Subphysiological Compressive Loading Reduces Apoptosis Following Acute Impact Injury in a Porcine Cartilage Model

Background: Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine a...

Full description

Saved in:
Bibliographic Details
Published inSports health Vol. 6; no. 1; pp. 81 - 88
Main Authors Vernon, Lauren, Abadin, Andre, Wilensky, David, Huang, C.-Y. Charles, Kaplan, Lee
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs. Hypothesis: Compressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury. Study Design: In vitro controlled laboratory study. Level of Evidence: Level 5. Methods: Each experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction. Results: Cell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions. Conclusion: In this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability. Clinical Relevance: Therapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.
AbstractList Background: Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs. Hypothesis: Compressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury. Study Design: In vitro controlled laboratory study. Level of Evidence: Level 5. Methods: Each experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction. Results: Cell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions. Conclusion: In this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability. Clinical Relevance: Therapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.
BACKGROUNDAcute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs.HYPOTHESISCompressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury.STUDY DESIGNIn vitro controlled laboratory study.LEVEL OF EVIDENCELevel 5.METHODSEach experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction.RESULTSCell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions.CONCLUSIONIn this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability.CLINICAL RELEVANCETherapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.
Background:Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs.Hypothesis:Compressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury.Study Design:In vitro controlled laboratory study.Level of Evidence:Level 5.Methods:Each experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction.Results:Cell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions.Conclusion:In this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability.Clinical Relevance:Therapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.
Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs. Compressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury. In vitro controlled laboratory study. Level 5. Each experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction. Cell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions. In this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability. Therapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.
Author Abadin, Andre
Wilensky, David
Kaplan, Lee
Huang, C.-Y. Charles
Vernon, Lauren
AuthorAffiliation Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Hospital, Miami, Florida
AuthorAffiliation_xml – name: Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
– name: Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Hospital, Miami, Florida
Author_xml – sequence: 1
  givenname: Lauren
  surname: Vernon
  fullname: Vernon, Lauren
– sequence: 2
  givenname: Andre
  surname: Abadin
  fullname: Abadin, Andre
– sequence: 3
  givenname: David
  surname: Wilensky
  fullname: Wilensky, David
– sequence: 4
  givenname: C.-Y. Charles
  surname: Huang
  fullname: Huang, C.-Y. Charles
  email: c.huang@miami.edu
– sequence: 5
  givenname: Lee
  surname: Kaplan
  fullname: Kaplan, Lee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24427447$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS3Uin7AnRPykUuKx3bs-IK0WrWw0qJWBc6Wkzhbrxw7tZOi_e_JarcVICFOY837zdN43gU6CTFYhN4BuQKQ8iMoDpJVAKwknEn1Cp3vWwVRFE6O771-hi5y3hIiuAD5Gp1RzqnkXJ6jx29TPTzssos-blxjPF7Gfkg2Z_dk8Tqa1oUNvrft1NiMF0McxphdxjfR-_hzry2aabR41Q-mGfEqbKe0wy5gg-9ialyweGnS6LzZWPw1tta_Qaed8dm-PdZL9OPm-vvyS7G-_bxaLtZFw4UcC1bWFmpKAExbdaIGaEumKkZq1ZaqkzU3HVWiVZUwZQ21rYDRijBTtrLknLNL9OngO0x1b9vGhjEZr4fkepN2Ohqn_1SCe9Cb-KRZJTml5Wzw4WiQ4uNk86h7lxvrvQk2TlmDoFQAIcD-j3JFhColqWaUHNAmxZyT7V42AqL3oeq_Q51H3v_-k5eB5xRnoDgAeb6y3sYphfmy_zb8BeTQrHw
CitedBy_id crossref_primary_10_1016_j_isci_2024_109983
crossref_primary_10_1016_j_jbiomech_2021_110736
crossref_primary_10_1016_j_joca_2015_05_010
crossref_primary_10_1177_0300985815588611
crossref_primary_10_3390_ijms22073726
crossref_primary_10_1002_jor_23086
crossref_primary_10_3390_bioengineering11020110
crossref_primary_10_1177_1947603515618483
crossref_primary_10_3389_fbioe_2022_886360
Cites_doi 10.1016/S0736-0266(00)00066-8
10.1016/j.joca.2004.06.008
10.1007/s10237-011-0338-7
10.1002/jor.20673
10.1007/s004330050108
10.1002/jor.1100110514
10.1136/ard.49.7.536
10.1006/meth.2001.1262
10.1006/abbi.1995.1439
10.1002/art.33332
10.1053/joca.2001.0483
10.1097/00003086-198905000-00003
10.1097/00003086-200401000-00043
10.2106/00004623-198062080-00002
10.1016/S0021-9290(96)00117-0
10.1002/1529-0131(199811)41:11<2068::AID-ART23>3.0.CO;2-L
10.1016/j.joca.2006.10.015
10.1038/nprot.2006.83
10.1097/01.bot.0000246468.80635.ef
10.1097/01.bor.0000132647.55056.a9
10.1136/ard.2003.008136
10.1016/0003-2697(87)90021-2
10.1016/j.joca.2009.07.012
10.1002/art.21415
10.1016/j.joca.2009.03.007
10.1053/joca.1998.0204
10.2519/jospt.2006.2228
10.1016/j.jbiomech.2007.06.002
10.1002/jor.1100070216
10.2519/jospt.2012.3665
10.1053/joca.2001.0468
10.1002/art.23176
10.2106/00004623-197759080-00012
10.2106/00004623-198971090-00015
10.1177/0954411911428717
10.1016/0021-9290(94)00103-B
10.1177/0095399703258733
ContentType Journal Article
Copyright 2013 The Author(s)
2013 The Author(s) 2013 American Orthopaedic Society for Sports Medicine
Copyright_xml – notice: 2013 The Author(s)
– notice: 2013 The Author(s) 2013 American Orthopaedic Society for Sports Medicine
DBID NPM
AAYXX
CITATION
7X8
7TS
5PM
DOI 10.1177/1941738113504379
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Physical Education Index
DatabaseTitleList
MEDLINE - Academic
Physical Education Index
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1941-0921
EndPage 88
ExternalDocumentID 10_1177_1941738113504379
24427447
10.1177_1941738113504379
Genre Journal Article
GroupedDBID -MK
-TM
.2E
.2J
.2N
.WF
01A
0R~
18M
1~K
31R
31U
31X
31Z
4.4
53G
54M
5VS
AABMB
AABOD
AACMV
AACTG
AADTT
AADUE
AAEWN
AAGMC
AAJPV
AAKDD
AAKGS
AAQDB
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABEIX
ABFWQ
ABHQH
ABJIS
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABVFX
ACDSZ
ACDXX
ACFEJ
ACGFO
ACGFS
ACGZU
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACROE
ACSBE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADRRZ
ADZZY
AECGH
AEDTQ
AEFTW
AEKYL
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHHFK
AIDAL
AIOMO
AJUZI
AJXAJ
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ALTZF
AMCVQ
ANDLU
AOIJS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B3H
B8M
B8R
B8Z
B94
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
BYIEH
C45
CAG
CDWPY
CFDXU
COF
DB0
DC-
DF0
DO-
DOPDO
DV7
DV9
DXH
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HF~
HVGLF
HYE
HZ~
J8X
JCYGO
K.F
KQ8
M4V
N9A
O9-
OK1
OVD
P.B
P2P
Q7L
Q7U
Q83
ROL
RPM
S01
SCNPE
SDB
SFC
SFK
SFT
SGO
SGR
SGV
SGZ
SHG
SNB
SPJ
SPP
SPQ
SPV
STM
TEORI
Y4B
ZONMY
ZPPRI
ZRKOI
ZSSAH
ACARO
ACJER
AEILP
ALKWR
H13
NPM
AAYXX
CITATION
7X8
7TS
5PM
ID FETCH-LOGICAL-c467t-35be1b2011ad8f6b11d539830b9d59f7b4af296d986a5b1be8132803a5d754443
IEDL.DBID RPM
ISSN 1941-7381
1941-0921
IngestDate Tue Sep 17 21:09:41 EDT 2024
Sat Aug 17 01:14:11 EDT 2024
Fri Aug 16 20:42:28 EDT 2024
Thu Sep 12 20:30:43 EDT 2024
Sat Sep 28 07:58:03 EDT 2024
Tue Jul 16 20:37:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords chondrocyte viability
cartilage gene expression
compressive loading
osteoarthritis prevention
impact injury
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-35be1b2011ad8f6b11d539830b9d59f7b4af296d986a5b1be8132803a5d754443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874225/
PMID 24427447
PQID 1490695708
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3874225
proquest_miscellaneous_1622610013
proquest_miscellaneous_1490695708
crossref_primary_10_1177_1941738113504379
pubmed_primary_24427447
sage_journals_10_1177_1941738113504379
PublicationCentury 2000
PublicationDate 20140100
2014-Jan
2014-01-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140100
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Sports health
PublicationTitleAlternate Sports Health
PublicationYear 2014
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Mithoefer, Hambly, Logerstedt, Ricci, Silvers, Della Villa 2012; 42
Griffin, Huebner, Kraus, Yan, Guilak 2012; 64
Taylor, Tsiridis, Ingham, Jin, Fisher, Williams 2012; 226
D’Lima, Hashimoto, Chen, Colwell, Lotz 2001; 9
Chomczynski, Sacchi 2006; 1
Steinmeyer, Knue, Raiss, Pelzer 1999; 7
Burton-Wurster, Vernier-Singer, Farquhar, Lust 1993; 11
Chomczynski, Sacchi 1987; 162
Pascual Garrido, Hakimiyan, Rappoport, Oegema, Wimmer, Chubinskaya 2009; 17
Buckwalter, Martin 2004; 16
Reinold, Wilk, Macrina, Dugas, Cain 2006; 36
Salter, Simmonds, Malcolm, Rumble, MacMichael, Clements 1980; 62
Otterness, Eskra, Bliven, Shay, Pelletier, Milici 1998; 41
Verteramo, Seedhom 2007; 40
Chen, Burton-Wurster, Borden, Hueffer, Bloom, Lust 2001; 19
Chomczynski 1993; 15
Lawrence, Felson, Helmick 2008; 58
Mitrovic, Quintero, Stankovic, Ryckewaert 1983; 49
Buckwalter, Mankin 1998; 47
Repo, Finlay 1977; 59
Ball, Amiel, Williams 2004; 418
Nugent-Derfus, Takara, O’Neill 2007; 15
O’Hara, Urban, Maroudas 1990; 49
Wei, Golenberg, Kepich, Haut 2008; 26
Salter 1989; 242
Williams, Dreese, Chen 2004; 32
Bader, Salter, Chowdhury
Livak, Schmittgen 2001; 25
Torzilli, Grigiene, Huang 1997; 30
Ronken, Arnold, Ardura Garcia, Jeger, Daniels, Wirz 2012; 11
Jeffrey, Gregory, Aspden 1995; 322
Zimmerman, Smith, Pottenger, Cooperman 1988
von Porat, Roos, Roos 2004; 63
Roos, Dahlberg 2005; 52
Galois, Etienne, Grossin 2004; 12
Steinmeyer, Ackermann 1999; 198
Suh, Li, Woo 1995; 28
Lucchinetti, Adams, Horton, Torzilli 2002; 10
Drobnic, Mars, Alibegovic 2005; 51
Majno, Joris 1995; 146
Hodge, Carlson, Fijan 1989; 71
Trzeciak, Richter, Ruszkowski 2011; 76
Haut 1989; 7
Brown, Johnston, Saltzman, Marsh, Buckwalter 2006; 20
Torzilli, Bhargava, Park, Chen 2010; 18
22708322 - Chir Narzadow Ruchu Ortop Pol. 2011 Nov-Dec;76(6):345-9
18163497 - Arthritis Rheum. 2008 Jan;58(1):26-35
6193331 - Lab Invest. 1983 Sep;49(3):309-16
7440603 - J Bone Joint Surg Am. 1980 Dec;62(8):1232-51
2650945 - Clin Orthop Relat Res. 1989 May;(242):12-25
18524003 - J Orthop Res. 2008 Dec;26(12):1636-42
17406285 - Nat Protoc. 2006;1(2):581-5
15314507 - Curr Opin Rheumatol. 2004 Sep;16(5):634-9
17106388 - J Orthop Trauma. 2006 Nov-Dec;20(10):739-44
21769620 - Biomech Model Mechanobiol. 2012 May;11(5):631-9
7856735 - Am J Pathol. 1995 Jan;146(1):3-15
15450527 - Osteoarthritis Cartilage. 2004 Oct;12(10):779-86
14754736 - Am J Sports Med. 2004 Jan-Feb;32(1):132-9
11846609 - Methods. 2001 Dec;25(4):402-8
11795990 - Osteoarthritis Cartilage. 2001 Nov;9(8):712-9
22383103 - J Orthop Sports Phys Ther. 2012 Mar;42(3):254-73
17157538 - Osteoarthritis Cartilage. 2007 May;15(5):566-74
2383080 - Ann Rheum Dis. 1990 Jul;49(7):536-9
16180545 - Folia Biol (Praha). 2005;51(4):103-8
17662988 - J Biomech. 2007;40(16):3580-9
8970918 - J Biomech. 1997 Jan;30(1):1-9
9571450 - Instr Course Lect. 1998;47:487-504
17063839 - J Orthop Sports Phys Ther. 2006 Oct;36(10):774-94
11518282 - J Orthop Res. 2001 Jul;19(4):703-11
11795985 - Osteoarthritis Cartilage. 2002 Jan;10(1):71-81
21953366 - Arthritis Rheum. 2012 Feb;64(2):443-53
2440339 - Anal Biochem. 1987 Apr;162(1):156-9
19747586 - Osteoarthritis Cartilage. 2010 Jan;18(1):97-105
2793891 - J Bone Joint Surg Am. 1989 Oct;71(9):1378-86
9811063 - Arthritis Rheum. 1998 Nov;41(11):2068-76
7738045 - J Biomech. 1995 Apr;28(4):357-64
7574698 - Arch Biochem Biophys. 1995 Sep 10;322(1):87-96
15043126 - Clin Orthop Relat Res. 2004 Jan;(418):246-52
19332178 - Osteoarthritis Cartilage. 2009 Sep;17(9):1244-51
22888585 - Proc Inst Mech Eng H. 2012 Jan;226(1):55-62
10222214 - Osteoarthritis Cartilage. 1999 Mar;7(2):155-64
2918426 - J Orthop Res. 1989;7(2):272-80
10209760 - Res Exp Med (Berl). 1999 Mar;198(5):247-60
14962961 - Ann Rheum Dis. 2004 Mar;63(3):269-73
7692896 - Biotechniques. 1993 Sep;15(3):532-4, 536-7
3349690 - Clin Orthop Relat Res. 1988 Apr;(229):302-7
8410472 - J Orthop Res. 1993 Sep;11(5):717-29
591538 - J Bone Joint Surg Am. 1977 Dec;59(8):1068-76
16258919 - Arthritis Rheum. 2005 Nov;52(11):3507-14
bibr43-1941738113504379
bibr13-1941738113504379
Buckwalter JA (bibr4-1941738113504379) 1998; 47
bibr26-1941738113504379
bibr5-1941738113504379
Trzeciak T (bibr40-1941738113504379) 2011; 76
bibr39-1941738113504379
bibr22-1941738113504379
bibr27-1941738113504379
bibr9-1941738113504379
bibr14-1941738113504379
bibr35-1941738113504379
bibr42-1941738113504379
bibr18-1941738113504379
bibr38-1941738113504379
bibr25-1941738113504379
bibr3-1941738113504379
bibr34-1941738113504379
Zimmerman NB (bibr45-1941738113504379) 1988
bibr17-1941738113504379
Mitrovic D (bibr23-1941738113504379) 1983; 49
bibr30-1941738113504379
bibr7-1941738113504379
bibr37-1941738113504379
bibr29-1941738113504379
bibr11-1941738113504379
bibr2-1941738113504379
bibr24-1941738113504379
Majno G (bibr21-1941738113504379) 1995; 146
Chomczynski P (bibr8-1941738113504379) 1993; 15
bibr16-1941738113504379
bibr33-1941738113504379
Drobnic M (bibr12-1941738113504379) 2005; 51
bibr31-1941738113504379
bibr44-1941738113504379
bibr36-1941738113504379
bibr20-1941738113504379
Bader DL (bibr1-1941738113504379)
bibr6-1941738113504379
bibr10-1941738113504379
bibr15-1941738113504379
bibr28-1941738113504379
bibr41-1941738113504379
bibr19-1941738113504379
bibr32-1941738113504379
References_xml – volume: 58
  start-page: 26
  year: 2008
  end-page: 35
  article-title: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II
  publication-title: Arthritis Rheum
  contributor:
    fullname: Helmick
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method
  publication-title: Methods
  contributor:
    fullname: Schmittgen
– volume: 59
  start-page: 1068
  year: 1977
  end-page: 1076
  article-title: Survival of articular cartilage after controlled impact
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Finlay
– volume: 16
  start-page: 634
  year: 2004
  end-page: 639
  article-title: Sports and osteoarthritis
  publication-title: Curr Opin Rheumatol
  contributor:
    fullname: Martin
– start-page: 302
  issue: 229
  year: 1988
  end-page: 307
  article-title: Mechanical disruption of human patellar cartilage by repetitive loading in vitro
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Cooperman
– volume: 18
  start-page: 97
  year: 2010
  end-page: 105
  article-title: Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Chen
– volume: 1
  start-page: 581
  year: 2006
  end-page: 585
  article-title: The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on
  publication-title: Nat Protoc
  contributor:
    fullname: Sacchi
– volume: 49
  start-page: 309
  year: 1983
  end-page: 316
  article-title: Cell density of adult human femoral condylar articular cartilage: joints with normal and fibrillated surfaces
  publication-title: Lab Invest
  contributor:
    fullname: Ryckewaert
– volume: 41
  start-page: 2068
  year: 1998
  end-page: 2076
  article-title: Exercise protects against articular cartilage degeneration in the hamster
  publication-title: Arthritis Rheum
  contributor:
    fullname: Milici
– volume: 47
  start-page: 487
  year: 1998
  end-page: 504
  article-title: Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation
  publication-title: Instr Course Lect
  contributor:
    fullname: Mankin
– volume: 11
  start-page: 717
  year: 1993
  end-page: 729
  article-title: Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants
  publication-title: J Orthop Res
  contributor:
    fullname: Lust
– volume: 242
  start-page: 12
  year: 1989
  end-page: 25
  article-title: The biologic concept of continuous passive motion of synovial joints: the first 18 years of basic research and its clinical application
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Salter
– volume: 162
  start-page: 156
  year: 1987
  end-page: 159
  article-title: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
  publication-title: Anal Biochem
  contributor:
    fullname: Sacchi
– volume: 63
  start-page: 269
  year: 2004
  end-page: 273
  article-title: High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes
  publication-title: Ann Rheum Dis
  contributor:
    fullname: Roos
– volume: 19
  start-page: 703
  year: 2001
  end-page: 711
  article-title: Chondrocyte necrosis and apoptosis in impact damaged articular cartilage
  publication-title: J Orthop Res
  contributor:
    fullname: Lust
– volume: 198
  start-page: 247
  year: 1999
  end-page: 260
  article-title: The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants
  publication-title: Res Exp Med (Berl)
  contributor:
    fullname: Ackermann
– volume: 12
  start-page: 779
  year: 2004
  end-page: 786
  article-title: Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Grossin
– volume: 11
  start-page: 631
  year: 2012
  end-page: 639
  article-title: A comparison of healthy human and swine articular cartilage dynamic indentation mechanics
  publication-title: Biomech Model Mechanobiol
  contributor:
    fullname: Wirz
– volume: 226
  start-page: 55
  year: 2012
  end-page: 62
  article-title: Comparison of human and animal femoral head chondral properties and geometries
  publication-title: Proc Inst Mech Eng H
  contributor:
    fullname: Williams
– volume: 418
  start-page: 246
  year: 2004
  end-page: 252
  article-title: The effects of storage on fresh human osteochondral allografts
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Williams
– volume: 49
  start-page: 536
  year: 1990
  end-page: 539
  article-title: Influence of cyclic loading on the nutrition of articular cartilage
  publication-title: Ann Rheum Dis
  contributor:
    fullname: Maroudas
– volume: 7
  start-page: 272
  year: 1989
  end-page: 280
  article-title: Contact pressures in the patellofemoral joint during impact loading on the human flexed knee
  publication-title: J Orthop Res
  contributor:
    fullname: Haut
– volume: 10
  start-page: 71
  year: 2002
  end-page: 81
  article-title: Cartilage viability after repetitive loading: a preliminary report
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Torzilli
– volume: 146
  start-page: 3
  year: 1995
  end-page: 15
  article-title: Apoptosis, oncosis, and necrosis: an overview of cell death
  publication-title: Am J Pathol
  contributor:
    fullname: Joris
– volume: 40
  start-page: 3580
  year: 2007
  end-page: 3589
  article-title: Effect of a single impact loading on the structure and mechanical properties of articular cartilage
  publication-title: J Biomech
  contributor:
    fullname: Seedhom
– volume: 76
  start-page: 345
  year: 2011
  end-page: 349
  article-title: Effectiveness of continuous passive motion after total knee replacement
  publication-title: Chir Narzadow Ruchu Ortop Pol
  contributor:
    fullname: Ruszkowski
– volume: 28
  start-page: 357
  year: 1995
  end-page: 364
  article-title: Dynamic behavior of a biphasic cartilage model under cyclic compressive loading
  publication-title: J Biomech
  contributor:
    fullname: Woo
– volume: 51
  start-page: 103
  year: 2005
  end-page: 108
  article-title: Viability of human chondrocytes in an ex vivo model in relation to temperature and cartilage depth
  publication-title: Folia Biol (Praha)
  contributor:
    fullname: Alibegovic
– volume: 15
  start-page: 532 536
  year: 1993
  end-page: 534 537
  article-title: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples
  publication-title: Biotechniques
  contributor:
    fullname: Chomczynski
– volume: 15
  start-page: 566
  year: 2007
  end-page: 574
  article-title: Continuous passive motion applied to whole joints stimulates chondrocyte biosynthesis of PRG4
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: O’Neill
– volume: 30
  start-page: 1
  year: 1997
  end-page: 9
  article-title: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system
  publication-title: J Biomech
  contributor:
    fullname: Huang
– volume: 71
  start-page: 1378
  year: 1989
  end-page: 1386
  article-title: Contact pressures from an instrumented hip endoprosthesis
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Fijan
– volume: 20
  start-page: 739
  year: 2006
  end-page: 744
  article-title: Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease
  publication-title: J Orthop Trauma
  contributor:
    fullname: Buckwalter
– volume: 52
  start-page: 3507
  year: 2005
  end-page: 3514
  article-title: Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis
  publication-title: Arthritis Rheum
  contributor:
    fullname: Dahlberg
– volume: 9
  start-page: 712
  year: 2001
  end-page: 719
  article-title: Human chondrocyte apoptosis in response to mechanical injury
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Lotz
– volume: 26
  start-page: 1636
  year: 2008
  end-page: 1642
  article-title: Effect of intermittent cyclic preloads on the response of articular cartilage explants to an excessive level of unconfined compression
  publication-title: J Orthop Res
  contributor:
    fullname: Haut
– volume: 64
  start-page: 443
  year: 2012
  end-page: 453
  article-title: Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise
  publication-title: Arthritis Rheum
  contributor:
    fullname: Guilak
– volume: 322
  start-page: 87
  year: 1995
  end-page: 96
  article-title: Matrix damage and chondrocyte viability following a single impact load on articular cartilage
  publication-title: Arch Biochem Biophys
  contributor:
    fullname: Aspden
– volume: 17
  start-page: 1244
  year: 2009
  end-page: 1251
  article-title: Anti-apoptotic treatments prevent cartilage degradation after acute trauma to human ankle cartilage
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Chubinskaya
– volume: 42
  start-page: 254
  year: 2012
  end-page: 273
  article-title: Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete
  publication-title: J Orthop Sports Phys Ther
  contributor:
    fullname: Della Villa
– volume: 32
  start-page: 132
  year: 2004
  end-page: 139
  article-title: Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation
  publication-title: Am J Sports Med
  contributor:
    fullname: Chen
– volume: 62
  start-page: 1232
  year: 1980
  end-page: 1251
  article-title: The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage: an experimental investigation in the rabbit
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Clements
– article-title: Biomechanical influence of cartilage homeostasis in health and disease
  publication-title: Arthritis
  contributor:
    fullname: Chowdhury
– volume: 36
  start-page: 774
  year: 2006
  end-page: 794
  article-title: Current concepts in the rehabilitation following articular cartilage repair procedures in the knee
  publication-title: J Orthop Sports Phys Ther
  contributor:
    fullname: Cain
– volume: 7
  start-page: 155
  year: 1999
  end-page: 164
  article-title: Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants
  publication-title: Osteoarthritis Cartilage
  contributor:
    fullname: Pelzer
– ident: bibr7-1941738113504379
  doi: 10.1016/S0736-0266(00)00066-8
– ident: bibr13-1941738113504379
  doi: 10.1016/j.joca.2004.06.008
– ident: bibr30-1941738113504379
  doi: 10.1007/s10237-011-0338-7
– volume: 47
  start-page: 487
  year: 1998
  ident: bibr4-1941738113504379
  publication-title: Instr Course Lect
  contributor:
    fullname: Buckwalter JA
– ident: bibr43-1941738113504379
  doi: 10.1002/jor.20673
– start-page: 302
  issue: 229
  year: 1988
  ident: bibr45-1941738113504379
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Zimmerman NB
– ident: bibr1-1941738113504379
  publication-title: Arthritis
  contributor:
    fullname: Bader DL
– ident: bibr34-1941738113504379
  doi: 10.1007/s004330050108
– ident: bibr6-1941738113504379
  doi: 10.1002/jor.1100110514
– ident: bibr25-1941738113504379
  doi: 10.1136/ard.49.7.536
– ident: bibr19-1941738113504379
  doi: 10.1006/meth.2001.1262
– ident: bibr17-1941738113504379
  doi: 10.1006/abbi.1995.1439
– ident: bibr14-1941738113504379
  doi: 10.1002/art.33332
– ident: bibr20-1941738113504379
  doi: 10.1053/joca.2001.0483
– ident: bibr32-1941738113504379
  doi: 10.1097/00003086-198905000-00003
– ident: bibr2-1941738113504379
  doi: 10.1097/00003086-200401000-00043
– ident: bibr33-1941738113504379
  doi: 10.2106/00004623-198062080-00002
– ident: bibr39-1941738113504379
  doi: 10.1016/S0021-9290(96)00117-0
– ident: bibr26-1941738113504379
  doi: 10.1002/1529-0131(199811)41:11<2068::AID-ART23>3.0.CO;2-L
– ident: bibr24-1941738113504379
  doi: 10.1016/j.joca.2006.10.015
– volume: 15
  start-page: 532
  year: 1993
  ident: bibr8-1941738113504379
  publication-title: Biotechniques
  contributor:
    fullname: Chomczynski P
– ident: bibr10-1941738113504379
  doi: 10.1038/nprot.2006.83
– volume: 146
  start-page: 3
  year: 1995
  ident: bibr21-1941738113504379
  publication-title: Am J Pathol
  contributor:
    fullname: Majno G
– volume: 76
  start-page: 345
  year: 2011
  ident: bibr40-1941738113504379
  publication-title: Chir Narzadow Ruchu Ortop Pol
  contributor:
    fullname: Trzeciak T
– ident: bibr3-1941738113504379
  doi: 10.1097/01.bot.0000246468.80635.ef
– ident: bibr5-1941738113504379
  doi: 10.1097/01.bor.0000132647.55056.a9
– ident: bibr42-1941738113504379
  doi: 10.1136/ard.2003.008136
– ident: bibr9-1941738113504379
  doi: 10.1016/0003-2697(87)90021-2
– ident: bibr38-1941738113504379
  doi: 10.1016/j.joca.2009.07.012
– ident: bibr31-1941738113504379
  doi: 10.1002/art.21415
– ident: bibr27-1941738113504379
  doi: 10.1016/j.joca.2009.03.007
– ident: bibr35-1941738113504379
  doi: 10.1053/joca.1998.0204
– ident: bibr28-1941738113504379
  doi: 10.2519/jospt.2006.2228
– ident: bibr41-1941738113504379
  doi: 10.1016/j.jbiomech.2007.06.002
– volume: 51
  start-page: 103
  year: 2005
  ident: bibr12-1941738113504379
  publication-title: Folia Biol (Praha)
  contributor:
    fullname: Drobnic M
– ident: bibr15-1941738113504379
  doi: 10.1002/jor.1100070216
– ident: bibr22-1941738113504379
  doi: 10.2519/jospt.2012.3665
– ident: bibr11-1941738113504379
  doi: 10.1053/joca.2001.0468
– ident: bibr18-1941738113504379
  doi: 10.1002/art.23176
– ident: bibr29-1941738113504379
  doi: 10.2106/00004623-197759080-00012
– ident: bibr16-1941738113504379
  doi: 10.2106/00004623-198971090-00015
– ident: bibr37-1941738113504379
  doi: 10.1177/0954411911428717
– volume: 49
  start-page: 309
  year: 1983
  ident: bibr23-1941738113504379
  publication-title: Lab Invest
  contributor:
    fullname: Mitrovic D
– ident: bibr36-1941738113504379
  doi: 10.1016/0021-9290(94)00103-B
– ident: bibr44-1941738113504379
  doi: 10.1177/0095399703258733
SSID ssj0064617
Score 2.0364654
Snippet Background: Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The...
Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this...
Background: Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The...
BACKGROUNDAcute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective...
Background:Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective...
SourceID pubmedcentral
proquest
crossref
pubmed
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 81
SubjectTerms Orthopaedic Surgery
Title Subphysiological Compressive Loading Reduces Apoptosis Following Acute Impact Injury in a Porcine Cartilage Model
URI https://journals.sagepub.com/doi/full/10.1177/1941738113504379
https://www.ncbi.nlm.nih.gov/pubmed/24427447
https://search.proquest.com/docview/1490695708
https://search.proquest.com/docview/1622610013
https://pubmed.ncbi.nlm.nih.gov/PMC3874225
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PSAuqJRXykNGQkgc0o1jO7GPqxWrFrGoQlTqbWUnjli0TZYmC3-fGScpbCs4cMzYkp2Z8Tzs8WeAN1qK3PqCx5gLmFiWuNJdRbeAq7SsZOK4DfDFi0_Z6YX8cKku90CNd2FC0X7hVif1-uqkXn0NtZWbq2Iy1olNzhczoTGhS9VkH_ZzIcYUvTe_mczCM7uYnPM4R3_0-2xyQjQicUG4XTkhhqJ3I4y8fNct3Yk175ZM_lH3FVzR_BAeDDEkm_ZzfQh7vj6Ce4vhlPwRfEdrEHYsRsPGaNWHgtcfnn1sQtk8-0ygrb5l002z6Zp21bI56kTzk9qmxbbz7CzcoGRn9TdkPFvVzLLz5prGYDNi1BrnxugxtfVjuJi__zI7jYenFeICLWMXC-U8d-T8bamrzHFeKmG0SJwplalyJ22Vmqw0OrPKcec1Zq06EVaVhJgnxRM4qJvaPwOmkrRyRBKpkdpobYpSOltgJsbpI4J3I2eXmx5BY8kHkPHbAong9cj6Jao5nV3Y2jfbFjMUk2RG5Yn-R58MY0nClBIRPO3FdTPiKOcI8h1B3nQgmO3dFtS-ALc9aFsEb0nky2GNt3_9ieP_HuI53EeRyH6H5wUcdNdb_xJjns69Cjr-Cz5q-9k
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRceD_K00gIiUPaOHYS-1hVVC20qxXaRXuL4sQRhW5SNilI_HpmnGShuwIJjrEtOaMZz8P-_BnglZIiTm3GPawFtCdzXOmmoFvARZAX0jc8dfTFy4NodizfnYQnexD2d2EcaD8zq2G5Ph2Wq08OW7k5zUY9Tmx0uJwIhQVdEI6uwFVcr0HcF-mtA45k5B7axfKcezFGpF-nkyNqoyYuiLkrJs5QjG_EkhfvBqZL2eZl0ORvyC8XjKa34GMvRotB-TLcNmaY_bjA8PjPct6Gm116ysZt9x3Ys-VduLbsDuDvwVd0NG4zpPeZjByKw9J-s2xROUQ--0B8sLZm4021aap6VbMpmlv1nfrG2baxbO4uZ7J5-Rl1ylYlS9lhdUZzsAn92xqFZvRO2_o-HE_fHk1mXvdqg5eh0208ERrLDeUVaa6KyHCeh0Ir4Rudh7qIjUyLQEe5VlEaGm6swoJY-SINcyLjk-IB7JdVaR8BC_2gMNQkAi2VVkpnuTRphkUep48BvOlVlmxaco6Ed_zlFzU9gJe9ThNcQXQskpa22tZY_Gg_0mHsq7-MiTBNJboqMYCHrR2cz9gb0ADiHQs5H0AM3rs9qHDH5N0peACvyZaSzn3UfxTi8X9P8QKuz46Wi2QxP3j_BG6gemS7kfQU9puzrX2GqVVjnruF9BMPmB3f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgSBOXMT4XGMNICIlDmjh2EvtYlVUrrFOFmDRxieLEEYUuCUsKEn897znJWDfBYcfYlpyn920__x4hb6TgcWoy5kIuoFyRg6brAl8BF0FeCF-z1MIXz0-io1Px4Sw8u9LqyxbtZ3o5Klfno3L51dZW1ueZN9SJeYv5hEtI6ILQq_PCu0vugc4GakjUOyMcicg224UUnbkxeKW_N5QejuEQ44jeFSNuKPg4RMqLN53TjYjzZuHkleov65CmD8iXgZSuDuX7aN3qUfb7GsrjrWjdJTt9mErH3ZKH5I4pH5HteX8R_5j8AINjD0UG20nRsNia2p-GHle2Mp9-QlxY09BxXdVt1SwbOgWxq37h3Dhbt4bO7CNNOiu_AW_psqQpXVQXuAed4P-tgHCK_dpWT8jp9PDz5Mjtuze4GRjf1uWhNkxjfJHmsog0Y3nIleS-VnmoiliLtAhUlCsZpaFm2khIjKXP0zBHUD7Bn5KtsirNHqGhHxQah3ighFRSqiwXOs0g2WP44ZB3A9uSugPpSFiPY36d2w55PfA1AU3C65G0NNW6gSRI-ZEKY1_-Z00E4SrCVnGHPOtk4XLHQYgcEm9IyeUCRPLenAGmW0TvnskOeYvylPRmpPknEc9vvcUrsr14P02OZycfX5D7wB3RnSftk632Ym1eQoTV6gOrS38AJNQgXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subphysiological+Compressive+Loading+Reduces+Apoptosis+Following+Acute+Impact+Injury+in+a+Porcine+Cartilage+Model&rft.jtitle=Sports+health&rft.au=Vernon%2C+Lauren&rft.au=Abadin%2C+Andre&rft.au=Wilensky%2C+David&rft.au=Huang%2C+C.-Y.+Charles&rft.date=2014-01-01&rft.issn=1941-7381&rft.eissn=1941-0921&rft.volume=6&rft.issue=1&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1177%2F1941738113504379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1941738113504379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-7381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-7381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-7381&client=summon