Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels
Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasi...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 321; no. 4; pp. G355 - G366 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bethesda
American Physiological Society
01.10.2021
|
Series | Microbiome-Based Therapeutics and Their Physiological Effects |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders. |
---|---|
AbstractList | Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders. Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders. |
Author | Koper, Mateusz Jaworska, Kinga Ufnal, Marcin |
Author_xml | – sequence: 1 givenname: Kinga orcidid: 0000-0002-0281-015X surname: Jaworska fullname: Jaworska, Kinga organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland – sequence: 2 givenname: Mateusz surname: Koper fullname: Koper, Mateusz organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland – sequence: 3 givenname: Marcin orcidid: 0000-0003-0088-8284 surname: Ufnal fullname: Ufnal, Marcin organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland |
BookMark | eNp1kc1vFCEYxolpY7fVu0cSL15mBQYG8GBiGq0mTby0x4a8w7ArGwbGgWm6_73sbj3YxBPJy-953o_nEp3FFB1C7yhZUyrYR9hNW78mhGi9ZoTRV2hVy6yhgssztCJUtw1VQl6gy5x3lROM0tfoouWcCNmSFXq4WQoevZ1T71MBDHHAs4s-NhC3teJi9hHnfS5u_IQB2zROwT1hH4ubpwB7DAWHZCEcpSfQWxzcowv5DTrfQMju7fN7he6_fb27_t7c_rz5cf3ltrG8k6URzPU9lQPU2QfNu40clOyskk5b2xEQAwPLe0Y4kVY5rYjloHu50YPqLbXtFfp88p2WfnSDdbHMEMw0-xHmvUngzb8_0f8y2_RoFFcdZ6oafHg2mNPvxeViRp-tCwGiS0s2THRMUCF1V9H3L9BdWuZY16uU1LRVSupKdSeqXjbn2W2M9QWKT4f-PhhKzCFBc0zQHBM0hwSrkLwQ_t3iv5I_w4aiCw |
CitedBy_id | crossref_primary_10_1186_s12915_024_02021_w crossref_primary_10_12677_acm_2024_1492490 crossref_primary_10_3390_ijms241310820 crossref_primary_10_2147_JIR_S365090 crossref_primary_10_1038_s41440_023_01334_7 crossref_primary_10_1111_nmo_14598 crossref_primary_10_1007_s40200_025_01579_8 crossref_primary_10_1016_j_canlet_2025_217539 crossref_primary_10_1016_j_jnutbio_2022_109252 crossref_primary_10_1161_HYPERTENSIONAHA_122_20073 crossref_primary_10_1111_apt_18017 crossref_primary_10_3390_nu15030607 crossref_primary_10_1186_s40035_024_00410_3 crossref_primary_10_1186_s12866_024_03665_y crossref_primary_10_5187_jast_2023_e86 crossref_primary_10_1016_j_bcp_2023_115659 crossref_primary_10_2147_DMSO_S455026 crossref_primary_10_1002_rmv_2577 crossref_primary_10_1111_dom_16225 crossref_primary_10_3390_nu14122528 crossref_primary_10_3390_microorganisms12112246 crossref_primary_10_3390_nu15020360 crossref_primary_10_1016_j_phrs_2023_106983 crossref_primary_10_3390_ph15050600 crossref_primary_10_3390_ijms25105566 crossref_primary_10_1007_s00467_023_06112_8 crossref_primary_10_2174_1871526523666230210162334 crossref_primary_10_3389_fmicb_2022_1036432 crossref_primary_10_2147_IJN_S450337 crossref_primary_10_1590_1806_9061_2023_1825 crossref_primary_10_1186_s43556_022_00091_2 crossref_primary_10_1161_CIRCULATIONAHA_122_060573 crossref_primary_10_3389_fphys_2023_1166685 crossref_primary_10_1016_j_cellsig_2024_111426 crossref_primary_10_20535_ibb_2022_6_3_4_268349 crossref_primary_10_3390_life13020536 crossref_primary_10_1111_jgh_16541 crossref_primary_10_1007_s00109_023_02289_5 crossref_primary_10_1152_ajprenal_00072_2023 crossref_primary_10_3389_fphar_2022_938650 crossref_primary_10_3389_fendo_2023_1117259 crossref_primary_10_3389_fnut_2023_1293170 crossref_primary_10_3390_ijms25031716 crossref_primary_10_1021_acsomega_3c00210 crossref_primary_10_3390_jcm11185400 crossref_primary_10_2174_0113816128302001240321044409 crossref_primary_10_3390_ijms23116060 crossref_primary_10_3390_ani14132000 crossref_primary_10_1080_14779072_2024_2364031 crossref_primary_10_3390_jcm12155090 crossref_primary_10_1016_j_ijbiomac_2023_128265 crossref_primary_10_1152_ajprenal_00051_2024 crossref_primary_10_1016_j_phrs_2023_106920 |
Cites_doi | 10.1161/HYPERTENSIONAHA.115.05315 10.1073/pnas.0903958106 10.1056/NEJMoa043335 10.1152/physrev.1977.57.2.313 10.1677/joe.0.0860035 10.1152/ajpgi.2001.281.5.G1309 10.1073/pnas.1922189117 10.4103/cmi.cmi_80_20 10.1111/j.1750-3841.2007.00643.x 10.1186/s12885-016-2093-8 10.1016/j.chom.2007.06.010 10.1126/sciimmunol.abc3582 10.1016/j.cjca.2014.09.010 10.1016/j.cdtm.2019.09.001 10.1136/gutjnl-2011-300046 10.1161/HYPERTENSIONAHA.119.13155 10.1016/j.bbr.2018.07.001 10.1056/NEJM199109263251306 10.1002/path.1570 10.1177/1099800420942942 10.1016/j.chom.2012.07.004 10.20944/preprints202003.0161.v1 10.1053/j.gastro.2012.11.005 10.3168/jds.S0022-0302(95)76689-9 10.1161/CIRCULATIONAHA.116.024545 10.1113/jphysiol.2007.138578 10.1038/s41591-019-0504-5 10.1111/j.1748-1716.2010.02165.x 10.1016/j.jhep.2020.05.047 10.1007/s00125-018-4550-1 10.7554/eLife.57028 10.3168/jds.S0022-0302(00)74872-7 10.1124/jpet.102.044099 10.1080/07315724.2005.10719473 10.1111/j.1748-1716.2006.01600.x 10.1016/j.peptides.2015.11.003 10.26402/jpp.2018.4.07 10.1016/j.gene.2007.05.010 10.1023/a:1018946228432 10.1161/HYPERTENSIONAHA.120.15360 10.1016/j.chom.2017.03.002 10.1126/scitranslmed.aaf9655 10.3164/jcbn.10-114 10.1152/ajpcell.00135.2009 10.1172/JCI33293 10.1038/nmicrobiol.2017.8 10.3389/fphys.2017.00276 10.3785/j.issn.1008-9292.2020.02.02 10.1152/ajpgi.00264.2009 10.1016/j.tem.2005.07.009 10.1093/gerona/glz222 10.1152/ajpgi.00189.2013 10.1111/jgh.12112 10.1371/journal.pone.0119462 10.1007/s00418-013-1086-9 10.1152/physrev.00036.2005 10.3390/biology10040348 10.1056/NEJMoa2002032 10.1152/ajpgi.00053.2019 10.1152/ajpgi.1989.257.4.G504 10.1093/cid/ciaa709 10.1038/s41564-020-0688-y 10.1210/en.2003-0150 10.1038/s41401-019-0326-5 10.1097/HJH.0000000000002864 10.1146/annurev.pharmtox.010909.105610 10.1111/nmo.13623 10.1152/ajpregu.1998.275.2.R515 10.1039/d0fo01119c 10.1113/jphysiol.1988.sp017015 10.1051/lait:2006023 10.1111/j.1748-1716.2007.01826.x 10.1007/s003950170073 10.1167/tvst.9.13.20 10.1016/j.cub.2016.04.016 10.1177/1535370219900898 10.1161/CIRCRESAHA.120.317015 10.1161/CIRCRESAHA.121.318902 10.1152/ajpendo.00562.2011 10.2337/db11-1019 10.1053/j.gastro.2020.07.067 10.1016/j.omtm.2019.06.007 10.1172/jci110135 10.1038/ni.3780 10.1002/ddr.21656 10.1161/01.atv.0000021412.56621.a2 10.1038/nature11450 10.1016/j.coph.2014.08.007 10.1136/gut.2003.036343 10.1007/s00432-004-0582-7 10.1016/j.mcna.2016.08.017 10.1007/s12325-020-01455-2 10.1016/j.phrs.2020.105273 10.1097/HJH.0000000000001378 10.18632/oncotarget.24330 10.1007/s10620-018-4999-2 10.26402/jpp.2019.2.03 10.1152/physrev.00038.2017 10.9734/BJMMR/2017/30329 10.1111/j.1440-1746.2006.04797.x 10.3390/nu11122908 10.1016/S0140-6736(17)30182-4 10.1038/nature11228 10.1152/ajpgi.1985.249.1.G3 10.1016/j.ijfoodmicro.2013.09.002 10.7554/eLife.27014 10.3389/fmicb.2013.00030 10.1371/journal.pone.0248730 10.2174/092986712803413953 10.1152/ajpcell.00287.2006 10.1371/journal.pone.0184274 10.1073/pnas.1518189113 10.1111/j.1365-2796.2008.01981.x 10.5772/intechopen.94325 10.1371/journal.pone.0034026 10.1016/j.npep.2020.102056 10.1084/jem.20181939 10.1007/s12029-020-00531-8 10.3168/jds.S0022-0302(95)76745-5 10.1161/CIRCRESAHA.117.309715 10.1371/journal.pone.0189310 10.1007/s40520-013-0148-0 10.1073/pnas.1000097107 10.1016/j.bbrc.2015.03.035 10.1016/j.chom.2016.01.008 10.1111/hepr.13281 10.1016/s0008-6363(99)00110-8 10.1038/ncomms7528 10.1136/jitc-2020-001020 10.1177/002215540205000215 10.1073/pnas.1215927110 10.1161/JAHA.116.003698 10.1016/j.immuni.2018.12.015 10.1007/s10620-006-9124-2 10.1681/ASN.V102245 10.1111/j.1365-2036.2011.04971.x 10.1172/JCI112566 10.1039/c8fo00081f 10.1016/j.yexmp.2019.104350 10.1038/s41586-020-2474-7 10.1007/s00424-019-02322-y 10.1038/nrmicro3344 10.1097/00005344-199219006-00013 10.1016/j.arr.2020.101123 10.1093/ajcn/77.2.326 10.1038/srep27552 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Oct 2021 Copyright © 2021 the American Physiological Society. 2021 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Oct 2021 – notice: Copyright © 2021 the American Physiological Society. 2021 American Physiological Society |
DBID | AAYXX CITATION K9. 7X8 5PM |
DOI | 10.1152/ajpgi.00099.2021 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | GUT MICROBIOTA AND RENIN-ANGIOTENSIN SYSTEM |
EISSN | 1522-1547 |
EndPage | G366 |
ExternalDocumentID | PMC8486428 10_1152_ajpgi_00099_2021 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c467t-52ebb17da522d946f7d876c87e9cc60a5d2ac4b20407c8e980c4a9b7f9d8bc1c3 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Thu Aug 21 14:00:54 EDT 2025 Fri Jul 11 06:02:36 EDT 2025 Mon Jun 30 19:24:22 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 03:43:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-52ebb17da522d946f7d876c87e9cc60a5d2ac4b20407c8e980c4a9b7f9d8bc1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0281-015X 0000-0003-0088-8284 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8486428 |
PMID | 34405730 |
PQID | 2579138879 |
PQPubID | 48585 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8486428 proquest_miscellaneous_2562515796 proquest_journals_2579138879 crossref_citationtrail_10_1152_ajpgi_00099_2021 crossref_primary_10_1152_ajpgi_00099_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bethesda |
PublicationPlace_xml | – name: Bethesda – name: Rockville, MD |
PublicationSeriesTitle | Microbiome-Based Therapeutics and Their Physiological Effects |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationYear | 2021 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B118 B119 B116 B117 B114 B115 B112 B113 B110 B111 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B129 B127 B128 B125 B126 B123 B124 B121 B122 B120 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B138 B139 B136 B137 B134 B135 B132 B133 B130 B131 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B17 B18 B19 B145 B146 B143 B144 B141 B142 B140 |
References_xml | – ident: B4 doi: 10.1161/HYPERTENSIONAHA.115.05315 – ident: B88 doi: 10.1073/pnas.0903958106 – ident: B92 doi: 10.1056/NEJMoa043335 – ident: B5 doi: 10.1152/physrev.1977.57.2.313 – ident: B60 doi: 10.1677/joe.0.0860035 – ident: B96 doi: 10.1152/ajpgi.2001.281.5.G1309 – ident: B90 doi: 10.1073/pnas.1922189117 – ident: B136 doi: 10.4103/cmi.cmi_80_20 – ident: B47 doi: 10.1111/j.1750-3841.2007.00643.x – ident: B112 doi: 10.1186/s12885-016-2093-8 – ident: B99 doi: 10.1016/j.chom.2007.06.010 – ident: B137 doi: 10.1126/sciimmunol.abc3582 – ident: B53 doi: 10.1016/j.cjca.2014.09.010 – ident: B104 doi: 10.1016/j.cdtm.2019.09.001 – ident: B22 doi: 10.1136/gutjnl-2011-300046 – ident: B54 doi: 10.1161/HYPERTENSIONAHA.119.13155 – ident: B55 doi: 10.1016/j.bbr.2018.07.001 – ident: B80 doi: 10.1056/NEJM199109263251306 – ident: B24 doi: 10.1002/path.1570 – ident: B77 doi: 10.1177/1099800420942942 – ident: B100 doi: 10.1016/j.chom.2012.07.004 – ident: B121 doi: 10.20944/preprints202003.0161.v1 – ident: B117 doi: 10.1053/j.gastro.2012.11.005 – ident: B44 doi: 10.3168/jds.S0022-0302(95)76689-9 – ident: B50 doi: 10.1161/CIRCULATIONAHA.116.024545 – ident: B75 doi: 10.1113/jphysiol.2007.138578 – ident: B132 doi: 10.1038/s41591-019-0504-5 – ident: B73 doi: 10.1111/j.1748-1716.2010.02165.x – ident: B94 doi: 10.1016/j.jhep.2020.05.047 – ident: B69 doi: 10.1007/s00125-018-4550-1 – ident: B32 doi: 10.7554/eLife.57028 – ident: B37 doi: 10.3168/jds.S0022-0302(00)74872-7 – ident: B93 doi: 10.1124/jpet.102.044099 – ident: B39 doi: 10.1080/07315724.2005.10719473 – ident: B25 doi: 10.1111/j.1748-1716.2006.01600.x – ident: B41 doi: 10.1016/j.peptides.2015.11.003 – ident: B84 doi: 10.26402/jpp.2018.4.07 – ident: B40 doi: 10.1016/j.gene.2007.05.010 – ident: B64 doi: 10.1023/a:1018946228432 – ident: B122 doi: 10.1161/HYPERTENSIONAHA.120.15360 – ident: B127 doi: 10.1016/j.chom.2017.03.002 – ident: B91 doi: 10.1126/scitranslmed.aaf9655 – ident: B110 doi: 10.3164/jcbn.10-114 – ident: B76 doi: 10.1152/ajpcell.00135.2009 – ident: B51 doi: 10.1172/JCI33293 – ident: B101 doi: 10.1038/nmicrobiol.2017.8 – ident: B119 doi: 10.3389/fphys.2017.00276 – ident: B145 doi: 10.3785/j.issn.1008-9292.2020.02.02 – ident: B86 doi: 10.1152/ajpgi.00264.2009 – ident: B108 doi: 10.1016/j.tem.2005.07.009 – ident: B134 doi: 10.1093/gerona/glz222 – ident: B62 doi: 10.1152/ajpgi.00189.2013 – ident: B113 doi: 10.1111/jgh.12112 – ident: B105 doi: 10.1371/journal.pone.0119462 – ident: B27 doi: 10.1007/s00418-013-1086-9 – ident: B13 doi: 10.1152/physrev.00036.2005 – ident: B71 doi: 10.3390/biology10040348 – ident: B143 doi: 10.1056/NEJMoa2002032 – ident: B87 doi: 10.1152/ajpgi.00053.2019 – ident: B23 doi: 10.1152/ajpgi.1989.257.4.G504 – ident: B146 doi: 10.1093/cid/ciaa709 – ident: B135 doi: 10.1038/s41564-020-0688-y – ident: B9 doi: 10.1210/en.2003-0150 – ident: B61 doi: 10.1038/s41401-019-0326-5 – ident: B33 doi: 10.1097/HJH.0000000000002864 – ident: B6 doi: 10.1146/annurev.pharmtox.010909.105610 – ident: B30 doi: 10.1111/nmo.13623 – ident: B59 doi: 10.1152/ajpregu.1998.275.2.R515 – ident: B95 doi: 10.1039/d0fo01119c – ident: B74 doi: 10.1113/jphysiol.1988.sp017015 – ident: B42 doi: 10.1051/lait:2006023 – ident: B26 doi: 10.1111/j.1748-1716.2007.01826.x – ident: B21 doi: 10.1007/s003950170073 – ident: B79 doi: 10.1167/tvst.9.13.20 – ident: B130 doi: 10.1016/j.cub.2016.04.016 – ident: B3 doi: 10.1177/1535370219900898 – ident: B142 doi: 10.1161/CIRCRESAHA.120.317015 – ident: B138 doi: 10.1161/CIRCRESAHA.121.318902 – ident: B17 doi: 10.1152/ajpendo.00562.2011 – ident: B70 doi: 10.2337/db11-1019 – ident: B139 doi: 10.1053/j.gastro.2020.07.067 – ident: B78 doi: 10.1016/j.omtm.2019.06.007 – ident: B57 doi: 10.1172/jci110135 – ident: B81 doi: 10.1038/ni.3780 – ident: B140 doi: 10.1002/ddr.21656 – ident: B10 doi: 10.1161/01.atv.0000021412.56621.a2 – ident: B68 doi: 10.1038/nature11450 – ident: B18 doi: 10.1016/j.coph.2014.08.007 – ident: B20 doi: 10.1136/gut.2003.036343 – ident: B115 doi: 10.1007/s00432-004-0582-7 – ident: B7 doi: 10.1016/j.mcna.2016.08.017 – ident: B15 doi: 10.1007/s12325-020-01455-2 – ident: B31 doi: 10.1016/j.phrs.2020.105273 – ident: B49 doi: 10.1097/HJH.0000000000001378 – ident: B128 doi: 10.18632/oncotarget.24330 – ident: B111 doi: 10.1007/s10620-018-4999-2 – ident: B19 doi: 10.26402/jpp.2019.2.03 – ident: B8 doi: 10.1152/physrev.00038.2017 – ident: B66 doi: 10.9734/BJMMR/2017/30329 – ident: B116 doi: 10.1111/j.1440-1746.2006.04797.x – ident: B48 doi: 10.3390/nu11122908 – ident: B82 doi: 10.1016/S0140-6736(17)30182-4 – ident: B65 doi: 10.1038/nature11228 – ident: B58 doi: 10.1152/ajpgi.1985.249.1.G3 – ident: B43 doi: 10.1016/j.ijfoodmicro.2013.09.002 – ident: B133 doi: 10.7554/eLife.27014 – ident: B46 doi: 10.3389/fmicb.2013.00030 – ident: B123 doi: 10.1371/journal.pone.0248730 – ident: B97 doi: 10.2174/092986712803413953 – ident: B12 doi: 10.1152/ajpcell.00287.2006 – ident: B126 doi: 10.1371/journal.pone.0184274 – ident: B118 doi: 10.1073/pnas.1518189113 – ident: B11 doi: 10.1111/j.1365-2796.2008.01981.x – ident: B144 doi: 10.5772/intechopen.94325 – ident: B52 doi: 10.1371/journal.pone.0034026 – ident: B67 doi: 10.1016/j.npep.2020.102056 – ident: B106 doi: 10.1084/jem.20181939 – ident: B103 doi: 10.1007/s12029-020-00531-8 – ident: B45 doi: 10.3168/jds.S0022-0302(95)76745-5 – ident: B1 doi: 10.1161/CIRCRESAHA.117.309715 – ident: B56 doi: 10.1371/journal.pone.0189310 – ident: B125 doi: 10.1007/s40520-013-0148-0 – ident: B131 doi: 10.1073/pnas.1000097107 – ident: B120 doi: 10.1016/j.bbrc.2015.03.035 – ident: B129 doi: 10.1016/j.chom.2016.01.008 – ident: B114 doi: 10.1111/hepr.13281 – ident: B14 doi: 10.1016/s0008-6363(99)00110-8 – ident: B102 doi: 10.1038/ncomms7528 – ident: B124 doi: 10.1136/jitc-2020-001020 – ident: B29 doi: 10.1177/002215540205000215 – ident: B63 doi: 10.1073/pnas.1215927110 – ident: B36 doi: 10.1161/JAHA.116.003698 – ident: B89 doi: 10.1016/j.immuni.2018.12.015 – ident: B85 doi: 10.1007/s10620-006-9124-2 – ident: B109 doi: 10.1681/ASN.V102245 – ident: B16 doi: 10.1111/j.1365-2036.2011.04971.x – ident: B28 doi: 10.1172/JCI112566 – ident: B72 doi: 10.1039/c8fo00081f – ident: B98 doi: 10.1016/j.yexmp.2019.104350 – ident: B34 doi: 10.1038/s41586-020-2474-7 – ident: B2 doi: 10.1007/s00424-019-02322-y – ident: B107 doi: 10.1038/nrmicro3344 – ident: B35 doi: 10.1097/00005344-199219006-00013 – ident: B141 doi: 10.1016/j.arr.2020.101123 – ident: B38 doi: 10.1093/ajcn/77.2.326 – ident: B83 doi: 10.1038/srep27552 |
SSID | ssj0005211 |
Score | 2.5645504 |
SecondaryResourceType | review_article |
Snippet | Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | G355 |
SubjectTerms | Aging Angiotensin Carcinogenesis Cardiovascular system Digestive system Electrolyte balance Endocrine system Gastrointestinal diseases Gastrointestinal tract Gut microbiota Homeostasis Intestinal absorption Intestinal microflora Intestine Microbiomes Microbiota Pharmacodynamics Renin Review |
Title | Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels |
URI | https://www.proquest.com/docview/2579138879 https://www.proquest.com/docview/2562515796 https://pubmed.ncbi.nlm.nih.gov/PMC8486428 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvaGwgCgMZCSGhKV2TOInN24S2TrAOkFqpLyhyHHcUOrdqU43t13N8iZuyCQ1eospx3Mjny7nY53xG6E0McWzYLUkArsE4IJwWASuoCGSaipSXhZBcr3f0z9KTIfk4Skat1mWzuqQqOuL61rqS_5EqtIFcdZXsP0jWDwoN8BvkC1eQMFzvJOPeqtq_mFgqpYrbVHGpJirg6hxadG66clzNtqjZJJDLX4YkYjGf8itdy2jMmXnYdp2I_alOJVo2HVe_s9OgmjCrIrbaBUbv8WW1mOmRQWsoN-JUp300OvqEHU3Vuvxp69H0qdxe8c_mFkR9cIJXy-u6fThW5mgCXVwkHFu4W6yIQp_25vUrxL7gtVkbK29pc0o5jsIG-khDxfZiy-t7U_cnmkuW_5ifTzrG8-3oN1jbuXpv_-xzfjw8Pc0HR6PBPXQ_gvhCK8hPX2kjNyi0RLvuzer97SQ6-HP8TX9mHaRsptg2fJbBNnrkgg18aJHzGLWk2kG7h4pXs4sr_BZ_8XLZQQ_6LstiF30DXOE1rjAIEt_AFbZgeY85dqjCHlWYV9igyjxaowpbVD1Bw-OjwYeTwB3DEQiwolWQRLIowqzkMBslI-k4K8GECppJJkTa5UkZcUGKCMxBJqhktCsIZ0U2ZiUtRCjip2hLzZR8hjCjRC9eM3CbCdGhKovHgpdUMAjkRRy20UE9mblwHPX6qJRpbmLVJMrN9Odm-nM9_W30zj8xt_wsf-m7V8sndx_LMgeTxcIYTC1ro9f-NuhYvXHGlZytdJ8UwgBdtd1G2YZc_X9qlvbNO2ry3bC1U0J1jP_8DqO_QA_XH80e2qoWK_kSfN6qeGXw-RtKqrRi |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota+and+renin-angiotensin+system%3A+a+complex+interplay+at+local+and+systemic+levels&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Jaworska%2C+Kinga&rft.au=Koper%2C+Mateusz&rft.au=Ufnal%2C+Marcin&rft.date=2021-10-01&rft.issn=1522-1547&rft.eissn=1522-1547&rft.volume=321&rft.issue=4&rft.spage=G355&rft_id=info:doi/10.1152%2Fajpgi.00099.2021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |