 10.1021/bp970024i – volume: 6 start-page: 22964 year: 2016 ident: 10.1016/j.jcis.2018.10.001_b0045 article-title: Polymeric micelles stabilized by polyethylenimine-copper (C2H5N-Cu) coordination for sustained drug release publication-title: RSC Adv. doi: 10.1039/C6RA02300B – volume: 77 start-page: 257 year: 2017 ident: 10.1016/j.jcis.2018.10.001_b0095 article-title: A novel platinum(II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1900 – volume: 10 start-page: 797 year: 2015 ident: 10.1016/j.jcis.2018.10.001_b0100 article-title: Platinum(II) as bifunctional linker in antibody-drug conjugate formation: coupling of a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore to trastuzumab as a model publication-title: ChemMedChem doi: 10.1002/cmdc.201402496 |
SSID | ssj0011559 |
Score | 2.4031596 |
Snippet | [Display omitted]
The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers... The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for... HypothesisThe presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 505 |
SubjectTerms | Chemical Sciences composite polymers Controlled drug delivery Coordination chemistry coordination compounds Core-crosslinked micelle Cross-Linking Reagents Cross-Linking Reagents - chemical synthesis Cross-Linking Reagents - chemistry crosslinking curcumin Drug Delivery Systems drugs free radicals hydrophobicity Ligands Material chemistry Methacrylates - chemistry Metharcrylates Micelles Molecular Molecular Structure nanomedicine Organoplatinium Compunds Organoplatinum Compounds - chemistry Particle Size PEG-P(HPMA) platinum polyethylene glycol Polyethylene Glycols Polyethylene Glycols - chemistry polymerization Stimulus-responsive Surface Properties |
Title | Reversibly core-crosslinked PEG-P(HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery |
URI | https://dx.doi.org/10.1016/j.jcis.2018.10.001 https://www.ncbi.nlm.nih.gov/pubmed/30340170 https://www.proquest.com/docview/2123718023 https://www.proquest.com/docview/2220859091 https://hal.umontpellier.fr/hal-02385350 |
Volume | 535 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9gAcUClfy0flVhxAyO0msTdxb6tVS2ihWqEi9RY5tlNShbRadpF6Qfx0ZuxkBYfuoce1JnGUcWae12_eALyVI6MToyXXlZJUkjPi2uqKD5XVmK4yTEpe7fN0lH8Tx-fyfA0mfS0M0Sq72B9iuo_W3ch-9zb3r-uaanzxa0sVBtcEUbKiQnMhUlrle7-XNI-Ijt0CzSPiZN0VzgSO16WpSbI7yvY8wyu6LTnd-04sydsgqE9FR5vwqMOQbBwe8zGsuXYL7k_61m1b8PAflcEn8Oer89yLsrlhJFrJ_eR0cussmx5-5NN3-fTL-D2jzvRN434esCkx5NrFD7THzWkd_jFkpp-BIdJlxiNuTz3iTX2hW8tnobE93tbOFhfMuoZYHzdP4ezo8GyS867xAjcYN-cc9yCxLVOqcUW4p0WkSh1nMrWKOpPjBosOhitrMuoYqp0V1og40okVRpgyTp7BenvVuhfAlMx0pa0xpNufllaLoVZpmagqw72oTgYQ9S-8MJ0oOfXGaIqefXZZkJMKchKNoZMG8GF5zXWQ5FhpLXs_Fv8trAJzxsrrdtHpywlIhTsffy5ojGCOTOTwFxrt9GuiQAeQk3TrrhZ4J0QEqVfXW2ETU4NUhYhtAM_DglrOh8hCkLTRyzs-_it4gL9U4Je_hvX5bOHeIHyal9v--9iGjfGnk_z0L_aUGHI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615VA4ICiv5WkQBxByu3l4E3NbrVoCbKsVWqTeLMd2SqqQVssuUi-In86Mnazg0D1wdZw4ytgzn-NvvgF4LUZGJ0YLrispKCVnxLXVFR9KqzFc5RiUvNrnyaj4mn46FadbMOlzYYhW2fn-4NO9t-5aDrqveXBZ15Tji6stk-hcE0TJUmzDjRSXL5Ux2P-15nlEdO4WeB4Rp-5d5kwgeZ2bmjS7o3zfU7yi66LT9jeiSV6HQX0sOroDtzsQycbhPe_Clmv3YHfS127bg1t_yQzeg99fnCdflM0VI9VK7geno1tn2ezwA5-9KWbH47eMStM3jfvxns2IIteuvmN_3J3W4ZchM_0IDKEuMx5ye-4Rb-oz3Vq-CJXt8bF2sTpj1jVE-7i6D_Ojw_mk4F3lBW7QcS45bkJiW2aU5Ip4T6eRLHWci8xKKk2OOyw6Ga6syalkqHY2tSaNI53Y1KSmjJMHsNNetO4RMClyXWlrDAn3Z6XV6VDLrExkleNmVCcDiPoPrkynSk7FMRrV08_OFRlJkZGoDY00gHfrey6DJsfG3qK3o_pnZikMGhvve4VGXw9AMtzFeKqojXCOSMTwJ3Z62c8JhQYgI-nWXazwSQgJMi-vt6FPTBVSJUK2ATwME2o9HkKLlLSNHv_n67-A3WJ-PFXTjyefn8BNvCID2fwp7CwXK_cMsdSyfO7Xyh8x5hoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversibly+core-crosslinked+PEG-P%28HPMA%29+micelles%3A+Platinum+coordination+chemistry+for+competitive-ligand-regulated+drug+delivery&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Buwalda%2C+Sytze&rft.au=Nottelet%2C+Benjamin&rft.au=Bethry%2C+Audrey&rft.au=Kok%2C+Robbert+Jan&rft.date=2019-02-01&rft.issn=0021-9797&rft.volume=535&rft.spage=505&rft.epage=515&rft_id=info:doi/10.1016%2Fj.jcis.2018.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2018_10_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |