Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite
[Display omitted] •Tantalum pentoxide (Ta2O5)/polyetheretherketone composite (PTC) was fabricated.•Ta2O5 enhanced thermal, mechanical and surface properties of PTC.•Surface coarsening further improved surface properties of PTC.•BMSCs responses to PTC were significantly promoted by Ta2O5 and surface...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 174; pp. 207 - 215 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Tantalum pentoxide (Ta2O5)/polyetheretherketone composite (PTC) was fabricated.•Ta2O5 enhanced thermal, mechanical and surface properties of PTC.•Surface coarsening further improved surface properties of PTC.•BMSCs responses to PTC were significantly promoted by Ta2O5 and surface coarsening.
Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta2O5) was incorporated into PEEK to fabricate PEEK/Ta2O5 composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta2O5 particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta2O5 content. In addition, incorporating Ta2O5 into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta2O5 content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair. |
---|---|
AbstractList | [Display omitted]
•Tantalum pentoxide (Ta2O5)/polyetheretherketone composite (PTC) was fabricated.•Ta2O5 enhanced thermal, mechanical and surface properties of PTC.•Surface coarsening further improved surface properties of PTC.•BMSCs responses to PTC were significantly promoted by Ta2O5 and surface coarsening.
Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta2O5) was incorporated into PEEK to fabricate PEEK/Ta2O5 composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta2O5 particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta2O5 content. In addition, incorporating Ta2O5 into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta2O5 content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair. Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta₂O₅) was incorporated into PEEK to fabricate PEEK/Ta₂O₅ composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta₂O₅ particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta₂O₅ content. In addition, incorporating Ta₂O₅ into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta₂O₅ content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair. Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta2O5) was incorporated into PEEK to fabricate PEEK/Ta2O5 composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta2O5 particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta2O5 content. In addition, incorporating Ta2O5 into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta2O5 content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair.Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta2O5) was incorporated into PEEK to fabricate PEEK/Ta2O5 composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta2O5 particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta2O5 content. In addition, incorporating Ta2O5 into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta2O5 content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair. Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (Ta O ) was incorporated into PEEK to fabricate PEEK/Ta O composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the Ta O particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of Ta O content. In addition, incorporating Ta O into PEEK and surface coarsening could improve surface roughness, hydrophilicity, surface energy and protein absorption of PTC. Furthermore, the adhesion and proliferation as well as osteogenic differentiation of BMSCs on PTC were significantly promoted and regulated by Ta O content and surface coarsening. The results indicated that surface coarsening of PTC (PTCS) with high surface roughness, hydrophilicity and surface energy could induce positive cellular responses, showing good cytocompatibility. PTCS might have a great potential as implants for bone repair. |
Author | Wang, Deqiang Wei, Jie Mei, Shiqi Yang, Lili Pan, Yongkang Wang, Xuehong Tang, Tingting |
Author_xml | – sequence: 1 givenname: Shiqi surname: Mei fullname: Mei, Shiqi organization: Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Lili surname: Yang fullname: Yang, Lili organization: Department of Orthopaedic Surgery, Changzheng hospital, Second Military Medical University, Shanghai 200003, China – sequence: 3 givenname: Yongkang surname: Pan fullname: Pan, Yongkang organization: Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Deqiang surname: Wang fullname: Wang, Deqiang organization: Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 5 givenname: Xuehong surname: Wang fullname: Wang, Xuehong organization: Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 6 givenname: Tingting orcidid: 0000-0002-1670-7452 surname: Tang fullname: Tang, Tingting email: ttt@sjtu.edu.cn organization: Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China – sequence: 7 givenname: Jie orcidid: 0000-0002-2139-2854 surname: Wei fullname: Wei, Jie email: jiewei7860@sina.com organization: Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30465995$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv2yAYhtHUaU27_YWK4w5NBtgGIu2wqUq7apW2w3ZGGD4nRDZ4gKflT-03DittDrvkZPHpeV9_vC9X6MIHDwjdULKihPIP-5UJfZpi164YobIMV0TSV2hBpaiWdcXFBVqQNRNLIXhzia5S2hNCWE3FG3RZkZo363WzQH8ffddP4A0kHDqctc-6nwY8gs_hj7OAtbd4_pE2gE3QMYF3fouDP01jmLY7Dynd4t3BxjDuXO-My4fbEwIe4racxxgyOI-1TSGO2RWX2d9A3-MIaQw-lUVywN83m6-41Qksbl0wYRhDchneoted7hO8e_5eo5_3mx93X5ZP3x4e7z4_LU3NRV5WtZSGkaqhRnc1061lLZSrdy1tgEptm0YC56wxrZFV11hjuRaW10JSInRVXaP3R9-y8K8JUlaDS_OW2kOYkmKMESllyfA8SitRc8Y4LejNMzq1A1g1RjfoeFAvdRSAHwETQ0oRuhNCiZp7V3v10ruae5_npfci_PifsOSv53xz1K4_L_90lEPJ9LeDqJJx86OwLoLJygZ3zuIfBGzSQQ |
CitedBy_id | crossref_primary_10_1016_j_colsurfb_2022_112719 crossref_primary_10_1021_acs_nanolett_0c04209 crossref_primary_10_3389_fbioe_2022_1038250 crossref_primary_10_1088_2631_7990_ad7b03 crossref_primary_10_3390_bios13090893 crossref_primary_10_3389_fbioe_2020_631616 crossref_primary_10_1016_j_jmapro_2024_10_035 crossref_primary_10_1108_RPJ_05_2024_0188 crossref_primary_10_1002_pc_26961 crossref_primary_10_1002_app_54579 crossref_primary_10_1097_SCS_0000000000008724 crossref_primary_10_1016_j_jcis_2023_05_054 crossref_primary_10_1007_s10853_024_10390_4 crossref_primary_10_1007_s42235_021_00121_9 crossref_primary_10_1016_j_matdes_2020_108510 crossref_primary_10_1016_j_colcom_2024_100791 crossref_primary_10_1016_j_ijbiomac_2023_124728 crossref_primary_10_1631_jzus_B2100622 crossref_primary_10_1039_C9BM00413K crossref_primary_10_1016_j_actbio_2024_04_023 crossref_primary_10_3389_fbioe_2023_1271140 crossref_primary_10_1039_D0RA04486E crossref_primary_10_1016_j_chemosphere_2023_137791 crossref_primary_10_1016_j_brainresbull_2019_08_010 crossref_primary_10_1021_acsbiomaterials_2c00548 crossref_primary_10_1016_j_matdes_2022_111312 crossref_primary_10_1088_1748_605X_ac65cd crossref_primary_10_3390_coatings11081010 crossref_primary_10_1016_j_surfin_2023_103786 crossref_primary_10_1038_s41598_024_61941_3 crossref_primary_10_1002_jbm_a_37373 crossref_primary_10_4012_dmj_2024_076 crossref_primary_10_1002_app_50273 crossref_primary_10_1016_j_surfin_2022_102414 crossref_primary_10_1016_j_jmbbm_2021_104561 crossref_primary_10_1016_j_jtice_2023_104783 crossref_primary_10_1016_j_jece_2021_105264 crossref_primary_10_1016_j_tws_2024_112469 crossref_primary_10_1007_s10853_023_09186_9 crossref_primary_10_1016_j_colsurfb_2021_112055 crossref_primary_10_1115_1_4067490 crossref_primary_10_1016_j_colsurfb_2022_112492 crossref_primary_10_1039_C9BM00664H crossref_primary_10_3233_BME_218000 crossref_primary_10_1016_j_jclepro_2020_120978 crossref_primary_10_1088_1748_605X_ab7ff4 crossref_primary_10_1016_j_mtbio_2022_100402 crossref_primary_10_4103_srmjrds_srmjrds_109_20 crossref_primary_10_1016_j_compositesa_2023_107909 crossref_primary_10_1016_j_surfcoat_2020_125701 crossref_primary_10_3390_met10050649 crossref_primary_10_1016_j_matchar_2021_111572 crossref_primary_10_1177_13506501241275231 crossref_primary_10_1016_j_eurpolymj_2021_110534 crossref_primary_10_1007_s00289_023_04780_y crossref_primary_10_1016_j_biotri_2023_100242 crossref_primary_10_1016_j_jmbbm_2021_104972 crossref_primary_10_1021_acsami_1c22544 crossref_primary_10_1002_smll_202000796 crossref_primary_10_1039_D0CS00103A crossref_primary_10_1016_j_msec_2021_112411 |
Cites_doi | 10.1016/j.spinee.2013.08.030 10.1016/j.biomaterials.2007.03.013 10.1108/02602281211209455 10.1016/j.surfcoat.2014.03.061 10.1016/j.actbio.2014.09.008 10.1016/j.jcis.2011.12.066 10.1002/jcp.20109 10.1016/j.msec.2017.02.147 10.1016/S0142-9612(02)00098-4 10.1016/j.ijadhadh.2008.09.008 10.1021/jp805708w 10.1016/j.surfcoat.2015.04.024 10.1016/j.matdes.2017.05.045 10.1021/acsami.7b08646 10.1016/S0032-3861(99)00006-3 10.1016/j.ceramint.2015.08.133 10.1002/jbm.b.32823 10.1089/107632700300003297 10.1021/bm0503423 10.1021/am300727v 10.1016/j.actbio.2008.11.025 10.1063/1.123227 10.1016/S0142-9612(98)00144-6 10.1016/j.biomaterials.2014.02.005 10.1016/j.actbio.2011.11.026 10.1088/1748-6041/4/4/045002 10.1016/j.actbio.2014.12.003 10.1039/c3tb21007c 10.1016/S0142-9612(00)00274-X 10.1002/jbm.b.32738 10.1016/j.biomaterials.2007.01.019 10.1016/j.biomaterials.2005.03.020 10.1016/j.ceramint.2015.07.090 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2018.10.081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
EndPage | 215 |
ExternalDocumentID | 30465995 10_1016_j_colsurfb_2018_10_081 S0927776518307768 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABNEU ABNUV ABUDA ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SSG SSK SSM SSQ SSU SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRDE AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SMS SSH VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-3488c20351caf42abd2be417fb15e18ad558e6625cbc83f5dcd6a7d6478107a33 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Tue Aug 05 10:08:44 EDT 2025 Sun Aug 24 04:03:16 EDT 2025 Thu Apr 03 07:03:02 EDT 2025 Tue Jul 01 03:27:02 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Fri Feb 23 02:47:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyetheretherketone Tantalum pentoxide Surface coarsening Cytocompatibility Biocomposites |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-3488c20351caf42abd2be417fb15e18ad558e6625cbc83f5dcd6a7d6478107a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2139-2854 0000-0002-1670-7452 |
PMID | 30465995 |
PQID | 2137462261 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2220888599 proquest_miscellaneous_2137462261 pubmed_primary_30465995 crossref_primary_10_1016_j_colsurfb_2018_10_081 crossref_citationtrail_10_1016_j_colsurfb_2018_10_081 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2018_10_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 2019-02-00 2019-Feb-01 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationTitleAlternate | Colloids Surf B Biointerfaces |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mcmahon, Wang, Skoracki, Mathur (bib0145) 2013; 101B Rahmati, Sarhan, Zalnezhad, Kamiab, Dabbagh, Choudhury (bib0105) 2016; 42 Cai, Rechtenbach, Hao, Bossert, Jandt (bib0065) 2005; 26 Chang, Huang, Chen, Lai, Wen (bib0110) 2014; 259 Lim, Hansen, Siedlecki, Hengstebeck, Cheng, Winograd, Donahue (bib0170) 2005; 6 Li, Wang, Zheng, Lin (bib0075) 2012; 100B Zhao, Xiong, Wang, Wang (bib0085) 2017; 75 Marom, Shur, Solomon, Benayahu (bib0160) 2005; 202 Deligianni, Katsala, Ladas, Sotiropoulou, Amedee, Missirlis (bib0060) 2001; 22 Chang, Steigerwald, Fleming, Opila, Alers (bib0120) 1999; 74 Arima, Iwata (bib0155) 2007; 28 Mei, Wang, Wang, Tong, Pan, Ruan, Ma, Liu, Yang, Zhang, Cheng, Zhang, Zhao, Chu (bib0070) 2014; 35 Rehman, Bastan, Haider, Boccaccini (bib0015) 2017; 130 Park, Olivares-Navarrete, Baier, Meyer, Tannenbaum, Boyan, Schwartz (bib0165) 2012; 8 Rahmati, Zalnezhad, Sarhan, Kamiab, Tabrizi, Abas (bib0050) 2015; 41 Roy, Parveen, Prasad, Anilkumar (bib0090) 2012; 32 Thein-Han, Misra (bib0095) 2009; 5 Rico, Borras, Yubero, Espinos, Frutos, Gonzalez-Elipe (bib0130) 2009; 113 Wauthle, van der Stok, Yavari, Van Humbeeck, Kruth, Zadpoor, Weinans, Mulier, Schrooten (bib0030) 2015; 14 Kunzler, Drobek, Schuler, Spencer (bib0180) 2007; 28 Maho, Linden, Arnould, Detriche, Delhalle, Mekhalif (bib0045) 2012; 371 Rudawska, Jacniacka (bib0080) 2009; 29 Wang, Li, Wang, Chen, Ma, Zhang (bib0040) 2012; 4 Hallab, Bundy, O’Connor, Moses, Jacobs (bib0055) 2001; 7 Xu, Shen, Hu, Ma, Cai (bib0035) 2015; 272 Bacakova, Filova, Parizek, Ruml, Svorcik (bib0150) 1997; 36 Hoppe, Meszaros, Stahli, Romeis, Schmidt, Peukert, Marelli, Nazhat, Wondraczek, Lao, Jallot, Boccaccini (bib0010) 2013; 1 Wei, Igarashi, Okumori, Igarashi, Maetani, Liu, Yoshinari (bib0140) 2009; 4 Sun, Huang (bib0125) 2013; 528 Kersten, van Gaalen, de Gast, Oner (bib0020) 2015; 15 Montanaro, Arciola, Campoccia, Cervellati (bib0185) 2002; 23 Brown, Zaky, Ray, Sfeir (bib0005) 2015; 11 Perng, Tsai, Ling (bib0115) 1999; 40 Lord, Foss, Besenbacher (bib0135) 2007; 28 Tang, Xie, Yang, Huang, Wang, Dai, Zheng, Zhang (bib0100) 2013; 8 Rehman, Ferraris, Goldmann, Perero, Bastan, Nawaz, Confiengo, Ferraris, Boccaccini (bib0025) 2017; 9 Lincks, Boyan, Blanchard, Lohmann, Liu, Cochran, Dean, Schwartz (bib0175) 1998; 19 Bacakova (10.1016/j.colsurfb.2018.10.081_bib0150) 1997; 36 Zhao (10.1016/j.colsurfb.2018.10.081_bib0085) 2017; 75 Park (10.1016/j.colsurfb.2018.10.081_bib0165) 2012; 8 Lincks (10.1016/j.colsurfb.2018.10.081_bib0175) 1998; 19 Tang (10.1016/j.colsurfb.2018.10.081_bib0100) 2013; 8 Rahmati (10.1016/j.colsurfb.2018.10.081_bib0105) 2016; 42 Arima (10.1016/j.colsurfb.2018.10.081_bib0155) 2007; 28 Rico (10.1016/j.colsurfb.2018.10.081_bib0130) 2009; 113 Hallab (10.1016/j.colsurfb.2018.10.081_bib0055) 2001; 7 Brown (10.1016/j.colsurfb.2018.10.081_bib0005) 2015; 11 Lord (10.1016/j.colsurfb.2018.10.081_bib0135) 2007; 28 Kunzler (10.1016/j.colsurfb.2018.10.081_bib0180) 2007; 28 Kersten (10.1016/j.colsurfb.2018.10.081_bib0020) 2015; 15 Wauthle (10.1016/j.colsurfb.2018.10.081_bib0030) 2015; 14 Montanaro (10.1016/j.colsurfb.2018.10.081_bib0185) 2002; 23 Rehman (10.1016/j.colsurfb.2018.10.081_bib0025) 2017; 9 Maho (10.1016/j.colsurfb.2018.10.081_bib0045) 2012; 371 Wei (10.1016/j.colsurfb.2018.10.081_bib0140) 2009; 4 Rehman (10.1016/j.colsurfb.2018.10.081_bib0015) 2017; 130 Marom (10.1016/j.colsurfb.2018.10.081_bib0160) 2005; 202 Xu (10.1016/j.colsurfb.2018.10.081_bib0035) 2015; 272 Mei (10.1016/j.colsurfb.2018.10.081_bib0070) 2014; 35 Thein-Han (10.1016/j.colsurfb.2018.10.081_bib0095) 2009; 5 Cai (10.1016/j.colsurfb.2018.10.081_bib0065) 2005; 26 Chang (10.1016/j.colsurfb.2018.10.081_bib0120) 1999; 74 Sun (10.1016/j.colsurfb.2018.10.081_bib0125) 2013; 528 Rahmati (10.1016/j.colsurfb.2018.10.081_bib0050) 2015; 41 Roy (10.1016/j.colsurfb.2018.10.081_bib0090) 2012; 32 Lim (10.1016/j.colsurfb.2018.10.081_bib0170) 2005; 6 Chang (10.1016/j.colsurfb.2018.10.081_bib0110) 2014; 259 Rudawska (10.1016/j.colsurfb.2018.10.081_bib0080) 2009; 29 Perng (10.1016/j.colsurfb.2018.10.081_bib0115) 1999; 40 Mcmahon (10.1016/j.colsurfb.2018.10.081_bib0145) 2013; 101B Hoppe (10.1016/j.colsurfb.2018.10.081_bib0010) 2013; 1 Li (10.1016/j.colsurfb.2018.10.081_bib0075) 2012; 100B Wang (10.1016/j.colsurfb.2018.10.081_bib0040) 2012; 4 Deligianni (10.1016/j.colsurfb.2018.10.081_bib0060) 2001; 22 |
References_xml | – volume: 8 year: 2013 ident: bib0100 article-title: Porous tantalum coatings prepared by vacuum plasma spraying enhance BMSCs osteogenic differentiation and bone regeneration in vitro and in vivo publication-title: Plos One – volume: 41 start-page: 13055 year: 2015 end-page: 13063 ident: bib0050 article-title: Enhancing the adhesion strength of tantalum oxide ceramic thin film coating on biomedical Ti-6Al-4V alloy by thermal surface treatment publication-title: Ceram Int. – volume: 28 start-page: 3074 year: 2007 end-page: 3082 ident: bib0135 article-title: Influence of nanoscale surface topography on protein adsorption and cellular response publication-title: Nano Today – volume: 101B start-page: 387 year: 2013 end-page: 397 ident: bib0145 article-title: Development of nanomaterials for bone repair and regeneration publication-title: J. Biomed. Mater. Res. B – volume: 28 start-page: 3074 year: 2007 end-page: 3082 ident: bib0155 article-title: Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers publication-title: Biomaterials – volume: 22 start-page: 1241 year: 2001 end-page: 1251 ident: bib0060 article-title: Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption publication-title: Biomaterials – volume: 23 start-page: 3651 year: 2002 end-page: 3659 ident: bib0185 article-title: In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys publication-title: Biomaterials – volume: 11 start-page: 543 year: 2015 end-page: 553 ident: bib0005 article-title: Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction publication-title: Acta Biomater. – volume: 4 year: 2009 ident: bib0140 article-title: Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts publication-title: Biomed. Mater. – volume: 36 start-page: 99 year: 1997 end-page: 108 ident: bib0150 article-title: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants publication-title: Biotechnol. Adv. – volume: 15 start-page: 1446 year: 2015 end-page: 1460 ident: bib0020 article-title: Polyetheretherketone (PEEK) cages in cervical applications: a systematic review publication-title: Spine J. – volume: 371 start-page: 150 year: 2012 end-page: 158 ident: bib0045 article-title: Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: A high quality scaffold for hydroxyapatite growth publication-title: J. Colloid Interface Sci. – volume: 113 start-page: 3775 year: 2009 end-page: 3784 ident: bib0130 article-title: Wetting angles on illuminated Ta publication-title: J. Phys. Chem. C – volume: 40 start-page: 7321 year: 1999 end-page: 7329 ident: bib0115 article-title: Mechanism and kinetic modelling of PEEK pyrolysis by TG/MS publication-title: Polymer – volume: 32 start-page: 163 year: 2012 end-page: 169 ident: bib0090 article-title: Influence of Ta publication-title: Sens. Rev. – volume: 6 start-page: 3319 year: 2005 end-page: 3327 ident: bib0170 article-title: Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability publication-title: Biomacromolecules – volume: 259 start-page: 193 year: 2014 end-page: 198 ident: bib0110 article-title: Antibacterial properties and cytocompatibility of tantalum oxide coatings publication-title: Surf. Coat. Technol. – volume: 202 start-page: 41 year: 2005 end-page: 48 ident: bib0160 article-title: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells publication-title: J. Cell. Physiol. – volume: 19 start-page: 2219 year: 1998 end-page: 2232 ident: bib0175 article-title: Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition publication-title: Biomaterials – volume: 42 start-page: 466 year: 2016 end-page: 480 ident: bib0105 article-title: WABW, development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility publication-title: Ceram Int. – volume: 28 start-page: 2175 year: 2007 end-page: 2182 ident: bib0180 article-title: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients publication-title: Biomaterials – volume: 1 start-page: 5659 year: 2013 end-page: 5674 ident: bib0010 article-title: In vitro reactivity of Cu doped 45S5 bioglass® derived scaffolds for bone tissue engineering publication-title: J. Mater. Chem. B – volume: 26 start-page: 5960 year: 2005 end-page: 5971 ident: bib0065 article-title: Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects publication-title: Biomaterials – volume: 29 start-page: 451 year: 2009 end-page: 457 ident: bib0080 article-title: Analysis for determining surface free energy uncertainty by the Owen-Wendt method publication-title: Int. J. Adhes. Adhes. – volume: 100B start-page: 1721 year: 2012 end-page: 1728 ident: bib0075 article-title: Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification publication-title: J. Biomed. Mater. Res. B – volume: 130 start-page: 223 year: 2017 end-page: 230 ident: bib0015 article-title: Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiment (DoE) study publication-title: Mater. Des. – volume: 9 start-page: 32489 year: 2017 end-page: 32497 ident: bib0025 article-title: Antibacterial and bioactive coatings based on radio frequency Co-sputtering of silver nanocluster-silica coatings on PEEK/bioactive glass layers obtained by electrophoretic deposition publication-title: ACS Appl. Mater. Int. – volume: 8 start-page: 1966 year: 2012 end-page: 1975 ident: bib0165 article-title: Effect of cleaning and sterilization on titanium implant surface properties and cellular response publication-title: Acta Biomater. – volume: 7 start-page: 55 year: 2001 end-page: 71 ident: bib0055 article-title: Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion publication-title: Tissue Eng. – volume: 4 start-page: 4516 year: 2012 end-page: 4523 ident: bib0040 article-title: Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films publication-title: ACS Appl. Mater. Int. – volume: 272 start-page: 58 year: 2015 end-page: 65 ident: bib0035 article-title: Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility publication-title: Surf. Coat. Technol. – volume: 35 start-page: 4255 year: 2014 end-page: 4265 ident: bib0070 article-title: Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes publication-title: Biomaterials – volume: 74 start-page: 3705 year: 1999 end-page: 3707 ident: bib0120 article-title: Thermal stability of Ta publication-title: Appl. Phys. Lett. – volume: 528 start-page: 130 year: 2013 end-page: 135 ident: bib0125 article-title: Biphasic calcium phosphates/tantalum pentoxide hybrid layer and its effects on corrosion resistance and biocompatibility of titanium surface for orthopedic implant applications publication-title: J. Alloy. Compd. – volume: 14 start-page: 217 year: 2015 end-page: 225 ident: bib0030 article-title: Additively manufactured porous tantalum implants publication-title: Acta Biomater. – volume: 5 start-page: 1182 year: 2009 end-page: 1197 ident: bib0095 article-title: Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering publication-title: Acta Biomater. – volume: 75 start-page: 777 year: 2017 end-page: 783 ident: bib0085 article-title: Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid publication-title: Mater. Sci. Eng. C-Mater. – volume: 15 start-page: 1446 year: 2015 ident: 10.1016/j.colsurfb.2018.10.081_bib0020 article-title: Polyetheretherketone (PEEK) cages in cervical applications: a systematic review publication-title: Spine J. doi: 10.1016/j.spinee.2013.08.030 – volume: 28 start-page: 3074 year: 2007 ident: 10.1016/j.colsurfb.2018.10.081_bib0155 article-title: Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.03.013 – volume: 36 start-page: 99 year: 1997 ident: 10.1016/j.colsurfb.2018.10.081_bib0150 article-title: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants publication-title: Biotechnol. Adv. – volume: 32 start-page: 163 year: 2012 ident: 10.1016/j.colsurfb.2018.10.081_bib0090 article-title: Influence of Ta2O5 on polyaniline surface for liquid petroleum gas sensing applications publication-title: Sens. Rev. doi: 10.1108/02602281211209455 – volume: 259 start-page: 193 year: 2014 ident: 10.1016/j.colsurfb.2018.10.081_bib0110 article-title: Antibacterial properties and cytocompatibility of tantalum oxide coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.03.061 – volume: 11 start-page: 543 year: 2015 ident: 10.1016/j.colsurfb.2018.10.081_bib0005 article-title: Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.09.008 – volume: 371 start-page: 150 year: 2012 ident: 10.1016/j.colsurfb.2018.10.081_bib0045 article-title: Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: A high quality scaffold for hydroxyapatite growth publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.12.066 – volume: 202 start-page: 41 year: 2005 ident: 10.1016/j.colsurfb.2018.10.081_bib0160 article-title: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20109 – volume: 75 start-page: 777 year: 2017 ident: 10.1016/j.colsurfb.2018.10.081_bib0085 article-title: Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid publication-title: Mater. Sci. Eng. C-Mater. doi: 10.1016/j.msec.2017.02.147 – volume: 23 start-page: 3651 year: 2002 ident: 10.1016/j.colsurfb.2018.10.081_bib0185 article-title: In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00098-4 – volume: 29 start-page: 451 year: 2009 ident: 10.1016/j.colsurfb.2018.10.081_bib0080 article-title: Analysis for determining surface free energy uncertainty by the Owen-Wendt method publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2008.09.008 – volume: 8 year: 2013 ident: 10.1016/j.colsurfb.2018.10.081_bib0100 article-title: Porous tantalum coatings prepared by vacuum plasma spraying enhance BMSCs osteogenic differentiation and bone regeneration in vitro and in vivo publication-title: Plos One – volume: 113 start-page: 3775 year: 2009 ident: 10.1016/j.colsurfb.2018.10.081_bib0130 article-title: Wetting angles on illuminated Ta2O5 thin films with controlled nanostructure publication-title: J. Phys. Chem. C doi: 10.1021/jp805708w – volume: 272 start-page: 58 year: 2015 ident: 10.1016/j.colsurfb.2018.10.081_bib0035 article-title: Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.04.024 – volume: 130 start-page: 223 year: 2017 ident: 10.1016/j.colsurfb.2018.10.081_bib0015 article-title: Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: A design of experiment (DoE) study publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.05.045 – volume: 9 start-page: 32489 year: 2017 ident: 10.1016/j.colsurfb.2018.10.081_bib0025 article-title: Antibacterial and bioactive coatings based on radio frequency Co-sputtering of silver nanocluster-silica coatings on PEEK/bioactive glass layers obtained by electrophoretic deposition publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b08646 – volume: 40 start-page: 7321 year: 1999 ident: 10.1016/j.colsurfb.2018.10.081_bib0115 article-title: Mechanism and kinetic modelling of PEEK pyrolysis by TG/MS publication-title: Polymer doi: 10.1016/S0032-3861(99)00006-3 – volume: 42 start-page: 466 year: 2016 ident: 10.1016/j.colsurfb.2018.10.081_bib0105 article-title: WABW, development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility publication-title: Ceram Int. doi: 10.1016/j.ceramint.2015.08.133 – volume: 101B start-page: 387 year: 2013 ident: 10.1016/j.colsurfb.2018.10.081_bib0145 article-title: Development of nanomaterials for bone repair and regeneration publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.32823 – volume: 7 start-page: 55 year: 2001 ident: 10.1016/j.colsurfb.2018.10.081_bib0055 article-title: Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion publication-title: Tissue Eng. doi: 10.1089/107632700300003297 – volume: 6 start-page: 3319 year: 2005 ident: 10.1016/j.colsurfb.2018.10.081_bib0170 article-title: Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability publication-title: Biomacromolecules doi: 10.1021/bm0503423 – volume: 4 start-page: 4516 year: 2012 ident: 10.1016/j.colsurfb.2018.10.081_bib0040 article-title: Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films publication-title: ACS Appl. Mater. Int. doi: 10.1021/am300727v – volume: 5 start-page: 1182 year: 2009 ident: 10.1016/j.colsurfb.2018.10.081_bib0095 article-title: Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.11.025 – volume: 28 start-page: 3074 year: 2007 ident: 10.1016/j.colsurfb.2018.10.081_bib0135 article-title: Influence of nanoscale surface topography on protein adsorption and cellular response publication-title: Nano Today – volume: 74 start-page: 3705 year: 1999 ident: 10.1016/j.colsurfb.2018.10.081_bib0120 article-title: Thermal stability of Ta2O5 in metal-oxide-metal capacitor structures publication-title: Appl. Phys. Lett. doi: 10.1063/1.123227 – volume: 19 start-page: 2219 year: 1998 ident: 10.1016/j.colsurfb.2018.10.081_bib0175 article-title: Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00144-6 – volume: 35 start-page: 4255 year: 2014 ident: 10.1016/j.colsurfb.2018.10.081_bib0070 article-title: Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.005 – volume: 8 start-page: 1966 year: 2012 ident: 10.1016/j.colsurfb.2018.10.081_bib0165 article-title: Effect of cleaning and sterilization on titanium implant surface properties and cellular response publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.11.026 – volume: 4 year: 2009 ident: 10.1016/j.colsurfb.2018.10.081_bib0140 article-title: Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts publication-title: Biomed. Mater. doi: 10.1088/1748-6041/4/4/045002 – volume: 14 start-page: 217 year: 2015 ident: 10.1016/j.colsurfb.2018.10.081_bib0030 article-title: Additively manufactured porous tantalum implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.12.003 – volume: 1 start-page: 5659 year: 2013 ident: 10.1016/j.colsurfb.2018.10.081_bib0010 article-title: In vitro reactivity of Cu doped 45S5 bioglass® derived scaffolds for bone tissue engineering publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21007c – volume: 22 start-page: 1241 year: 2001 ident: 10.1016/j.colsurfb.2018.10.081_bib0060 article-title: Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00274-X – volume: 100B start-page: 1721 year: 2012 ident: 10.1016/j.colsurfb.2018.10.081_bib0075 article-title: Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.32738 – volume: 528 start-page: 130 year: 2013 ident: 10.1016/j.colsurfb.2018.10.081_bib0125 article-title: Biphasic calcium phosphates/tantalum pentoxide hybrid layer and its effects on corrosion resistance and biocompatibility of titanium surface for orthopedic implant applications publication-title: J. Alloy. Compd. – volume: 28 start-page: 2175 year: 2007 ident: 10.1016/j.colsurfb.2018.10.081_bib0180 article-title: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.019 – volume: 26 start-page: 5960 year: 2005 ident: 10.1016/j.colsurfb.2018.10.081_bib0065 article-title: Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.020 – volume: 41 start-page: 13055 year: 2015 ident: 10.1016/j.colsurfb.2018.10.081_bib0050 article-title: Enhancing the adhesion strength of tantalum oxide ceramic thin film coating on biomedical Ti-6Al-4V alloy by thermal surface treatment publication-title: Ceram Int. doi: 10.1016/j.ceramint.2015.07.090 |
SSID | ssj0002417 |
Score | 2.5056796 |
Snippet | [Display omitted]
•Tantalum pentoxide (Ta2O5)/polyetheretherketone composite (PTC) was fabricated.•Ta2O5 enhanced thermal, mechanical and surface properties of... Polyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 207 |
SubjectTerms | absorption adhesion Adsorption Animals biocompatibility biocompatible materials Biocompatible Materials - chemistry Biocomposites bone formation bones Cattle Cell Adhesion - drug effects Cell Differentiation - drug effects Cell Proliferation - drug effects Cells, Cultured cold colloids Cytocompatibility energy Humans hydrophilicity Hydrophobic and Hydrophilic Interactions Ketones - chemistry Mesenchymal Stem Cells - drug effects modulus of elasticity orthopedics Oxides - chemistry Oxides - pharmacology Particle Size Polyetheretherketone Polyethylene Glycols - chemistry sand Serum Albumin, Bovine - chemistry strength (mechanics) Surface coarsening Surface Properties surface roughness Tantalum - chemistry Tantalum - pharmacology tantalum oxide Tantalum pentoxide |
Title | Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite |
URI | https://dx.doi.org/10.1016/j.colsurfb.2018.10.081 https://www.ncbi.nlm.nih.gov/pubmed/30465995 https://www.proquest.com/docview/2137462261 https://www.proquest.com/docview/2220888599 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhPbQ9lHbTx7ZpUKH0tM6uZcuyj8uyYdPQUGgDuRk9qUNiLd5daC79Sf2NnZHtTXJIcujRQhKDZjwP6ZsZQj4rkNlEGRGBOWdR6mIZSY5dUycmkQ6iXK4xG_nbabY4S7-e8_MdMutzYRBW2en-VqcHbd2NjLvTHC-ravxjUjAhRMZBKLEmDSb8pqlAKT_8cwPzAAsVUqZhcoSzb2UJX8Del6tN4xRCvPJDRHnl8X0G6j4HNBiio5fkRedB0mlL5CuyY-sB2ZvWED1fXdMvNGA6w2X5gDyd9f3cBuT5rdKDe-Tvcd-dZEW9o9hLWIKeokswQv53ZSyVtaFIttSWag_xr8UrFOrr7Wjo8IOqckR_XZvGL_FyRoNbP9pOsSG1cERDOYiqptKsfBO0VNgfnw1o08J0gZC1p9_n8xOKptVQVXkEvCOqzL4mZ0fzn7NF1PVuiDSo3nWUgGLQDJ8ptXQpk8owZYEVTsXcxrk0nOc2g-BLK50njhttMilMyHydCJkkb8hu7Wv7jtDCwXjmFHdMp-AwSusy53KIm1RSmEIMCe8ZVuqusDn217gsewTbRdkzukRG4zgwekjG23XLtrTHoyuKXh7KO0Jagv15dO2nXoBKYDyer6yt36xKFicizcANfmgOY2AOcl4UQ_K2lb4tzfi2jWXj3v8HdR_IM_gqWjj6PtldNxv7EbyttToIv9MBeTI9Plmc_gPQ6C8G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5VA4IEh5pOWxSMApbuK1148Dh6qkSkhbIdFKvZl9ClfFjuxEkAs_iQt_kJm1Hcqh9IB6XXut8c7sPHa_mSHktQSZDaSOPTDnzAutLzzBsWvqSAfCQpTLFWYjH59Ek7Pwwzk_3yC_ulwYhFW2ur_R6U5btyPDdjWH8zwffhqlLI7jiINQYk2apEVWzszqG8Rt9bvpe2DyG8YOx6cHE69tLeAp0AwLLwC5VQxv0ZSwIRNSM2lCP7bS58ZPhOY8MRHEBkqqJLBcKx2JWLvEzFEs8BQU9P6dENQFtk3Y-_EHVwIm0eVoA3UeknclLfkCfuayXlZWIqYs2UNYWeJfZxGv83id5Tt8QO63Livdb1blIdkwRY9s7xcQrn9d0bfUgUjd6XyPbB10DeR65N6VWofb5Oe0a4dS09JSbF4sQDHSOVi98nuuDRWFpki2UIaqEgJug2c2tCzWo66lEOrmAf2y0lU5x9MgBXHEYP2KcbmMA-rqT-QFFbouK6cW3ffxnoJWDS4YCFmU9ON4PKNoyzWVeYkIe4SxmUfk7FY4-phsFmVhnhKaWhiPrOSWqRA8VGFsZG0CgZoMUp3GfcI7hmWqraSODT0usw4yd5F1jM6Q0TgOjO6T4XrevKklcuOMtJOH7K9dkYHBu3Huq06AMmA8rq8oTLmsM-YHcRiB3_2vdxgD-5PwNO2TJ430rWnGy3SsU7fzH9S9JFuT0-Oj7Gh6Mtsld-FJ2mDhn5HNRbU0z8HVW8gXbmtR8vm29_JvgfNqxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+tantalum+pentoxide+and+surface+coarsening+on+surface+roughness%2C+hydrophilicity%2C+surface+energy%2C+protein+adsorption+and+cell+responses+to+PEEK+based+biocomposite&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Mei%2C+Shiqi&rft.au=Yang%2C+Lili&rft.au=Pan%2C+Yongkang&rft.au=Wang%2C+Deqiang&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0927-7765&rft.eissn=1873-4367&rft.volume=174&rft.spage=207&rft.epage=215&rft_id=info:doi/10.1016%2Fj.colsurfb.2018.10.081&rft.externalDocID=S0927776518307768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |