Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels

Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasi...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 321; no. 4; pp. G355 - G366
Main Authors Jaworska, Kinga, Koper, Mateusz, Ufnal, Marcin
Format Journal Article
LanguageEnglish
Published Bethesda American Physiological Society 01.10.2021
SeriesMicrobiome-Based Therapeutics and Their Physiological Effects
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.
AbstractList Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.
Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis, and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay the foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.
Author Koper, Mateusz
Jaworska, Kinga
Ufnal, Marcin
Author_xml – sequence: 1
  givenname: Kinga
  orcidid: 0000-0002-0281-015X
  surname: Jaworska
  fullname: Jaworska, Kinga
  organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
– sequence: 2
  givenname: Mateusz
  surname: Koper
  fullname: Koper, Mateusz
  organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
– sequence: 3
  givenname: Marcin
  orcidid: 0000-0003-0088-8284
  surname: Ufnal
  fullname: Ufnal, Marcin
  organization: Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
BookMark eNp1kc1vFCEYxolpY7fVu0cSL15mBQYG8GBiGq0mTby0x4a8w7ArGwbGgWm6_73sbj3YxBPJy-953o_nEp3FFB1C7yhZUyrYR9hNW78mhGi9ZoTRV2hVy6yhgssztCJUtw1VQl6gy5x3lROM0tfoouWcCNmSFXq4WQoevZ1T71MBDHHAs4s-NhC3teJi9hHnfS5u_IQB2zROwT1hH4ubpwB7DAWHZCEcpSfQWxzcowv5DTrfQMju7fN7he6_fb27_t7c_rz5cf3ltrG8k6URzPU9lQPU2QfNu40clOyskk5b2xEQAwPLe0Y4kVY5rYjloHu50YPqLbXtFfp88p2WfnSDdbHMEMw0-xHmvUngzb8_0f8y2_RoFFcdZ6oafHg2mNPvxeViRp-tCwGiS0s2THRMUCF1V9H3L9BdWuZY16uU1LRVSupKdSeqXjbn2W2M9QWKT4f-PhhKzCFBc0zQHBM0hwSrkLwQ_t3iv5I_w4aiCw
CitedBy_id crossref_primary_10_1186_s12915_024_02021_w
crossref_primary_10_12677_acm_2024_1492490
crossref_primary_10_3390_ijms241310820
crossref_primary_10_2147_JIR_S365090
crossref_primary_10_1038_s41440_023_01334_7
crossref_primary_10_1111_nmo_14598
crossref_primary_10_1007_s40200_025_01579_8
crossref_primary_10_1016_j_canlet_2025_217539
crossref_primary_10_1016_j_jnutbio_2022_109252
crossref_primary_10_1161_HYPERTENSIONAHA_122_20073
crossref_primary_10_1111_apt_18017
crossref_primary_10_3390_nu15030607
crossref_primary_10_1186_s40035_024_00410_3
crossref_primary_10_1186_s12866_024_03665_y
crossref_primary_10_5187_jast_2023_e86
crossref_primary_10_1016_j_bcp_2023_115659
crossref_primary_10_2147_DMSO_S455026
crossref_primary_10_1002_rmv_2577
crossref_primary_10_1111_dom_16225
crossref_primary_10_3390_nu14122528
crossref_primary_10_3390_microorganisms12112246
crossref_primary_10_3390_nu15020360
crossref_primary_10_1016_j_phrs_2023_106983
crossref_primary_10_3390_ph15050600
crossref_primary_10_3390_ijms25105566
crossref_primary_10_1007_s00467_023_06112_8
crossref_primary_10_2174_1871526523666230210162334
crossref_primary_10_3389_fmicb_2022_1036432
crossref_primary_10_2147_IJN_S450337
crossref_primary_10_1590_1806_9061_2023_1825
crossref_primary_10_1186_s43556_022_00091_2
crossref_primary_10_1161_CIRCULATIONAHA_122_060573
crossref_primary_10_3389_fphys_2023_1166685
crossref_primary_10_1016_j_cellsig_2024_111426
crossref_primary_10_20535_ibb_2022_6_3_4_268349
crossref_primary_10_3390_life13020536
crossref_primary_10_1111_jgh_16541
crossref_primary_10_1007_s00109_023_02289_5
crossref_primary_10_1152_ajprenal_00072_2023
crossref_primary_10_3389_fphar_2022_938650
crossref_primary_10_3389_fendo_2023_1117259
crossref_primary_10_3389_fnut_2023_1293170
crossref_primary_10_3390_ijms25031716
crossref_primary_10_1021_acsomega_3c00210
crossref_primary_10_3390_jcm11185400
crossref_primary_10_2174_0113816128302001240321044409
crossref_primary_10_3390_ijms23116060
crossref_primary_10_3390_ani14132000
crossref_primary_10_1080_14779072_2024_2364031
crossref_primary_10_3390_jcm12155090
crossref_primary_10_1016_j_ijbiomac_2023_128265
crossref_primary_10_1152_ajprenal_00051_2024
crossref_primary_10_1016_j_phrs_2023_106920
Cites_doi 10.1161/HYPERTENSIONAHA.115.05315
10.1073/pnas.0903958106
10.1056/NEJMoa043335
10.1152/physrev.1977.57.2.313
10.1677/joe.0.0860035
10.1152/ajpgi.2001.281.5.G1309
10.1073/pnas.1922189117
10.4103/cmi.cmi_80_20
10.1111/j.1750-3841.2007.00643.x
10.1186/s12885-016-2093-8
10.1016/j.chom.2007.06.010
10.1126/sciimmunol.abc3582
10.1016/j.cjca.2014.09.010
10.1016/j.cdtm.2019.09.001
10.1136/gutjnl-2011-300046
10.1161/HYPERTENSIONAHA.119.13155
10.1016/j.bbr.2018.07.001
10.1056/NEJM199109263251306
10.1002/path.1570
10.1177/1099800420942942
10.1016/j.chom.2012.07.004
10.20944/preprints202003.0161.v1
10.1053/j.gastro.2012.11.005
10.3168/jds.S0022-0302(95)76689-9
10.1161/CIRCULATIONAHA.116.024545
10.1113/jphysiol.2007.138578
10.1038/s41591-019-0504-5
10.1111/j.1748-1716.2010.02165.x
10.1016/j.jhep.2020.05.047
10.1007/s00125-018-4550-1
10.7554/eLife.57028
10.3168/jds.S0022-0302(00)74872-7
10.1124/jpet.102.044099
10.1080/07315724.2005.10719473
10.1111/j.1748-1716.2006.01600.x
10.1016/j.peptides.2015.11.003
10.26402/jpp.2018.4.07
10.1016/j.gene.2007.05.010
10.1023/a:1018946228432
10.1161/HYPERTENSIONAHA.120.15360
10.1016/j.chom.2017.03.002
10.1126/scitranslmed.aaf9655
10.3164/jcbn.10-114
10.1152/ajpcell.00135.2009
10.1172/JCI33293
10.1038/nmicrobiol.2017.8
10.3389/fphys.2017.00276
10.3785/j.issn.1008-9292.2020.02.02
10.1152/ajpgi.00264.2009
10.1016/j.tem.2005.07.009
10.1093/gerona/glz222
10.1152/ajpgi.00189.2013
10.1111/jgh.12112
10.1371/journal.pone.0119462
10.1007/s00418-013-1086-9
10.1152/physrev.00036.2005
10.3390/biology10040348
10.1056/NEJMoa2002032
10.1152/ajpgi.00053.2019
10.1152/ajpgi.1989.257.4.G504
10.1093/cid/ciaa709
10.1038/s41564-020-0688-y
10.1210/en.2003-0150
10.1038/s41401-019-0326-5
10.1097/HJH.0000000000002864
10.1146/annurev.pharmtox.010909.105610
10.1111/nmo.13623
10.1152/ajpregu.1998.275.2.R515
10.1039/d0fo01119c
10.1113/jphysiol.1988.sp017015
10.1051/lait:2006023
10.1111/j.1748-1716.2007.01826.x
10.1007/s003950170073
10.1167/tvst.9.13.20
10.1016/j.cub.2016.04.016
10.1177/1535370219900898
10.1161/CIRCRESAHA.120.317015
10.1161/CIRCRESAHA.121.318902
10.1152/ajpendo.00562.2011
10.2337/db11-1019
10.1053/j.gastro.2020.07.067
10.1016/j.omtm.2019.06.007
10.1172/jci110135
10.1038/ni.3780
10.1002/ddr.21656
10.1161/01.atv.0000021412.56621.a2
10.1038/nature11450
10.1016/j.coph.2014.08.007
10.1136/gut.2003.036343
10.1007/s00432-004-0582-7
10.1016/j.mcna.2016.08.017
10.1007/s12325-020-01455-2
10.1016/j.phrs.2020.105273
10.1097/HJH.0000000000001378
10.18632/oncotarget.24330
10.1007/s10620-018-4999-2
10.26402/jpp.2019.2.03
10.1152/physrev.00038.2017
10.9734/BJMMR/2017/30329
10.1111/j.1440-1746.2006.04797.x
10.3390/nu11122908
10.1016/S0140-6736(17)30182-4
10.1038/nature11228
10.1152/ajpgi.1985.249.1.G3
10.1016/j.ijfoodmicro.2013.09.002
10.7554/eLife.27014
10.3389/fmicb.2013.00030
10.1371/journal.pone.0248730
10.2174/092986712803413953
10.1152/ajpcell.00287.2006
10.1371/journal.pone.0184274
10.1073/pnas.1518189113
10.1111/j.1365-2796.2008.01981.x
10.5772/intechopen.94325
10.1371/journal.pone.0034026
10.1016/j.npep.2020.102056
10.1084/jem.20181939
10.1007/s12029-020-00531-8
10.3168/jds.S0022-0302(95)76745-5
10.1161/CIRCRESAHA.117.309715
10.1371/journal.pone.0189310
10.1007/s40520-013-0148-0
10.1073/pnas.1000097107
10.1016/j.bbrc.2015.03.035
10.1016/j.chom.2016.01.008
10.1111/hepr.13281
10.1016/s0008-6363(99)00110-8
10.1038/ncomms7528
10.1136/jitc-2020-001020
10.1177/002215540205000215
10.1073/pnas.1215927110
10.1161/JAHA.116.003698
10.1016/j.immuni.2018.12.015
10.1007/s10620-006-9124-2
10.1681/ASN.V102245
10.1111/j.1365-2036.2011.04971.x
10.1172/JCI112566
10.1039/c8fo00081f
10.1016/j.yexmp.2019.104350
10.1038/s41586-020-2474-7
10.1007/s00424-019-02322-y
10.1038/nrmicro3344
10.1097/00005344-199219006-00013
10.1016/j.arr.2020.101123
10.1093/ajcn/77.2.326
10.1038/srep27552
ContentType Journal Article
Copyright Copyright American Physiological Society Oct 2021
Copyright © 2021 the American Physiological Society. 2021 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Oct 2021
– notice: Copyright © 2021 the American Physiological Society. 2021 American Physiological Society
DBID AAYXX
CITATION
K9.
7X8
5PM
DOI 10.1152/ajpgi.00099.2021
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate GUT MICROBIOTA AND RENIN-ANGIOTENSIN SYSTEM
EISSN 1522-1547
EndPage G366
ExternalDocumentID PMC8486428
10_1152_ajpgi_00099_2021
GrantInformation_xml – fundername: ;
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
K9.
7X8
5PM
ID FETCH-LOGICAL-c467t-52ebb17da522d946f7d876c87e9cc60a5d2ac4b20407c8e980c4a9b7f9d8bc1c3
ISSN 0193-1857
1522-1547
IngestDate Thu Aug 21 14:00:54 EDT 2025
Fri Jul 11 06:02:36 EDT 2025
Mon Jun 30 19:24:22 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 03:43:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-52ebb17da522d946f7d876c87e9cc60a5d2ac4b20407c8e980c4a9b7f9d8bc1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0281-015X
0000-0003-0088-8284
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8486428
PMID 34405730
PQID 2579138879
PQPubID 48585
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8486428
proquest_miscellaneous_2562515796
proquest_journals_2579138879
crossref_citationtrail_10_1152_ajpgi_00099_2021
crossref_primary_10_1152_ajpgi_00099_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Bethesda
PublicationPlace_xml – name: Bethesda
– name: Rockville, MD
PublicationSeriesTitle Microbiome-Based Therapeutics and Their Physiological Effects
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationYear 2021
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B118
B119
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B129
B127
B128
B125
B126
B123
B124
B121
B122
B120
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B138
B139
B136
B137
B134
B135
B132
B133
B130
B131
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
B145
B146
B143
B144
B141
B142
B140
References_xml – ident: B4
  doi: 10.1161/HYPERTENSIONAHA.115.05315
– ident: B88
  doi: 10.1073/pnas.0903958106
– ident: B92
  doi: 10.1056/NEJMoa043335
– ident: B5
  doi: 10.1152/physrev.1977.57.2.313
– ident: B60
  doi: 10.1677/joe.0.0860035
– ident: B96
  doi: 10.1152/ajpgi.2001.281.5.G1309
– ident: B90
  doi: 10.1073/pnas.1922189117
– ident: B136
  doi: 10.4103/cmi.cmi_80_20
– ident: B47
  doi: 10.1111/j.1750-3841.2007.00643.x
– ident: B112
  doi: 10.1186/s12885-016-2093-8
– ident: B99
  doi: 10.1016/j.chom.2007.06.010
– ident: B137
  doi: 10.1126/sciimmunol.abc3582
– ident: B53
  doi: 10.1016/j.cjca.2014.09.010
– ident: B104
  doi: 10.1016/j.cdtm.2019.09.001
– ident: B22
  doi: 10.1136/gutjnl-2011-300046
– ident: B54
  doi: 10.1161/HYPERTENSIONAHA.119.13155
– ident: B55
  doi: 10.1016/j.bbr.2018.07.001
– ident: B80
  doi: 10.1056/NEJM199109263251306
– ident: B24
  doi: 10.1002/path.1570
– ident: B77
  doi: 10.1177/1099800420942942
– ident: B100
  doi: 10.1016/j.chom.2012.07.004
– ident: B121
  doi: 10.20944/preprints202003.0161.v1
– ident: B117
  doi: 10.1053/j.gastro.2012.11.005
– ident: B44
  doi: 10.3168/jds.S0022-0302(95)76689-9
– ident: B50
  doi: 10.1161/CIRCULATIONAHA.116.024545
– ident: B75
  doi: 10.1113/jphysiol.2007.138578
– ident: B132
  doi: 10.1038/s41591-019-0504-5
– ident: B73
  doi: 10.1111/j.1748-1716.2010.02165.x
– ident: B94
  doi: 10.1016/j.jhep.2020.05.047
– ident: B69
  doi: 10.1007/s00125-018-4550-1
– ident: B32
  doi: 10.7554/eLife.57028
– ident: B37
  doi: 10.3168/jds.S0022-0302(00)74872-7
– ident: B93
  doi: 10.1124/jpet.102.044099
– ident: B39
  doi: 10.1080/07315724.2005.10719473
– ident: B25
  doi: 10.1111/j.1748-1716.2006.01600.x
– ident: B41
  doi: 10.1016/j.peptides.2015.11.003
– ident: B84
  doi: 10.26402/jpp.2018.4.07
– ident: B40
  doi: 10.1016/j.gene.2007.05.010
– ident: B64
  doi: 10.1023/a:1018946228432
– ident: B122
  doi: 10.1161/HYPERTENSIONAHA.120.15360
– ident: B127
  doi: 10.1016/j.chom.2017.03.002
– ident: B91
  doi: 10.1126/scitranslmed.aaf9655
– ident: B110
  doi: 10.3164/jcbn.10-114
– ident: B76
  doi: 10.1152/ajpcell.00135.2009
– ident: B51
  doi: 10.1172/JCI33293
– ident: B101
  doi: 10.1038/nmicrobiol.2017.8
– ident: B119
  doi: 10.3389/fphys.2017.00276
– ident: B145
  doi: 10.3785/j.issn.1008-9292.2020.02.02
– ident: B86
  doi: 10.1152/ajpgi.00264.2009
– ident: B108
  doi: 10.1016/j.tem.2005.07.009
– ident: B134
  doi: 10.1093/gerona/glz222
– ident: B62
  doi: 10.1152/ajpgi.00189.2013
– ident: B113
  doi: 10.1111/jgh.12112
– ident: B105
  doi: 10.1371/journal.pone.0119462
– ident: B27
  doi: 10.1007/s00418-013-1086-9
– ident: B13
  doi: 10.1152/physrev.00036.2005
– ident: B71
  doi: 10.3390/biology10040348
– ident: B143
  doi: 10.1056/NEJMoa2002032
– ident: B87
  doi: 10.1152/ajpgi.00053.2019
– ident: B23
  doi: 10.1152/ajpgi.1989.257.4.G504
– ident: B146
  doi: 10.1093/cid/ciaa709
– ident: B135
  doi: 10.1038/s41564-020-0688-y
– ident: B9
  doi: 10.1210/en.2003-0150
– ident: B61
  doi: 10.1038/s41401-019-0326-5
– ident: B33
  doi: 10.1097/HJH.0000000000002864
– ident: B6
  doi: 10.1146/annurev.pharmtox.010909.105610
– ident: B30
  doi: 10.1111/nmo.13623
– ident: B59
  doi: 10.1152/ajpregu.1998.275.2.R515
– ident: B95
  doi: 10.1039/d0fo01119c
– ident: B74
  doi: 10.1113/jphysiol.1988.sp017015
– ident: B42
  doi: 10.1051/lait:2006023
– ident: B26
  doi: 10.1111/j.1748-1716.2007.01826.x
– ident: B21
  doi: 10.1007/s003950170073
– ident: B79
  doi: 10.1167/tvst.9.13.20
– ident: B130
  doi: 10.1016/j.cub.2016.04.016
– ident: B3
  doi: 10.1177/1535370219900898
– ident: B142
  doi: 10.1161/CIRCRESAHA.120.317015
– ident: B138
  doi: 10.1161/CIRCRESAHA.121.318902
– ident: B17
  doi: 10.1152/ajpendo.00562.2011
– ident: B70
  doi: 10.2337/db11-1019
– ident: B139
  doi: 10.1053/j.gastro.2020.07.067
– ident: B78
  doi: 10.1016/j.omtm.2019.06.007
– ident: B57
  doi: 10.1172/jci110135
– ident: B81
  doi: 10.1038/ni.3780
– ident: B140
  doi: 10.1002/ddr.21656
– ident: B10
  doi: 10.1161/01.atv.0000021412.56621.a2
– ident: B68
  doi: 10.1038/nature11450
– ident: B18
  doi: 10.1016/j.coph.2014.08.007
– ident: B20
  doi: 10.1136/gut.2003.036343
– ident: B115
  doi: 10.1007/s00432-004-0582-7
– ident: B7
  doi: 10.1016/j.mcna.2016.08.017
– ident: B15
  doi: 10.1007/s12325-020-01455-2
– ident: B31
  doi: 10.1016/j.phrs.2020.105273
– ident: B49
  doi: 10.1097/HJH.0000000000001378
– ident: B128
  doi: 10.18632/oncotarget.24330
– ident: B111
  doi: 10.1007/s10620-018-4999-2
– ident: B19
  doi: 10.26402/jpp.2019.2.03
– ident: B8
  doi: 10.1152/physrev.00038.2017
– ident: B66
  doi: 10.9734/BJMMR/2017/30329
– ident: B116
  doi: 10.1111/j.1440-1746.2006.04797.x
– ident: B48
  doi: 10.3390/nu11122908
– ident: B82
  doi: 10.1016/S0140-6736(17)30182-4
– ident: B65
  doi: 10.1038/nature11228
– ident: B58
  doi: 10.1152/ajpgi.1985.249.1.G3
– ident: B43
  doi: 10.1016/j.ijfoodmicro.2013.09.002
– ident: B133
  doi: 10.7554/eLife.27014
– ident: B46
  doi: 10.3389/fmicb.2013.00030
– ident: B123
  doi: 10.1371/journal.pone.0248730
– ident: B97
  doi: 10.2174/092986712803413953
– ident: B12
  doi: 10.1152/ajpcell.00287.2006
– ident: B126
  doi: 10.1371/journal.pone.0184274
– ident: B118
  doi: 10.1073/pnas.1518189113
– ident: B11
  doi: 10.1111/j.1365-2796.2008.01981.x
– ident: B144
  doi: 10.5772/intechopen.94325
– ident: B52
  doi: 10.1371/journal.pone.0034026
– ident: B67
  doi: 10.1016/j.npep.2020.102056
– ident: B106
  doi: 10.1084/jem.20181939
– ident: B103
  doi: 10.1007/s12029-020-00531-8
– ident: B45
  doi: 10.3168/jds.S0022-0302(95)76745-5
– ident: B1
  doi: 10.1161/CIRCRESAHA.117.309715
– ident: B56
  doi: 10.1371/journal.pone.0189310
– ident: B125
  doi: 10.1007/s40520-013-0148-0
– ident: B131
  doi: 10.1073/pnas.1000097107
– ident: B120
  doi: 10.1016/j.bbrc.2015.03.035
– ident: B129
  doi: 10.1016/j.chom.2016.01.008
– ident: B114
  doi: 10.1111/hepr.13281
– ident: B14
  doi: 10.1016/s0008-6363(99)00110-8
– ident: B102
  doi: 10.1038/ncomms7528
– ident: B124
  doi: 10.1136/jitc-2020-001020
– ident: B29
  doi: 10.1177/002215540205000215
– ident: B63
  doi: 10.1073/pnas.1215927110
– ident: B36
  doi: 10.1161/JAHA.116.003698
– ident: B89
  doi: 10.1016/j.immuni.2018.12.015
– ident: B85
  doi: 10.1007/s10620-006-9124-2
– ident: B109
  doi: 10.1681/ASN.V102245
– ident: B16
  doi: 10.1111/j.1365-2036.2011.04971.x
– ident: B28
  doi: 10.1172/JCI112566
– ident: B72
  doi: 10.1039/c8fo00081f
– ident: B98
  doi: 10.1016/j.yexmp.2019.104350
– ident: B34
  doi: 10.1038/s41586-020-2474-7
– ident: B2
  doi: 10.1007/s00424-019-02322-y
– ident: B107
  doi: 10.1038/nrmicro3344
– ident: B35
  doi: 10.1097/00005344-199219006-00013
– ident: B141
  doi: 10.1016/j.arr.2020.101123
– ident: B38
  doi: 10.1093/ajcn/77.2.326
– ident: B83
  doi: 10.1038/srep27552
SSID ssj0005211
Score 2.5645504
SecondaryResourceType review_article
Snippet Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage G355
SubjectTerms Aging
Angiotensin
Carcinogenesis
Cardiovascular system
Digestive system
Electrolyte balance
Endocrine system
Gastrointestinal diseases
Gastrointestinal tract
Gut microbiota
Homeostasis
Intestinal absorption
Intestinal microflora
Intestine
Microbiomes
Microbiota
Pharmacodynamics
Renin
Review
Title Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels
URI https://www.proquest.com/docview/2579138879
https://www.proquest.com/docview/2562515796
https://pubmed.ncbi.nlm.nih.gov/PMC8486428
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvaGwgCgMZCSGhKV2TOInN24S2TrAOkFqpLyhyHHcUOrdqU43t13N8iZuyCQ1eospx3Mjny7nY53xG6E0McWzYLUkArsE4IJwWASuoCGSaipSXhZBcr3f0z9KTIfk4Skat1mWzuqQqOuL61rqS_5EqtIFcdZXsP0jWDwoN8BvkC1eQMFzvJOPeqtq_mFgqpYrbVHGpJirg6hxadG66clzNtqjZJJDLX4YkYjGf8itdy2jMmXnYdp2I_alOJVo2HVe_s9OgmjCrIrbaBUbv8WW1mOmRQWsoN-JUp300OvqEHU3Vuvxp69H0qdxe8c_mFkR9cIJXy-u6fThW5mgCXVwkHFu4W6yIQp_25vUrxL7gtVkbK29pc0o5jsIG-khDxfZiy-t7U_cnmkuW_5ifTzrG8-3oN1jbuXpv_-xzfjw8Pc0HR6PBPXQ_gvhCK8hPX2kjNyi0RLvuzer97SQ6-HP8TX9mHaRsptg2fJbBNnrkgg18aJHzGLWk2kG7h4pXs4sr_BZ_8XLZQQ_6LstiF30DXOE1rjAIEt_AFbZgeY85dqjCHlWYV9igyjxaowpbVD1Bw-OjwYeTwB3DEQiwolWQRLIowqzkMBslI-k4K8GECppJJkTa5UkZcUGKCMxBJqhktCsIZ0U2ZiUtRCjip2hLzZR8hjCjRC9eM3CbCdGhKovHgpdUMAjkRRy20UE9mblwHPX6qJRpbmLVJMrN9Odm-nM9_W30zj8xt_wsf-m7V8sndx_LMgeTxcIYTC1ro9f-NuhYvXHGlZytdJ8UwgBdtd1G2YZc_X9qlvbNO2ry3bC1U0J1jP_8DqO_QA_XH80e2qoWK_kSfN6qeGXw-RtKqrRi
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota+and+renin-angiotensin+system%3A+a+complex+interplay+at+local+and+systemic+levels&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Jaworska%2C+Kinga&rft.au=Koper%2C+Mateusz&rft.au=Ufnal%2C+Marcin&rft.date=2021-10-01&rft.issn=1522-1547&rft.eissn=1522-1547&rft.volume=321&rft.issue=4&rft.spage=G355&rft_id=info:doi/10.1152%2Fajpgi.00099.2021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon