Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs

In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 210; pp. 96 - 112
Main Authors Zhou, Yushan, Li, Zhiwei, Li, Jia, Zhao, Rong, Ding, Xiaoli
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s. •Glacier mass balances (1975–2000) in the Tibet Plateau are estimated.•Glaciers in the northwest experienced less ice loss than those in the southeast.•The Himalaya-Nyainqêntanglha glaciers showed accelerated mass loss after 2000.•The western Kunlun glaciers have been in a stable state since the mid-1970s.
AbstractList In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s. •Glacier mass balances (1975–2000) in the Tibet Plateau are estimated.•Glaciers in the northwest experienced less ice loss than those in the southeast.•The Himalaya-Nyainqêntanglha glaciers showed accelerated mass loss after 2000.•The western Kunlun glaciers have been in a stable state since the mid-1970s.
In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a⁻¹ to 0.02 ± 0.10 m w.e. a⁻¹, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a⁻¹ to −0.11 ± 0.14 m w.e. a⁻¹. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s.
In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s.
Author Li, Zhiwei
Ding, Xiaoli
Zhou, Yushan
Li, Jia
Zhao, Rong
Author_xml – sequence: 1
  givenname: Yushan
  surname: Zhou
  fullname: Zhou, Yushan
  organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
– sequence: 2
  givenname: Zhiwei
  orcidid: 0000-0003-4575-5258
  surname: Li
  fullname: Li, Zhiwei
  email: zwli@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
– sequence: 3
  givenname: Jia
  surname: Li
  fullname: Li, Jia
  organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
– sequence: 4
  givenname: Rong
  surname: Zhao
  fullname: Zhao, Rong
  organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
– sequence: 5
  givenname: Xiaoli
  orcidid: 0000-0002-5733-3629
  surname: Ding
  fullname: Ding, Xiaoli
  organization: Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, 999077, Hong Kong
BookMark eNp9kb1uFDEURi0UJDaBB6CzREMzw7XHO-MRFQpJFpGIv6W2PPadxKsZO9geRLp0PABvyJPgZKlSpLqFv_PpXp9DcuCDR0JeMqgZsPbNro4Jaw5M1tDUwOEJWTHZ9RV0IA7ICqARleDr7hk5TGkHwNayYyvy-2zSxmGks06JDnrS3iB1nuYrpF-cv7zS7u_tn60bMNPPk86oF6q9pS4nmpYYw-JtiSU6xjDfU7OzFes7SDQHygGg1Ca0NHi6wV_6ssyPm6q_b_n2dXtB359cpOfk6ainhC_-zyPy_fRke7ypzj-dfTh-d14Z0Xa5WgsrW9TSYD9IqfuhMaNFbvtWcKYNH9e2sV1nB2uBDQDCalneEcGMurVtc0Re73uvY_ixYMpqdsngVO7GsCTFOWcgBOeiRF89iO7CEn3ZTnGQbdNK0fKS6vYpE0NKEUdlXNbZBZ-jdpNioO4EqZ0qgtSdIAWNKoIKyR6Q19HNOt48yrzdM1j-6GfxplKxV5RZF9FkZYN7hP4H_1eqig
CitedBy_id crossref_primary_10_1007_s11069_018_3505_7
crossref_primary_10_1016_j_rse_2021_112779
crossref_primary_10_1029_2024GL108202
crossref_primary_10_1016_j_accre_2023_04_007
crossref_primary_10_1016_j_ecoinf_2021_101316
crossref_primary_10_3390_rs14164078
crossref_primary_10_1016_j_rines_2023_100013
crossref_primary_10_1007_s11629_022_7829_0
crossref_primary_10_3390_rs14061506
crossref_primary_10_1007_s00382_022_06283_4
crossref_primary_10_1016_j_geog_2024_07_004
crossref_primary_10_3389_fenvs_2022_788359
crossref_primary_10_1038_s41561_018_0271_9
crossref_primary_10_3390_w13131749
crossref_primary_10_1016_j_rse_2024_114437
crossref_primary_10_1029_2022GL101200
crossref_primary_10_5194_essd_14_411_2022
crossref_primary_10_1017_jog_2021_9
crossref_primary_10_3390_atmos15020231
crossref_primary_10_5194_acp_23_9265_2023
crossref_primary_10_3390_rs15174236
crossref_primary_10_5194_hess_27_933_2023
crossref_primary_10_3390_rs15092338
crossref_primary_10_3390_rs12203466
crossref_primary_10_1016_j_ecolind_2022_109418
crossref_primary_10_1016_j_ejrs_2024_04_006
crossref_primary_10_1016_j_jhydrol_2019_124010
crossref_primary_10_3390_rs13193825
crossref_primary_10_1080_10106049_2022_2105403
crossref_primary_10_1016_j_quascirev_2022_107937
crossref_primary_10_1016_j_srs_2023_100082
crossref_primary_10_1080_15230430_2022_2028475
crossref_primary_10_3390_rs13020293
crossref_primary_10_1016_j_scitotenv_2021_149533
crossref_primary_10_3390_w15152762
crossref_primary_10_3390_rs14030506
crossref_primary_10_5194_tc_16_197_2022
crossref_primary_10_3390_rs13245124
crossref_primary_10_3390_rs12182922
crossref_primary_10_1017_jog_2024_1
crossref_primary_10_1017_jog_2022_50
crossref_primary_10_1186_s13007_021_00796_5
crossref_primary_10_3390_rs13101984
crossref_primary_10_1016_j_geomorph_2021_108005
crossref_primary_10_1017_jog_2020_98
crossref_primary_10_1016_j_jhydrol_2024_131190
crossref_primary_10_1038_s41598_024_78660_4
crossref_primary_10_1017_jog_2021_84
crossref_primary_10_3390_rs17010040
crossref_primary_10_1007_s12524_023_01773_2
crossref_primary_10_3390_land12030623
crossref_primary_10_1016_j_palaeo_2021_110506
crossref_primary_10_3390_rs14205190
crossref_primary_10_1007_s00190_021_01519_3
crossref_primary_10_11922_11_6035_csd_2023_0066_zh
crossref_primary_10_1029_2022GL101115
crossref_primary_10_1126_sciadv_aav7266
crossref_primary_10_5194_essd_15_2841_2023
crossref_primary_10_3390_rs11040452
crossref_primary_10_1088_1361_6633_acaf8e
crossref_primary_10_1016_j_scitotenv_2019_07_086
crossref_primary_10_3390_su16167118
crossref_primary_10_1080_13504509_2021_1943723
crossref_primary_10_1029_2021JD035705
crossref_primary_10_1016_j_rse_2019_111554
crossref_primary_10_1016_j_scitotenv_2020_139607
crossref_primary_10_1016_j_gloplacha_2020_103187
crossref_primary_10_3389_feart_2022_813574
crossref_primary_10_1109_TGRS_2021_3116441
crossref_primary_10_1016_j_rse_2021_112853
crossref_primary_10_1016_j_rse_2022_113029
crossref_primary_10_1007_s10113_020_01624_7
crossref_primary_10_1016_j_ecolind_2023_111086
crossref_primary_10_1016_j_accre_2021_05_001
crossref_primary_10_1038_s41597_024_03282_4
crossref_primary_10_3389_feart_2020_566802
crossref_primary_10_1007_s10584_022_03343_w
crossref_primary_10_3390_rs14040852
crossref_primary_10_1007_s11629_023_8538_z
crossref_primary_10_1016_j_scitotenv_2023_161717
crossref_primary_10_11922_csdata_2018_0011_zh
crossref_primary_10_3389_feart_2023_1219755
crossref_primary_10_1017_jog_2019_13
crossref_primary_10_3390_rs13234935
crossref_primary_10_1109_ACCESS_2019_2909991
crossref_primary_10_1016_j_oneear_2020_10_019
crossref_primary_10_3389_feart_2020_582060
crossref_primary_10_1038_s41598_019_53733_x
crossref_primary_10_1109_JSTARS_2024_3408451
crossref_primary_10_1038_s41467_021_24180_y
crossref_primary_10_1016_j_geomorph_2025_109711
crossref_primary_10_5194_tc_13_1743_2019
crossref_primary_10_1017_jog_2023_5
crossref_primary_10_3390_rs16061048
crossref_primary_10_5194_tc_17_5435_2023
crossref_primary_10_1017_jog_2022_30
crossref_primary_10_1038_s41598_020_80418_7
crossref_primary_10_1007_s11629_021_7157_9
crossref_primary_10_3390_rs15051282
crossref_primary_10_1080_10106049_2022_2136254
crossref_primary_10_1007_s10661_023_10958_8
crossref_primary_10_1017_jog_2019_20
crossref_primary_10_1016_j_earscirev_2022_104197
crossref_primary_10_2166_nh_2020_039
crossref_primary_10_3389_frwa_2022_909246
crossref_primary_10_1002_esp_5342
crossref_primary_10_3390_rs14132962
crossref_primary_10_1038_s41561_019_0513_5
crossref_primary_10_3390_rs12050864
crossref_primary_10_1016_j_jhydrol_2019_124052
crossref_primary_10_1017_jog_2018_53
crossref_primary_10_1109_JSTARS_2023_3243771
crossref_primary_10_3390_rs14246281
crossref_primary_10_3390_rs13193903
crossref_primary_10_3390_rs12030472
crossref_primary_10_1016_j_coldregions_2023_104052
crossref_primary_10_3390_land11101855
crossref_primary_10_1016_j_isprsjprs_2021_04_018
crossref_primary_10_3390_rs14122886
crossref_primary_10_1016_j_jag_2022_102913
crossref_primary_10_1016_j_jhydrol_2020_124652
crossref_primary_10_1016_j_earscirev_2020_103432
crossref_primary_10_3390_rs14112603
crossref_primary_10_1016_j_jhydrol_2019_01_007
crossref_primary_10_1016_j_rse_2024_114124
crossref_primary_10_1080_20964471_2022_2131956
crossref_primary_10_1016_j_gsf_2021_101290
crossref_primary_10_1007_s11430_021_9844_0
crossref_primary_10_1080_17445647_2024_2326827
crossref_primary_10_1080_24749508_2024_2392919
crossref_primary_10_1109_JSTARS_2021_3070362
crossref_primary_10_1109_JSTARS_2024_3518480
crossref_primary_10_3389_feart_2023_1165390
crossref_primary_10_1016_j_rines_2024_100046
crossref_primary_10_1016_j_scitotenv_2020_140995
crossref_primary_10_1016_j_catena_2023_107156
crossref_primary_10_2166_wcc_2024_074
crossref_primary_10_3389_feart_2019_00363
crossref_primary_10_1016_j_rse_2019_111241
crossref_primary_10_1016_j_gloplacha_2022_103997
crossref_primary_10_1016_j_jhydrol_2023_130581
crossref_primary_10_1007_s10661_021_09689_5
crossref_primary_10_1002_joc_7873
crossref_primary_10_1017_jog_2023_45
crossref_primary_10_3390_rs12162632
crossref_primary_10_1017_jog_2022_78
crossref_primary_10_1016_j_jhydrol_2024_131200
crossref_primary_10_1007_s11442_021_1847_7
crossref_primary_10_1017_aog_2023_48
crossref_primary_10_3390_land13081126
crossref_primary_10_3390_rs12203280
crossref_primary_10_1017_jog_2019_8
crossref_primary_10_1016_j_epsl_2021_116766
crossref_primary_10_3390_w11112387
crossref_primary_10_1016_j_jhydrol_2020_125207
Cites_doi 10.1175/JCLI-D-13-00282.1
10.1038/nclimate2237
10.3189/2013AoG63A296
10.1016/j.epsl.2017.02.008
10.1016/j.earscirev.2012.03.008
10.1016/j.gloplacha.2014.11.014
10.3189/2015JoG15J056
10.1029/2006GL025862
10.3189/2016AoG71A570
10.3189/002214309789470950
10.1016/j.quaint.2015.02.043
10.5194/tc-10-2203-2016
10.1016/j.rse.2007.11.003
10.3189/2014AoG66A125
10.5194/tc-9-2071-2015
10.5194/tc-9-505-2015
10.1038/nclimate1580
10.1126/science.1234532
10.1080/19475705.2014.931306
10.5194/tc-6-1295-2012
10.3189/2012JoG11J175
10.5194/tc-7-569-2013
10.1038/s41598-017-07133-8
10.5194/tc-9-557-2015
10.1029/2000GL011787
10.1073/pnas.1106242108
10.3189/172756407782871693
10.1016/j.jhydrol.2015.09.014
10.3189/2016AoG71A040
10.1016/j.epsl.2015.06.047
10.1080/01431161.2016.1246777
10.1007/s10712-014-9286-y
10.5194/tc-11-531-2017
10.5194/tc-5-271-2011
10.1016/j.rse.2011.09.017
10.1038/ngeo2999
10.5194/tc-7-877-2013
10.5194/tc-9-1105-2015
10.3189/S0022143000016476
10.1016/j.rse.2017.02.003
10.3189/2014AoG66A100
10.1007/s11629-014-3220-0
10.3189/2014JoG13J176
10.1017/jog.2016.96
10.1016/j.gloplacha.2006.11.036
10.1038/nature23878
10.3189/2012JoG11J061
10.1038/nature11324
10.1017/jog.2016.137
10.1016/j.rse.2016.09.013
10.1109/JSTARS.2016.2581482
10.5194/tc-9-849-2015
10.5194/tc-5-349-2011
10.1126/science.1215828
10.3390/rs9040388
10.3389/feart.2016.00063
10.1016/j.gloplacha.2008.02.001
10.1029/2005RG000183
10.1080/17538947.2011.594099
10.5194/tc-10-65-2016
10.1016/j.rse.2012.06.020
10.1038/ngeo1068
10.1016/j.epsl.2015.09.004
10.14358/PERS.76.5.603
10.5194/tc-9-525-2015
10.3189/002214308786570782
10.1017/jog.2016.142
10.5194/tc-5-107-2011
10.5194/tc-7-1623-2013
10.1657/AAAR00C-13-129
10.1073/pnas.1008162107
10.1016/j.rse.2013.07.043
10.5194/tc-10-2075-2016
10.1080/10106049.2010.516843
10.1029/2000GL012484
10.1038/ngeo1450
10.1016/j.isprsjprs.2009.02.003
10.1016/j.rse.2012.11.020
10.3189/2013AoG64A111
10.3189/2016AoG71A049
10.3389/feart.2015.00054
10.3189/2015JoG14J209
10.5194/tc-11-407-2017
10.1002/hyp.10199
10.5194/tc-9-1213-2015
10.3390/rs8121038
10.1088/1748-9326/9/1/014009
10.5194/tc-7-1263-2013
10.3189/2014AoG66A104
10.3189/2012JoG11J025
10.1016/j.rse.2015.06.019
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier BV Jun 1, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier BV Jun 1, 2018
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2018.03.020
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 112
ExternalDocumentID 10_1016_j_rse_2018_03_020
S0034425718301135
GeographicLocations Tibet
Tibetan Plateau
Himalayan region
China
GeographicLocations_xml – name: Tibetan Plateau
– name: Tibet
– name: Himalayan region
– name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c467t-54d86ea8ce9b88a9b3cfde2d96421ac2f5d3d77dbdd01b004da8de2ee0cfa6d63
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Jul 10 22:36:20 EDT 2025
Wed Aug 13 09:02:05 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 03:51:14 EDT 2025
Fri Feb 23 02:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Qinghai–Tibet Plateau
SRTM DEM
Glacier mass balance
Geodetic method
KH-9 images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-54d86ea8ce9b88a9b3cfde2d96421ac2f5d3d77dbdd01b004da8de2ee0cfa6d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4575-5258
0000-0002-5733-3629
PQID 2086368462
PQPubID 2045405
PageCount 17
ParticipantIDs proquest_miscellaneous_2221044224
proquest_journals_2086368462
crossref_citationtrail_10_1016_j_rse_2018_03_020
crossref_primary_10_1016_j_rse_2018_03_020
elsevier_sciencedirect_doi_10_1016_j_rse_2018_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2018
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Bolch, Pieczonka, Benn (bb0065) 2011; 5
Nuimura, Sakai, Taniguchi, Nagai, Lamsal, Tsutaki, Kozawa, Hoshina, Takenaka, Omiya, Tsunematsu, Tshering, Fujita (bb0330) 2015; 9
Bolch, Pieczonka, Mukherjee, Shea (bb0075) 2017; 11
WGMS (bb0475) 2008
Cogley (bb0085) 2016; 57
Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu, Pu, Lu, Xiang, Kattel, Joswiak (bb0520) 2012; 2
Kraaijenbrink, Shea, Pellicciotti, de Jong, Immerzeel (bb0230) 2016; 186
Vijay, Braun (bb0450) 2016; 8
Li, Li, Zhu, Li, Xu, Wang, Huang, Hu (bb0260) 2017; 192
Zhang, Liu, Wei, Xu, Guo, Bao, Jiang (bb0535) 2016; 11
Li, Xing, Liu, Zhou, Huang (bb0255) 2012; 5
Huss, Hock (bb0180) 2015; 3
Neckel, Kropáček, Bolch, Hochschild (bb0310) 2014; 9
Rignot, Echelmeyer, Krabill (bb0385) 2001; 28
Pieczonka, Bolch, Junfeng, Shiyin (bb0360) 2013; 130
Kang, Wang, Morgenstern, Zhang, Grigholm, Kaspari, Schwikowski, Ren, Yao, Qin, Mayewski (bb0200) 2015; 9
Rowan, Egholm, Quincey, Glasser (bb0400) 2015; 430
Nuimura, Fujita, Yamaguchi, Sharma (bb0325) 2012; 58
Racoviteanu, Arnaud, Williams, Manley (bb0370) 2015; 9
Paul, Bolch, Kääb, Nagler, Nuth, Scharrer, Shepherd, Strozzi, Ticconi, Bhambri, Berthier, Bevan, Gourmelen, Heid, Jeong, Kunz, Lauknes, Luckman, Merryman Boncori, Moholdt, Muir, Neelmeijer, Rankl, VanLooy, Van Niel (bb0345) 2015; 162
Holzer, Golletz, Buchroithner, Bolch (bb0165) 2016
Bajracharya, Maharjan, Shrestha (bb0030) 2014; 55
Azam, Ramanathan, Wagnon, Vincent, Linda, Berthier, Sharma, Mandal, Angchuk, Singh, Pottakkal (bb0020) 2016; 57
Liu, Jiang, Sun, Yi, Wang, Hsu (bb0275) 2016; 37
Van Niel, McVicar, Li, Gallant, Yang (bb0445) 2008; 112
Zhao, Yang, Yao, Tian, Xu (bb0545) 2016; 6
Seehaus, Marinsek, Helm, Skvarca, Braun (bb0415) 2015; 427
Sugiyama, Fukui, Fujita, Tone, Yamaguchi (bb0435) 2013; 54
Ke, Ding, Song (bb0220) 2015; 371
Scherler, Bookhagen, Strecker (bb0405) 2011; 4
Shea, Immerzeel, Wagnon, Vincent, Bajracharya (bb0425) 2015; 9
Gardelle, Berthier, Arnaud (bb0125) 2012; 5
Farr, Rosen, Caro, Crippen, Duren, Hensley (bb0100) 2007; 45
Holzer, Vijay, Yao, Xu, Buchroithner, Bolch (bb0160) 2015; 9
Nuth, Kääb (bb0335) 2011; 5
Zhao, Ding, Moore (bb0550) 2016; 57
Pfeffer, Arendt, Bliss, Bolch, Cogley, Gardner, Hagen, Hock, Kaser, Kienholz, Miles, Moholdt, Moelg, Paul, Radic, Rastner, Raup, Rich, Sharp, Andeassen, Bajracharya, Barrand, Beedle, Berthier, Bhambri, Brown, Burgess, Burgess, Cawkwell, Chinn, Copland, Cullen, Davies, De Angelis, Fountain, Frey, Giffen, Glasser, Gurney, Hagg, Hall, Haritashya, Hartmann, Herreid, Howat, Jiskoot, Khromova, Klein, Kohler, Konig, Kriegel, Kutuzov, Lavrentiev, Le Bris, Li, Manley, Mayer, Menounos, Mercer, Mool, Negrete, Nosenko, Nuth, Osmonov, Pettersson, Racoviteanu, Ranzi, Sarikaya, Schneider, Sigurdsson, Sirguey, Stokes, Wheate, Wolken, Wu, Wyatt (bb0350) 2014; 60
Neckel, Loibl, Rankl (bb0315) 2017; 464
Rolstad, Haug, Denby (bb0390) 2009; 55
Wang, Xiang, Gao, Lu, Yao (bb0465) 2015; 29
Brun, Berthier, Wagnon, Kääb, Treichler (bb0080) 2017; 10
Paul, Barrand, Baumann, Berthier, Bolch, Casey, Frey, Joshi, Konovalov, LeBris, Mölg, Nosenko, Nuth, Pope, Racoviteanu, Rastner, Raup, Scharrer, Steffen, Winsvold (bb0340) 2013; 54
Fischer, Huss, Hoelzle (bb0110) 2015; 9
Gardner, Moholdt, Cogley, Wouters, Arendt, Wahr, Berthier, Hock, Pfeffer, Kaser, Ligtenberg, Bolch, Sharp, Hagen, van den Broeke, Paul (bb0140) 2013; 340
Ye, Zong, Tian, Cogley, Song, Guo (bb0530) 2017; 63
Fischer (bb0105) 2011; 5
Lutz, Immerzeel, Shrestha, Bierkens (bb0280) 2014; 4
Huintjes, Neckel, Hochschild, Schneider (bb0170) 2015; 61
Willis, Melkonian, Pritchard, Ramage (bb0485) 2012; 117
Wu, Wang, Jiang, Guo (bb0490) 2014; 55
RGI Consortium (bb0380) 2017
Azam, Wagnon, Vincent, Ramanathan, Linda, Singh (bb0015) 2014; 55
Benn, Bolch, Hands, Gulley, Luckman, Nicholson, Quincey, Thompson, Toumi, Wiseman (bb0040) 2012; 114
Kääb, Berthier, Nuth, Gardelle, Arnaud (bb0190) 2012; 488
Ke, Ding, Song (bb0215) 2015; 168
Junfeng, Shiyin, Wanqin, Junli, Weijia, Donghui (bb0185) 2015; 47
Bolch, Kulkarni, Kääb, Huggel, Paul, Cogley, Frey, Kargel, Fujita, Scheel, Bajracharya, Stoffel (bb0070) 2012; 336
Ye, Bolch, Naruse, Wang, Zong, Wang, Zhao, Yang, Kang (bb0525) 2015; 530
Dehecq, Millan, Berthier, Gourmelen, Trouve (bb0095) 2016; 9
Guo, Liu, Xu, Wu, Shangguan, Yao, Wei, Bao, Yu, Liu, Jiang (bb0150) 2015; 61
Bolch, Buchroithner, Pieczonka, Kunert (bb0060) 2008; 54
Bajracharya, Shrestha (bb0025) 2011
Lin, Li, Cuo, Hooper, Ye (bb0265) 2017; 7
Gardelle, Berthier, Arnaud, Kaab (bb0135) 2013; 7
Schwitter, Raymond (bb0410) 1993; 39
Maussion, Scherer, Mölg, Collier, Curio, Finkelnburg (bb0295) 2014; 27
Huss (bb0175) 2013; 7
Fujita, Nuimura (bb0120) 2011; 108
Pieczonka, Bolch (bb0355) 2015; 128
Wendt, Mayer, Lambrecht, Floricioiu (bb0470) 2017; 9
Kaser, Großhauser, Marzeion (bb0210) 2010; 107
Maurer, Rupper, Schaefer (bb0290) 2016; 10
Xie, Liu (bb0495) 2010
Groh, Ewert, Rosenau, Fagiolini, Gruber, Floricioiu, Abdel Jaber, Linow, Flechtner, Eineder, Dierking, Dietrich (bb0145) 2014; 35
Roth, Eineder, Rabus, Mikusch, Schättler (bb0395) 2001; vol. 2
Kääb, Treichler, Nuth, Berthier (bb0195) 2015; 9
Snehmani, Venkataraman, Singh (bb0430) 2010; 25
Berthier, Arnaud, Vincent, Remy (bb0045) 2006; 33
Gardelle, Berthier, Arnaud (bb0130) 2012; 58
Dall, Madsen, Keller, Forsberg (bb0090) 2001; 28
Frey, Paul, Strozzi (bb0115) 2012; 124
King, Quincey, Carrivick, Rowan (bb0225) 2017; 11
Li, Cheng, Jin, Kang, Che, Jin, Wu, Nan, Wang, Shen (bb0250) 2008; 62
Ragettli, Bolch, Pellicciotti (bb0375) 2016; 10
Racoviteanu, Manley, Arnaud, Williams (bb0365) 2007; 59
Surazakov, Aizen (bb0440) 2010; 76
Bao, Liu, Wei, Guo (bb0035) 2015; 12
Shangguan, Liu, Ding, Li, Zhang, Ding, Wang, Xie, Li (bb0420) 2007; 46
WGMS (bb0480) 2017
Lamsal, Sawagaki, Watanabe, Byers (bb0240) 2016; 7
Nagai, Fujita, Sakai, Nuimura, Tadono (bb0300) 2016; 10
Vincent, Ramanathan, Wagnon, Dobhal, Linda, Berthier, Sharma, Arnaud, Azam, Jose, Gardelle (bb0455) 2013; 7
Kraaijenbrink, Bierkens, Lutz, Immerzeel (bb0235) 2017; 549
Neckel, Braun, Kropáček, Hochschild (bb0305) 2013; 7
Marzeion, Jarosch, Hofer (bb0285) 2012; 6
Zhou, Li, Li (bb0555) 2017
Bhattacharya, Bolch, Mukherjee, Pieczonka, Kropáček, Buchroithner (bb0055) 2016; 62
Berthier, Cabot, Vincent, Six (bb0050) 2016; 4
Höhle, Höhle (bb0155) 2009; 64
(bb0205) 2014
Lei, Yao, Yi, Wang, Sheng, Li, Joswiak (bb0245) 2012; 58
Pfeffer (10.1016/j.rse.2018.03.020_bb0350) 2014; 60
Li (10.1016/j.rse.2018.03.020_bb0260) 2017; 192
Fischer (10.1016/j.rse.2018.03.020_bb0110) 2015; 9
Wu (10.1016/j.rse.2018.03.020_bb0490) 2014; 55
Benn (10.1016/j.rse.2018.03.020_bb0040) 2012; 114
Surazakov (10.1016/j.rse.2018.03.020_bb0440) 2010; 76
Kääb (10.1016/j.rse.2018.03.020_bb0190) 2012; 488
Bolch (10.1016/j.rse.2018.03.020_bb0070) 2012; 336
Bajracharya (10.1016/j.rse.2018.03.020_bb0030) 2014; 55
Gardelle (10.1016/j.rse.2018.03.020_bb0135) 2013; 7
Nuimura (10.1016/j.rse.2018.03.020_bb0325) 2012; 58
Bolch (10.1016/j.rse.2018.03.020_bb0065) 2011; 5
Neckel (10.1016/j.rse.2018.03.020_bb0310) 2014; 9
Nuimura (10.1016/j.rse.2018.03.020_bb0330) 2015; 9
Bajracharya (10.1016/j.rse.2018.03.020_bb0025) 2011
Lutz (10.1016/j.rse.2018.03.020_bb0280) 2014; 4
Li (10.1016/j.rse.2018.03.020_bb0250) 2008; 62
Kraaijenbrink (10.1016/j.rse.2018.03.020_bb0235) 2017; 549
Xie (10.1016/j.rse.2018.03.020_bb0495) 2010
Frey (10.1016/j.rse.2018.03.020_bb0115) 2012; 124
Huss (10.1016/j.rse.2018.03.020_bb0175) 2013; 7
Vincent (10.1016/j.rse.2018.03.020_bb0455) 2013; 7
Kang (10.1016/j.rse.2018.03.020_bb0200) 2015; 9
Ke (10.1016/j.rse.2018.03.020_bb0220) 2015; 371
Bolch (10.1016/j.rse.2018.03.020_bb0060) 2008; 54
WGMS (10.1016/j.rse.2018.03.020_bb0475) 2008
(10.1016/j.rse.2018.03.020_bb0205) 2014
Cogley (10.1016/j.rse.2018.03.020_bb0085) 2016; 57
Fischer (10.1016/j.rse.2018.03.020_bb0105) 2011; 5
Gardelle (10.1016/j.rse.2018.03.020_bb0130) 2012; 58
Vijay (10.1016/j.rse.2018.03.020_bb0450) 2016; 8
Nuth (10.1016/j.rse.2018.03.020_bb0335) 2011; 5
Lamsal (10.1016/j.rse.2018.03.020_bb0240) 2016; 7
Bolch (10.1016/j.rse.2018.03.020_bb0075) 2017; 11
King (10.1016/j.rse.2018.03.020_bb0225) 2017; 11
RGI Consortium (10.1016/j.rse.2018.03.020_bb0380) 2017
Fujita (10.1016/j.rse.2018.03.020_bb0120) 2011; 108
Gardelle (10.1016/j.rse.2018.03.020_bb0125) 2012; 5
Roth (10.1016/j.rse.2018.03.020_bb0395) 2001; vol. 2
Marzeion (10.1016/j.rse.2018.03.020_bb0285) 2012; 6
Ye (10.1016/j.rse.2018.03.020_bb0530) 2017; 63
Paul (10.1016/j.rse.2018.03.020_bb0345) 2015; 162
Azam (10.1016/j.rse.2018.03.020_bb0020) 2016; 57
Lin (10.1016/j.rse.2018.03.020_bb0265) 2017; 7
Yao (10.1016/j.rse.2018.03.020_bb0520) 2012; 2
Rowan (10.1016/j.rse.2018.03.020_bb0400) 2015; 430
Gardner (10.1016/j.rse.2018.03.020_bb0140) 2013; 340
Ragettli (10.1016/j.rse.2018.03.020_bb0375) 2016; 10
Groh (10.1016/j.rse.2018.03.020_bb0145) 2014; 35
Zhao (10.1016/j.rse.2018.03.020_bb0545) 2016; 6
Zhou (10.1016/j.rse.2018.03.020_bb0555) 2017
Berthier (10.1016/j.rse.2018.03.020_bb0045) 2006; 33
Junfeng (10.1016/j.rse.2018.03.020_bb0185) 2015; 47
Maussion (10.1016/j.rse.2018.03.020_bb0295) 2014; 27
Paul (10.1016/j.rse.2018.03.020_bb0340) 2013; 54
Neckel (10.1016/j.rse.2018.03.020_bb0305) 2013; 7
Holzer (10.1016/j.rse.2018.03.020_bb0165) 2016
Racoviteanu (10.1016/j.rse.2018.03.020_bb0365) 2007; 59
Rignot (10.1016/j.rse.2018.03.020_bb0385) 2001; 28
Racoviteanu (10.1016/j.rse.2018.03.020_bb0370) 2015; 9
Pieczonka (10.1016/j.rse.2018.03.020_bb0360) 2013; 130
Seehaus (10.1016/j.rse.2018.03.020_bb0415) 2015; 427
Dehecq (10.1016/j.rse.2018.03.020_bb0095) 2016; 9
Schwitter (10.1016/j.rse.2018.03.020_bb0410) 1993; 39
Brun (10.1016/j.rse.2018.03.020_bb0080) 2017; 10
Zhang (10.1016/j.rse.2018.03.020_bb0535) 2016; 11
WGMS (10.1016/j.rse.2018.03.020_bb0480) 2017
Huss (10.1016/j.rse.2018.03.020_bb0180) 2015; 3
Liu (10.1016/j.rse.2018.03.020_bb0275) 2016; 37
Van Niel (10.1016/j.rse.2018.03.020_bb0445) 2008; 112
Nagai (10.1016/j.rse.2018.03.020_bb0300) 2016; 10
Zhao (10.1016/j.rse.2018.03.020_bb0550) 2016; 57
Dall (10.1016/j.rse.2018.03.020_bb0090) 2001; 28
Pieczonka (10.1016/j.rse.2018.03.020_bb0355) 2015; 128
Neckel (10.1016/j.rse.2018.03.020_bb0315) 2017; 464
Kääb (10.1016/j.rse.2018.03.020_bb0195) 2015; 9
Ye (10.1016/j.rse.2018.03.020_bb0525) 2015; 530
Snehmani (10.1016/j.rse.2018.03.020_bb0430) 2010; 25
Azam (10.1016/j.rse.2018.03.020_bb0015) 2014; 55
Shangguan (10.1016/j.rse.2018.03.020_bb0420) 2007; 46
Höhle (10.1016/j.rse.2018.03.020_bb0155) 2009; 64
Holzer (10.1016/j.rse.2018.03.020_bb0160) 2015; 9
Farr (10.1016/j.rse.2018.03.020_bb0100) 2007; 45
Lei (10.1016/j.rse.2018.03.020_bb0245) 2012; 58
Shea (10.1016/j.rse.2018.03.020_bb0425) 2015; 9
Scherler (10.1016/j.rse.2018.03.020_bb0405) 2011; 4
Willis (10.1016/j.rse.2018.03.020_bb0485) 2012; 117
Rolstad (10.1016/j.rse.2018.03.020_bb0390) 2009; 55
Bao (10.1016/j.rse.2018.03.020_bb0035) 2015; 12
Bhattacharya (10.1016/j.rse.2018.03.020_bb0055) 2016; 62
Ke (10.1016/j.rse.2018.03.020_bb0215) 2015; 168
Kraaijenbrink (10.1016/j.rse.2018.03.020_bb0230) 2016; 186
Maurer (10.1016/j.rse.2018.03.020_bb0290) 2016; 10
Wendt (10.1016/j.rse.2018.03.020_bb0470) 2017; 9
Kaser (10.1016/j.rse.2018.03.020_bb0210) 2010; 107
Li (10.1016/j.rse.2018.03.020_bb0255) 2012; 5
Guo (10.1016/j.rse.2018.03.020_bb0150) 2015; 61
Wang (10.1016/j.rse.2018.03.020_bb0465) 2015; 29
Huintjes (10.1016/j.rse.2018.03.020_bb0170) 2015; 61
Berthier (10.1016/j.rse.2018.03.020_bb0050) 2016; 4
Sugiyama (10.1016/j.rse.2018.03.020_bb0435) 2013; 54
References_xml – volume: 55
  start-page: 159
  year: 2014
  end-page: 166
  ident: bb0030
  article-title: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data
  publication-title: Ann. Glaciol.
– volume: 63
  start-page: 273
  year: 2017
  end-page: 287
  ident: bb0530
  article-title: Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13
  publication-title: J. Glaciol.
– volume: 25
  start-page: 597
  year: 2010
  end-page: 616
  ident: bb0430
  article-title: Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data
  publication-title: Geocarto Int.
– volume: 192
  start-page: 12
  year: 2017
  end-page: 29
  ident: bb0260
  article-title: Early 21st century glacier thickness changes in the Central Tien Shan
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 648
  year: 2012
  end-page: 656
  ident: bb0325
  article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008
  publication-title: J. Glaciol.
– volume: 28
  start-page: 3501
  year: 2001
  end-page: 3504
  ident: bb0385
  article-title: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 407
  year: 2017
  end-page: 426
  ident: bb0225
  article-title: Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015
  publication-title: Cryosphere
– volume: 5
  start-page: 349
  year: 2011
  end-page: 358
  ident: bb0065
  article-title: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery
  publication-title: Cryosphere
– volume: 2
  start-page: 663
  year: 2012
  end-page: 667
  ident: bb0520
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
– volume: 58
  start-page: 177
  year: 2012
  end-page: 184
  ident: bb0245
  article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau
  publication-title: J. Glaciol.
– volume: 7
  start-page: 1623
  year: 2013
  end-page: 1633
  ident: bb0305
  article-title: Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry
  publication-title: Cryosphere
– volume: 58
  start-page: 419
  year: 2012
  end-page: 422
  ident: bb0130
  article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
  publication-title: J. Glaciol.
– volume: 59
  start-page: 110
  year: 2007
  end-page: 125
  ident: bb0365
  article-title: Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes
  publication-title: Glob. Planet. Chang.
– year: 2014
  ident: bb0205
  publication-title: Global Land Ice Measurements from Space (Springer-Praxis). 33 Chapters
– volume: 336
  start-page: 310
  year: 2012
  end-page: 314
  ident: bb0070
  article-title: The state and fate of Himalayan glaciers
  publication-title: Science
– volume: 8
  start-page: 1038
  year: 2016
  ident: bb0450
  article-title: Elevation change rates of glaciers in the Lahaul-Spiti (western Himalaya, India) during 2000–2012 and 2012–2013
  publication-title: Remote Sens.
– volume: 57
  start-page: 223
  year: 2016
  end-page: 231
  ident: bb0550
  article-title: The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050
  publication-title: Ann. Glaciol.
– volume: 4
  start-page: 87
  year: 2014
  end-page: 592
  ident: bb0280
  article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation
  publication-title: Nat. Clim. Chang.
– volume: 27
  start-page: 1910
  year: 2014
  end-page: 1927
  ident: bb0295
  article-title: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis
  publication-title: J. Clim.
– volume: 128
  start-page: 1
  year: 2015
  end-page: 13
  ident: bb0355
  article-title: Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery
  publication-title: Glob. Planet. Chang.
– volume: 54
  start-page: 171
  year: 2013
  end-page: 182
  ident: bb0340
  article-title: On the accuracy of glacier outlines derived from remote sensing data
  publication-title: Ann. Glaciol.
– volume: 9
  year: 2014
  ident: bb0310
  article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements
  publication-title: Environ. Res. Lett.
– volume: 464
  start-page: 95
  year: 2017
  end-page: 102
  ident: bb0315
  article-title: Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet
  publication-title: Earth Planet. Sci. Lett.
– volume: 549
  start-page: 257
  year: 2017
  ident: bb0235
  article-title: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers
  publication-title: Nature
– volume: 54
  start-page: 592
  year: 2008
  end-page: 600
  ident: bb0060
  article-title: Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data
  publication-title: J. Glaciol.
– year: 2017
  ident: bb0380
  article-title: Randolph Glacier Inventory – a Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space
– volume: 33
  year: 2006
  ident: bb0045
  article-title: Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 569
  year: 2013
  end-page: 582
  ident: bb0455
  article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss
  publication-title: Cryosphere
– volume: 7
  start-page: 6712
  year: 2017
  ident: bb0265
  article-title: A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014
  publication-title: Sci. Rep.
– volume: 5
  start-page: 107
  year: 2011
  end-page: 124
  ident: bb0105
  article-title: Comparison of direct and geodetic mass balances on a multi-annual time scale
  publication-title: Cryosphere
– volume: 9
  start-page: 1105
  year: 2015
  end-page: 1128
  ident: bb0425
  article-title: Modelling glacier change in the Everest region, Nepal Himalaya
  publication-title: Cryosphere
– volume: 9
  start-page: 849
  year: 2015
  end-page: 864
  ident: bb0330
  article-title: The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
  publication-title: Cryosphere
– volume: vol. 2
  start-page: 745
  year: 2001
  end-page: 747
  ident: bb0395
  article-title: SRTM/X-SAR: products and processing facility
  publication-title: Geoscience and Remote Sensing Symposium, 2001
– volume: 9
  start-page: 557
  year: 2015
  end-page: 564
  ident: bb0195
  article-title: Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya
  publication-title: Cryosphere
– volume: 46
  start-page: 204
  year: 2007
  end-page: 208
  ident: bb0420
  article-title: Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data
  publication-title: Ann. Glaciol.
– year: 2008
  ident: bb0475
  publication-title: Global Glacier Changes: Facts and Figures
– volume: 530
  start-page: 273
  year: 2015
  end-page: 280
  ident: bb0525
  article-title: Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data
  publication-title: J. Hydrol.
– volume: 62
  start-page: 1115
  year: 2016
  end-page: 1133
  ident: bb0055
  article-title: Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data
  publication-title: J. Glaciol.
– volume: 29
  start-page: 859
  year: 2015
  end-page: 874
  ident: bb0465
  article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas
  publication-title: Hydrol. Process.
– volume: 5
  start-page: 322
  year: 2012
  end-page: 325
  ident: bb0125
  article-title: Slight mass gain of Karakoram glaciers in the early twenty-first century
  publication-title: Nat. Geosci.
– volume: 11
  year: 2016
  ident: bb0535
  article-title: Mass change of glaciers in Muztag Ata-Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data
  publication-title: PLoS One
– volume: 114
  start-page: 156
  year: 2012
  end-page: 174
  ident: bb0040
  article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards
  publication-title: Earth Sci. Rev.
– volume: 186
  start-page: 581
  year: 2016
  end-page: 595
  ident: bb0230
  article-title: Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 1295
  year: 2012
  end-page: 1322
  ident: bb0285
  article-title: Past and future sea-level change from the surface mass balance of glaciers
  publication-title: Cryosphere
– volume: 6
  year: 2016
  ident: bb0545
  article-title: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling
  publication-title: Sci. Rep.
– year: 2017
  ident: bb0555
  article-title: Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM
  publication-title: J. Glaciol.
– volume: 7
  start-page: 877
  year: 2013
  end-page: 887
  ident: bb0175
  article-title: Density assumptions for converting geodetic glacier volume change to mass change
  publication-title: Cryosphere
– volume: 28
  start-page: 1703
  year: 2001
  end-page: 1706
  ident: bb0090
  article-title: Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry
  publication-title: Geophys. Res. Lett.
– volume: 62
  start-page: 210
  year: 2008
  end-page: 218
  ident: bb0250
  article-title: Cryospheric change in China
  publication-title: Glob. Planet. Chang.
– volume: 10
  start-page: 2075
  year: 2016
  end-page: 2097
  ident: bb0375
  article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal
  publication-title: Cryosphere
– volume: 55
  start-page: 69
  year: 2014
  end-page: 80
  ident: bb0015
  article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969
  publication-title: Ann. Glaciol.
– volume: 4
  start-page: 156
  year: 2011
  end-page: 159
  ident: bb0405
  article-title: Spatially variable response of Himalayan glaciers to climate change affected by debris cover
  publication-title: Nat. Geosci.
– volume: 10
  start-page: 668
  year: 2017
  end-page: 673
  ident: bb0080
  article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016
  publication-title: Nat. Geosci.
– volume: 11
  start-page: 531
  year: 2017
  end-page: 539
  ident: bb0075
  article-title: Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s
  publication-title: Cryosphere
– year: 2010
  ident: bb0495
  article-title: Introduction of Glaciology (in Chinese)
– volume: 427
  start-page: 125
  year: 2015
  end-page: 135
  ident: bb0415
  article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula
  publication-title: Earth Planet. Sci. Lett.
– volume: 162
  start-page: 408
  year: 2015
  end-page: 426
  ident: bb0345
  article-title: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 301
  year: 2015
  end-page: 311
  ident: bb0185
  article-title: Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images
  publication-title: Arct. Antarct. Alp. Res.
– volume: 64
  start-page: 398
  year: 2009
  end-page: 406
  ident: bb0155
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 117
  start-page: 184
  year: 2012
  end-page: 198
  ident: bb0485
  article-title: Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 505
  year: 2015
  end-page: 523
  ident: bb0370
  article-title: Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya
  publication-title: Cryosphere
– year: 2017
  ident: bb0480
  article-title: Fluctuations of Glaciers Database
– volume: 9
  start-page: 3870
  year: 2016
  end-page: 3882
  ident: bb0095
  article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 5
  start-page: 516
  year: 2012
  end-page: 532
  ident: bb0255
  article-title: Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data
  publication-title: Int. J. Digital Earth
– volume: 9
  start-page: 525
  year: 2015
  end-page: 540
  ident: bb0110
  article-title: Surface elevation and mass changes of all Swiss glaciers 1980–2010
  publication-title: Cryosphere
– volume: 10
  start-page: 2203
  year: 2016
  ident: bb0290
  article-title: Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery
  publication-title: Cryosphere
– volume: 5
  start-page: 271
  year: 2011
  end-page: 290
  ident: bb0335
  article-title: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
  publication-title: Cryosphere
– volume: 7
  start-page: 403
  year: 2016
  end-page: 423
  ident: bb0240
  article-title: Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya
  publication-title: Geomat. Nat. Haz. Risk
– year: 2011
  ident: bb0025
  article-title: The status of glaciers in the Hindu Kush-Himalayan region
  publication-title: International Centre for Integrated Mountain Development (ICIMOD)
– volume: 107
  start-page: 20223
  year: 2010
  end-page: 20227
  ident: bb0210
  article-title: Contribution potential of glaciers to water availability in different climate regimes
  publication-title: Proc. Natl. Acad. Sci.
– volume: 4
  year: 2016
  ident: bb0050
  article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area
  publication-title: Front. Earth Sci.
– volume: 3
  year: 2015
  ident: bb0180
  article-title: A new model for global glacier change and sea-level rise
  publication-title: Front. Earth Sci.
– volume: 57
  start-page: 328
  year: 2016
  end-page: 338
  ident: bb0020
  article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India
  publication-title: Ann. Glaciol.
– volume: 9
  start-page: 1213
  year: 2015
  end-page: 1222
  ident: bb0200
  article-title: Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records
  publication-title: Cryosphere
– volume: 108
  start-page: 14011
  year: 2011
  end-page: 14014
  ident: bb0120
  article-title: Spatially heterogeneous wastage of Himalayan glaciers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 61
  start-page: 1048
  year: 2015
  end-page: 1060
  ident: bb0170
  article-title: Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011
  publication-title: J. Glaciol.
– volume: 45
  year: 2007
  ident: bb0100
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
– volume: 55
  start-page: 666
  year: 2009
  end-page: 680
  ident: bb0390
  article-title: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway
  publication-title: J. Glaciol.
– volume: 124
  start-page: 832
  year: 2012
  end-page: 843
  ident: bb0115
  article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results
  publication-title: Remote Sens. Environ.
– volume: 168
  start-page: 13
  year: 2015
  end-page: 23
  ident: bb0215
  article-title: Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory
  publication-title: Remote Sens. Environ.
– volume: 61
  start-page: 357
  year: 2015
  end-page: 372
  ident: bb0150
  article-title: The second Chinese glacier inventory: data, methods and results
  publication-title: J. Glaciol.
– volume: 60
  start-page: 537
  year: 2014
  end-page: 552
  ident: bb0350
  article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers
  publication-title: J. Glaciol.
– volume: 39
  start-page: 582
  year: 1993
  end-page: 590
  ident: bb0410
  article-title: Changes in the longitudinal profiles of glaciers during advance and retreat
  publication-title: J. Glaciol.
– volume: 54
  start-page: 157
  year: 2013
  end-page: 162
  ident: bb0435
  article-title: Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009
  publication-title: Ann. Glaciol.
– volume: 10
  start-page: 65
  year: 2016
  end-page: 85
  ident: bb0300
  article-title: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya
  publication-title: Cryosphere
– volume: 76
  start-page: 603
  year: 2010
  end-page: 608
  ident: bb0440
  article-title: Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 12
  start-page: 344
  year: 2015
  end-page: 357
  ident: bb0035
  article-title: Glacier changes during the past 40 years in the West Kunlun Shan
  publication-title: J. Mt. Sci.
– volume: 430
  start-page: 427
  year: 2015
  end-page: 438
  ident: bb0400
  article-title: Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya
  publication-title: Earth Planet. Sci. Lett.
– volume: 57
  start-page: 41
  year: 2016
  ident: bb0085
  article-title: Glacier shrinkage across High Mountain Asia
  publication-title: Ann. Glaciol.
– volume: 488
  start-page: 495
  year: 2012
  end-page: 498
  ident: bb0190
  article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas
  publication-title: Nature
– volume: 37
  start-page: 5687
  year: 2016
  end-page: 5707
  ident: bb0275
  article-title: Glacier elevation changes (2012–2016) of the Puruogangri ice field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 1263
  year: 2013
  end-page: 1286
  ident: bb0135
  article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011
  publication-title: Cryosphere
– volume: 130
  start-page: 233
  year: 2013
  end-page: 244
  ident: bb0360
  article-title: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery
  publication-title: Remote Sens. Environ.
– volume: 35
  start-page: 1481
  year: 2014
  end-page: 1505
  ident: bb0145
  article-title: Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects
  publication-title: Surv. Geophys.
– volume: 55
  start-page: 239
  year: 2014
  end-page: 247
  ident: bb0490
  article-title: Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09
  publication-title: Ann. Glaciol.
– volume: 371
  start-page: 58
  year: 2015
  end-page: 66
  ident: bb0220
  article-title: Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data
  publication-title: Quat. Int.
– start-page: 139
  year: 2016
  end-page: 153
  ident: bb0165
  article-title: Glacier variations in the Trans Alai massif and the lake karakul catchment (northeastern pamir) measured from space
  publication-title: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya
– volume: 112
  start-page: 2430
  year: 2008
  end-page: 2442
  ident: bb0445
  article-title: The impact of misregistration on SRTM and DEM image differences
  publication-title: Remote Sens. Environ.
– volume: 9
  year: 2017
  ident: bb0470
  article-title: A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities
  publication-title: Remote Sens.
– volume: 340
  start-page: 852
  year: 2013
  end-page: 857
  ident: bb0140
  article-title: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009
  publication-title: Science
– volume: 9
  start-page: 2071
  year: 2015
  end-page: 2088
  ident: bb0160
  article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data
  publication-title: Cryosphere
– volume: 27
  start-page: 1910
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0295
  article-title: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-13-00282.1
– volume: 4
  start-page: 87
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0280
  article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2237
– volume: 54
  start-page: 171
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0340
  article-title: On the accuracy of glacier outlines derived from remote sensing data
  publication-title: Ann. Glaciol.
  doi: 10.3189/2013AoG63A296
– volume: 464
  start-page: 95
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0315
  article-title: Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2017.02.008
– volume: 114
  start-page: 156
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0040
  article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2012.03.008
– volume: 128
  start-page: 1
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0355
  article-title: Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2014.11.014
– volume: 61
  start-page: 1048
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0170
  article-title: Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG15J056
– volume: 33
  year: 2006
  ident: 10.1016/j.rse.2018.03.020_bb0045
  article-title: Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL025862
– volume: 57
  start-page: 328
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0020
  article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A570
– volume: 55
  start-page: 666
  year: 2009
  ident: 10.1016/j.rse.2018.03.020_bb0390
  article-title: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway
  publication-title: J. Glaciol.
  doi: 10.3189/002214309789470950
– year: 2008
  ident: 10.1016/j.rse.2018.03.020_bb0475
– volume: 371
  start-page: 58
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0220
  article-title: Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2015.02.043
– volume: 10
  start-page: 2203
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0290
  article-title: Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2203-2016
– volume: 112
  start-page: 2430
  year: 2008
  ident: 10.1016/j.rse.2018.03.020_bb0445
  article-title: The impact of misregistration on SRTM and DEM image differences
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.11.003
– volume: 55
  start-page: 159
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0030
  article-title: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data
  publication-title: Ann. Glaciol.
  doi: 10.3189/2014AoG66A125
– volume: 9
  start-page: 2071
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0160
  article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data
  publication-title: Cryosphere
  doi: 10.5194/tc-9-2071-2015
– volume: 9
  start-page: 505
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0370
  article-title: Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya
  publication-title: Cryosphere
  doi: 10.5194/tc-9-505-2015
– volume: 2
  start-page: 663
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0520
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1580
– volume: 340
  start-page: 852
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0140
  article-title: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009
  publication-title: Science
  doi: 10.1126/science.1234532
– volume: 7
  start-page: 403
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0240
  article-title: Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2014.931306
– volume: 6
  start-page: 1295
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0285
  article-title: Past and future sea-level change from the surface mass balance of glaciers
  publication-title: Cryosphere
  doi: 10.5194/tc-6-1295-2012
– volume: 58
  start-page: 419
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0130
  article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J175
– volume: 7
  start-page: 569
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0455
  article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss
  publication-title: Cryosphere
  doi: 10.5194/tc-7-569-2013
– volume: 7
  start-page: 6712
  issue: 1
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0265
  article-title: A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07133-8
– volume: 9
  start-page: 557
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0195
  article-title: Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya
  publication-title: Cryosphere
  doi: 10.5194/tc-9-557-2015
– volume: 28
  start-page: 1703
  year: 2001
  ident: 10.1016/j.rse.2018.03.020_bb0090
  article-title: Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL011787
– volume: 108
  start-page: 14011
  year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0120
  article-title: Spatially heterogeneous wastage of Himalayan glaciers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1106242108
– volume: 46
  start-page: 204
  year: 2007
  ident: 10.1016/j.rse.2018.03.020_bb0420
  article-title: Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756407782871693
– volume: 530
  start-page: 273
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0525
  article-title: Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.014
– volume: 57
  start-page: 41
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0085
  article-title: Glacier shrinkage across High Mountain Asia
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A040
– volume: 427
  start-page: 125
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0415
  article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2015.06.047
– volume: 37
  start-page: 5687
  issue: 24
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0275
  article-title: Glacier elevation changes (2012–2016) of the Puruogangri ice field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1246777
– volume: vol. 2
  start-page: 745
  year: 2001
  ident: 10.1016/j.rse.2018.03.020_bb0395
  article-title: SRTM/X-SAR: products and processing facility
– volume: 35
  start-page: 1481
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0145
  article-title: Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-014-9286-y
– volume: 11
  start-page: 531
  issue: 1
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0075
  article-title: Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s
  publication-title: Cryosphere
  doi: 10.5194/tc-11-531-2017
– volume: 5
  start-page: 271
  year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0335
  article-title: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
  publication-title: Cryosphere
  doi: 10.5194/tc-5-271-2011
– volume: 117
  start-page: 184
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0485
  article-title: Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.017
– volume: 10
  start-page: 668
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0080
  article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2999
– year: 2010
  ident: 10.1016/j.rse.2018.03.020_bb0495
– volume: 7
  start-page: 877
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0175
  article-title: Density assumptions for converting geodetic glacier volume change to mass change
  publication-title: Cryosphere
  doi: 10.5194/tc-7-877-2013
– volume: 9
  start-page: 1105
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0425
  article-title: Modelling glacier change in the Everest region, Nepal Himalaya
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1105-2015
– volume: 39
  start-page: 582
  year: 1993
  ident: 10.1016/j.rse.2018.03.020_bb0410
  article-title: Changes in the longitudinal profiles of glaciers during advance and retreat
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000016476
– volume: 192
  start-page: 12
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0260
  article-title: Early 21st century glacier thickness changes in the Central Tien Shan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.003
– volume: 55
  start-page: 239
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0490
  article-title: Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09
  publication-title: Ann. Glaciol.
  doi: 10.3189/2014AoG66A100
– volume: 12
  start-page: 344
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0035
  article-title: Glacier changes during the past 40 years in the West Kunlun Shan
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-014-3220-0
– volume: 60
  start-page: 537
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0350
  article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J176
– volume: 62
  start-page: 1115
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0055
  article-title: Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.96
– volume: 59
  start-page: 110
  year: 2007
  ident: 10.1016/j.rse.2018.03.020_bb0365
  article-title: Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2006.11.036
– volume: 549
  start-page: 257
  issue: 7671
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0235
  article-title: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers
  publication-title: Nature
  doi: 10.1038/nature23878
– volume: 58
  start-page: 648
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0325
  article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J061
– year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0205
– volume: 6
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0545
  article-title: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling
  publication-title: Sci. Rep.
– volume: 488
  start-page: 495
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0190
  article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas
  publication-title: Nature
  doi: 10.1038/nature11324
– volume: 63
  start-page: 273
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0530
  article-title: Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.137
– volume: 186
  start-page: 581
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0230
  article-title: Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.013
– volume: 9
  start-page: 3870
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0095
  article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2581482
– volume: 9
  start-page: 849
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0330
  article-title: The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
  publication-title: Cryosphere
  doi: 10.5194/tc-9-849-2015
– volume: 5
  start-page: 349
  year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0065
  article-title: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery
  publication-title: Cryosphere
  doi: 10.5194/tc-5-349-2011
– volume: 336
  start-page: 310
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0070
  article-title: The state and fate of Himalayan glaciers
  publication-title: Science
  doi: 10.1126/science.1215828
– volume: 9
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0470
  article-title: A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities
  publication-title: Remote Sens.
  doi: 10.3390/rs9040388
– volume: 4
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0050
  article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2016.00063
– volume: 62
  start-page: 210
  year: 2008
  ident: 10.1016/j.rse.2018.03.020_bb0250
  article-title: Cryospheric change in China
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2008.02.001
– volume: 45
  issue: 2
  year: 2007
  ident: 10.1016/j.rse.2018.03.020_bb0100
  article-title: The shuttle radar topography mission
  publication-title: Rev. Geophys.
  doi: 10.1029/2005RG000183
– volume: 5
  start-page: 516
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0255
  article-title: Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2011.594099
– volume: 10
  start-page: 65
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0300
  article-title: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya
  publication-title: Cryosphere
  doi: 10.5194/tc-10-65-2016
– year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0025
  article-title: The status of glaciers in the Hindu Kush-Himalayan region
– volume: 124
  start-page: 832
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0115
  article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.020
– volume: 4
  start-page: 156
  year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0405
  article-title: Spatially variable response of Himalayan glaciers to climate change affected by debris cover
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1068
– start-page: 139
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0165
  article-title: Glacier variations in the Trans Alai massif and the lake karakul catchment (northeastern pamir) measured from space
– volume: 430
  start-page: 427
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0400
  article-title: Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2015.09.004
– volume: 76
  start-page: 603
  year: 2010
  ident: 10.1016/j.rse.2018.03.020_bb0440
  article-title: Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.76.5.603
– volume: 11
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0535
  article-title: Mass change of glaciers in Muztag Ata-Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data
  publication-title: PLoS One
– volume: 9
  start-page: 525
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0110
  article-title: Surface elevation and mass changes of all Swiss glaciers 1980–2010
  publication-title: Cryosphere
  doi: 10.5194/tc-9-525-2015
– volume: 54
  start-page: 592
  year: 2008
  ident: 10.1016/j.rse.2018.03.020_bb0060
  article-title: Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data
  publication-title: J. Glaciol.
  doi: 10.3189/002214308786570782
– year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0555
  article-title: Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.142
– year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0380
– volume: 5
  start-page: 107
  year: 2011
  ident: 10.1016/j.rse.2018.03.020_bb0105
  article-title: Comparison of direct and geodetic mass balances on a multi-annual time scale
  publication-title: Cryosphere
  doi: 10.5194/tc-5-107-2011
– volume: 7
  start-page: 1623
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0305
  article-title: Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1623-2013
– volume: 47
  start-page: 301
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0185
  article-title: Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/AAAR00C-13-129
– volume: 107
  start-page: 20223
  year: 2010
  ident: 10.1016/j.rse.2018.03.020_bb0210
  article-title: Contribution potential of glaciers to water availability in different climate regimes
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1008162107
– volume: 162
  start-page: 408
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0345
  article-title: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.043
– volume: 10
  start-page: 2075
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0375
  article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2075-2016
– volume: 25
  start-page: 597
  year: 2010
  ident: 10.1016/j.rse.2018.03.020_bb0430
  article-title: Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2010.516843
– volume: 28
  start-page: 3501
  year: 2001
  ident: 10.1016/j.rse.2018.03.020_bb0385
  article-title: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL012484
– volume: 5
  start-page: 322
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0125
  article-title: Slight mass gain of Karakoram glaciers in the early twenty-first century
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1450
– volume: 64
  start-page: 398
  year: 2009
  ident: 10.1016/j.rse.2018.03.020_bb0155
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.02.003
– volume: 130
  start-page: 233
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0360
  article-title: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.11.020
– volume: 54
  start-page: 157
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0435
  article-title: Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009
  publication-title: Ann. Glaciol.
  doi: 10.3189/2013AoG64A111
– volume: 57
  start-page: 223
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0550
  article-title: The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A049
– volume: 3
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0180
  article-title: A new model for global glacier change and sea-level rise
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2015.00054
– volume: 61
  start-page: 357
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0150
  article-title: The second Chinese glacier inventory: data, methods and results
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG14J209
– volume: 11
  start-page: 407
  year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0225
  article-title: Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015
  publication-title: Cryosphere
  doi: 10.5194/tc-11-407-2017
– volume: 29
  start-page: 859
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0465
  article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10199
– year: 2017
  ident: 10.1016/j.rse.2018.03.020_bb0480
– volume: 9
  start-page: 1213
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0200
  article-title: Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1213-2015
– volume: 8
  start-page: 1038
  issue: 12
  year: 2016
  ident: 10.1016/j.rse.2018.03.020_bb0450
  article-title: Elevation change rates of glaciers in the Lahaul-Spiti (western Himalaya, India) during 2000–2012 and 2012–2013
  publication-title: Remote Sens.
  doi: 10.3390/rs8121038
– volume: 9
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0310
  article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/1/014009
– volume: 7
  start-page: 1263
  year: 2013
  ident: 10.1016/j.rse.2018.03.020_bb0135
  article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1263-2013
– volume: 55
  start-page: 69
  year: 2014
  ident: 10.1016/j.rse.2018.03.020_bb0015
  article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969
  publication-title: Ann. Glaciol.
  doi: 10.3189/2014AoG66A104
– volume: 58
  start-page: 177
  year: 2012
  ident: 10.1016/j.rse.2018.03.020_bb0245
  article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J025
– volume: 168
  start-page: 13
  year: 2015
  ident: 10.1016/j.rse.2018.03.020_bb0215
  article-title: Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.019
SSID ssj0015871
Score 2.604899
Snippet In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms China
Climate change
Digital Elevation Models
Digital imaging
Geodetic method
Geodetics
Glacier mass balance
Glaciers
Global warming
Himalayan region
KH-9 images
Mass balance models
Mass balance of glaciers
Mountains
Qinghai–Tibet Plateau
Radar
Radar imaging
remote sensing
SRTM DEM
Topography
Title Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs
URI https://dx.doi.org/10.1016/j.rse.2018.03.020
https://www.proquest.com/docview/2086368462
https://www.proquest.com/docview/2221044224
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgQXBAsVC6UyEick02zsJM6xqtoGqlb8bKXeLMd22qBttkqyEr0gbjwAb8iTMOM4i0CoB05RMuMkyoxnxvHMfIS8qoS1qXScgSvgTORVyjSvDEuyKjUJLCkS32f25DQtzsS78-R8g-yPtTCYVhls_2DTvbUOV3bD19y9rmus8eUCNQ6UEpSUY6G5EBlq-Zuv6zSPWSKzATWPC4bc486mz_FqO-yUOZO-zylCfv_bN_1lpb3rOXxIHoSYke4Nr_WIbLhmQrYOfpeoATHM0W5C7gVc88ubCbl75IF7bx6T70cLDSwtvYJomZaY0GgcrRsKASD9AP7rUtc_v_2Y16Xr6fsFRKB6RXVjad13tFu1LcIv4V91igUpftRVbdksz6KO9kuKtTgUXaKly4YW7ou-gONxwXJ_l08f5ycUZN49IWeHB_P9ggUQBmbAhvYsEVamTkvj8lJKnZfcVNbFNscKWW3iKrHcZpktrY1maAOslkB3LjKVTm3Kt8hms2zcU0KjTMsqQYhrlwEbl6XE9mrAbHKjdTYl0fj5lQkdyhEoY6HGVLTPCiSmUGIq4gokNiWv10Ouh_YctzGLUabqDx1T4D5uG7Y9yl-FCd4BXaY8heAtnpKXazJMTdxv0Y1broAnhvU0qGgsnv3fk5-T-3g2ZKZtk82-XbkXEAP15Y5X8h1yZ-_tcXH6C_p-BTY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbKVqhcECxULBQwEickq9k4TpxjVbVN2e6Kn63Um-XYThu0zVZJVqI3bjwAb8iTMJN1FoFQD5wiZcZJ5BnPjOOZ-Qh5W0TWxtJxBq6AsygtYqZ5YZhIitgI2FKIrs_sdBZn59H7C3GxRQ77WhhMq_S2f23TO2vt7-z72dy_KUus8eURahwoJSgpF_fINnanEgOyfXA6yWabwwQhkzVwHo8YDugPN7s0r7rBZplj2bU6RdTvf7unvwx1532OH5GHPmykB-sve0y2XDUku0e_q9SA6JdpMyQ7Htr86nZI7p902L23T8j3k4UGlppeQ8BMc8xpNI6WFYUYkH4EF3aly5_ffszL3LX0wwKCUL2iurK0bBvarOoaEZjwxzrFmpRu1HVp2ThNgoa2S4rlOBS9oqXLimbuq76E6yRjafeUz5_mUwpib56S8-Oj-WHGPA4DM2BGWyYiK2OnpXFpLqVOc24K60KbYpGsNmEhLLdJYnNrgzGaAasl0J0LTKFjG_NdMqiWlXtGaJBoWQhEuXYJsHGZS-ywBswmNVonIxL006-Mb1KOWBkL1WejfVEgMYUSUwFXILERebcZcrPu0HEXc9TLVP2hZgo8yF3D9nr5K7_GG6DLmMcQv4Uj8mZDhtWJRy66cssV8ISwpQYtDaPn__fm12Qnm0_P1NnpbPKCPEDKOlFtjwzaeuVeQkjU5q-8yv8C5yQH5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacier+mass+balance+in+the+Qinghai%E2%80%93Tibet+Plateau+and+its+surroundings+from+the+mid-1970s+to+2000+based+on+Hexagon+KH-9+and+SRTM+DEMs&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhou%2C+Yushan&rft.au=Li%2C+Zhiwei&rft.au=Li%2C+Jia&rft.au=Zhao%2C+Rong&rft.date=2018-06-01&rft.issn=0034-4257&rft.volume=210+p.96-112&rft.spage=96&rft.epage=112&rft_id=info:doi/10.1016%2Fj.rse.2018.03.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon