Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals

A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s ), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) ] = 10.8 mM, [chalcogenourea] = 9.0...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 13; no. 16; pp. 4555 - 4565
Main Authors Campos, Michael P, De Roo, Jonathan, Greenberg, Matthew W, McMurtry, Brandon M, Hendricks, Mark P, Bennett, Ellie, Saenz, Natalie, Sfeir, Matthew Y, Abécassis, Benjamin, Ghose, Sanjit K, Owen, Jonathan S
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 20.04.2022
The Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s ), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb (μ -S) (Pb(O CR) ) structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
AbstractList A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s ), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb (μ -S) (Pb(O CR) ) structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to 10−4 s−1), at several temperatures (80–120 °C), under a standard set of conditions (Pb[thin space (1/6-em)]:[thin space (1/6-em)]E = 1.2[thin space (1/6-em)]:[thin space (1/6-em)]1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (tind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to 10 −4 s −1 ), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) 2 ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( t ind ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb 2 (μ 2 -S) 2 (Pb(O 2 CR) 2 ) 2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures. Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to 10 −4 s −1 ), at several temperatures (80–120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate) 2 ] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay ( t ind ) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb 2 (μ 2 -S) 2 (Pb(O 2 CR) 2 ) 2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width of the nucleation phase and the polydispersity.
Author Hendricks, Mark P
Bennett, Ellie
Sfeir, Matthew Y
Abécassis, Benjamin
McMurtry, Brandon M
Ghose, Sanjit K
Greenberg, Matthew W
Owen, Jonathan S
De Roo, Jonathan
Saenz, Natalie
Campos, Michael P
Author_xml – sequence: 1
  givenname: Michael P
  surname: Campos
  fullname: Campos, Michael P
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
– sequence: 2
  givenname: Jonathan
  orcidid: 0000-0002-1264-9312
  surname: De Roo
  fullname: De Roo, Jonathan
  email: jso2115@columbia.edu
  organization: Department of Chemistry, University of Basel Basel 4058 Switzerland
– sequence: 3
  givenname: Matthew W
  surname: Greenberg
  fullname: Greenberg, Matthew W
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
– sequence: 4
  givenname: Brandon M
  orcidid: 0000-0002-3624-941X
  surname: McMurtry
  fullname: McMurtry, Brandon M
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
– sequence: 5
  givenname: Mark P
  surname: Hendricks
  fullname: Hendricks, Mark P
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Whitman College Walla Walla Washington 99362 USA
– sequence: 6
  givenname: Ellie
  orcidid: 0000-0003-2714-2773
  surname: Bennett
  fullname: Bennett, Ellie
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
– sequence: 7
  givenname: Natalie
  surname: Saenz
  fullname: Saenz, Natalie
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
– sequence: 8
  givenname: Matthew Y
  orcidid: 0000-0001-5619-5722
  surname: Sfeir
  fullname: Sfeir, Matthew Y
  organization: Department of Physics, Graduate Center, City University of New York New York New York 10016 USA
– sequence: 9
  givenname: Benjamin
  orcidid: 0000-0002-1629-9671
  surname: Abécassis
  fullname: Abécassis, Benjamin
  organization: Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides 91405 Orsay France
– sequence: 10
  givenname: Sanjit K
  surname: Ghose
  fullname: Ghose, Sanjit K
  organization: National Synchrotron Light Source II, Brookhaven National Laboratory Brookhaven New York USA
– sequence: 11
  givenname: Jonathan S
  orcidid: 0000-0001-5502-3267
  surname: Owen
  fullname: Owen, Jonathan S
  email: jso2115@columbia.edu
  organization: Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35656143$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03863718$$DView record in HAL
https://www.osti.gov/biblio/1860442$$D View this record in Osti.gov
BookMark eNpdkV9rFDEUxYNUbF374geQQV9UWM3Nv5m8CGXVrrCgWH0OmSTjpM4m2yRbWT-9abcu2ryc3OTH5XDOY3QUYnAIPQX8BjCVby1kgwWW3fgAnRDMYC44lUeHO8HH6DTnS1wPpcBJ-wgdUy64AEZP0NfzFH-Vsfnpgyve5Ma64tK6Tk0ZXbOJ0876vHEp-7JrdLBN9r9dE4fmS39xO1d1TdAhmrTLRU_5CXo4VHGndzpD3z9--LZYzlefzz8tzlZzw0Rb5gz3vcMd9KClAKE1ExK4IZTgFqTlhuFBaEOxNbzF3PZaDsBsZ9qWkk60dIbe7fdutv3aWeNCSXpSm-TXOu1U1F79_xP8qH7EayUxSFnDm6Hn-wUxF6-y8cWZ0cQQnCkKOoEZIxV6tYfGe7uXZyt184ZpJ2gL3TVU9uWdoxSvti4XtfbZuGnSwcVtVqS6rtEzwiv64h56Gbcp1LwqxQkHwgSt1Os9ZVLMObnh4ACwuqlfvYeLxW39ywo_-zePA_q3bPoH8YaqYA
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c02005
crossref_primary_10_1021_jacs_2c07423
crossref_primary_10_1021_acs_chemmater_2c03761
crossref_primary_10_1038_s41598_022_16666_6
crossref_primary_10_1021_acsnanoscienceau_3c00057
crossref_primary_10_1039_D3SC03384H
crossref_primary_10_1107_S1600577523007300
crossref_primary_10_1021_acs_chemmater_2c01058
crossref_primary_10_1021_acsnano_3c13159
crossref_primary_10_1021_acsnano_3c02149
crossref_primary_10_1038_s44160_022_00210_5
crossref_primary_10_1021_acsnano_3c05138
crossref_primary_10_1021_acs_chemrev_3c00097
crossref_primary_10_1039_D2CC05012A
crossref_primary_10_1021_acs_chemmater_1c03432
crossref_primary_10_1080_02603594_2023_2200174
crossref_primary_10_1063_5_0133809
crossref_primary_10_1021_acs_jpcc_2c06036
Cites_doi 10.1021/acs.chemmater.0c01561
10.1021/la1020274
10.1021/acs.chemmater.5b00286
10.1021/acs.chemmater.7b00899
10.1201/9781420018318
10.1021/nl0707149
10.1039/C6CE01489E
10.1021/cm1033172
10.1021/acsnano.8b06468
10.1021/acsnano.0c04091
10.1021/nn900863a
10.1021/acsnano.9b03864
10.1016/0001-8686(87)80009-X
10.1038/nature04165
10.1021/acs.chemmater.1c03432
10.1021/cm402139r
10.1021/cm071410q
10.1002/anie.201505972
10.1021/acs.jpca.7b08368
10.1021/jacs.9b06364
10.1039/C7NR07949D
10.1126/sciadv.abf4741
10.1021/acs.chemmater.9b00962
10.1107/S0021889813005190
10.1002/anie.200603148
10.1021/jacs.6b11021
10.1016/S0927-7757(97)00192-1
10.1039/df9511100055
10.1021/acs.nanolett.5b00199
10.1021/cm0006852
10.1021/acs.chemmater.7b03550
10.1021/jp952869n
10.1021/ja9705102
10.1016/S0927-7757(99)00366-0
10.1021/la0481647
10.1039/C9RA06842B
10.1021/ja9805425
10.1021/nn204008q
10.1146/annurev.matsci.30.1.545
10.1021/acs.nanolett.0c04813
10.1021/ja300978f
10.1021/acs.chemmater.0c00984
10.1021/acs.chemmater.7b02861
10.1021/cm500102q
10.1021/jp040457l
10.1039/C7NR04101B
10.1021/ja9105682
10.1021/ja106777j
10.1021/ja509941g
10.1021/cm3035642
10.1021/acs.chemmater.8b00477
10.1021/ja063166u
10.1002/anie.201311254
10.1126/science.aaa2951
10.1107/S0108767306034635
10.1038/s41467-020-19573-4
10.1021/ja0656696
10.1021/acs.nanolett.5b03790
10.1021/acs.chemmater.8b02205
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2022
Distributed under a Creative Commons Attribution 4.0 International License
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
OTOTI
5PM
DOI 10.1039/d1sc06098h
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed


MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 4565
ExternalDocumentID 1860442
oai_HAL_hal_03863718v1
10_1039_D1SC06098H
35656143
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: NSF-CHE-2004008
– fundername: ;
  grantid: DE- SC0012704
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
NPM
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
AFPKN
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
AAGNR
AAPBV
AFVBQ
OTOTI
5PM
ID FETCH-LOGICAL-c467t-40bbe081b1a9616aa46915c2320719d5c40f6ac30dc5705dba9f14d8c77328673
IEDL.DBID RPM
ISSN 2041-6520
IngestDate Tue Sep 17 20:57:35 EDT 2024
Thu May 18 22:40:22 EDT 2023
Wed Nov 13 07:09:30 EST 2024
Sat Oct 26 04:11:53 EDT 2024
Thu Oct 10 15:40:08 EDT 2024
Fri Aug 23 01:58:34 EDT 2024
Sat Nov 02 12:28:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This journal is © The Royal Society of Chemistry.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-40bbe081b1a9616aa46915c2320719d5c40f6ac30dc5705dba9f14d8c77328673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
M. P. C., J. D. R., M. W. G., and B. M. M. contributed equally to this work.
ORCID 0000-0001-5619-5722
0000-0003-2714-2773
0000-0002-1264-9312
0000-0002-3624-941X
0000-0002-1629-9671
0000-0001-5502-3267
0000000327142773
0000000212649312
0000000156195722
0000000155023267
0000000216299671
000000023624941X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019910/
PMID 35656143
PQID 2652512463
PQPubID 2047492
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9019910
osti_scitechconnect_1860442
hal_primary_oai_HAL_hal_03863718v1
proquest_miscellaneous_2673356425
proquest_journals_2652512463
crossref_primary_10_1039_D1SC06098H
pubmed_primary_35656143
PublicationCentury 2000
PublicationDate 2022-Apr-20
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-Apr-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: United Kingdom
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Byun (D1SC06098H/cit3/1) 2019; 9
Juhas (D1SC06098H/cit51/1) 2013; 46
Widegren (D1SC06098H/cit5/1) 2001; 13
Prins (D1SC06098H/cit63/1) 2021; 21
Abecassis (D1SC06098H/cit13/1) 2010; 26
McMurtry (D1SC06098H/cit17/1) 2020; 32
Saha (D1SC06098H/cit56/1) 2014; 53
Workman Jr. (D1SC06098H/cit46/1) 2007
Turkevich (D1SC06098H/cit64/1) 1951; 11
Bojesen (D1SC06098H/cit54/1) 2016; 18
Jensen (D1SC06098H/cit55/1) 2012; 134
Jansons (D1SC06098H/cit39/1) 2017; 29
Watzky (D1SC06098H/cit4/1) 1997; 119
Terban (D1SC06098H/cit57/1) 2018; 10
Berends (D1SC06098H/cit33/1) 2018; 30
Gary (D1SC06098H/cit19/1) 2015; 27
Garcia-Rodriguez (D1SC06098H/cit6/1) 2013; 25
Sun (D1SC06098H/cit22/1) 2018; 12
Owen (D1SC06098H/cit12/1) 2010; 132
Cui (D1SC06098H/cit20/1) 2016; 16
Gurin (D1SC06098H/cit45/1) 1998; 139
Gary (D1SC06098H/cit18/1) 2014; 26
Bennett (D1SC06098H/cit34/1) 2022; 34
Kodama (D1SC06098H/cit58/1) 2006; 62
Peng (D1SC06098H/cit67/1) 1998; 120
Wang (D1SC06098H/cit7/1) 2014; 26
Abecassis (D1SC06098H/cit62/1) 2015; 15
Campos (D1SC06098H/cit26/1) 2017; 139
Chu (D1SC06098H/cit38/1) 2017; 121
Farrow (D1SC06098H/cit53/1) 2007; 19
Franke (D1SC06098H/cit21/1) 2015; 54
Hamachi (D1SC06098H/cit2/1) 2017; 29
Moreels (D1SC06098H/cit40/1) 2007; 19
Yang (D1SC06098H/cit52/1) 2014
Koh (D1SC06098H/cit28/1) 2010; 132
Abe (D1SC06098H/cit8/1) 2012; 6
Voznyy (D1SC06098H/cit60/1) 2019; 13
Ryu (D1SC06098H/cit61/1) 2021; 7
Sugimoto (D1SC06098H/cit9/1) 1987; 28
Hendricks (D1SC06098H/cit30/1) 2015; 348
Moreels (D1SC06098H/cit48/1) 2009; 3
Green (D1SC06098H/cit59/1) 2020; 32
Preske (D1SC06098H/cit27/1) 2019; 31
Campos (D1SC06098H/cit36/1) 2017; 139
Kane (D1SC06098H/cit41/1) 1996; 100
Campos (D1SC06098H/cit35/1)
Murray (D1SC06098H/cit10/1) 2000; 30
De Nolf (D1SC06098H/cit23/1) 2015; 137
Handwerk (D1SC06098H/cit66/1) 2019; 141
Park (D1SC06098H/cit1/1) 2007; 46
Yin (D1SC06098H/cit11/1) 2005; 437
Abecassis (D1SC06098H/cit14/1) 2007; 7
Zeng (D1SC06098H/cit42/1) 2005; 109
Abécassis (D1SC06098H/cit44/1)
Watzky (D1SC06098H/cit15/1) 1997; 119
Liu (D1SC06098H/cit16/1) 2007; 129
Koh (D1SC06098H/cit29/1) 2011; 23
Tappan (D1SC06098H/cit32/1) 2018; 30
Cademartiri (D1SC06098H/cit47/1) 2006; 128
Mozaffari (D1SC06098H/cit65/1) 2017; 9
Rhodes (D1SC06098H/cit31/1) 2017; 29
Wu (D1SC06098H/cit43/1) 2005; 21
Park (D1SC06098H/cit24/1) 2020; 14
Park (D1SC06098H/cit25/1) 2020; 11
Sugimoto (D1SC06098H/cit37/1) 2000; 164
References_xml – volume: 32
  start-page: 4358
  issue: 10
  year: 2020
  ident: D1SC06098H/cit17/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01561
  contributor:
    fullname: McMurtry
– volume: 26
  start-page: 13847
  issue: 17
  year: 2010
  ident: D1SC06098H/cit13/1
  publication-title: Langmuir
  doi: 10.1021/la1020274
  contributor:
    fullname: Abecassis
– volume: 27
  start-page: 1432
  issue: 4
  year: 2015
  ident: D1SC06098H/cit19/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00286
  contributor:
    fullname: Gary
– volume: 29
  start-page: 5415
  issue: 13
  year: 2017
  ident: D1SC06098H/cit39/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00899
  contributor:
    fullname: Jansons
– volume-title: Practical Guide to Interpretive Near-Infrared Spectroscopy
  year: 2007
  ident: D1SC06098H/cit46/1
  doi: 10.1201/9781420018318
  contributor:
    fullname: Workman Jr.
– volume: 7
  start-page: 1723
  issue: 6
  year: 2007
  ident: D1SC06098H/cit14/1
  publication-title: Nano Lett.
  doi: 10.1021/nl0707149
  contributor:
    fullname: Abecassis
– volume: 18
  start-page: 8332
  issue: 43
  year: 2016
  ident: D1SC06098H/cit54/1
  publication-title: Crystengcomm
  doi: 10.1039/C6CE01489E
  contributor:
    fullname: Bojesen
– volume: 23
  start-page: 1825
  issue: 7
  year: 2011
  ident: D1SC06098H/cit29/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm1033172
  contributor:
    fullname: Koh
– volume: 12
  start-page: 12393
  issue: 12
  year: 2018
  ident: D1SC06098H/cit22/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06468
  contributor:
    fullname: Sun
– volume: 14
  start-page: 11579
  issue: 9
  year: 2020
  ident: D1SC06098H/cit24/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04091
  contributor:
    fullname: Park
– volume: 3
  start-page: 3023
  issue: 10
  year: 2009
  ident: D1SC06098H/cit48/1
  publication-title: ACS Nano
  doi: 10.1021/nn900863a
  contributor:
    fullname: Moreels
– volume: 19
  start-page: 335129
  issue: 33
  year: 2007
  ident: D1SC06098H/cit53/1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Farrow
– ident: D1SC06098H/cit35/1
  contributor:
    fullname: Campos
– volume: 13
  start-page: 11122
  issue: 10
  year: 2019
  ident: D1SC06098H/cit60/1
  publication-title: Acs Nano
  doi: 10.1021/acsnano.9b03864
  contributor:
    fullname: Voznyy
– volume: 28
  start-page: 65
  issue: 1
  year: 1987
  ident: D1SC06098H/cit9/1
  publication-title: Adv. Colloid Interface
  doi: 10.1016/0001-8686(87)80009-X
  contributor:
    fullname: Sugimoto
– volume: 437
  start-page: 664
  issue: 7059
  year: 2005
  ident: D1SC06098H/cit11/1
  publication-title: Nature
  doi: 10.1038/nature04165
  contributor:
    fullname: Yin
– volume: 34
  start-page: 706
  issue: 2
  year: 2022
  ident: D1SC06098H/cit34/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c03432
  contributor:
    fullname: Bennett
– volume: 26
  start-page: 5
  year: 2014
  ident: D1SC06098H/cit7/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm402139r
  contributor:
    fullname: Wang
– volume: 19
  start-page: 6101
  issue: 25
  year: 2007
  ident: D1SC06098H/cit40/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm071410q
  contributor:
    fullname: Moreels
– volume: 54
  start-page: 14299
  issue: 48
  year: 2015
  ident: D1SC06098H/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505972
  contributor:
    fullname: Franke
– volume: 121
  start-page: 7511
  issue: 40
  year: 2017
  ident: D1SC06098H/cit38/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b08368
  contributor:
    fullname: Chu
– volume: 141
  start-page: 15827
  issue: 40
  year: 2019
  ident: D1SC06098H/cit66/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06364
  contributor:
    fullname: Handwerk
– volume: 10
  start-page: 4291
  issue: 9
  year: 2018
  ident: D1SC06098H/cit57/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR07949D
  contributor:
    fullname: Terban
– volume: 7
  start-page: eabf4741
  issue: 22
  year: 2021
  ident: D1SC06098H/cit61/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4741
  contributor:
    fullname: Ryu
– volume: 31
  start-page: 8301
  issue: 20
  year: 2019
  ident: D1SC06098H/cit27/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00962
  contributor:
    fullname: Preske
– volume: 46
  start-page: 560
  year: 2013
  ident: D1SC06098H/cit51/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813005190
  contributor:
    fullname: Juhas
– volume: 46
  start-page: 4630
  issue: 25
  year: 2007
  ident: D1SC06098H/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200603148
  contributor:
    fullname: Park
– volume: 139
  start-page: 2296
  issue: 6
  year: 2017
  ident: D1SC06098H/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11021
  contributor:
    fullname: Campos
– volume: 139
  start-page: 1
  issue: 1
  year: 1998
  ident: D1SC06098H/cit45/1
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(97)00192-1
  contributor:
    fullname: Gurin
– volume: 11
  start-page: 55
  year: 1951
  ident: D1SC06098H/cit64/1
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9511100055
  contributor:
    fullname: Turkevich
– volume: 15
  start-page: 2620
  issue: 4
  year: 2015
  ident: D1SC06098H/cit62/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00199
  contributor:
    fullname: Abecassis
– volume: 13
  start-page: 312
  issue: 2
  year: 2001
  ident: D1SC06098H/cit5/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm0006852
  contributor:
    fullname: Widegren
– volume: 29
  start-page: 8521
  issue: 19
  year: 2017
  ident: D1SC06098H/cit31/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03550
  contributor:
    fullname: Rhodes
– volume: 100
  start-page: 7928
  issue: 19
  year: 1996
  ident: D1SC06098H/cit41/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952869n
  contributor:
    fullname: Kane
– volume: 119
  start-page: 10382
  issue: 43
  year: 1997
  ident: D1SC06098H/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9705102
  contributor:
    fullname: Watzky
– volume: 164
  start-page: 183
  issue: 2–3
  year: 2000
  ident: D1SC06098H/cit37/1
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(99)00366-0
  contributor:
    fullname: Sugimoto
– volume: 21
  start-page: 686
  issue: 2
  year: 2005
  ident: D1SC06098H/cit43/1
  publication-title: Langmuir
  doi: 10.1021/la0481647
  contributor:
    fullname: Wu
– volume: 9
  start-page: 37895
  issue: 65
  year: 2019
  ident: D1SC06098H/cit3/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA06842B
  contributor:
    fullname: Byun
– volume: 120
  start-page: 5343
  issue: 21
  year: 1998
  ident: D1SC06098H/cit67/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9805425
  contributor:
    fullname: Peng
– volume: 6
  start-page: 42
  issue: 1
  year: 2012
  ident: D1SC06098H/cit8/1
  publication-title: ACS Nano
  doi: 10.1021/nn204008q
  contributor:
    fullname: Abe
– volume: 30
  start-page: 545
  year: 2000
  ident: D1SC06098H/cit10/1
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.30.1.545
  contributor:
    fullname: Murray
– volume: 21
  start-page: 2487
  issue: 6
  year: 2021
  ident: D1SC06098H/cit63/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04813
  contributor:
    fullname: Prins
– volume: 134
  start-page: 6785
  issue: 15
  year: 2012
  ident: D1SC06098H/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300978f
  contributor:
    fullname: Jensen
– volume: 32
  start-page: 4083
  issue: 9
  year: 2020
  ident: D1SC06098H/cit59/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00984
  contributor:
    fullname: Green
– volume: 29
  start-page: 8711
  issue: 20
  year: 2017
  ident: D1SC06098H/cit2/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02861
  contributor:
    fullname: Hamachi
– year: 2014
  ident: D1SC06098H/cit52/1
  contributor:
    fullname: Yang
– volume: 26
  start-page: 1734
  issue: 4
  year: 2014
  ident: D1SC06098H/cit18/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm500102q
  contributor:
    fullname: Gary
– volume: 109
  start-page: 1616
  issue: 8
  year: 2005
  ident: D1SC06098H/cit42/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp040457l
  contributor:
    fullname: Zeng
– volume: 9
  start-page: 13772
  issue: 36
  year: 2017
  ident: D1SC06098H/cit65/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR04101B
  contributor:
    fullname: Mozaffari
– volume: 132
  start-page: 3909
  issue: 11
  year: 2010
  ident: D1SC06098H/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9105682
  contributor:
    fullname: Koh
– volume: 132
  start-page: 18206
  issue: 51
  year: 2010
  ident: D1SC06098H/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106777j
  contributor:
    fullname: Owen
– volume: 137
  start-page: 2495
  issue: 7
  year: 2015
  ident: D1SC06098H/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509941g
  contributor:
    fullname: De Nolf
– volume-title: Persistent Nucleation and Size Dependent Attachment Kinetics Produce Monodisperse PbS Nanocrystals
  ident: D1SC06098H/cit44/1
  contributor:
    fullname: Abécassis
– volume: 25
  start-page: 1233
  issue: 8
  year: 2013
  ident: D1SC06098H/cit6/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm3035642
  contributor:
    fullname: Garcia-Rodriguez
– volume: 30
  start-page: 2400
  issue: 7
  year: 2018
  ident: D1SC06098H/cit33/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00477
  contributor:
    fullname: Berends
– volume: 128
  start-page: 10337
  issue: 31
  year: 2006
  ident: D1SC06098H/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063166u
  contributor:
    fullname: Cademartiri
– volume: 53
  start-page: 3667
  issue: 14
  year: 2014
  ident: D1SC06098H/cit56/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311254
  contributor:
    fullname: Saha
– volume: 119
  start-page: 10382
  issue: 43
  year: 1997
  ident: D1SC06098H/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9705102
  contributor:
    fullname: Watzky
– volume: 348
  start-page: 1226
  issue: 6240
  year: 2015
  ident: D1SC06098H/cit30/1
  publication-title: Science
  doi: 10.1126/science.aaa2951
  contributor:
    fullname: Hendricks
– volume: 62
  start-page: 444
  year: 2006
  ident: D1SC06098H/cit58/1
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767306034635
  contributor:
    fullname: Kodama
– volume: 139
  start-page: 2296
  issue: 6
  year: 2017
  ident: D1SC06098H/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11021
  contributor:
    fullname: Campos
– volume: 11
  start-page: 5748
  issue: 1
  year: 2020
  ident: D1SC06098H/cit25/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19573-4
  contributor:
    fullname: Park
– volume: 129
  start-page: 305
  issue: 2
  year: 2007
  ident: D1SC06098H/cit16/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0656696
  contributor:
    fullname: Liu
– volume: 16
  start-page: 289
  issue: 1
  year: 2016
  ident: D1SC06098H/cit20/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03790
  contributor:
    fullname: Cui
– volume: 30
  start-page: 5704
  issue: 16
  year: 2018
  ident: D1SC06098H/cit32/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02205
  contributor:
    fullname: Tappan
SSID ssj0000331527
Score 2.5063841
Snippet A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( = 10 to 10 s...
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range ( k r = 10 −1 to...
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (kr = 10−1 to...
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to...
Colloidal lead chalcogenide nanocrystals nucleate slowly throughout their synthesis rather than in a burst. There is no correlation between the temporal width...
SourceID pubmedcentral
osti
hal
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 4555
SubjectTerms Absorption spectra
Chemical Sciences
Chemistry
Density functional theory
Distribution functions
High temperature
Kinetics
Lead selenides
Low temperature
Nanocrystals
Nucleation
Polydispersity
Reaction time
Size distribution
Title Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals
URI https://www.ncbi.nlm.nih.gov/pubmed/35656143
https://www.proquest.com/docview/2652512463
https://www.proquest.com/docview/2673356425
https://hal.science/hal-03863718
https://www.osti.gov/biblio/1860442
https://pubmed.ncbi.nlm.nih.gov/PMC9019910
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tRYK9IL4JG5X5eM1qxx9pHqfCqBBD00ZReYoc21EruqRaM6Tx13N2k6pFPPEUJU4k6-5897v47meA94nFOKRxfduMlbHQ3MVFyrNYW6ZTrqUoQ4f3-Vc1mYrPMzk7ANn1woSifVMsTqrl9Um1mIfaytW1GXZ1YsOL8zHGMIQ1dNiDHhroTooe3C_n7VGtCRUsVjKhHS0pz4aWrQ1VNBvND-E-92gmNOzsxKTe3FdE9mtcYf9CnX8XT-5Eo7NH8LCFkeR0M93HcOCqJ_Bg3J3e9hQuP2F-3czJT0SRnomZ2LbuxRGEfGRVL-_swrOE-5oMoitL1ovfjtQluSiuwj1eHal0VZubO4SQy_UzmJ59_DaexO35CbFB99dgalgUDkN-wXSmmNIaU2EmDWIoxBWZlUbQUmnDqTUypdIWOiuZsCOTegYflfLn0K_qyr0EkpXCMomu0DOeSdS6tFIUBuU3sk7RIoJ3nQTz1YYmIw_b2zzLP7CrcRD5JIK3KNztC57ZenL6JffPKB8pjnHyF4vgyMs-RwTgaWyNr_cxTc5GigqRRHDcqSRvV9s6T1DJCFyE4hG82Q6jwP3mh65cfevfSTnqG11UBC82GtxOpLODCNI93e7NdH8ETTNwcbem-Oq_vzyCw8R3VFCBDusY-s3NrXuNOKcpBuH_wCBY9wDuXX6fzn78AaKy_f4
link.rule.ids 230,315,730,783,787,867,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aisT2griOsAHm8prVji9JHqfCCNBOE9ukvUWO7agVXVKtGdL49RynSdUinniKEjuSda6f5XM-A3yMLOYhjf5tU1aGQnMXFjFPQ22ZjrmWomw7vCdnKrsS367l9Q7IvhemLdo3xey4mt8cV7NpW1u5uDHDvk5seD4ZYQ5DWEOHu_AA_ZWKjU16G4A57y5rjahgoZIR7YlJeTq0bGmoomky3YeH3OOZtmVnIyvtTn1N5KBGH_sX7vy7fHIjH50-hkcdkCQnqwU_gR1XPYW9UX9_2zP48QV32M2U_EQc6bmYie0qXxxB0EcW9fzezjxPuK_KILqyZDn77UhdkvPion3HpyOVrmpze48gcr58Dlenny9HWdjdoBAaDIANbg6LwmHSL5hOFVNa42aYSYMoCpFFaqURtFTacGqNjKm0hU5LJmxiYs_ho2L-AgZVXbmXQNJSWCYxGHrOM4l6l1aKwqD8EusULQL40EswX6yIMvL2gJun-Sd2MWpFngXwHoW7nuC5rbOTce6_UZ4ojpnyFwvg0Ms-RwzgiWyNr_gxTc4SRYWIAjjqVZJ3_rbMI1QyQheheADv1sMocH_8oStX3_k5MUd9Y5AK4GClwfVCejsIIN7S7dZKt0fQOFs27s4YX_33n29hL7ucjPPx17Pvh7Af-f4KKjB8HcGgub1zrxH1NMWb1sb_ADa7_o4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5iRRp7mbgTNsBcXrPY8SXJ49RRCmxTxZi0t8ixHbWiS6o1mzR-PcdpUrWIJ56ixI5knetn-fg7AJ9ii3lIo3_bjJWh0NyFRcKzUFumE66lKNsb3mfnanwpvl3Jq41WX23RvilmR9X8-qiaTdvaysW1ifo6sWhyNsQchrCGRgtbRjvwEH2Wqo2NehuEOe8atsZUsFDJmPbkpDyLLFsaqmiWTvdgl3tM017b2chMO1NfFzmo0c_-hT3_LqHcyEmjx7DfgUlyvFr0E3jgqqfwaNj3cHsGP77gLruZkl-IJT0fM7Fd9YsjCPzIop7f25nnCveVGURXlixnvx2pSzIpLtp3fDpS6ao2N_cIJOfL53A5-vxzOA67LgqhwSDY4AaxKBwm_oLpTDGlNW6ImTSIpBBdZFYaQUulDafWyIRKW-isZMKmJvE8PirhL2BQ1ZV7BSQrhWUSA6LnPZOoe2mlKAzKL7VO0SKAj70E88WKLCNvD7l5lp-wi2Er8nEAH1C46wme33p8fJr7b5SnimO2vGMBHHjZ54gDPJmt8VU_pslZqqgQcQCHvUryzueWeYxKRvgiFA_g_XoYBe6PQHTl6ls_J-GobwxUAbxcaXC9kN4OAki2dLu10u0RNNCWkbszyNf__ec72J2cjPLTr-ffD2Av9lcsqMAIdgiD5ubWvUHg0xRvWxP_A-mK_6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+kinetics+determine+the+polydispersity+and+size+of+PbS+and+PbSe+nanocrystals&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Campos%2C+Michael+P.&rft.au=De+Roo%2C+Jonathan&rft.au=Greenberg%2C+Matthew+W.&rft.au=McMurtry%2C+Brandon+M.&rft.date=2022-04-20&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=13&rft.issue=16&rft.spage=4555&rft.epage=4565&rft_id=info:doi/10.1039%2Fd1sc06098h&rft_id=info%3Apmid%2F35656143&rft.externalDBID=PMC9019910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon