Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs
In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on...
Saved in:
Published in | Remote sensing of environment Vol. 210; pp. 96 - 112 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s.
•Glacier mass balances (1975–2000) in the Tibet Plateau are estimated.•Glaciers in the northwest experienced less ice loss than those in the southeast.•The Himalaya-Nyainqêntanglha glaciers showed accelerated mass loss after 2000.•The western Kunlun glaciers have been in a stable state since the mid-1970s. |
---|---|
AbstractList | In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s.
•Glacier mass balances (1975–2000) in the Tibet Plateau are estimated.•Glaciers in the northwest experienced less ice loss than those in the southeast.•The Himalaya-Nyainqêntanglha glaciers showed accelerated mass loss after 2000.•The western Kunlun glaciers have been in a stable state since the mid-1970s. In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a⁻¹ to 0.02 ± 0.10 m w.e. a⁻¹, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a⁻¹ to −0.11 ± 0.14 m w.e. a⁻¹. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s. In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To date, there have been many studies of glacier mass balance across the QTP. However, given that most of the previous studies have focused on a short observation period (2000–2015), and that long-term mass change measurements are available only for some local regions, we utilized declassified KH-9 images and 1 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) to provide the region-wide mass balance (from the mid-1970s to 2000) for a larger scale (including 11 sample regions) across the QTP and its surroundings. The final results indicate that the glaciers in the northwest of the QTP have shown a less negative or near-zero mass balance, ranging from −0.11 ± 0.13 m w.e. a−1 to 0.02 ± 0.10 m w.e. a−1, compared to those in the southeast part, with a mass balance range of −0.30 ± 0.12 m w.e. a−1 to −0.11 ± 0.14 m w.e. a−1. The most serious mass loss has emerged in the central-eastern Himalaya. Integrating our results with the observations after 2000 suggests that, over the past four decades (mid-1970s to the mid-2010s), the glaciers in the Himalaya, Nyainqêntanglha, and Tanggula mountains, as a whole, have exhibited accelerated mass loss, and the most significant acceleration has occurred in the eastern Nyainqêntanglha. Moreover, the Hindu Raj glaciers have shown a stable rate of continuous mass loss, while a nearly stable or slight mass gain state in the western Kunlun region can be dated back to at least as far as the mid-1970s. |
Author | Li, Zhiwei Ding, Xiaoli Zhou, Yushan Li, Jia Zhao, Rong |
Author_xml | – sequence: 1 givenname: Yushan surname: Zhou fullname: Zhou, Yushan organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China – sequence: 2 givenname: Zhiwei orcidid: 0000-0003-4575-5258 surname: Li fullname: Li, Zhiwei email: zwli@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China – sequence: 3 givenname: Jia surname: Li fullname: Li, Jia organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China – sequence: 4 givenname: Rong surname: Zhao fullname: Zhao, Rong organization: School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China – sequence: 5 givenname: Xiaoli orcidid: 0000-0002-5733-3629 surname: Ding fullname: Ding, Xiaoli organization: Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, 999077, Hong Kong |
BookMark | eNp9kb1uFDEURi0UJDaBB6CzREMzw7XHO-MRFQpJFpGIv6W2PPadxKsZO9geRLp0PABvyJPgZKlSpLqFv_PpXp9DcuCDR0JeMqgZsPbNro4Jaw5M1tDUwOEJWTHZ9RV0IA7ICqARleDr7hk5TGkHwNayYyvy-2zSxmGks06JDnrS3iB1nuYrpF-cv7zS7u_tn60bMNPPk86oF6q9pS4nmpYYw-JtiSU6xjDfU7OzFes7SDQHygGg1Ca0NHi6wV_6ssyPm6q_b_n2dXtB359cpOfk6ainhC_-zyPy_fRke7ypzj-dfTh-d14Z0Xa5WgsrW9TSYD9IqfuhMaNFbvtWcKYNH9e2sV1nB2uBDQDCalneEcGMurVtc0Re73uvY_ixYMpqdsngVO7GsCTFOWcgBOeiRF89iO7CEn3ZTnGQbdNK0fKS6vYpE0NKEUdlXNbZBZ-jdpNioO4EqZ0qgtSdIAWNKoIKyR6Q19HNOt48yrzdM1j-6GfxplKxV5RZF9FkZYN7hP4H_1eqig |
CitedBy_id | crossref_primary_10_1007_s11069_018_3505_7 crossref_primary_10_1016_j_rse_2021_112779 crossref_primary_10_1029_2024GL108202 crossref_primary_10_1016_j_accre_2023_04_007 crossref_primary_10_1016_j_ecoinf_2021_101316 crossref_primary_10_3390_rs14164078 crossref_primary_10_1016_j_rines_2023_100013 crossref_primary_10_1007_s11629_022_7829_0 crossref_primary_10_3390_rs14061506 crossref_primary_10_1007_s00382_022_06283_4 crossref_primary_10_1016_j_geog_2024_07_004 crossref_primary_10_3389_fenvs_2022_788359 crossref_primary_10_1038_s41561_018_0271_9 crossref_primary_10_3390_w13131749 crossref_primary_10_1016_j_rse_2024_114437 crossref_primary_10_1029_2022GL101200 crossref_primary_10_5194_essd_14_411_2022 crossref_primary_10_1017_jog_2021_9 crossref_primary_10_3390_atmos15020231 crossref_primary_10_5194_acp_23_9265_2023 crossref_primary_10_3390_rs15174236 crossref_primary_10_5194_hess_27_933_2023 crossref_primary_10_3390_rs15092338 crossref_primary_10_3390_rs12203466 crossref_primary_10_1016_j_ecolind_2022_109418 crossref_primary_10_1016_j_ejrs_2024_04_006 crossref_primary_10_1016_j_jhydrol_2019_124010 crossref_primary_10_3390_rs13193825 crossref_primary_10_1080_10106049_2022_2105403 crossref_primary_10_1016_j_quascirev_2022_107937 crossref_primary_10_1016_j_srs_2023_100082 crossref_primary_10_1080_15230430_2022_2028475 crossref_primary_10_3390_rs13020293 crossref_primary_10_1016_j_scitotenv_2021_149533 crossref_primary_10_3390_w15152762 crossref_primary_10_3390_rs14030506 crossref_primary_10_5194_tc_16_197_2022 crossref_primary_10_3390_rs13245124 crossref_primary_10_3390_rs12182922 crossref_primary_10_1017_jog_2024_1 crossref_primary_10_1017_jog_2022_50 crossref_primary_10_1186_s13007_021_00796_5 crossref_primary_10_3390_rs13101984 crossref_primary_10_1016_j_geomorph_2021_108005 crossref_primary_10_1017_jog_2020_98 crossref_primary_10_1016_j_jhydrol_2024_131190 crossref_primary_10_1038_s41598_024_78660_4 crossref_primary_10_1017_jog_2021_84 crossref_primary_10_3390_rs17010040 crossref_primary_10_1007_s12524_023_01773_2 crossref_primary_10_3390_land12030623 crossref_primary_10_1016_j_palaeo_2021_110506 crossref_primary_10_3390_rs14205190 crossref_primary_10_1007_s00190_021_01519_3 crossref_primary_10_11922_11_6035_csd_2023_0066_zh crossref_primary_10_1029_2022GL101115 crossref_primary_10_1126_sciadv_aav7266 crossref_primary_10_5194_essd_15_2841_2023 crossref_primary_10_3390_rs11040452 crossref_primary_10_1088_1361_6633_acaf8e crossref_primary_10_1016_j_scitotenv_2019_07_086 crossref_primary_10_3390_su16167118 crossref_primary_10_1080_13504509_2021_1943723 crossref_primary_10_1029_2021JD035705 crossref_primary_10_1016_j_rse_2019_111554 crossref_primary_10_1016_j_scitotenv_2020_139607 crossref_primary_10_1016_j_gloplacha_2020_103187 crossref_primary_10_3389_feart_2022_813574 crossref_primary_10_1109_TGRS_2021_3116441 crossref_primary_10_1016_j_rse_2021_112853 crossref_primary_10_1016_j_rse_2022_113029 crossref_primary_10_1007_s10113_020_01624_7 crossref_primary_10_1016_j_ecolind_2023_111086 crossref_primary_10_1016_j_accre_2021_05_001 crossref_primary_10_1038_s41597_024_03282_4 crossref_primary_10_3389_feart_2020_566802 crossref_primary_10_1007_s10584_022_03343_w crossref_primary_10_3390_rs14040852 crossref_primary_10_1007_s11629_023_8538_z crossref_primary_10_1016_j_scitotenv_2023_161717 crossref_primary_10_11922_csdata_2018_0011_zh crossref_primary_10_3389_feart_2023_1219755 crossref_primary_10_1017_jog_2019_13 crossref_primary_10_3390_rs13234935 crossref_primary_10_1109_ACCESS_2019_2909991 crossref_primary_10_1016_j_oneear_2020_10_019 crossref_primary_10_3389_feart_2020_582060 crossref_primary_10_1038_s41598_019_53733_x crossref_primary_10_1109_JSTARS_2024_3408451 crossref_primary_10_1038_s41467_021_24180_y crossref_primary_10_1016_j_geomorph_2025_109711 crossref_primary_10_5194_tc_13_1743_2019 crossref_primary_10_1017_jog_2023_5 crossref_primary_10_3390_rs16061048 crossref_primary_10_5194_tc_17_5435_2023 crossref_primary_10_1017_jog_2022_30 crossref_primary_10_1038_s41598_020_80418_7 crossref_primary_10_1007_s11629_021_7157_9 crossref_primary_10_3390_rs15051282 crossref_primary_10_1080_10106049_2022_2136254 crossref_primary_10_1007_s10661_023_10958_8 crossref_primary_10_1017_jog_2019_20 crossref_primary_10_1016_j_earscirev_2022_104197 crossref_primary_10_2166_nh_2020_039 crossref_primary_10_3389_frwa_2022_909246 crossref_primary_10_1002_esp_5342 crossref_primary_10_3390_rs14132962 crossref_primary_10_1038_s41561_019_0513_5 crossref_primary_10_3390_rs12050864 crossref_primary_10_1016_j_jhydrol_2019_124052 crossref_primary_10_1017_jog_2018_53 crossref_primary_10_1109_JSTARS_2023_3243771 crossref_primary_10_3390_rs14246281 crossref_primary_10_3390_rs13193903 crossref_primary_10_3390_rs12030472 crossref_primary_10_1016_j_coldregions_2023_104052 crossref_primary_10_3390_land11101855 crossref_primary_10_1016_j_isprsjprs_2021_04_018 crossref_primary_10_3390_rs14122886 crossref_primary_10_1016_j_jag_2022_102913 crossref_primary_10_1016_j_jhydrol_2020_124652 crossref_primary_10_1016_j_earscirev_2020_103432 crossref_primary_10_3390_rs14112603 crossref_primary_10_1016_j_jhydrol_2019_01_007 crossref_primary_10_1016_j_rse_2024_114124 crossref_primary_10_1080_20964471_2022_2131956 crossref_primary_10_1016_j_gsf_2021_101290 crossref_primary_10_1007_s11430_021_9844_0 crossref_primary_10_1080_17445647_2024_2326827 crossref_primary_10_1080_24749508_2024_2392919 crossref_primary_10_1109_JSTARS_2021_3070362 crossref_primary_10_1109_JSTARS_2024_3518480 crossref_primary_10_3389_feart_2023_1165390 crossref_primary_10_1016_j_rines_2024_100046 crossref_primary_10_1016_j_scitotenv_2020_140995 crossref_primary_10_1016_j_catena_2023_107156 crossref_primary_10_2166_wcc_2024_074 crossref_primary_10_3389_feart_2019_00363 crossref_primary_10_1016_j_rse_2019_111241 crossref_primary_10_1016_j_gloplacha_2022_103997 crossref_primary_10_1016_j_jhydrol_2023_130581 crossref_primary_10_1007_s10661_021_09689_5 crossref_primary_10_1002_joc_7873 crossref_primary_10_1017_jog_2023_45 crossref_primary_10_3390_rs12162632 crossref_primary_10_1017_jog_2022_78 crossref_primary_10_1016_j_jhydrol_2024_131200 crossref_primary_10_1007_s11442_021_1847_7 crossref_primary_10_1017_aog_2023_48 crossref_primary_10_3390_land13081126 crossref_primary_10_3390_rs12203280 crossref_primary_10_1017_jog_2019_8 crossref_primary_10_1016_j_epsl_2021_116766 crossref_primary_10_3390_w11112387 crossref_primary_10_1016_j_jhydrol_2020_125207 |
Cites_doi | 10.1175/JCLI-D-13-00282.1 10.1038/nclimate2237 10.3189/2013AoG63A296 10.1016/j.epsl.2017.02.008 10.1016/j.earscirev.2012.03.008 10.1016/j.gloplacha.2014.11.014 10.3189/2015JoG15J056 10.1029/2006GL025862 10.3189/2016AoG71A570 10.3189/002214309789470950 10.1016/j.quaint.2015.02.043 10.5194/tc-10-2203-2016 10.1016/j.rse.2007.11.003 10.3189/2014AoG66A125 10.5194/tc-9-2071-2015 10.5194/tc-9-505-2015 10.1038/nclimate1580 10.1126/science.1234532 10.1080/19475705.2014.931306 10.5194/tc-6-1295-2012 10.3189/2012JoG11J175 10.5194/tc-7-569-2013 10.1038/s41598-017-07133-8 10.5194/tc-9-557-2015 10.1029/2000GL011787 10.1073/pnas.1106242108 10.3189/172756407782871693 10.1016/j.jhydrol.2015.09.014 10.3189/2016AoG71A040 10.1016/j.epsl.2015.06.047 10.1080/01431161.2016.1246777 10.1007/s10712-014-9286-y 10.5194/tc-11-531-2017 10.5194/tc-5-271-2011 10.1016/j.rse.2011.09.017 10.1038/ngeo2999 10.5194/tc-7-877-2013 10.5194/tc-9-1105-2015 10.3189/S0022143000016476 10.1016/j.rse.2017.02.003 10.3189/2014AoG66A100 10.1007/s11629-014-3220-0 10.3189/2014JoG13J176 10.1017/jog.2016.96 10.1016/j.gloplacha.2006.11.036 10.1038/nature23878 10.3189/2012JoG11J061 10.1038/nature11324 10.1017/jog.2016.137 10.1016/j.rse.2016.09.013 10.1109/JSTARS.2016.2581482 10.5194/tc-9-849-2015 10.5194/tc-5-349-2011 10.1126/science.1215828 10.3390/rs9040388 10.3389/feart.2016.00063 10.1016/j.gloplacha.2008.02.001 10.1029/2005RG000183 10.1080/17538947.2011.594099 10.5194/tc-10-65-2016 10.1016/j.rse.2012.06.020 10.1038/ngeo1068 10.1016/j.epsl.2015.09.004 10.14358/PERS.76.5.603 10.5194/tc-9-525-2015 10.3189/002214308786570782 10.1017/jog.2016.142 10.5194/tc-5-107-2011 10.5194/tc-7-1623-2013 10.1657/AAAR00C-13-129 10.1073/pnas.1008162107 10.1016/j.rse.2013.07.043 10.5194/tc-10-2075-2016 10.1080/10106049.2010.516843 10.1029/2000GL012484 10.1038/ngeo1450 10.1016/j.isprsjprs.2009.02.003 10.1016/j.rse.2012.11.020 10.3189/2013AoG64A111 10.3189/2016AoG71A049 10.3389/feart.2015.00054 10.3189/2015JoG14J209 10.5194/tc-11-407-2017 10.1002/hyp.10199 10.5194/tc-9-1213-2015 10.3390/rs8121038 10.1088/1748-9326/9/1/014009 10.5194/tc-7-1263-2013 10.3189/2014AoG66A104 10.3189/2012JoG11J025 10.1016/j.rse.2015.06.019 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright Elsevier BV Jun 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier BV Jun 1, 2018 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2018.03.020 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 112 |
ExternalDocumentID | 10_1016_j_rse_2018_03_020 S0034425718301135 |
GeographicLocations | Tibet Tibetan Plateau Himalayan region China |
GeographicLocations_xml | – name: Tibetan Plateau – name: Tibet – name: Himalayan region – name: China |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-54d86ea8ce9b88a9b3cfde2d96421ac2f5d3d77dbdd01b004da8de2ee0cfa6d63 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Thu Jul 10 22:36:20 EDT 2025 Wed Aug 13 09:02:05 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 03:51:14 EDT 2025 Fri Feb 23 02:48:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Qinghai–Tibet Plateau SRTM DEM Glacier mass balance Geodetic method KH-9 images |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-54d86ea8ce9b88a9b3cfde2d96421ac2f5d3d77dbdd01b004da8de2ee0cfa6d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4575-5258 0000-0002-5733-3629 |
PQID | 2086368462 |
PQPubID | 2045405 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2221044224 proquest_journals_2086368462 crossref_citationtrail_10_1016_j_rse_2018_03_020 crossref_primary_10_1016_j_rse_2018_03_020 elsevier_sciencedirect_doi_10_1016_j_rse_2018_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Bolch, Pieczonka, Benn (bb0065) 2011; 5 Nuimura, Sakai, Taniguchi, Nagai, Lamsal, Tsutaki, Kozawa, Hoshina, Takenaka, Omiya, Tsunematsu, Tshering, Fujita (bb0330) 2015; 9 Bolch, Pieczonka, Mukherjee, Shea (bb0075) 2017; 11 WGMS (bb0475) 2008 Cogley (bb0085) 2016; 57 Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu, Pu, Lu, Xiang, Kattel, Joswiak (bb0520) 2012; 2 Kraaijenbrink, Shea, Pellicciotti, de Jong, Immerzeel (bb0230) 2016; 186 Vijay, Braun (bb0450) 2016; 8 Li, Li, Zhu, Li, Xu, Wang, Huang, Hu (bb0260) 2017; 192 Zhang, Liu, Wei, Xu, Guo, Bao, Jiang (bb0535) 2016; 11 Li, Xing, Liu, Zhou, Huang (bb0255) 2012; 5 Huss, Hock (bb0180) 2015; 3 Neckel, Kropáček, Bolch, Hochschild (bb0310) 2014; 9 Rignot, Echelmeyer, Krabill (bb0385) 2001; 28 Pieczonka, Bolch, Junfeng, Shiyin (bb0360) 2013; 130 Kang, Wang, Morgenstern, Zhang, Grigholm, Kaspari, Schwikowski, Ren, Yao, Qin, Mayewski (bb0200) 2015; 9 Rowan, Egholm, Quincey, Glasser (bb0400) 2015; 430 Nuimura, Fujita, Yamaguchi, Sharma (bb0325) 2012; 58 Racoviteanu, Arnaud, Williams, Manley (bb0370) 2015; 9 Paul, Bolch, Kääb, Nagler, Nuth, Scharrer, Shepherd, Strozzi, Ticconi, Bhambri, Berthier, Bevan, Gourmelen, Heid, Jeong, Kunz, Lauknes, Luckman, Merryman Boncori, Moholdt, Muir, Neelmeijer, Rankl, VanLooy, Van Niel (bb0345) 2015; 162 Holzer, Golletz, Buchroithner, Bolch (bb0165) 2016 Bajracharya, Maharjan, Shrestha (bb0030) 2014; 55 Azam, Ramanathan, Wagnon, Vincent, Linda, Berthier, Sharma, Mandal, Angchuk, Singh, Pottakkal (bb0020) 2016; 57 Liu, Jiang, Sun, Yi, Wang, Hsu (bb0275) 2016; 37 Van Niel, McVicar, Li, Gallant, Yang (bb0445) 2008; 112 Zhao, Yang, Yao, Tian, Xu (bb0545) 2016; 6 Seehaus, Marinsek, Helm, Skvarca, Braun (bb0415) 2015; 427 Sugiyama, Fukui, Fujita, Tone, Yamaguchi (bb0435) 2013; 54 Ke, Ding, Song (bb0220) 2015; 371 Scherler, Bookhagen, Strecker (bb0405) 2011; 4 Shea, Immerzeel, Wagnon, Vincent, Bajracharya (bb0425) 2015; 9 Gardelle, Berthier, Arnaud (bb0125) 2012; 5 Farr, Rosen, Caro, Crippen, Duren, Hensley (bb0100) 2007; 45 Holzer, Vijay, Yao, Xu, Buchroithner, Bolch (bb0160) 2015; 9 Nuth, Kääb (bb0335) 2011; 5 Zhao, Ding, Moore (bb0550) 2016; 57 Pfeffer, Arendt, Bliss, Bolch, Cogley, Gardner, Hagen, Hock, Kaser, Kienholz, Miles, Moholdt, Moelg, Paul, Radic, Rastner, Raup, Rich, Sharp, Andeassen, Bajracharya, Barrand, Beedle, Berthier, Bhambri, Brown, Burgess, Burgess, Cawkwell, Chinn, Copland, Cullen, Davies, De Angelis, Fountain, Frey, Giffen, Glasser, Gurney, Hagg, Hall, Haritashya, Hartmann, Herreid, Howat, Jiskoot, Khromova, Klein, Kohler, Konig, Kriegel, Kutuzov, Lavrentiev, Le Bris, Li, Manley, Mayer, Menounos, Mercer, Mool, Negrete, Nosenko, Nuth, Osmonov, Pettersson, Racoviteanu, Ranzi, Sarikaya, Schneider, Sigurdsson, Sirguey, Stokes, Wheate, Wolken, Wu, Wyatt (bb0350) 2014; 60 Neckel, Loibl, Rankl (bb0315) 2017; 464 Rolstad, Haug, Denby (bb0390) 2009; 55 Wang, Xiang, Gao, Lu, Yao (bb0465) 2015; 29 Brun, Berthier, Wagnon, Kääb, Treichler (bb0080) 2017; 10 Paul, Barrand, Baumann, Berthier, Bolch, Casey, Frey, Joshi, Konovalov, LeBris, Mölg, Nosenko, Nuth, Pope, Racoviteanu, Rastner, Raup, Scharrer, Steffen, Winsvold (bb0340) 2013; 54 Fischer, Huss, Hoelzle (bb0110) 2015; 9 Gardner, Moholdt, Cogley, Wouters, Arendt, Wahr, Berthier, Hock, Pfeffer, Kaser, Ligtenberg, Bolch, Sharp, Hagen, van den Broeke, Paul (bb0140) 2013; 340 Ye, Zong, Tian, Cogley, Song, Guo (bb0530) 2017; 63 Fischer (bb0105) 2011; 5 Lutz, Immerzeel, Shrestha, Bierkens (bb0280) 2014; 4 Huintjes, Neckel, Hochschild, Schneider (bb0170) 2015; 61 Willis, Melkonian, Pritchard, Ramage (bb0485) 2012; 117 Wu, Wang, Jiang, Guo (bb0490) 2014; 55 RGI Consortium (bb0380) 2017 Azam, Wagnon, Vincent, Ramanathan, Linda, Singh (bb0015) 2014; 55 Benn, Bolch, Hands, Gulley, Luckman, Nicholson, Quincey, Thompson, Toumi, Wiseman (bb0040) 2012; 114 Kääb, Berthier, Nuth, Gardelle, Arnaud (bb0190) 2012; 488 Ke, Ding, Song (bb0215) 2015; 168 Junfeng, Shiyin, Wanqin, Junli, Weijia, Donghui (bb0185) 2015; 47 Bolch, Kulkarni, Kääb, Huggel, Paul, Cogley, Frey, Kargel, Fujita, Scheel, Bajracharya, Stoffel (bb0070) 2012; 336 Ye, Bolch, Naruse, Wang, Zong, Wang, Zhao, Yang, Kang (bb0525) 2015; 530 Dehecq, Millan, Berthier, Gourmelen, Trouve (bb0095) 2016; 9 Guo, Liu, Xu, Wu, Shangguan, Yao, Wei, Bao, Yu, Liu, Jiang (bb0150) 2015; 61 Bolch, Buchroithner, Pieczonka, Kunert (bb0060) 2008; 54 Bajracharya, Shrestha (bb0025) 2011 Lin, Li, Cuo, Hooper, Ye (bb0265) 2017; 7 Gardelle, Berthier, Arnaud, Kaab (bb0135) 2013; 7 Schwitter, Raymond (bb0410) 1993; 39 Maussion, Scherer, Mölg, Collier, Curio, Finkelnburg (bb0295) 2014; 27 Huss (bb0175) 2013; 7 Fujita, Nuimura (bb0120) 2011; 108 Pieczonka, Bolch (bb0355) 2015; 128 Wendt, Mayer, Lambrecht, Floricioiu (bb0470) 2017; 9 Kaser, Großhauser, Marzeion (bb0210) 2010; 107 Maurer, Rupper, Schaefer (bb0290) 2016; 10 Xie, Liu (bb0495) 2010 Groh, Ewert, Rosenau, Fagiolini, Gruber, Floricioiu, Abdel Jaber, Linow, Flechtner, Eineder, Dierking, Dietrich (bb0145) 2014; 35 Roth, Eineder, Rabus, Mikusch, Schättler (bb0395) 2001; vol. 2 Kääb, Treichler, Nuth, Berthier (bb0195) 2015; 9 Snehmani, Venkataraman, Singh (bb0430) 2010; 25 Berthier, Arnaud, Vincent, Remy (bb0045) 2006; 33 Gardelle, Berthier, Arnaud (bb0130) 2012; 58 Dall, Madsen, Keller, Forsberg (bb0090) 2001; 28 Frey, Paul, Strozzi (bb0115) 2012; 124 King, Quincey, Carrivick, Rowan (bb0225) 2017; 11 Li, Cheng, Jin, Kang, Che, Jin, Wu, Nan, Wang, Shen (bb0250) 2008; 62 Ragettli, Bolch, Pellicciotti (bb0375) 2016; 10 Racoviteanu, Manley, Arnaud, Williams (bb0365) 2007; 59 Surazakov, Aizen (bb0440) 2010; 76 Bao, Liu, Wei, Guo (bb0035) 2015; 12 Shangguan, Liu, Ding, Li, Zhang, Ding, Wang, Xie, Li (bb0420) 2007; 46 WGMS (bb0480) 2017 Lamsal, Sawagaki, Watanabe, Byers (bb0240) 2016; 7 Nagai, Fujita, Sakai, Nuimura, Tadono (bb0300) 2016; 10 Vincent, Ramanathan, Wagnon, Dobhal, Linda, Berthier, Sharma, Arnaud, Azam, Jose, Gardelle (bb0455) 2013; 7 Kraaijenbrink, Bierkens, Lutz, Immerzeel (bb0235) 2017; 549 Neckel, Braun, Kropáček, Hochschild (bb0305) 2013; 7 Marzeion, Jarosch, Hofer (bb0285) 2012; 6 Zhou, Li, Li (bb0555) 2017 Bhattacharya, Bolch, Mukherjee, Pieczonka, Kropáček, Buchroithner (bb0055) 2016; 62 Berthier, Cabot, Vincent, Six (bb0050) 2016; 4 Höhle, Höhle (bb0155) 2009; 64 (bb0205) 2014 Lei, Yao, Yi, Wang, Sheng, Li, Joswiak (bb0245) 2012; 58 Pfeffer (10.1016/j.rse.2018.03.020_bb0350) 2014; 60 Li (10.1016/j.rse.2018.03.020_bb0260) 2017; 192 Fischer (10.1016/j.rse.2018.03.020_bb0110) 2015; 9 Wu (10.1016/j.rse.2018.03.020_bb0490) 2014; 55 Benn (10.1016/j.rse.2018.03.020_bb0040) 2012; 114 Surazakov (10.1016/j.rse.2018.03.020_bb0440) 2010; 76 Kääb (10.1016/j.rse.2018.03.020_bb0190) 2012; 488 Bolch (10.1016/j.rse.2018.03.020_bb0070) 2012; 336 Bajracharya (10.1016/j.rse.2018.03.020_bb0030) 2014; 55 Gardelle (10.1016/j.rse.2018.03.020_bb0135) 2013; 7 Nuimura (10.1016/j.rse.2018.03.020_bb0325) 2012; 58 Bolch (10.1016/j.rse.2018.03.020_bb0065) 2011; 5 Neckel (10.1016/j.rse.2018.03.020_bb0310) 2014; 9 Nuimura (10.1016/j.rse.2018.03.020_bb0330) 2015; 9 Bajracharya (10.1016/j.rse.2018.03.020_bb0025) 2011 Lutz (10.1016/j.rse.2018.03.020_bb0280) 2014; 4 Li (10.1016/j.rse.2018.03.020_bb0250) 2008; 62 Kraaijenbrink (10.1016/j.rse.2018.03.020_bb0235) 2017; 549 Xie (10.1016/j.rse.2018.03.020_bb0495) 2010 Frey (10.1016/j.rse.2018.03.020_bb0115) 2012; 124 Huss (10.1016/j.rse.2018.03.020_bb0175) 2013; 7 Vincent (10.1016/j.rse.2018.03.020_bb0455) 2013; 7 Kang (10.1016/j.rse.2018.03.020_bb0200) 2015; 9 Ke (10.1016/j.rse.2018.03.020_bb0220) 2015; 371 Bolch (10.1016/j.rse.2018.03.020_bb0060) 2008; 54 WGMS (10.1016/j.rse.2018.03.020_bb0475) 2008 (10.1016/j.rse.2018.03.020_bb0205) 2014 Cogley (10.1016/j.rse.2018.03.020_bb0085) 2016; 57 Fischer (10.1016/j.rse.2018.03.020_bb0105) 2011; 5 Gardelle (10.1016/j.rse.2018.03.020_bb0130) 2012; 58 Vijay (10.1016/j.rse.2018.03.020_bb0450) 2016; 8 Nuth (10.1016/j.rse.2018.03.020_bb0335) 2011; 5 Lamsal (10.1016/j.rse.2018.03.020_bb0240) 2016; 7 Bolch (10.1016/j.rse.2018.03.020_bb0075) 2017; 11 King (10.1016/j.rse.2018.03.020_bb0225) 2017; 11 RGI Consortium (10.1016/j.rse.2018.03.020_bb0380) 2017 Fujita (10.1016/j.rse.2018.03.020_bb0120) 2011; 108 Gardelle (10.1016/j.rse.2018.03.020_bb0125) 2012; 5 Roth (10.1016/j.rse.2018.03.020_bb0395) 2001; vol. 2 Marzeion (10.1016/j.rse.2018.03.020_bb0285) 2012; 6 Ye (10.1016/j.rse.2018.03.020_bb0530) 2017; 63 Paul (10.1016/j.rse.2018.03.020_bb0345) 2015; 162 Azam (10.1016/j.rse.2018.03.020_bb0020) 2016; 57 Lin (10.1016/j.rse.2018.03.020_bb0265) 2017; 7 Yao (10.1016/j.rse.2018.03.020_bb0520) 2012; 2 Rowan (10.1016/j.rse.2018.03.020_bb0400) 2015; 430 Gardner (10.1016/j.rse.2018.03.020_bb0140) 2013; 340 Ragettli (10.1016/j.rse.2018.03.020_bb0375) 2016; 10 Groh (10.1016/j.rse.2018.03.020_bb0145) 2014; 35 Zhao (10.1016/j.rse.2018.03.020_bb0545) 2016; 6 Zhou (10.1016/j.rse.2018.03.020_bb0555) 2017 Berthier (10.1016/j.rse.2018.03.020_bb0045) 2006; 33 Junfeng (10.1016/j.rse.2018.03.020_bb0185) 2015; 47 Maussion (10.1016/j.rse.2018.03.020_bb0295) 2014; 27 Paul (10.1016/j.rse.2018.03.020_bb0340) 2013; 54 Neckel (10.1016/j.rse.2018.03.020_bb0305) 2013; 7 Holzer (10.1016/j.rse.2018.03.020_bb0165) 2016 Racoviteanu (10.1016/j.rse.2018.03.020_bb0365) 2007; 59 Rignot (10.1016/j.rse.2018.03.020_bb0385) 2001; 28 Racoviteanu (10.1016/j.rse.2018.03.020_bb0370) 2015; 9 Pieczonka (10.1016/j.rse.2018.03.020_bb0360) 2013; 130 Seehaus (10.1016/j.rse.2018.03.020_bb0415) 2015; 427 Dehecq (10.1016/j.rse.2018.03.020_bb0095) 2016; 9 Schwitter (10.1016/j.rse.2018.03.020_bb0410) 1993; 39 Brun (10.1016/j.rse.2018.03.020_bb0080) 2017; 10 Zhang (10.1016/j.rse.2018.03.020_bb0535) 2016; 11 WGMS (10.1016/j.rse.2018.03.020_bb0480) 2017 Huss (10.1016/j.rse.2018.03.020_bb0180) 2015; 3 Liu (10.1016/j.rse.2018.03.020_bb0275) 2016; 37 Van Niel (10.1016/j.rse.2018.03.020_bb0445) 2008; 112 Nagai (10.1016/j.rse.2018.03.020_bb0300) 2016; 10 Zhao (10.1016/j.rse.2018.03.020_bb0550) 2016; 57 Dall (10.1016/j.rse.2018.03.020_bb0090) 2001; 28 Pieczonka (10.1016/j.rse.2018.03.020_bb0355) 2015; 128 Neckel (10.1016/j.rse.2018.03.020_bb0315) 2017; 464 Kääb (10.1016/j.rse.2018.03.020_bb0195) 2015; 9 Ye (10.1016/j.rse.2018.03.020_bb0525) 2015; 530 Snehmani (10.1016/j.rse.2018.03.020_bb0430) 2010; 25 Azam (10.1016/j.rse.2018.03.020_bb0015) 2014; 55 Shangguan (10.1016/j.rse.2018.03.020_bb0420) 2007; 46 Höhle (10.1016/j.rse.2018.03.020_bb0155) 2009; 64 Holzer (10.1016/j.rse.2018.03.020_bb0160) 2015; 9 Farr (10.1016/j.rse.2018.03.020_bb0100) 2007; 45 Lei (10.1016/j.rse.2018.03.020_bb0245) 2012; 58 Shea (10.1016/j.rse.2018.03.020_bb0425) 2015; 9 Scherler (10.1016/j.rse.2018.03.020_bb0405) 2011; 4 Willis (10.1016/j.rse.2018.03.020_bb0485) 2012; 117 Rolstad (10.1016/j.rse.2018.03.020_bb0390) 2009; 55 Bao (10.1016/j.rse.2018.03.020_bb0035) 2015; 12 Bhattacharya (10.1016/j.rse.2018.03.020_bb0055) 2016; 62 Ke (10.1016/j.rse.2018.03.020_bb0215) 2015; 168 Kraaijenbrink (10.1016/j.rse.2018.03.020_bb0230) 2016; 186 Maurer (10.1016/j.rse.2018.03.020_bb0290) 2016; 10 Wendt (10.1016/j.rse.2018.03.020_bb0470) 2017; 9 Kaser (10.1016/j.rse.2018.03.020_bb0210) 2010; 107 Li (10.1016/j.rse.2018.03.020_bb0255) 2012; 5 Guo (10.1016/j.rse.2018.03.020_bb0150) 2015; 61 Wang (10.1016/j.rse.2018.03.020_bb0465) 2015; 29 Huintjes (10.1016/j.rse.2018.03.020_bb0170) 2015; 61 Berthier (10.1016/j.rse.2018.03.020_bb0050) 2016; 4 Sugiyama (10.1016/j.rse.2018.03.020_bb0435) 2013; 54 |
References_xml | – volume: 55 start-page: 159 year: 2014 end-page: 166 ident: bb0030 article-title: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data publication-title: Ann. Glaciol. – volume: 63 start-page: 273 year: 2017 end-page: 287 ident: bb0530 article-title: Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13 publication-title: J. Glaciol. – volume: 25 start-page: 597 year: 2010 end-page: 616 ident: bb0430 article-title: Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data publication-title: Geocarto Int. – volume: 192 start-page: 12 year: 2017 end-page: 29 ident: bb0260 article-title: Early 21st century glacier thickness changes in the Central Tien Shan publication-title: Remote Sens. Environ. – volume: 58 start-page: 648 year: 2012 end-page: 656 ident: bb0325 article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008 publication-title: J. Glaciol. – volume: 28 start-page: 3501 year: 2001 end-page: 3504 ident: bb0385 article-title: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice publication-title: Geophys. Res. Lett. – volume: 11 start-page: 407 year: 2017 end-page: 426 ident: bb0225 article-title: Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015 publication-title: Cryosphere – volume: 5 start-page: 349 year: 2011 end-page: 358 ident: bb0065 article-title: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery publication-title: Cryosphere – volume: 2 start-page: 663 year: 2012 end-page: 667 ident: bb0520 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Chang. – volume: 58 start-page: 177 year: 2012 end-page: 184 ident: bb0245 article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau publication-title: J. Glaciol. – volume: 7 start-page: 1623 year: 2013 end-page: 1633 ident: bb0305 article-title: Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry publication-title: Cryosphere – volume: 58 start-page: 419 year: 2012 end-page: 422 ident: bb0130 article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing publication-title: J. Glaciol. – volume: 59 start-page: 110 year: 2007 end-page: 125 ident: bb0365 article-title: Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes publication-title: Glob. Planet. Chang. – year: 2014 ident: bb0205 publication-title: Global Land Ice Measurements from Space (Springer-Praxis). 33 Chapters – volume: 336 start-page: 310 year: 2012 end-page: 314 ident: bb0070 article-title: The state and fate of Himalayan glaciers publication-title: Science – volume: 8 start-page: 1038 year: 2016 ident: bb0450 article-title: Elevation change rates of glaciers in the Lahaul-Spiti (western Himalaya, India) during 2000–2012 and 2012–2013 publication-title: Remote Sens. – volume: 57 start-page: 223 year: 2016 end-page: 231 ident: bb0550 article-title: The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050 publication-title: Ann. Glaciol. – volume: 4 start-page: 87 year: 2014 end-page: 592 ident: bb0280 article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation publication-title: Nat. Clim. Chang. – volume: 27 start-page: 1910 year: 2014 end-page: 1927 ident: bb0295 article-title: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis publication-title: J. Clim. – volume: 128 start-page: 1 year: 2015 end-page: 13 ident: bb0355 article-title: Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery publication-title: Glob. Planet. Chang. – volume: 54 start-page: 171 year: 2013 end-page: 182 ident: bb0340 article-title: On the accuracy of glacier outlines derived from remote sensing data publication-title: Ann. Glaciol. – volume: 9 year: 2014 ident: bb0310 article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements publication-title: Environ. Res. Lett. – volume: 464 start-page: 95 year: 2017 end-page: 102 ident: bb0315 article-title: Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet publication-title: Earth Planet. Sci. Lett. – volume: 549 start-page: 257 year: 2017 ident: bb0235 article-title: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers publication-title: Nature – volume: 54 start-page: 592 year: 2008 end-page: 600 ident: bb0060 article-title: Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data publication-title: J. Glaciol. – year: 2017 ident: bb0380 article-title: Randolph Glacier Inventory – a Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space – volume: 33 year: 2006 ident: bb0045 article-title: Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes publication-title: Geophys. Res. Lett. – volume: 7 start-page: 569 year: 2013 end-page: 582 ident: bb0455 article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss publication-title: Cryosphere – volume: 7 start-page: 6712 year: 2017 ident: bb0265 article-title: A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014 publication-title: Sci. Rep. – volume: 5 start-page: 107 year: 2011 end-page: 124 ident: bb0105 article-title: Comparison of direct and geodetic mass balances on a multi-annual time scale publication-title: Cryosphere – volume: 9 start-page: 1105 year: 2015 end-page: 1128 ident: bb0425 article-title: Modelling glacier change in the Everest region, Nepal Himalaya publication-title: Cryosphere – volume: 9 start-page: 849 year: 2015 end-page: 864 ident: bb0330 article-title: The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers publication-title: Cryosphere – volume: vol. 2 start-page: 745 year: 2001 end-page: 747 ident: bb0395 article-title: SRTM/X-SAR: products and processing facility publication-title: Geoscience and Remote Sensing Symposium, 2001 – volume: 9 start-page: 557 year: 2015 end-page: 564 ident: bb0195 article-title: Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya publication-title: Cryosphere – volume: 46 start-page: 204 year: 2007 end-page: 208 ident: bb0420 article-title: Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data publication-title: Ann. Glaciol. – year: 2008 ident: bb0475 publication-title: Global Glacier Changes: Facts and Figures – volume: 530 start-page: 273 year: 2015 end-page: 280 ident: bb0525 article-title: Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data publication-title: J. Hydrol. – volume: 62 start-page: 1115 year: 2016 end-page: 1133 ident: bb0055 article-title: Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data publication-title: J. Glaciol. – volume: 29 start-page: 859 year: 2015 end-page: 874 ident: bb0465 article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas publication-title: Hydrol. Process. – volume: 5 start-page: 322 year: 2012 end-page: 325 ident: bb0125 article-title: Slight mass gain of Karakoram glaciers in the early twenty-first century publication-title: Nat. Geosci. – volume: 11 year: 2016 ident: bb0535 article-title: Mass change of glaciers in Muztag Ata-Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data publication-title: PLoS One – volume: 114 start-page: 156 year: 2012 end-page: 174 ident: bb0040 article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards publication-title: Earth Sci. Rev. – volume: 186 start-page: 581 year: 2016 end-page: 595 ident: bb0230 article-title: Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier publication-title: Remote Sens. Environ. – volume: 6 start-page: 1295 year: 2012 end-page: 1322 ident: bb0285 article-title: Past and future sea-level change from the surface mass balance of glaciers publication-title: Cryosphere – volume: 6 year: 2016 ident: bb0545 article-title: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling publication-title: Sci. Rep. – year: 2017 ident: bb0555 article-title: Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM publication-title: J. Glaciol. – volume: 7 start-page: 877 year: 2013 end-page: 887 ident: bb0175 article-title: Density assumptions for converting geodetic glacier volume change to mass change publication-title: Cryosphere – volume: 28 start-page: 1703 year: 2001 end-page: 1706 ident: bb0090 article-title: Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry publication-title: Geophys. Res. Lett. – volume: 62 start-page: 210 year: 2008 end-page: 218 ident: bb0250 article-title: Cryospheric change in China publication-title: Glob. Planet. Chang. – volume: 10 start-page: 2075 year: 2016 end-page: 2097 ident: bb0375 article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal publication-title: Cryosphere – volume: 55 start-page: 69 year: 2014 end-page: 80 ident: bb0015 article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969 publication-title: Ann. Glaciol. – volume: 4 start-page: 156 year: 2011 end-page: 159 ident: bb0405 article-title: Spatially variable response of Himalayan glaciers to climate change affected by debris cover publication-title: Nat. Geosci. – volume: 10 start-page: 668 year: 2017 end-page: 673 ident: bb0080 article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 publication-title: Nat. Geosci. – volume: 11 start-page: 531 year: 2017 end-page: 539 ident: bb0075 article-title: Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s publication-title: Cryosphere – year: 2010 ident: bb0495 article-title: Introduction of Glaciology (in Chinese) – volume: 427 start-page: 125 year: 2015 end-page: 135 ident: bb0415 article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula publication-title: Earth Planet. Sci. Lett. – volume: 162 start-page: 408 year: 2015 end-page: 426 ident: bb0345 article-title: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products publication-title: Remote Sens. Environ. – volume: 47 start-page: 301 year: 2015 end-page: 311 ident: bb0185 article-title: Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images publication-title: Arct. Antarct. Alp. Res. – volume: 64 start-page: 398 year: 2009 end-page: 406 ident: bb0155 article-title: Accuracy assessment of digital elevation models by means of robust statistical methods publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 117 start-page: 184 year: 2012 end-page: 198 ident: bb0485 article-title: Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing publication-title: Remote Sens. Environ. – volume: 9 start-page: 505 year: 2015 end-page: 523 ident: bb0370 article-title: Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya publication-title: Cryosphere – year: 2017 ident: bb0480 article-title: Fluctuations of Glaciers Database – volume: 9 start-page: 3870 year: 2016 end-page: 3882 ident: bb0095 article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 5 start-page: 516 year: 2012 end-page: 532 ident: bb0255 article-title: Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data publication-title: Int. J. Digital Earth – volume: 9 start-page: 525 year: 2015 end-page: 540 ident: bb0110 article-title: Surface elevation and mass changes of all Swiss glaciers 1980–2010 publication-title: Cryosphere – volume: 10 start-page: 2203 year: 2016 ident: bb0290 article-title: Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery publication-title: Cryosphere – volume: 5 start-page: 271 year: 2011 end-page: 290 ident: bb0335 article-title: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change publication-title: Cryosphere – volume: 7 start-page: 403 year: 2016 end-page: 423 ident: bb0240 article-title: Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya publication-title: Geomat. Nat. Haz. Risk – year: 2011 ident: bb0025 article-title: The status of glaciers in the Hindu Kush-Himalayan region publication-title: International Centre for Integrated Mountain Development (ICIMOD) – volume: 107 start-page: 20223 year: 2010 end-page: 20227 ident: bb0210 article-title: Contribution potential of glaciers to water availability in different climate regimes publication-title: Proc. Natl. Acad. Sci. – volume: 4 year: 2016 ident: bb0050 article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area publication-title: Front. Earth Sci. – volume: 3 year: 2015 ident: bb0180 article-title: A new model for global glacier change and sea-level rise publication-title: Front. Earth Sci. – volume: 57 start-page: 328 year: 2016 end-page: 338 ident: bb0020 article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India publication-title: Ann. Glaciol. – volume: 9 start-page: 1213 year: 2015 end-page: 1222 ident: bb0200 article-title: Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records publication-title: Cryosphere – volume: 108 start-page: 14011 year: 2011 end-page: 14014 ident: bb0120 article-title: Spatially heterogeneous wastage of Himalayan glaciers publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 61 start-page: 1048 year: 2015 end-page: 1060 ident: bb0170 article-title: Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011 publication-title: J. Glaciol. – volume: 45 year: 2007 ident: bb0100 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. – volume: 55 start-page: 666 year: 2009 end-page: 680 ident: bb0390 article-title: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway publication-title: J. Glaciol. – volume: 124 start-page: 832 year: 2012 end-page: 843 ident: bb0115 article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results publication-title: Remote Sens. Environ. – volume: 168 start-page: 13 year: 2015 end-page: 23 ident: bb0215 article-title: Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory publication-title: Remote Sens. Environ. – volume: 61 start-page: 357 year: 2015 end-page: 372 ident: bb0150 article-title: The second Chinese glacier inventory: data, methods and results publication-title: J. Glaciol. – volume: 60 start-page: 537 year: 2014 end-page: 552 ident: bb0350 article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers publication-title: J. Glaciol. – volume: 39 start-page: 582 year: 1993 end-page: 590 ident: bb0410 article-title: Changes in the longitudinal profiles of glaciers during advance and retreat publication-title: J. Glaciol. – volume: 54 start-page: 157 year: 2013 end-page: 162 ident: bb0435 article-title: Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009 publication-title: Ann. Glaciol. – volume: 10 start-page: 65 year: 2016 end-page: 85 ident: bb0300 article-title: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya publication-title: Cryosphere – volume: 76 start-page: 603 year: 2010 end-page: 608 ident: bb0440 article-title: Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery publication-title: Photogramm. Eng. Remote. Sens. – volume: 12 start-page: 344 year: 2015 end-page: 357 ident: bb0035 article-title: Glacier changes during the past 40 years in the West Kunlun Shan publication-title: J. Mt. Sci. – volume: 430 start-page: 427 year: 2015 end-page: 438 ident: bb0400 article-title: Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya publication-title: Earth Planet. Sci. Lett. – volume: 57 start-page: 41 year: 2016 ident: bb0085 article-title: Glacier shrinkage across High Mountain Asia publication-title: Ann. Glaciol. – volume: 488 start-page: 495 year: 2012 end-page: 498 ident: bb0190 article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas publication-title: Nature – volume: 37 start-page: 5687 year: 2016 end-page: 5707 ident: bb0275 article-title: Glacier elevation changes (2012–2016) of the Puruogangri ice field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data publication-title: Int. J. Remote Sens. – volume: 7 start-page: 1263 year: 2013 end-page: 1286 ident: bb0135 article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 publication-title: Cryosphere – volume: 130 start-page: 233 year: 2013 end-page: 244 ident: bb0360 article-title: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery publication-title: Remote Sens. Environ. – volume: 35 start-page: 1481 year: 2014 end-page: 1505 ident: bb0145 article-title: Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects publication-title: Surv. Geophys. – volume: 55 start-page: 239 year: 2014 end-page: 247 ident: bb0490 article-title: Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09 publication-title: Ann. Glaciol. – volume: 371 start-page: 58 year: 2015 end-page: 66 ident: bb0220 article-title: Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data publication-title: Quat. Int. – start-page: 139 year: 2016 end-page: 153 ident: bb0165 article-title: Glacier variations in the Trans Alai massif and the lake karakul catchment (northeastern pamir) measured from space publication-title: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya – volume: 112 start-page: 2430 year: 2008 end-page: 2442 ident: bb0445 article-title: The impact of misregistration on SRTM and DEM image differences publication-title: Remote Sens. Environ. – volume: 9 year: 2017 ident: bb0470 article-title: A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities publication-title: Remote Sens. – volume: 340 start-page: 852 year: 2013 end-page: 857 ident: bb0140 article-title: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 publication-title: Science – volume: 9 start-page: 2071 year: 2015 end-page: 2088 ident: bb0160 article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data publication-title: Cryosphere – volume: 27 start-page: 1910 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0295 article-title: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis publication-title: J. Clim. doi: 10.1175/JCLI-D-13-00282.1 – volume: 4 start-page: 87 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0280 article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2237 – volume: 54 start-page: 171 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0340 article-title: On the accuracy of glacier outlines derived from remote sensing data publication-title: Ann. Glaciol. doi: 10.3189/2013AoG63A296 – volume: 464 start-page: 95 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0315 article-title: Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2017.02.008 – volume: 114 start-page: 156 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0040 article-title: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2012.03.008 – volume: 128 start-page: 1 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0355 article-title: Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2014.11.014 – volume: 61 start-page: 1048 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0170 article-title: Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011 publication-title: J. Glaciol. doi: 10.3189/2015JoG15J056 – volume: 33 year: 2006 ident: 10.1016/j.rse.2018.03.020_bb0045 article-title: Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL025862 – volume: 57 start-page: 328 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0020 article-title: Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A570 – volume: 55 start-page: 666 year: 2009 ident: 10.1016/j.rse.2018.03.020_bb0390 article-title: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway publication-title: J. Glaciol. doi: 10.3189/002214309789470950 – year: 2008 ident: 10.1016/j.rse.2018.03.020_bb0475 – volume: 371 start-page: 58 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0220 article-title: Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data publication-title: Quat. Int. doi: 10.1016/j.quaint.2015.02.043 – volume: 10 start-page: 2203 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0290 article-title: Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery publication-title: Cryosphere doi: 10.5194/tc-10-2203-2016 – volume: 112 start-page: 2430 year: 2008 ident: 10.1016/j.rse.2018.03.020_bb0445 article-title: The impact of misregistration on SRTM and DEM image differences publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.11.003 – volume: 55 start-page: 159 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0030 article-title: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data publication-title: Ann. Glaciol. doi: 10.3189/2014AoG66A125 – volume: 9 start-page: 2071 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0160 article-title: Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data publication-title: Cryosphere doi: 10.5194/tc-9-2071-2015 – volume: 9 start-page: 505 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0370 article-title: Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya publication-title: Cryosphere doi: 10.5194/tc-9-505-2015 – volume: 2 start-page: 663 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0520 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1580 – volume: 340 start-page: 852 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0140 article-title: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 publication-title: Science doi: 10.1126/science.1234532 – volume: 7 start-page: 403 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0240 article-title: Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2014.931306 – volume: 6 start-page: 1295 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0285 article-title: Past and future sea-level change from the surface mass balance of glaciers publication-title: Cryosphere doi: 10.5194/tc-6-1295-2012 – volume: 58 start-page: 419 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0130 article-title: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing publication-title: J. Glaciol. doi: 10.3189/2012JoG11J175 – volume: 7 start-page: 569 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0455 article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss publication-title: Cryosphere doi: 10.5194/tc-7-569-2013 – volume: 7 start-page: 6712 issue: 1 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0265 article-title: A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014 publication-title: Sci. Rep. doi: 10.1038/s41598-017-07133-8 – volume: 9 start-page: 557 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0195 article-title: Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya publication-title: Cryosphere doi: 10.5194/tc-9-557-2015 – volume: 28 start-page: 1703 year: 2001 ident: 10.1016/j.rse.2018.03.020_bb0090 article-title: Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL011787 – volume: 108 start-page: 14011 year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0120 article-title: Spatially heterogeneous wastage of Himalayan glaciers publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1106242108 – volume: 46 start-page: 204 year: 2007 ident: 10.1016/j.rse.2018.03.020_bb0420 article-title: Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data publication-title: Ann. Glaciol. doi: 10.3189/172756407782871693 – volume: 530 start-page: 273 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0525 article-title: Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.014 – volume: 57 start-page: 41 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0085 article-title: Glacier shrinkage across High Mountain Asia publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A040 – volume: 427 start-page: 125 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0415 article-title: Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.06.047 – volume: 37 start-page: 5687 issue: 24 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0275 article-title: Glacier elevation changes (2012–2016) of the Puruogangri ice field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1246777 – volume: vol. 2 start-page: 745 year: 2001 ident: 10.1016/j.rse.2018.03.020_bb0395 article-title: SRTM/X-SAR: products and processing facility – volume: 35 start-page: 1481 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0145 article-title: Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects publication-title: Surv. Geophys. doi: 10.1007/s10712-014-9286-y – volume: 11 start-page: 531 issue: 1 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0075 article-title: Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s publication-title: Cryosphere doi: 10.5194/tc-11-531-2017 – volume: 5 start-page: 271 year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0335 article-title: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change publication-title: Cryosphere doi: 10.5194/tc-5-271-2011 – volume: 117 start-page: 184 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0485 article-title: Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.017 – volume: 10 start-page: 668 issue: 9 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0080 article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 publication-title: Nat. Geosci. doi: 10.1038/ngeo2999 – year: 2010 ident: 10.1016/j.rse.2018.03.020_bb0495 – volume: 7 start-page: 877 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0175 article-title: Density assumptions for converting geodetic glacier volume change to mass change publication-title: Cryosphere doi: 10.5194/tc-7-877-2013 – volume: 9 start-page: 1105 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0425 article-title: Modelling glacier change in the Everest region, Nepal Himalaya publication-title: Cryosphere doi: 10.5194/tc-9-1105-2015 – volume: 39 start-page: 582 year: 1993 ident: 10.1016/j.rse.2018.03.020_bb0410 article-title: Changes in the longitudinal profiles of glaciers during advance and retreat publication-title: J. Glaciol. doi: 10.3189/S0022143000016476 – volume: 192 start-page: 12 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0260 article-title: Early 21st century glacier thickness changes in the Central Tien Shan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.02.003 – volume: 55 start-page: 239 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0490 article-title: Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09 publication-title: Ann. Glaciol. doi: 10.3189/2014AoG66A100 – volume: 12 start-page: 344 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0035 article-title: Glacier changes during the past 40 years in the West Kunlun Shan publication-title: J. Mt. Sci. doi: 10.1007/s11629-014-3220-0 – volume: 60 start-page: 537 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0350 article-title: The Randolph Glacier Inventory: a globally complete inventory of glaciers publication-title: J. Glaciol. doi: 10.3189/2014JoG13J176 – volume: 62 start-page: 1115 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0055 article-title: Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data publication-title: J. Glaciol. doi: 10.1017/jog.2016.96 – volume: 59 start-page: 110 year: 2007 ident: 10.1016/j.rse.2018.03.020_bb0365 article-title: Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2006.11.036 – volume: 549 start-page: 257 issue: 7671 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0235 article-title: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers publication-title: Nature doi: 10.1038/nature23878 – volume: 58 start-page: 648 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0325 article-title: Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008 publication-title: J. Glaciol. doi: 10.3189/2012JoG11J061 – year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0205 – volume: 6 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0545 article-title: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling publication-title: Sci. Rep. – volume: 488 start-page: 495 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0190 article-title: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas publication-title: Nature doi: 10.1038/nature11324 – volume: 63 start-page: 273 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0530 article-title: Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13 publication-title: J. Glaciol. doi: 10.1017/jog.2016.137 – volume: 186 start-page: 581 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0230 article-title: Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.013 – volume: 9 start-page: 3870 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0095 article-title: Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2581482 – volume: 9 start-page: 849 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0330 article-title: The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers publication-title: Cryosphere doi: 10.5194/tc-9-849-2015 – volume: 5 start-page: 349 year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0065 article-title: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery publication-title: Cryosphere doi: 10.5194/tc-5-349-2011 – volume: 336 start-page: 310 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0070 article-title: The state and fate of Himalayan glaciers publication-title: Science doi: 10.1126/science.1215828 – volume: 9 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0470 article-title: A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities publication-title: Remote Sens. doi: 10.3390/rs9040388 – volume: 4 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0050 article-title: Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area publication-title: Front. Earth Sci. doi: 10.3389/feart.2016.00063 – volume: 62 start-page: 210 year: 2008 ident: 10.1016/j.rse.2018.03.020_bb0250 article-title: Cryospheric change in China publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2008.02.001 – volume: 45 issue: 2 year: 2007 ident: 10.1016/j.rse.2018.03.020_bb0100 article-title: The shuttle radar topography mission publication-title: Rev. Geophys. doi: 10.1029/2005RG000183 – volume: 5 start-page: 516 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0255 article-title: Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2011.594099 – volume: 10 start-page: 65 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0300 article-title: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya publication-title: Cryosphere doi: 10.5194/tc-10-65-2016 – year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0025 article-title: The status of glaciers in the Hindu Kush-Himalayan region – volume: 124 start-page: 832 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0115 article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.020 – volume: 4 start-page: 156 year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0405 article-title: Spatially variable response of Himalayan glaciers to climate change affected by debris cover publication-title: Nat. Geosci. doi: 10.1038/ngeo1068 – start-page: 139 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0165 article-title: Glacier variations in the Trans Alai massif and the lake karakul catchment (northeastern pamir) measured from space – volume: 430 start-page: 427 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0400 article-title: Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.09.004 – volume: 76 start-page: 603 year: 2010 ident: 10.1016/j.rse.2018.03.020_bb0440 article-title: Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.76.5.603 – volume: 11 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0535 article-title: Mass change of glaciers in Muztag Ata-Kongur Tagh, eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data publication-title: PLoS One – volume: 9 start-page: 525 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0110 article-title: Surface elevation and mass changes of all Swiss glaciers 1980–2010 publication-title: Cryosphere doi: 10.5194/tc-9-525-2015 – volume: 54 start-page: 592 year: 2008 ident: 10.1016/j.rse.2018.03.020_bb0060 article-title: Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data publication-title: J. Glaciol. doi: 10.3189/002214308786570782 – year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0555 article-title: Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM publication-title: J. Glaciol. doi: 10.1017/jog.2016.142 – year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0380 – volume: 5 start-page: 107 year: 2011 ident: 10.1016/j.rse.2018.03.020_bb0105 article-title: Comparison of direct and geodetic mass balances on a multi-annual time scale publication-title: Cryosphere doi: 10.5194/tc-5-107-2011 – volume: 7 start-page: 1623 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0305 article-title: Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry publication-title: Cryosphere doi: 10.5194/tc-7-1623-2013 – volume: 47 start-page: 301 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0185 article-title: Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/AAAR00C-13-129 – volume: 107 start-page: 20223 year: 2010 ident: 10.1016/j.rse.2018.03.020_bb0210 article-title: Contribution potential of glaciers to water availability in different climate regimes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1008162107 – volume: 162 start-page: 408 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0345 article-title: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.043 – volume: 10 start-page: 2075 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0375 article-title: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal publication-title: Cryosphere doi: 10.5194/tc-10-2075-2016 – volume: 25 start-page: 597 year: 2010 ident: 10.1016/j.rse.2018.03.020_bb0430 article-title: Development of an inversion algorithm for dry snow density estimation and its application with ENVISAT-ASAR dual co-polarization data publication-title: Geocarto Int. doi: 10.1080/10106049.2010.516843 – volume: 28 start-page: 3501 year: 2001 ident: 10.1016/j.rse.2018.03.020_bb0385 article-title: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL012484 – volume: 5 start-page: 322 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0125 article-title: Slight mass gain of Karakoram glaciers in the early twenty-first century publication-title: Nat. Geosci. doi: 10.1038/ngeo1450 – volume: 64 start-page: 398 year: 2009 ident: 10.1016/j.rse.2018.03.020_bb0155 article-title: Accuracy assessment of digital elevation models by means of robust statistical methods publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.02.003 – volume: 130 start-page: 233 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0360 article-title: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.11.020 – volume: 54 start-page: 157 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0435 article-title: Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009 publication-title: Ann. Glaciol. doi: 10.3189/2013AoG64A111 – volume: 57 start-page: 223 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0550 article-title: The High Mountain Asia glacier contribution to sea-level rise from 2000 to 2050 publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A049 – volume: 3 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0180 article-title: A new model for global glacier change and sea-level rise publication-title: Front. Earth Sci. doi: 10.3389/feart.2015.00054 – volume: 61 start-page: 357 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0150 article-title: The second Chinese glacier inventory: data, methods and results publication-title: J. Glaciol. doi: 10.3189/2015JoG14J209 – volume: 11 start-page: 407 year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0225 article-title: Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015 publication-title: Cryosphere doi: 10.5194/tc-11-407-2017 – volume: 29 start-page: 859 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0465 article-title: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas publication-title: Hydrol. Process. doi: 10.1002/hyp.10199 – year: 2017 ident: 10.1016/j.rse.2018.03.020_bb0480 – volume: 9 start-page: 1213 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0200 article-title: Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records publication-title: Cryosphere doi: 10.5194/tc-9-1213-2015 – volume: 8 start-page: 1038 issue: 12 year: 2016 ident: 10.1016/j.rse.2018.03.020_bb0450 article-title: Elevation change rates of glaciers in the Lahaul-Spiti (western Himalaya, India) during 2000–2012 and 2012–2013 publication-title: Remote Sens. doi: 10.3390/rs8121038 – volume: 9 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0310 article-title: Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/1/014009 – volume: 7 start-page: 1263 year: 2013 ident: 10.1016/j.rse.2018.03.020_bb0135 article-title: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 publication-title: Cryosphere doi: 10.5194/tc-7-1263-2013 – volume: 55 start-page: 69 year: 2014 ident: 10.1016/j.rse.2018.03.020_bb0015 article-title: Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969 publication-title: Ann. Glaciol. doi: 10.3189/2014AoG66A104 – volume: 58 start-page: 177 year: 2012 ident: 10.1016/j.rse.2018.03.020_bb0245 article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau publication-title: J. Glaciol. doi: 10.3189/2012JoG11J025 – volume: 168 start-page: 13 year: 2015 ident: 10.1016/j.rse.2018.03.020_bb0215 article-title: Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.019 |
SSID | ssj0015871 |
Score | 2.604899 |
Snippet | In the context of global warming, glacier changes in the Qinghai–Tibet Plateau (QTP) and its surroundings have attracted a great amount of public attention. To... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 96 |
SubjectTerms | China Climate change Digital Elevation Models Digital imaging Geodetic method Geodetics Glacier mass balance Glaciers Global warming Himalayan region KH-9 images Mass balance models Mass balance of glaciers Mountains Qinghai–Tibet Plateau Radar Radar imaging remote sensing SRTM DEM Topography |
Title | Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs |
URI | https://dx.doi.org/10.1016/j.rse.2018.03.020 https://www.proquest.com/docview/2086368462 https://www.proquest.com/docview/2221044224 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIgQXBAsVC6UyEick02zsJM6xqtoGqlb8bKXeLMd22qBttkqyEr0gbjwAb8iTMOM4i0CoB05RMuMkyoxnxvHMfIS8qoS1qXScgSvgTORVyjSvDEuyKjUJLCkS32f25DQtzsS78-R8g-yPtTCYVhls_2DTvbUOV3bD19y9rmus8eUCNQ6UEpSUY6G5EBlq-Zuv6zSPWSKzATWPC4bc486mz_FqO-yUOZO-zylCfv_bN_1lpb3rOXxIHoSYke4Nr_WIbLhmQrYOfpeoATHM0W5C7gVc88ubCbl75IF7bx6T70cLDSwtvYJomZaY0GgcrRsKASD9AP7rUtc_v_2Y16Xr6fsFRKB6RXVjad13tFu1LcIv4V91igUpftRVbdksz6KO9kuKtTgUXaKly4YW7ou-gONxwXJ_l08f5ycUZN49IWeHB_P9ggUQBmbAhvYsEVamTkvj8lJKnZfcVNbFNscKWW3iKrHcZpktrY1maAOslkB3LjKVTm3Kt8hms2zcU0KjTMsqQYhrlwEbl6XE9mrAbHKjdTYl0fj5lQkdyhEoY6HGVLTPCiSmUGIq4gokNiWv10Ouh_YctzGLUabqDx1T4D5uG7Y9yl-FCd4BXaY8heAtnpKXazJMTdxv0Y1broAnhvU0qGgsnv3fk5-T-3g2ZKZtk82-XbkXEAP15Y5X8h1yZ-_tcXH6C_p-BTY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbKVqhcECxULBQwEickq9k4TpxjVbVN2e6Kn63Um-XYThu0zVZJVqI3bjwAb8iTMJN1FoFQD5wiZcZJ5BnPjOOZ-Qh5W0TWxtJxBq6AsygtYqZ5YZhIitgI2FKIrs_sdBZn59H7C3GxRQ77WhhMq_S2f23TO2vt7-z72dy_KUus8eURahwoJSgpF_fINnanEgOyfXA6yWabwwQhkzVwHo8YDugPN7s0r7rBZplj2bU6RdTvf7unvwx1532OH5GHPmykB-sve0y2XDUku0e_q9SA6JdpMyQ7Htr86nZI7p902L23T8j3k4UGlppeQ8BMc8xpNI6WFYUYkH4EF3aly5_ffszL3LX0wwKCUL2iurK0bBvarOoaEZjwxzrFmpRu1HVp2ThNgoa2S4rlOBS9oqXLimbuq76E6yRjafeUz5_mUwpib56S8-Oj-WHGPA4DM2BGWyYiK2OnpXFpLqVOc24K60KbYpGsNmEhLLdJYnNrgzGaAasl0J0LTKFjG_NdMqiWlXtGaJBoWQhEuXYJsHGZS-ywBswmNVonIxL006-Mb1KOWBkL1WejfVEgMYUSUwFXILERebcZcrPu0HEXc9TLVP2hZgo8yF3D9nr5K7_GG6DLmMcQv4Uj8mZDhtWJRy66cssV8ISwpQYtDaPn__fm12Qnm0_P1NnpbPKCPEDKOlFtjwzaeuVeQkjU5q-8yv8C5yQH5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glacier+mass+balance+in+the+Qinghai%E2%80%93Tibet+Plateau+and+its+surroundings+from+the+mid-1970s+to+2000+based+on+Hexagon+KH-9+and+SRTM+DEMs&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhou%2C+Yushan&rft.au=Li%2C+Zhiwei&rft.au=Li%2C+Jia&rft.au=Zhao%2C+Rong&rft.date=2018-06-01&rft.issn=0034-4257&rft.volume=210+p.96-112&rft.spage=96&rft.epage=112&rft_id=info:doi/10.1016%2Fj.rse.2018.03.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |