A novel fed-batch strategy enhances lipid and astaxanthin productivity without compromising biomass of Chromochloris zofingiensis

[Display omitted] •Fed-batch strategy increased 41.5% lipid productivity without compromising biomass.•Carbon dependent kinetics under stress conferred cells with a higher biomass.•Central carbon metabolism offered energy and carbon availability for lipid synthesis.•Sufficient precursor and active s...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 308; p. 123306
Main Authors Sun, Han, Ren, Yuanyuan, Lao, Yongmin, Li, Xiaojie, Chen, Feng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Fed-batch strategy increased 41.5% lipid productivity without compromising biomass.•Carbon dependent kinetics under stress conferred cells with a higher biomass.•Central carbon metabolism offered energy and carbon availability for lipid synthesis.•Sufficient precursor and active synthetic pathway promoted lipid content.•Fed-batch strategy was attractive by understanding lipid metabolism in detail. To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L−1 d−1, respectively. Biomass productivity at 1084.3 mg L−1 d−1 was comparable with that under suitable condition. Then 13C tracer-based metabolic flux analysis (13C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, 13C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
AbstractList To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L-1 d-1, respectively. Biomass productivity at 1084.3 mg L-1 d-1 was comparable with that under suitable condition. Then 13C tracer-based metabolic flux analysis (13C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, 13C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L-1 d-1, respectively. Biomass productivity at 1084.3 mg L-1 d-1 was comparable with that under suitable condition. Then 13C tracer-based metabolic flux analysis (13C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, 13C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
[Display omitted] •Fed-batch strategy increased 41.5% lipid productivity without compromising biomass.•Carbon dependent kinetics under stress conferred cells with a higher biomass.•Central carbon metabolism offered energy and carbon availability for lipid synthesis.•Sufficient precursor and active synthetic pathway promoted lipid content.•Fed-batch strategy was attractive by understanding lipid metabolism in detail. To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L−1 d−1, respectively. Biomass productivity at 1084.3 mg L−1 d−1 was comparable with that under suitable condition. Then 13C tracer-based metabolic flux analysis (13C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, 13C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L  d , respectively. Biomass productivity at 1084.3 mg L  d was comparable with that under suitable condition. Then C tracer-based metabolic flux analysis ( C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen stress was applied under excess light to elevate intracellular carbon availability and metabolic activity of Chromochloris zofingiensis. Results suggested that fed-batch strategy proposed could increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L⁻¹ d⁻¹, respectively. Biomass productivity at 1084.3 mg L⁻¹ d⁻¹ was comparable with that under suitable condition. Then ¹³C tracer-based metabolic flux analysis (¹³C-MFA) demonstrated that central carbon metabolism provided ATP, NADPH and carbon availability for lipid biosynthesis during the strategy. In combination with targeted metabolite analysis, ¹³C-MFA revealed that the strategy improved precursor content for lipid biosynthesis and elevated path rate to synthesize C16:0 and C18:0. The enhanced lipid content potentially accounted for the high biomass productivity. Therefore, comprehensively understanding relationships between carbon availability and carbon conversion could precisely design strategy for productivity improvements during cultivation.
ArticleNumber 123306
Author Chen, Feng
Lao, Yongmin
Sun, Han
Ren, Yuanyuan
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Han
  surname: Sun
  fullname: Sun, Han
  organization: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
– sequence: 2
  givenname: Yuanyuan
  surname: Ren
  fullname: Ren, Yuanyuan
  organization: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
– sequence: 3
  givenname: Yongmin
  surname: Lao
  fullname: Lao, Yongmin
  organization: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
– sequence: 4
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
  organization: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
– sequence: 5
  givenname: Feng
  surname: Chen
  fullname: Chen, Feng
  email: sfchen@szu.edu.cn
  organization: Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32276201$$D View this record in MEDLINE/PubMed
BookMark eNqFUU2L2zAUFGVLN7vtX1h07MWpPmzZhh66hH7BQi_tWSjPT2sFW0olOW166z-vlmwuvUQgBPNmnoaZG3Llg0dC7jhbc8bVu91660LMCONaMFFAISVTL8iKd62sRN-qK7JivWJV14j6mtyktGOMSd6KV-RaCtEqwfiK_L2nPhxwohaHamsyjDTlaDI-Hin60XjARCe3dwM1vtyUzW_j8-g83ccwLJDdweUj_eXyGJZMIcwFn11y_pEWi7NJiQZLN2NBA4xTiC7RP8GWuUOfXHpNXlozJXzz_N6SH58-ft98qR6-ff66uX-ooFZtrmoolnuULagGrOVcKSOAmy2TfZlZ1TY9sK7j5QAzXQsNoBK2R9sO1gh5S96e9hZ_PxdMWReXgNNkPIYlaVFL3tW1EuoyVXZdJ6QSTaHePVOX7YyD3kc3m3jU54QL4f2JADGkFNFqcNlkF3yJ2U2aM_1UqN7pc6H6qVB9KrTI1X_y8w8XhR9OQiyZHhxGnaAEDji4iJD1ENylFf8ACqjBFg
CitedBy_id crossref_primary_10_3390_md20010030
crossref_primary_10_1016_j_rser_2021_111270
crossref_primary_10_3389_fbioe_2022_879476
crossref_primary_10_1016_j_biortech_2021_125398
crossref_primary_10_1007_s00253_023_12873_x
crossref_primary_10_1080_10408398_2022_2054932
crossref_primary_10_55230_mabjournal_v52i6_2783
crossref_primary_10_1016_j_algal_2023_103168
crossref_primary_10_1016_j_biortech_2021_126401
crossref_primary_10_1021_acs_jafc_2c04928
crossref_primary_10_1016_j_biotechadv_2025_108519
crossref_primary_10_1016_j_biortech_2021_125406
crossref_primary_10_1016_j_renene_2022_01_108
crossref_primary_10_3390_fermentation9080768
crossref_primary_10_3390_md21020082
crossref_primary_10_1007_s40726_025_00346_w
crossref_primary_10_3390_md22070306
crossref_primary_10_1016_j_scitotenv_2023_163061
crossref_primary_10_1080_10408398_2023_2194423
crossref_primary_10_1007_s10811_022_02851_7
crossref_primary_10_1007_s00253_021_11180_7
crossref_primary_10_3389_fbioe_2021_748213
crossref_primary_10_1016_j_algal_2020_102119
crossref_primary_10_1016_j_algal_2021_102539
crossref_primary_10_1016_j_aca_2021_339080
crossref_primary_10_1016_j_algal_2023_103175
crossref_primary_10_1016_j_algal_2023_103053
crossref_primary_10_1016_j_biortech_2021_126575
crossref_primary_10_1016_j_algal_2024_103510
crossref_primary_10_1186_s13068_021_01969_z
crossref_primary_10_1016_j_biotechadv_2023_108239
crossref_primary_10_1016_j_algal_2022_102823
crossref_primary_10_1016_j_jece_2020_104149
crossref_primary_10_1016_j_rser_2021_111609
crossref_primary_10_1016_j_algal_2022_102949
crossref_primary_10_1007_s13399_022_02955_7
crossref_primary_10_3389_fmars_2023_1182777
Cites_doi 10.1038/nrmicro.2016.32
10.1016/j.biortech.2019.122118
10.1039/C7EE01306J
10.3354/ame01187
10.1007/s11120-015-0156-3
10.1186/s13068-017-0747-7
10.1128/EC.00364-09
10.1016/j.rser.2015.04.131
10.1080/10408398.2018.1455030
10.1016/j.cej.2019.121912
10.1007/s11120-015-0149-2
10.1039/C6EE01493C
10.1186/s13068-018-1225-6
10.1007/s10811-011-9696-x
10.1016/j.biortech.2019.122640
10.1016/j.apenergy.2014.10.032
10.1016/j.biortech.2020.122762
10.1016/j.rser.2012.03.047
10.1105/tpc.18.00742
10.1016/j.biombioe.2019.105274
10.1016/j.biortech.2018.11.012
10.1016/j.chroma.2017.01.088
10.1016/j.biortech.2015.08.035
10.1073/pnas.1619928114
10.1002/elsc.200900116
10.1016/j.cej.2019.01.094
10.3109/07388551.2015.1108956
10.1186/s13068-019-1354-6
10.1016/j.enzmictec.2003.12.002
10.1016/j.rser.2019.02.012
10.1016/j.algal.2017.05.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.123306
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 32276201
10_1016_j_biortech_2020_123306
S0960852420305782
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c467t-4c2769e37c65cff1166a2c1ab0394c2f6759c0881111c0a87c5ce62f9ef7dfa23
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 30 10:23:11 EDT 2025
Tue Aug 05 09:59:44 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 03:18:42 EDT 2025
Fri Feb 23 02:47:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon conversion
Fatty acid metabolism
Carbon availability
Fed-batch culture
Astaxanthin
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-4c2769e37c65cff1166a2c1ab0394c2f6759c0881111c0a87c5ce62f9ef7dfa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32276201
PQID 2388823625
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431844626
proquest_miscellaneous_2388823625
pubmed_primary_32276201
crossref_citationtrail_10_1016_j_biortech_2020_123306
crossref_primary_10_1016_j_biortech_2020_123306
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, Zhao, Mao, Li, Wu, Chen (b0130) 2018; 11
Cheng, Zhu, Xu, Zhang, Yang (b0010) 2019; 294
Roth, Gallaher, Westcott, Iwai, Louie, Mueller, Walter, Foflonker, Bowen, Ataii, Song, Chen, Blaby-Haas, Larabell, Auer, Northen, Merchant, Niyogi (b0100) 2019; 31
Roth, Cokus, Gallaher, Walter, Lopez, Erickson, Endelman, Westcott, Larabell, Merchant, Pellegrini, Niyogi (b0095) 2017; 114
Chu, Cheng, Zhang, Ye, Zhou (b0025) 2019; 375
Radakovits, Jinkerson, Darzins, Posewitz (b0090) 2010; 9
Chen, Zhao, Qi (b0005) 2015; 137
Chojnacka, Noworyta (b0015) 2004; 34
Solovchenko (b0110) 2015; 125
Suali, Sarbatly (b0120) 2012; 16
De Bhowmick, Koduru, Sen (b0040) 2015; 50
Odjadjare, Mutanda, Olaniran (b0085) 2017; 37
Feng, Xu, Qin, Asraful Alam, Wang, Zhu (b0045) 2020; 301
Zhao, Zhang, Wang, Chen, Chen, Chen, Song (b0155) 2015; 197
Claquin, Probert, Lefebvre, Veron (b0030) 2008; 51
Yeh, Chang, Chen (b0140) 2010; 10
Li, Wang, Wang, Li, Xia, Zhao (b0065) 2019; 362
Mishra, Mohanty (b0080) 2019; 273
Chokshi, Pancha, Ghosh, Mishra (b0020) 2017; 10
Zhang, Shi, Mao, Kou, Liu (b0145) 2019
Ruiz, Olivieri, de Vree, Bosma, Willems, Reith, Eppink, Kleinegris, Wijffels, Barbosa (b0105) 2016; 9
Liang, Wang, Wang, Zhu, Jiang (b0070) 2019; 59
Laurens, Markham, Templeton, Christensen, Van Wychen, Vadelius, Chen-Glasser, Dong, Davis, Pienkos (b0060) 2017; 10
Stansell, Gray, Sym (b0115) 2012; 24
Sun, Li, Ren, Zhang, Mao, Lao, Wang, Chen (b0125) 2020; 300
Varela, Pereira, Vila, León (b0135) 2015; 125
Zhang, Sun, Wu, Li, Lee, Liu, Chen (b0150) 2017; 25
Ishika, Moheimani, Laird, Bahri (b0050) 2019; 127
Liao, Mi, Pontrelli, Luo (b0075) 2016; 14
Coh, Ong, Cheah, Chen, Yu, Mahlia (b0035) 2019; 107
Jin, Lao, Zhou, Zhang, Cai (b0055) 2017; 1488
Coh (10.1016/j.biortech.2020.123306_b0035) 2019; 107
Ruiz (10.1016/j.biortech.2020.123306_b0105) 2016; 9
Varela (10.1016/j.biortech.2020.123306_b0135) 2015; 125
Feng (10.1016/j.biortech.2020.123306_b0045) 2020; 301
Sun (10.1016/j.biortech.2020.123306_b0130) 2018; 11
Jin (10.1016/j.biortech.2020.123306_b0055) 2017; 1488
Liao (10.1016/j.biortech.2020.123306_b0075) 2016; 14
Odjadjare (10.1016/j.biortech.2020.123306_b0085) 2017; 37
Radakovits (10.1016/j.biortech.2020.123306_b0090) 2010; 9
Yeh (10.1016/j.biortech.2020.123306_b0140) 2010; 10
Solovchenko (10.1016/j.biortech.2020.123306_b0110) 2015; 125
Chen (10.1016/j.biortech.2020.123306_b0005) 2015; 137
Zhao (10.1016/j.biortech.2020.123306_b0155) 2015; 197
Zhang (10.1016/j.biortech.2020.123306_b0145) 2019
Sun (10.1016/j.biortech.2020.123306_b0125) 2020; 300
Cheng (10.1016/j.biortech.2020.123306_b0010) 2019; 294
De Bhowmick (10.1016/j.biortech.2020.123306_b0040) 2015; 50
Liang (10.1016/j.biortech.2020.123306_b0070) 2019; 59
Li (10.1016/j.biortech.2020.123306_b0065) 2019; 362
Ishika (10.1016/j.biortech.2020.123306_b0050) 2019; 127
Claquin (10.1016/j.biortech.2020.123306_b0030) 2008; 51
Suali (10.1016/j.biortech.2020.123306_b0120) 2012; 16
Chu (10.1016/j.biortech.2020.123306_b0025) 2019; 375
Stansell (10.1016/j.biortech.2020.123306_b0115) 2012; 24
Chojnacka (10.1016/j.biortech.2020.123306_b0015) 2004; 34
Zhang (10.1016/j.biortech.2020.123306_b0150) 2017; 25
Chokshi (10.1016/j.biortech.2020.123306_b0020) 2017; 10
Mishra (10.1016/j.biortech.2020.123306_b0080) 2019; 273
Roth (10.1016/j.biortech.2020.123306_b0095) 2017; 114
Laurens (10.1016/j.biortech.2020.123306_b0060) 2017; 10
Roth (10.1016/j.biortech.2020.123306_b0100) 2019; 31
References_xml – volume: 301
  year: 2020
  ident: b0045
  article-title: Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 3036
  year: 2016
  end-page: 3043
  ident: b0105
  article-title: Towards industrial products from microalgae
  publication-title: Energy Environ. Sci.
– volume: 1488
  start-page: 93
  year: 2017
  end-page: 103
  ident: b0055
  article-title: Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating
  publication-title: J. Chromatogr. A
– volume: 107
  start-page: 59
  year: 2019
  end-page: 74
  ident: b0035
  article-title: Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 51
  start-page: 1
  year: 2008
  end-page: 11
  ident: b0030
  article-title: Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae
  publication-title: Aquat. Microb. Ecol.
– start-page: 12
  year: 2019
  ident: b0145
  article-title: Time-resolved carotenoid profiling and transcriptomic analysis reveal mechanism of carotenogenesis for astaxanthin synthesis in the oleaginous green alga
  publication-title: Biotechnol. Biofuels
– volume: 10
  start-page: 1716
  year: 2017
  end-page: 1738
  ident: b0060
  article-title: Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 282
  year: 2015
  end-page: 291
  ident: b0005
  article-title: Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review
  publication-title: Appl. Energy
– volume: 114
  start-page: E4296
  year: 2017
  end-page: E4305
  ident: b0095
  article-title: Chromosome-level genome assembly and transcriptome of the green alga
  publication-title: PNAS
– volume: 10
  start-page: 201
  year: 2010
  end-page: 208
  ident: b0140
  article-title: Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga
  publication-title: Eng. Life Sci.
– volume: 9
  start-page: 486
  year: 2010
  end-page: 501
  ident: b0090
  article-title: Genetic engineering of algae for enhanced biofuel production
  publication-title: Eukaryot. Cell
– volume: 37
  start-page: 37
  year: 2017
  end-page: 52
  ident: b0085
  article-title: Potential biotechnological application of microalgae: a critical review
  publication-title: Crit. Rev. Biotechnol.
– volume: 10
  start-page: 60
  year: 2017
  ident: b0020
  article-title: Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga
  publication-title: Biotechnol. Biofuels
– volume: 375
  year: 2019
  ident: b0025
  article-title: Enhancing lipid production in microalgae
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 579
  year: 2019
  ident: b0100
  article-title: Regulation of oxygenic photosynthesis during trophic transitions in the green alga
  publication-title: Plant Cell
– volume: 16
  start-page: 4316
  year: 2012
  end-page: 4342
  ident: b0120
  article-title: Conversion of microalgae to biofuel
  publication-title: Renew. Sustain. Energy Rev.
– volume: 125
  start-page: 423
  year: 2015
  end-page: 436
  ident: b0135
  article-title: Production of carotenoids by microalgae: achievements and challenges
  publication-title: Photosynth. Res.
– volume: 300
  year: 2020
  ident: b0125
  article-title: Boost carbon availability and value in algal cell for economic deployment of biomass
  publication-title: Bioresour. Technol.
– volume: 125
  start-page: 437
  year: 2015
  end-page: 449
  ident: b0110
  article-title: Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell
  publication-title: Photosynth. Res.
– volume: 24
  start-page: 791
  year: 2012
  end-page: 801
  ident: b0115
  article-title: Microalgal fatty acid composition: implications for biodiesel quality
  publication-title: J. Appl. Phycol.
– volume: 25
  start-page: 109
  year: 2017
  end-page: 116
  ident: b0150
  article-title: The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in
  publication-title: Algal Res.
– volume: 50
  start-page: 1239
  year: 2015
  end-page: 1253
  ident: b0040
  article-title: Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application-a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 59
  start-page: 2423
  year: 2019
  end-page: 2441
  ident: b0070
  article-title: High-value bioproducts from microalgae: strategies and progress
  publication-title: Crit. Rev. Food Sci.
– volume: 197
  start-page: 23
  year: 2015
  end-page: 29
  ident: b0155
  article-title: C-metabolic flux analysis of lipid accumulation in the oleaginous fungus
  publication-title: Bioresour. Technol.
– volume: 294
  year: 2019
  ident: b0010
  article-title: Enhanced biomass productivity of
  publication-title: Bioresour. Technol.
– volume: 127
  year: 2019
  ident: b0050
  article-title: Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy
  publication-title: Biomass Bioenerg.
– volume: 273
  start-page: 177
  year: 2019
  end-page: 184
  ident: b0080
  article-title: Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: an integrated bioremediation and biorefinery approach
  publication-title: Bioresour. Technol.
– volume: 34
  start-page: 461
  year: 2004
  end-page: 465
  ident: b0015
  article-title: Evaluation of
  publication-title: Enzyme Microb. Tech.
– volume: 11
  start-page: 227
  year: 2018
  ident: b0130
  article-title: High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion
  publication-title: Biotechnol. Biofuels
– volume: 362
  start-page: 802
  year: 2019
  end-page: 811
  ident: b0065
  article-title: Simultaneous recovery of microalgae, ammonium and phosphate from simulated wastewater by MgO modified diatomite
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 288
  year: 2016
  end-page: 304
  ident: b0075
  article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels
  publication-title: Nat. Rev. Microbiol.
– volume: 14
  start-page: 288
  year: 2016
  ident: 10.1016/j.biortech.2020.123306_b0075
  article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.32
– volume: 294
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0010
  article-title: Enhanced biomass productivity of Arthrospira platensis using zeolitic imidazolate framework-8 as carbon dioxide adsorbents
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122118
– volume: 10
  start-page: 1716
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0060
  article-title: Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01306J
– volume: 51
  start-page: 1
  year: 2008
  ident: 10.1016/j.biortech.2020.123306_b0030
  article-title: Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01187
– volume: 125
  start-page: 437
  year: 2015
  ident: 10.1016/j.biortech.2020.123306_b0110
  article-title: Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-015-0156-3
– volume: 10
  start-page: 60
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0020
  article-title: Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0747-7
– volume: 9
  start-page: 486
  year: 2010
  ident: 10.1016/j.biortech.2020.123306_b0090
  article-title: Genetic engineering of algae for enhanced biofuel production
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00364-09
– volume: 50
  start-page: 1239
  year: 2015
  ident: 10.1016/j.biortech.2020.123306_b0040
  article-title: Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application-a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.131
– volume: 59
  start-page: 2423
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0070
  article-title: High-value bioproducts from microalgae: strategies and progress
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408398.2018.1455030
– volume: 375
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0025
  article-title: Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121912
– volume: 125
  start-page: 423
  year: 2015
  ident: 10.1016/j.biortech.2020.123306_b0135
  article-title: Production of carotenoids by microalgae: achievements and challenges
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-015-0149-2
– volume: 9
  start-page: 3036
  year: 2016
  ident: 10.1016/j.biortech.2020.123306_b0105
  article-title: Towards industrial products from microalgae
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01493C
– volume: 11
  start-page: 227
  year: 2018
  ident: 10.1016/j.biortech.2020.123306_b0130
  article-title: High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1225-6
– volume: 24
  start-page: 791
  issue: 4
  year: 2012
  ident: 10.1016/j.biortech.2020.123306_b0115
  article-title: Microalgal fatty acid composition: implications for biodiesel quality
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-011-9696-x
– volume: 300
  year: 2020
  ident: 10.1016/j.biortech.2020.123306_b0125
  article-title: Boost carbon availability and value in algal cell for economic deployment of biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122640
– volume: 137
  start-page: 282
  year: 2015
  ident: 10.1016/j.biortech.2020.123306_b0005
  article-title: Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.032
– volume: 301
  year: 2020
  ident: 10.1016/j.biortech.2020.123306_b0045
  article-title: Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122762
– volume: 16
  start-page: 4316
  issue: 6
  year: 2012
  ident: 10.1016/j.biortech.2020.123306_b0120
  article-title: Conversion of microalgae to biofuel
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.03.047
– volume: 31
  start-page: 579
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0100
  article-title: Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00742
– volume: 127
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0050
  article-title: Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2019.105274
– volume: 273
  start-page: 177
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0080
  article-title: Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: an integrated bioremediation and biorefinery approach
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.11.012
– volume: 1488
  start-page: 93
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0055
  article-title: Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.01.088
– volume: 197
  start-page: 23
  year: 2015
  ident: 10.1016/j.biortech.2020.123306_b0155
  article-title: 13C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.035
– volume: 114
  start-page: E4296
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0095
  article-title: Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production
  publication-title: PNAS
  doi: 10.1073/pnas.1619928114
– volume: 10
  start-page: 201
  year: 2010
  ident: 10.1016/j.biortech.2020.123306_b0140
  article-title: Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.200900116
– volume: 362
  start-page: 802
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0065
  article-title: Simultaneous recovery of microalgae, ammonium and phosphate from simulated wastewater by MgO modified diatomite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.094
– volume: 37
  start-page: 37
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0085
  article-title: Potential biotechnological application of microalgae: a critical review
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2015.1108956
– start-page: 12
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0145
  article-title: Time-resolved carotenoid profiling and transcriptomic analysis reveal mechanism of carotenogenesis for astaxanthin synthesis in the oleaginous green alga Chromochloris zofingiensis
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1354-6
– volume: 34
  start-page: 461
  year: 2004
  ident: 10.1016/j.biortech.2020.123306_b0015
  article-title: Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures
  publication-title: Enzyme Microb. Tech.
  doi: 10.1016/j.enzmictec.2003.12.002
– volume: 107
  start-page: 59
  year: 2019
  ident: 10.1016/j.biortech.2020.123306_b0035
  article-title: Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.02.012
– volume: 25
  start-page: 109
  year: 2017
  ident: 10.1016/j.biortech.2020.123306_b0150
  article-title: The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in Chlorella zofingiensis
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2017.05.007
SSID ssj0003172
Score 2.5033593
Snippet [Display omitted] •Fed-batch strategy increased 41.5% lipid productivity without compromising biomass.•Carbon dependent kinetics under stress conferred cells...
To improve lipid and astaxanthin productivity without compromising biomass during the whole cultivation period, carbon-dependent kinetics involving nitrogen...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123306
SubjectTerms adenosine triphosphate
Astaxanthin
biochemical pathways
Biomass
biomass production
biosynthesis
carbon
Carbon availability
Carbon conversion
carbon metabolism
Fatty acid metabolism
Fed-batch culture
lipid content
Lipids
metabolic flux analysis
metabolites
NADP (coenzyme)
Nitrogen
Xanthophylls
Title A novel fed-batch strategy enhances lipid and astaxanthin productivity without compromising biomass of Chromochloris zofingiensis
URI https://dx.doi.org/10.1016/j.biortech.2020.123306
https://www.ncbi.nlm.nih.gov/pubmed/32276201
https://www.proquest.com/docview/2388823625
https://www.proquest.com/docview/2431844626
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeFNeMhKraerEeYxVBSogWACJzXIcmwaVpGpaBAxI_HPu8uAxAANDhsR2fPJd7s6583eEHAah0oixwsLEE8wzwmVRlAQsdpTteCbhukTnv7j0-zfe2a24nSG95iwMplXWur_S6aW2rp-069Vsj9K0fYXOdyjAxKDMgqHDE-xegFJ-9PqZ5gH2sYwkQGeGvb-cEr4_ilPMaC2DEhyBFmBz7_9koH5yQEtDdLJMlmoPknYrIlfIjMlWyWL3blyjaJhVMt9ryrhByxfEwTXy1qVZ_miG1JqExaCGB7So8GmfqckGKAIFHaajNKEqgwt8xydY-0Ga0VGFDVsWm6D4-zafTihmpI9zmAveTvEoP_jiNLcUMXcfcj3A_L6CvoAEAxWYK1-sk5uT4-ten9VVGJgGJTphnuaBHxk30L7Q1nY6vq-Agyp23AjaLOw4Ig26CnWvdlQYaKGNz21kbJBYxd0NMpvlmdkiFAymEqHjmwTjsXEQcctdkKEQZkgM5y0imqWXuoYox0oZQ9nkot3LhmUSWSYrlrVI-2PcqALp-HNE1HBWfhM3CZbkz7EHjShIWF8MsKjM5NNCgvsTYgF5Ln7pAx5bCHtwDu_ZrOTog2ZQrmCbnM72P6jbIQt4V2UU75LZyXhq9sBvmsT75YexT-a6p-f9y3eF9Rnw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReqA9VIWWlrZQI3E1m3XiPI6rVdFCgQsgcbMcx2aDtslqs4toD5X6zzuTxxYOC4cecokfsWbGM-PM-BuAgyjWhjBWeJwFkgdW-jxJsoinnnb9wGbC1Oj8Z-fh6Co4uZbXazDs7sJQWmWr-xudXmvr9k2vpWZvmue9C3K-Y4kmhmQWDd0LeBng9qUyBoe__-V5oIGsQwnYm1P3B9eEbw_TnFJa66iEIKQFPN2HqyzUKg-0tkRHb-FN60KyQbPKTVizxRa8HtzMWhgNuwUbw66OG7Y8gBx8B38GrCjv7IQ5m_EU9fCYVQ1A7U9mizHJQMUm-TTPmC7wQefxHok_zgs2bcBh62oTjP7flos5o5T0WYnfwtkZ3eVHZ5yVjhHo7o_SjCnBr2K_UIRxFZQsX72Hq6Nvl8MRb8swcINadM4DI6IwsX5kQmmc6_fDUCMLder5CbY5PHIkBpUVKV_j6Tgy0thQuMS6KHNa-NuwXpSF_QgMLaaWsRfajAKyaZQIJ3wUohi_kFkhdkB2pFemxSinUhkT1SWj3aqOZYpYphqW7UBvOW7aoHQ8OyLpOKseyZtCU_Ls2P1OFBTSlyIsurDlolLo_8RUQV7IJ_qgyxbjIVzgPB8aOVquGbUrGiev_-k_VvcVNkaXZ6fq9Pj8-2d4RS1NevEXWJ_PFnYXnah5uldvkr_FxBt-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fed-batch+strategy+enhances+lipid+and+astaxanthin+productivity+without+compromising+biomass+of+Chromochloris+zofingiensis&rft.jtitle=Bioresource+technology&rft.au=Sun%2C+Han&rft.au=Ren%2C+Yuanyuan&rft.au=Lao%2C+Yongmin&rft.au=Li%2C+Xiaojie&rft.date=2020-07-01&rft.issn=0960-8524&rft.volume=308&rft.spage=123306&rft_id=info:doi/10.1016%2Fj.biortech.2020.123306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_123306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon