Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s ), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) ] = 10.8 mM, [chalcogenourea] = 9.0...
Saved in:
Published in | Chemical science (Cambridge) Vol. 13; no. 16; pp. 4555 - 4565 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
20.04.2022
The Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (
= 10
to 10
s
), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)
] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (
) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using
X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb
(μ
-S)
(Pb(O
CR)
)
structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. |
---|---|
AbstractList | A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s ), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb (μ -S) (Pb(O CR) ) structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb[thin space (1/6-em)]:[thin space (1/6-em)]E = 1.2[thin space (1/6-em)]:[thin space (1/6-em)]1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to 10 −4 s −1 ), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) 2 ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( t ind ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb 2 (μ 2 -S) 2 (Pb(O 2 CR) 2 ) 2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to 10 −4 s −1 ), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) 2 ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( t ind ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb 2 (μ 2 -S) 2 (Pb(O 2 CR) 2 ) 2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity. |
Author | Hendricks, Mark P Bennett, Ellie Sfeir, Matthew Y Abécassis, Benjamin McMurtry, Brandon M Ghose, Sanjit K Greenberg, Matthew W Owen, Jonathan S De Roo, Jonathan Saenz, Natalie Campos, Michael P |
Author_xml | – sequence: 1 givenname: Michael P surname: Campos fullname: Campos, Michael P email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu – sequence: 2 givenname: Jonathan orcidid: 0000-0002-1264-9312 surname: De Roo fullname: De Roo, Jonathan email: jso2115@columbia.edu organization: Department of Chemistry, University of Basel Basel 4058 Switzerland – sequence: 3 givenname: Matthew W surname: Greenberg fullname: Greenberg, Matthew W email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu – sequence: 4 givenname: Brandon M orcidid: 0000-0002-3624-941X surname: McMurtry fullname: McMurtry, Brandon M email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu – sequence: 5 givenname: Mark P surname: Hendricks fullname: Hendricks, Mark P email: jso2115@columbia.edu organization: Department of Chemistry, Whitman College Walla Walla Washington 99362 USA – sequence: 6 givenname: Ellie orcidid: 0000-0003-2714-2773 surname: Bennett fullname: Bennett, Ellie email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu – sequence: 7 givenname: Natalie surname: Saenz fullname: Saenz, Natalie email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu – sequence: 8 givenname: Matthew Y orcidid: 0000-0001-5619-5722 surname: Sfeir fullname: Sfeir, Matthew Y organization: Department of Physics, Graduate Center, City University of New York New York New York 10016 USA – sequence: 9 givenname: Benjamin orcidid: 0000-0002-1629-9671 surname: Abécassis fullname: Abécassis, Benjamin organization: Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides 91405 Orsay France – sequence: 10 givenname: Sanjit K surname: Ghose fullname: Ghose, Sanjit K organization: National Synchrotron Light Source II, Brookhaven National Laboratory Brookhaven New York USA – sequence: 11 givenname: Jonathan S orcidid: 0000-0001-5502-3267 surname: Owen fullname: Owen, Jonathan S email: jso2115@columbia.edu organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35656143$$D View this record in MEDLINE/PubMed https://hal.science/hal-03863718$$DView record in HAL https://www.osti.gov/biblio/1860442$$D View this record in Osti.gov |
BookMark | eNpdkV9rFDEUxYNUbF374geQQV9UWM3Nv5m8CGXVrrCgWH0OmSTjpM4m2yRbWT-9abcu2ryc3OTH5XDOY3QUYnAIPQX8BjCVby1kgwWW3fgAnRDMYC44lUeHO8HH6DTnS1wPpcBJ-wgdUy64AEZP0NfzFH-Vsfnpgyve5Ma64tK6Tk0ZXbOJ0876vHEp-7JrdLBN9r9dE4fmS39xO1d1TdAhmrTLRU_5CXo4VHGndzpD3z9--LZYzlefzz8tzlZzw0Rb5gz3vcMd9KClAKE1ExK4IZTgFqTlhuFBaEOxNbzF3PZaDsBsZ9qWkk60dIbe7fdutv3aWeNCSXpSm-TXOu1U1F79_xP8qH7EayUxSFnDm6Hn-wUxF6-y8cWZ0cQQnCkKOoEZIxV6tYfGe7uXZyt184ZpJ2gL3TVU9uWdoxSvti4XtfbZuGnSwcVtVqS6rtEzwiv64h56Gbcp1LwqxQkHwgSt1Os9ZVLMObnh4ACwuqlfvYeLxW39ywo_-zePA_q3bPoH8YaqYA |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c02005 crossref_primary_10_1021_jacs_2c07423 crossref_primary_10_1021_acs_chemmater_2c03761 crossref_primary_10_1038_s41598_022_16666_6 crossref_primary_10_1021_acsnanoscienceau_3c00057 crossref_primary_10_1039_D3SC03384H crossref_primary_10_1107_S1600577523007300 crossref_primary_10_1021_acs_chemmater_2c01058 crossref_primary_10_1021_acsnano_3c13159 crossref_primary_10_1021_acsnano_3c02149 crossref_primary_10_1038_s44160_022_00210_5 crossref_primary_10_1021_acsnano_3c05138 crossref_primary_10_1021_acs_chemrev_3c00097 crossref_primary_10_1039_D2CC05012A crossref_primary_10_1021_acs_chemmater_1c03432 crossref_primary_10_1080_02603594_2023_2200174 crossref_primary_10_1063_5_0133809 crossref_primary_10_1021_acs_jpcc_2c06036 |
Cites_doi | 10.1021/acs.chemmater.0c01561 10.1021/la1020274 10.1021/acs.chemmater.5b00286 10.1021/acs.chemmater.7b00899 10.1201/9781420018318 10.1021/nl0707149 10.1039/C6CE01489E 10.1021/cm1033172 10.1021/acsnano.8b06468 10.1021/acsnano.0c04091 10.1021/nn900863a 10.1021/acsnano.9b03864 10.1016/0001-8686(87)80009-X 10.1038/nature04165 10.1021/acs.chemmater.1c03432 10.1021/cm402139r 10.1021/cm071410q 10.1002/anie.201505972 10.1021/acs.jpca.7b08368 10.1021/jacs.9b06364 10.1039/C7NR07949D 10.1126/sciadv.abf4741 10.1021/acs.chemmater.9b00962 10.1107/S0021889813005190 10.1002/anie.200603148 10.1021/jacs.6b11021 10.1016/S0927-7757(97)00192-1 10.1039/df9511100055 10.1021/acs.nanolett.5b00199 10.1021/cm0006852 10.1021/acs.chemmater.7b03550 10.1021/jp952869n 10.1021/ja9705102 10.1016/S0927-7757(99)00366-0 10.1021/la0481647 10.1039/C9RA06842B 10.1021/ja9805425 10.1021/nn204008q 10.1146/annurev.matsci.30.1.545 10.1021/acs.nanolett.0c04813 10.1021/ja300978f 10.1021/acs.chemmater.0c00984 10.1021/acs.chemmater.7b02861 10.1021/cm500102q 10.1021/jp040457l 10.1039/C7NR04101B 10.1021/ja9105682 10.1021/ja106777j 10.1021/ja509941g 10.1021/cm3035642 10.1021/acs.chemmater.8b00477 10.1021/ja063166u 10.1002/anie.201311254 10.1126/science.aaa2951 10.1107/S0108767306034635 10.1038/s41467-020-19573-4 10.1021/ja0656696 10.1021/acs.nanolett.5b03790 10.1021/acs.chemmater.8b02205 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2022 Distributed under a Creative Commons Attribution 4.0 International License This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC VOOES OTOTI 5PM |
DOI | 10.1039/d1sc06098h |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 4565 |
ExternalDocumentID | 1860442 oai_HAL_hal_03863718v1 10_1039_D1SC06098H 35656143 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: NSF-CHE-2004008 – fundername: ; grantid: DE- SC0012704 |
GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N NPM O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX AFPKN CITATION 7SR 8BQ 8FD JG9 7X8 1XC VOOES AAGNR AAPBV AFVBQ OTOTI 5PM |
ID | FETCH-LOGICAL-c467t-40bbe081b1a9616aa46915c2320719d5c40f6ac30dc5705dba9f14d8c77328673 |
IEDL.DBID | RPM |
ISSN | 2041-6520 |
IngestDate | Tue Sep 17 20:57:35 EDT 2024 Thu May 18 22:40:22 EDT 2023 Wed Nov 13 07:09:30 EST 2024 Sat Oct 26 04:11:53 EDT 2024 Thu Oct 10 15:40:08 EDT 2024 Fri Aug 23 01:58:34 EDT 2024 Sat Nov 02 12:28:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | This journal is © The Royal Society of Chemistry. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-40bbe081b1a9616aa46915c2320719d5c40f6ac30dc5705dba9f14d8c77328673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE M. P. C., J. D. R., M. W. G., and B. M. M. contributed equally to this work. |
ORCID | 0000-0001-5619-5722 0000-0003-2714-2773 0000-0002-1264-9312 0000-0002-3624-941X 0000-0002-1629-9671 0000-0001-5502-3267 0000000327142773 0000000212649312 0000000156195722 0000000155023267 0000000216299671 000000023624941X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019910/ |
PMID | 35656143 |
PQID | 2652512463 |
PQPubID | 2047492 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9019910 osti_scitechconnect_1860442 hal_primary_oai_HAL_hal_03863718v1 proquest_miscellaneous_2673356425 proquest_journals_2652512463 crossref_primary_10_1039_D1SC06098H pubmed_primary_35656143 |
PublicationCentury | 2000 |
PublicationDate | 2022-Apr-20 |
PublicationDateYYYYMMDD | 2022-04-20 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-Apr-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge – name: United Kingdom |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Byun (D1SC06098H/cit3/1) 2019; 9 Juhas (D1SC06098H/cit51/1) 2013; 46 Widegren (D1SC06098H/cit5/1) 2001; 13 Prins (D1SC06098H/cit63/1) 2021; 21 Abecassis (D1SC06098H/cit13/1) 2010; 26 McMurtry (D1SC06098H/cit17/1) 2020; 32 Saha (D1SC06098H/cit56/1) 2014; 53 Workman Jr. (D1SC06098H/cit46/1) 2007 Turkevich (D1SC06098H/cit64/1) 1951; 11 Bojesen (D1SC06098H/cit54/1) 2016; 18 Jensen (D1SC06098H/cit55/1) 2012; 134 Jansons (D1SC06098H/cit39/1) 2017; 29 Watzky (D1SC06098H/cit4/1) 1997; 119 Terban (D1SC06098H/cit57/1) 2018; 10 Berends (D1SC06098H/cit33/1) 2018; 30 Gary (D1SC06098H/cit19/1) 2015; 27 Garcia-Rodriguez (D1SC06098H/cit6/1) 2013; 25 Sun (D1SC06098H/cit22/1) 2018; 12 Owen (D1SC06098H/cit12/1) 2010; 132 Cui (D1SC06098H/cit20/1) 2016; 16 Gurin (D1SC06098H/cit45/1) 1998; 139 Gary (D1SC06098H/cit18/1) 2014; 26 Bennett (D1SC06098H/cit34/1) 2022; 34 Kodama (D1SC06098H/cit58/1) 2006; 62 Peng (D1SC06098H/cit67/1) 1998; 120 Wang (D1SC06098H/cit7/1) 2014; 26 Abecassis (D1SC06098H/cit62/1) 2015; 15 Campos (D1SC06098H/cit26/1) 2017; 139 Chu (D1SC06098H/cit38/1) 2017; 121 Farrow (D1SC06098H/cit53/1) 2007; 19 Franke (D1SC06098H/cit21/1) 2015; 54 Hamachi (D1SC06098H/cit2/1) 2017; 29 Moreels (D1SC06098H/cit40/1) 2007; 19 Yang (D1SC06098H/cit52/1) 2014 Koh (D1SC06098H/cit28/1) 2010; 132 Abe (D1SC06098H/cit8/1) 2012; 6 Voznyy (D1SC06098H/cit60/1) 2019; 13 Ryu (D1SC06098H/cit61/1) 2021; 7 Sugimoto (D1SC06098H/cit9/1) 1987; 28 Hendricks (D1SC06098H/cit30/1) 2015; 348 Moreels (D1SC06098H/cit48/1) 2009; 3 Green (D1SC06098H/cit59/1) 2020; 32 Preske (D1SC06098H/cit27/1) 2019; 31 Campos (D1SC06098H/cit36/1) 2017; 139 Kane (D1SC06098H/cit41/1) 1996; 100 Campos (D1SC06098H/cit35/1) Murray (D1SC06098H/cit10/1) 2000; 30 De Nolf (D1SC06098H/cit23/1) 2015; 137 Handwerk (D1SC06098H/cit66/1) 2019; 141 Park (D1SC06098H/cit1/1) 2007; 46 Yin (D1SC06098H/cit11/1) 2005; 437 Abecassis (D1SC06098H/cit14/1) 2007; 7 Zeng (D1SC06098H/cit42/1) 2005; 109 Abécassis (D1SC06098H/cit44/1) Watzky (D1SC06098H/cit15/1) 1997; 119 Liu (D1SC06098H/cit16/1) 2007; 129 Koh (D1SC06098H/cit29/1) 2011; 23 Tappan (D1SC06098H/cit32/1) 2018; 30 Cademartiri (D1SC06098H/cit47/1) 2006; 128 Mozaffari (D1SC06098H/cit65/1) 2017; 9 Rhodes (D1SC06098H/cit31/1) 2017; 29 Wu (D1SC06098H/cit43/1) 2005; 21 Park (D1SC06098H/cit24/1) 2020; 14 Park (D1SC06098H/cit25/1) 2020; 11 Sugimoto (D1SC06098H/cit37/1) 2000; 164 |
References_xml | – volume: 32 start-page: 4358 issue: 10 year: 2020 ident: D1SC06098H/cit17/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01561 contributor: fullname: McMurtry – volume: 26 start-page: 13847 issue: 17 year: 2010 ident: D1SC06098H/cit13/1 publication-title: Langmuir doi: 10.1021/la1020274 contributor: fullname: Abecassis – volume: 27 start-page: 1432 issue: 4 year: 2015 ident: D1SC06098H/cit19/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00286 contributor: fullname: Gary – volume: 29 start-page: 5415 issue: 13 year: 2017 ident: D1SC06098H/cit39/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00899 contributor: fullname: Jansons – volume-title: Practical Guide to Interpretive Near-Infrared Spectroscopy year: 2007 ident: D1SC06098H/cit46/1 doi: 10.1201/9781420018318 contributor: fullname: Workman Jr. – volume: 7 start-page: 1723 issue: 6 year: 2007 ident: D1SC06098H/cit14/1 publication-title: Nano Lett. doi: 10.1021/nl0707149 contributor: fullname: Abecassis – volume: 18 start-page: 8332 issue: 43 year: 2016 ident: D1SC06098H/cit54/1 publication-title: Crystengcomm doi: 10.1039/C6CE01489E contributor: fullname: Bojesen – volume: 23 start-page: 1825 issue: 7 year: 2011 ident: D1SC06098H/cit29/1 publication-title: Chem. Mater. doi: 10.1021/cm1033172 contributor: fullname: Koh – volume: 12 start-page: 12393 issue: 12 year: 2018 ident: D1SC06098H/cit22/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b06468 contributor: fullname: Sun – volume: 14 start-page: 11579 issue: 9 year: 2020 ident: D1SC06098H/cit24/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c04091 contributor: fullname: Park – volume: 3 start-page: 3023 issue: 10 year: 2009 ident: D1SC06098H/cit48/1 publication-title: ACS Nano doi: 10.1021/nn900863a contributor: fullname: Moreels – volume: 19 start-page: 335129 issue: 33 year: 2007 ident: D1SC06098H/cit53/1 publication-title: J. Phys.: Condens. Matter contributor: fullname: Farrow – ident: D1SC06098H/cit35/1 contributor: fullname: Campos – volume: 13 start-page: 11122 issue: 10 year: 2019 ident: D1SC06098H/cit60/1 publication-title: Acs Nano doi: 10.1021/acsnano.9b03864 contributor: fullname: Voznyy – volume: 28 start-page: 65 issue: 1 year: 1987 ident: D1SC06098H/cit9/1 publication-title: Adv. Colloid Interface doi: 10.1016/0001-8686(87)80009-X contributor: fullname: Sugimoto – volume: 437 start-page: 664 issue: 7059 year: 2005 ident: D1SC06098H/cit11/1 publication-title: Nature doi: 10.1038/nature04165 contributor: fullname: Yin – volume: 34 start-page: 706 issue: 2 year: 2022 ident: D1SC06098H/cit34/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c03432 contributor: fullname: Bennett – volume: 26 start-page: 5 year: 2014 ident: D1SC06098H/cit7/1 publication-title: Chem. Mater. doi: 10.1021/cm402139r contributor: fullname: Wang – volume: 19 start-page: 6101 issue: 25 year: 2007 ident: D1SC06098H/cit40/1 publication-title: Chem. Mater. doi: 10.1021/cm071410q contributor: fullname: Moreels – volume: 54 start-page: 14299 issue: 48 year: 2015 ident: D1SC06098H/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505972 contributor: fullname: Franke – volume: 121 start-page: 7511 issue: 40 year: 2017 ident: D1SC06098H/cit38/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b08368 contributor: fullname: Chu – volume: 141 start-page: 15827 issue: 40 year: 2019 ident: D1SC06098H/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06364 contributor: fullname: Handwerk – volume: 10 start-page: 4291 issue: 9 year: 2018 ident: D1SC06098H/cit57/1 publication-title: Nanoscale doi: 10.1039/C7NR07949D contributor: fullname: Terban – volume: 7 start-page: eabf4741 issue: 22 year: 2021 ident: D1SC06098H/cit61/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4741 contributor: fullname: Ryu – volume: 31 start-page: 8301 issue: 20 year: 2019 ident: D1SC06098H/cit27/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00962 contributor: fullname: Preske – volume: 46 start-page: 560 year: 2013 ident: D1SC06098H/cit51/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813005190 contributor: fullname: Juhas – volume: 46 start-page: 4630 issue: 25 year: 2007 ident: D1SC06098H/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200603148 contributor: fullname: Park – volume: 139 start-page: 2296 issue: 6 year: 2017 ident: D1SC06098H/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11021 contributor: fullname: Campos – volume: 139 start-page: 1 issue: 1 year: 1998 ident: D1SC06098H/cit45/1 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(97)00192-1 contributor: fullname: Gurin – volume: 11 start-page: 55 year: 1951 ident: D1SC06098H/cit64/1 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9511100055 contributor: fullname: Turkevich – volume: 15 start-page: 2620 issue: 4 year: 2015 ident: D1SC06098H/cit62/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00199 contributor: fullname: Abecassis – volume: 13 start-page: 312 issue: 2 year: 2001 ident: D1SC06098H/cit5/1 publication-title: Chem. Mater. doi: 10.1021/cm0006852 contributor: fullname: Widegren – volume: 29 start-page: 8521 issue: 19 year: 2017 ident: D1SC06098H/cit31/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03550 contributor: fullname: Rhodes – volume: 100 start-page: 7928 issue: 19 year: 1996 ident: D1SC06098H/cit41/1 publication-title: J. Phys. Chem. doi: 10.1021/jp952869n contributor: fullname: Kane – volume: 119 start-page: 10382 issue: 43 year: 1997 ident: D1SC06098H/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9705102 contributor: fullname: Watzky – volume: 164 start-page: 183 issue: 2–3 year: 2000 ident: D1SC06098H/cit37/1 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(99)00366-0 contributor: fullname: Sugimoto – volume: 21 start-page: 686 issue: 2 year: 2005 ident: D1SC06098H/cit43/1 publication-title: Langmuir doi: 10.1021/la0481647 contributor: fullname: Wu – volume: 9 start-page: 37895 issue: 65 year: 2019 ident: D1SC06098H/cit3/1 publication-title: RSC Adv. doi: 10.1039/C9RA06842B contributor: fullname: Byun – volume: 120 start-page: 5343 issue: 21 year: 1998 ident: D1SC06098H/cit67/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9805425 contributor: fullname: Peng – volume: 6 start-page: 42 issue: 1 year: 2012 ident: D1SC06098H/cit8/1 publication-title: ACS Nano doi: 10.1021/nn204008q contributor: fullname: Abe – volume: 30 start-page: 545 year: 2000 ident: D1SC06098H/cit10/1 publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.30.1.545 contributor: fullname: Murray – volume: 21 start-page: 2487 issue: 6 year: 2021 ident: D1SC06098H/cit63/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04813 contributor: fullname: Prins – volume: 134 start-page: 6785 issue: 15 year: 2012 ident: D1SC06098H/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300978f contributor: fullname: Jensen – volume: 32 start-page: 4083 issue: 9 year: 2020 ident: D1SC06098H/cit59/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00984 contributor: fullname: Green – volume: 29 start-page: 8711 issue: 20 year: 2017 ident: D1SC06098H/cit2/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02861 contributor: fullname: Hamachi – year: 2014 ident: D1SC06098H/cit52/1 contributor: fullname: Yang – volume: 26 start-page: 1734 issue: 4 year: 2014 ident: D1SC06098H/cit18/1 publication-title: Chem. Mater. doi: 10.1021/cm500102q contributor: fullname: Gary – volume: 109 start-page: 1616 issue: 8 year: 2005 ident: D1SC06098H/cit42/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp040457l contributor: fullname: Zeng – volume: 9 start-page: 13772 issue: 36 year: 2017 ident: D1SC06098H/cit65/1 publication-title: Nanoscale doi: 10.1039/C7NR04101B contributor: fullname: Mozaffari – volume: 132 start-page: 3909 issue: 11 year: 2010 ident: D1SC06098H/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9105682 contributor: fullname: Koh – volume: 132 start-page: 18206 issue: 51 year: 2010 ident: D1SC06098H/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106777j contributor: fullname: Owen – volume: 137 start-page: 2495 issue: 7 year: 2015 ident: D1SC06098H/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509941g contributor: fullname: De Nolf – volume-title: Persistent Nucleation and Size Dependent Attachment Kinetics Produce Monodisperse PbS Nanocrystals ident: D1SC06098H/cit44/1 contributor: fullname: Abécassis – volume: 25 start-page: 1233 issue: 8 year: 2013 ident: D1SC06098H/cit6/1 publication-title: Chem. Mater. doi: 10.1021/cm3035642 contributor: fullname: Garcia-Rodriguez – volume: 30 start-page: 2400 issue: 7 year: 2018 ident: D1SC06098H/cit33/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00477 contributor: fullname: Berends – volume: 128 start-page: 10337 issue: 31 year: 2006 ident: D1SC06098H/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063166u contributor: fullname: Cademartiri – volume: 53 start-page: 3667 issue: 14 year: 2014 ident: D1SC06098H/cit56/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311254 contributor: fullname: Saha – volume: 119 start-page: 10382 issue: 43 year: 1997 ident: D1SC06098H/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9705102 contributor: fullname: Watzky – volume: 348 start-page: 1226 issue: 6240 year: 2015 ident: D1SC06098H/cit30/1 publication-title: Science doi: 10.1126/science.aaa2951 contributor: fullname: Hendricks – volume: 62 start-page: 444 year: 2006 ident: D1SC06098H/cit58/1 publication-title: Acta Crystallogr. A doi: 10.1107/S0108767306034635 contributor: fullname: Kodama – volume: 139 start-page: 2296 issue: 6 year: 2017 ident: D1SC06098H/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11021 contributor: fullname: Campos – volume: 11 start-page: 5748 issue: 1 year: 2020 ident: D1SC06098H/cit25/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19573-4 contributor: fullname: Park – volume: 129 start-page: 305 issue: 2 year: 2007 ident: D1SC06098H/cit16/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0656696 contributor: fullname: Liu – volume: 16 start-page: 289 issue: 1 year: 2016 ident: D1SC06098H/cit20/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03790 contributor: fullname: Cui – volume: 30 start-page: 5704 issue: 16 year: 2018 ident: D1SC06098H/cit32/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02205 contributor: fullname: Tappan |
SSID | ssj0000331527 |
Score | 2.5063841 |
Snippet | A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (
= 10
to 10
s... A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to... A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to... A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to... Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width... |
SourceID | pubmedcentral osti hal proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 4555 |
SubjectTerms | Absorption spectra Chemical Sciences Chemistry Density functional theory Distribution functions High temperature Kinetics Lead selenides Low temperature Nanocrystals Nucleation Polydispersity Reaction time Size distribution |
Title | Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35656143 https://www.proquest.com/docview/2652512463 https://www.proquest.com/docview/2673356425 https://hal.science/hal-03863718 https://www.osti.gov/biblio/1860442 https://pubmed.ncbi.nlm.nih.gov/PMC9019910 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tRYK9IL4JG5X5eM1qxx9pHqfCqBBD00ZReYoc21EruqRaM6Tx13N2k6pFPPEUJU4k6-5897v47meA94nFOKRxfduMlbHQ3MVFyrNYW6ZTrqUoQ4f3-Vc1mYrPMzk7ANn1woSifVMsTqrl9Um1mIfaytW1GXZ1YsOL8zHGMIQ1dNiDHhroTooe3C_n7VGtCRUsVjKhHS0pz4aWrQ1VNBvND-E-92gmNOzsxKTe3FdE9mtcYf9CnX8XT-5Eo7NH8LCFkeR0M93HcOCqJ_Bg3J3e9hQuP2F-3czJT0SRnomZ2LbuxRGEfGRVL-_swrOE-5oMoitL1ovfjtQluSiuwj1eHal0VZubO4SQy_UzmJ59_DaexO35CbFB99dgalgUDkN-wXSmmNIaU2EmDWIoxBWZlUbQUmnDqTUypdIWOiuZsCOTegYflfLn0K_qyr0EkpXCMomu0DOeSdS6tFIUBuU3sk7RIoJ3nQTz1YYmIw_b2zzLP7CrcRD5JIK3KNztC57ZenL6JffPKB8pjnHyF4vgyMs-RwTgaWyNr_cxTc5GigqRRHDcqSRvV9s6T1DJCFyE4hG82Q6jwP3mh65cfevfSTnqG11UBC82GtxOpLODCNI93e7NdH8ETTNwcbem-Oq_vzyCw8R3VFCBDusY-s3NrXuNOKcpBuH_wCBY9wDuXX6fzn78AaKy_f4 |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aisT2griOsAHm8prVji9JHqfCCNBOE9ukvUWO7agVXVKtGdL49RynSdUinniKEjuSda6f5XM-A3yMLOYhjf5tU1aGQnMXFjFPQ22ZjrmWomw7vCdnKrsS367l9Q7IvhemLdo3xey4mt8cV7NpW1u5uDHDvk5seD4ZYQ5DWEOHu_AA_ZWKjU16G4A57y5rjahgoZIR7YlJeTq0bGmoomky3YeH3OOZtmVnIyvtTn1N5KBGH_sX7vy7fHIjH50-hkcdkCQnqwU_gR1XPYW9UX9_2zP48QV32M2U_EQc6bmYie0qXxxB0EcW9fzezjxPuK_KILqyZDn77UhdkvPion3HpyOVrmpze48gcr58Dlenny9HWdjdoBAaDIANbg6LwmHSL5hOFVNa42aYSYMoCpFFaqURtFTacGqNjKm0hU5LJmxiYs_ho2L-AgZVXbmXQNJSWCYxGHrOM4l6l1aKwqD8EusULQL40EswX6yIMvL2gJun-Sd2MWpFngXwHoW7nuC5rbOTce6_UZ4ojpnyFwvg0Ms-RwzgiWyNr_gxTc4SRYWIAjjqVZJ3_rbMI1QyQheheADv1sMocH_8oStX3_k5MUd9Y5AK4GClwfVCejsIIN7S7dZKt0fQOFs27s4YX_33n29hL7ucjPPx17Pvh7Af-f4KKjB8HcGgub1zrxH1NMWb1sb_ADa7_o4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5iRRp7mbgTNsBcXrPY8SXJ49RRCmxTxZi0t8ixHbWiS6o1mzR-PcdpUrWIJ56ixI5knetn-fg7AJ9ii3lIo3_bjJWh0NyFRcKzUFumE66lKNsb3mfnanwpvl3Jq41WX23RvilmR9X8-qiaTdvaysW1ifo6sWhyNsQchrCGRgtbRjvwEH2Wqo2NehuEOe8atsZUsFDJmPbkpDyLLFsaqmiWTvdgl3tM017b2chMO1NfFzmo0c_-hT3_LqHcyEmjx7DfgUlyvFr0E3jgqqfwaNj3cHsGP77gLruZkl-IJT0fM7Fd9YsjCPzIop7f25nnCveVGURXlixnvx2pSzIpLtp3fDpS6ao2N_cIJOfL53A5-vxzOA67LgqhwSDY4AaxKBwm_oLpTDGlNW6ImTSIpBBdZFYaQUulDafWyIRKW-isZMKmJvE8PirhL2BQ1ZV7BSQrhWUSA6LnPZOoe2mlKAzKL7VO0SKAj70E88WKLCNvD7l5lp-wi2Er8nEAH1C46wme33p8fJr7b5SnimO2vGMBHHjZ54gDPJmt8VU_pslZqqgQcQCHvUryzueWeYxKRvgiFA_g_XoYBe6PQHTl6ls_J-GobwxUAbxcaXC9kN4OAki2dLu10u0RNNCWkbszyNf__ec72J2cjPLTr-ffD2Av9lcsqMAIdgiD5ubWvUHg0xRvWxP_A-mK_6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+kinetics+determine+the+polydispersity+and+size+of+PbS+and+PbSe+nanocrystals&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Campos%2C+Michael+P.&rft.au=De+Roo%2C+Jonathan&rft.au=Greenberg%2C+Matthew+W.&rft.au=McMurtry%2C+Brandon+M.&rft.date=2022-04-20&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=13&rft.issue=16&rft.spage=4555&rft.epage=4565&rft_id=info:doi/10.1039%2Fd1sc06098h&rft_id=info%3Apmid%2F35656143&rft.externalDBID=PMC9019910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |