Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge
[Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application...
Saved in:
Published in | Bioresource technology Vol. 301; p. 122749 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application for nitrogen removal from wastewater.
A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater. |
---|---|
AbstractList | A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater. A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater. [Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application for nitrogen removal from wastewater. A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater. A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater. |
ArticleNumber | 122749 |
Author | Wang, Jianlong Fan, Wenhong Xia, Lin Li, Xiaomin |
Author_xml | – sequence: 1 givenname: Lin surname: Xia fullname: Xia, Lin organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China – sequence: 2 givenname: Xiaomin surname: Li fullname: Li, Xiaomin organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China – sequence: 3 givenname: Wenhong surname: Fan fullname: Fan, Wenhong organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China – sequence: 4 givenname: Jianlong surname: Wang fullname: Wang, Jianlong email: wangjl@tsinghua.edu.cn organization: Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31951959$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrFDEcxYNU7Lb6FUqOXmZNMpnJBDxYWrVC0YueQ5L5x2aZScYks9Cj39y02wp6WQgE8n7vQd47QychBkDogpItJbR_t9saH1MBe7dlhNVHxgSXL9CGDqJtmBT9CdoQ2ZNm6Bg_RWc57wghLRXsFTptqezqkRv0-wYKpFhSXO68xcGX5J23uvgYsA4j1lU1VRnhX83cY41D3MOEL60PUKLRtkbhvGzx12uBfY6TLjBil-KM5zV46xc94Ur5_aOQp3X8Ca_RS6enDG-e7nP049PH71c3ze23z1-uLm8by3tRGgZdL0kvrBEDMbIzvH6ODIM1naSaOmk1bR0RbhzMSJ0m1I2u76Vl3LlWdO05envIXVL8tUIuavbZwjTpAHHNivFWVo6z4TjactpTzgda0YsndDUzjGpJftbpXj03XIH-ANgUc07g_iKUqIcp1U49T6keplSHKavx_X9G68tj9yVpPx23fzjYoXa695BUth6ChdEnsEWN0R-L-AM0c8AY |
CitedBy_id | crossref_primary_10_1016_j_eti_2024_103858 crossref_primary_10_1016_j_jclepro_2021_126658 crossref_primary_10_1080_10643389_2024_2350317 crossref_primary_10_1016_j_cej_2024_149109 crossref_primary_10_1007_s00449_021_02581_z crossref_primary_10_1007_s11274_022_03311_7 crossref_primary_10_1016_j_jwpe_2023_104316 crossref_primary_10_1007_s11270_023_06524_0 crossref_primary_10_1016_j_biortech_2023_129656 crossref_primary_10_1016_j_chemosphere_2024_142470 crossref_primary_10_1016_j_cej_2025_161509 crossref_primary_10_1016_j_biortech_2022_127756 crossref_primary_10_1016_j_jenvman_2021_111961 crossref_primary_10_1016_j_jece_2023_111519 crossref_primary_10_1021_acs_est_2c08770 crossref_primary_10_1080_07388551_2021_1976099 crossref_primary_10_1016_j_scitotenv_2023_162211 crossref_primary_10_1016_j_chemosphere_2022_134054 crossref_primary_10_1016_j_chemosphere_2023_139465 crossref_primary_10_3390_w16101377 crossref_primary_10_3390_microorganisms10020235 crossref_primary_10_1016_j_jwpe_2025_107252 crossref_primary_10_1016_j_biortech_2021_125189 crossref_primary_10_1016_j_biortech_2023_129309 crossref_primary_10_1007_s10499_024_01660_8 crossref_primary_10_1016_j_biortech_2021_125620 crossref_primary_10_3724_aauj_2024072 crossref_primary_10_1016_j_biortech_2020_124105 crossref_primary_10_3390_foods12071485 crossref_primary_10_1016_j_ijbiomac_2022_11_264 crossref_primary_10_1089_ees_2021_0570 crossref_primary_10_3390_biotech12030053 crossref_primary_10_1016_j_jwpe_2025_107492 crossref_primary_10_2166_wst_2022_401 crossref_primary_10_1002_wer_10850 crossref_primary_10_1038_s41598_022_12972_1 crossref_primary_10_1016_j_biortech_2023_129670 crossref_primary_10_1002_jctb_7244 crossref_primary_10_1016_j_biortech_2022_127890 crossref_primary_10_1016_j_envres_2024_120730 crossref_primary_10_1016_j_jwpe_2023_103687 crossref_primary_10_3390_w16030416 crossref_primary_10_1016_j_biortech_2020_123922 crossref_primary_10_1016_j_jwpe_2023_103683 crossref_primary_10_1016_j_eti_2021_101731 crossref_primary_10_1016_j_jece_2024_113206 crossref_primary_10_1016_j_jes_2021_10_013 crossref_primary_10_1016_j_jwpe_2024_104807 crossref_primary_10_1016_j_watres_2025_123290 crossref_primary_10_1016_j_scitotenv_2020_139734 crossref_primary_10_1002_jobm_202100446 crossref_primary_10_1016_j_jece_2022_108859 crossref_primary_10_1016_j_scitotenv_2024_177419 crossref_primary_10_1016_j_wroa_2024_100246 crossref_primary_10_1016_j_jbiosc_2021_03_012 crossref_primary_10_1016_j_jwpe_2021_102260 crossref_primary_10_1016_j_biortech_2023_129681 crossref_primary_10_1016_j_biortech_2023_129682 crossref_primary_10_1016_j_scitotenv_2024_176323 crossref_primary_10_1016_j_biortech_2022_127643 crossref_primary_10_1016_j_jhazmat_2021_126608 crossref_primary_10_1016_j_biortech_2021_125960 crossref_primary_10_1016_j_scitotenv_2021_146436 crossref_primary_10_1016_j_scitotenv_2024_172081 crossref_primary_10_1016_j_biortech_2023_129569 crossref_primary_10_1016_j_envpol_2022_120312 crossref_primary_10_1016_j_biortech_2023_128907 crossref_primary_10_3389_fmicb_2023_1130512 crossref_primary_10_1016_j_cej_2021_132402 crossref_primary_10_1016_j_ecoenv_2024_116385 crossref_primary_10_1016_j_chemosphere_2023_138266 crossref_primary_10_1016_j_biortech_2023_130047 crossref_primary_10_1016_j_jwpe_2024_105285 crossref_primary_10_3390_microorganisms12122652 crossref_primary_10_1007_s12649_020_01286_w crossref_primary_10_1016_j_biortech_2022_128007 crossref_primary_10_1016_j_jwpe_2022_103267 crossref_primary_10_1002_wer_10716 crossref_primary_10_1016_j_scitotenv_2021_149319 crossref_primary_10_3390_catal12040412 crossref_primary_10_1021_acsestwater_4c00339 crossref_primary_10_1016_j_biortech_2020_124445 crossref_primary_10_1016_j_seppur_2024_127131 crossref_primary_10_1016_j_chemosphere_2023_140923 crossref_primary_10_3390_ijerph191811323 crossref_primary_10_1016_j_chemosphere_2023_139027 crossref_primary_10_1016_j_envres_2024_120111 crossref_primary_10_1016_j_chemosphere_2021_133048 crossref_primary_10_1016_j_biortech_2022_127260 crossref_primary_10_1016_j_jenvman_2024_120199 crossref_primary_10_1016_j_biortech_2022_127148 crossref_primary_10_1016_j_scitotenv_2023_168348 crossref_primary_10_1016_j_biortech_2022_128236 crossref_primary_10_1016_j_biortech_2023_129507 crossref_primary_10_1016_j_scitotenv_2021_148910 crossref_primary_10_1080_09593330_2022_2077659 crossref_primary_10_1016_j_biortech_2021_126116 crossref_primary_10_1016_j_biortech_2021_125028 crossref_primary_10_1016_j_biortech_2020_124555 crossref_primary_10_1016_j_biortech_2020_124554 crossref_primary_10_1002_wer_70050 crossref_primary_10_1093_femsec_fiae069 crossref_primary_10_1016_j_jenvman_2023_119912 crossref_primary_10_3390_jmse11122267 crossref_primary_10_1016_j_chemosphere_2021_132728 crossref_primary_10_3389_fenvs_2021_818316 crossref_primary_10_1016_j_dwt_2024_100227 crossref_primary_10_1016_j_psep_2021_04_008 crossref_primary_10_1016_j_biortech_2022_128265 crossref_primary_10_1016_j_biortech_2022_127176 crossref_primary_10_1016_j_biortech_2023_130184 crossref_primary_10_3390_w16050784 crossref_primary_10_1016_j_jenvman_2023_119393 crossref_primary_10_1016_j_buildenv_2025_112677 crossref_primary_10_3390_w16111625 crossref_primary_10_1016_j_biortech_2023_129755 crossref_primary_10_1016_j_envres_2023_116591 crossref_primary_10_3390_biom15010063 crossref_primary_10_1016_j_chemosphere_2022_133785 crossref_primary_10_1016_j_envres_2021_111786 crossref_primary_10_1016_j_biortech_2021_125908 crossref_primary_10_1016_j_biortech_2024_130593 crossref_primary_10_1016_j_ecoenv_2021_112693 crossref_primary_10_1016_j_scitotenv_2023_162592 crossref_primary_10_1016_j_scitotenv_2022_155409 crossref_primary_10_1016_j_scitotenv_2021_150212 crossref_primary_10_1007_s42452_024_06277_3 crossref_primary_10_1080_10934529_2022_2134682 crossref_primary_10_1016_j_jece_2024_113511 crossref_primary_10_1016_j_biortech_2022_127959 crossref_primary_10_1016_j_biortech_2021_124823 crossref_primary_10_1016_j_watres_2020_116555 crossref_primary_10_2166_wst_2024_176 crossref_primary_10_1016_j_chemosphere_2022_137471 crossref_primary_10_1016_j_biortech_2024_131574 crossref_primary_10_1016_j_jhazmat_2024_135605 crossref_primary_10_1007_s00449_021_02523_9 crossref_primary_10_1016_j_scitotenv_2024_176614 crossref_primary_10_1016_j_biortech_2022_127353 crossref_primary_10_1016_j_biortech_2024_130408 crossref_primary_10_1016_j_eti_2023_103299 crossref_primary_10_1016_j_jenvman_2025_124405 crossref_primary_10_1016_j_biortech_2023_128720 crossref_primary_10_1016_j_biortech_2021_126423 crossref_primary_10_1007_s10499_023_01224_2 crossref_primary_10_1016_j_cej_2022_140499 crossref_primary_10_1016_j_biortech_2024_131069 crossref_primary_10_1016_j_envres_2022_113903 crossref_primary_10_1016_j_aquaculture_2021_736659 crossref_primary_10_1016_j_ijbiomac_2022_04_122 crossref_primary_10_1016_j_envres_2022_115199 crossref_primary_10_1016_j_jwpe_2024_105098 crossref_primary_10_1016_j_scitotenv_2022_153169 crossref_primary_10_1016_j_chemosphere_2024_142525 crossref_primary_10_1016_j_biortech_2021_125582 crossref_primary_10_1016_j_biortech_2021_126430 crossref_primary_10_1016_j_jwpe_2025_107412 crossref_primary_10_1016_j_biortech_2020_123533 crossref_primary_10_1016_j_bej_2024_109417 crossref_primary_10_1016_j_biteb_2021_100816 crossref_primary_10_1007_s12010_024_04980_w crossref_primary_10_1016_j_jece_2024_112837 crossref_primary_10_1016_j_biortech_2020_124198 crossref_primary_10_1016_j_scitotenv_2020_144210 crossref_primary_10_1071_EN20097 crossref_primary_10_1016_j_jenvman_2022_116506 crossref_primary_10_1007_s10529_024_03529_5 crossref_primary_10_1016_j_biortech_2023_129038 crossref_primary_10_1007_s11270_024_07001_y crossref_primary_10_1016_j_biortech_2022_127011 crossref_primary_10_1016_j_jece_2023_109387 crossref_primary_10_1016_j_jece_2024_112513 crossref_primary_10_1016_j_jwpe_2022_103245 crossref_primary_10_1007_s12010_022_03877_w crossref_primary_10_1016_j_biortech_2022_128225 crossref_primary_10_1016_j_jwpe_2023_104138 crossref_primary_10_1016_j_biortech_2022_127933 crossref_primary_10_1016_j_biortech_2020_123888 crossref_primary_10_1016_j_scitotenv_2022_156475 crossref_primary_10_1016_j_scitotenv_2024_172901 crossref_primary_10_1016_j_jclepro_2023_137366 crossref_primary_10_1016_j_envres_2023_115476 crossref_primary_10_1002_wer_1568 crossref_primary_10_1016_j_biortech_2023_128994 crossref_primary_10_1016_j_biortech_2020_124608 crossref_primary_10_1016_j_jece_2023_110263 crossref_primary_10_1016_j_scitotenv_2021_150092 crossref_primary_10_1016_j_scitotenv_2021_148699 crossref_primary_10_1016_j_bej_2022_108759 crossref_primary_10_1016_j_jwpe_2024_104786 crossref_primary_10_1016_j_biortech_2020_123633 crossref_primary_10_1016_j_biotechadv_2021_107882 crossref_primary_10_1016_j_eti_2024_103694 crossref_primary_10_1007_s11356_022_20708_x crossref_primary_10_1016_j_scitotenv_2022_157452 crossref_primary_10_1007_s00449_022_02771_3 crossref_primary_10_1016_j_biortech_2024_130322 crossref_primary_10_1016_j_cej_2023_148459 crossref_primary_10_3390_pr10030591 crossref_primary_10_1016_j_biortech_2022_127792 crossref_primary_10_1016_j_ecoenv_2023_115588 crossref_primary_10_1371_journal_pone_0293136 crossref_primary_10_1016_j_biortech_2022_128401 crossref_primary_10_1016_j_soilbio_2024_109706 crossref_primary_10_5004_dwt_2021_27096 crossref_primary_10_3390_w16030431 crossref_primary_10_1016_j_soilbio_2022_108611 crossref_primary_10_1016_j_chemosphere_2022_137648 crossref_primary_10_1016_j_biortech_2020_124280 crossref_primary_10_1007_s11356_022_19083_4 crossref_primary_10_1016_j_jwpe_2024_106544 crossref_primary_10_1016_j_scitotenv_2021_150033 crossref_primary_10_1016_j_scitotenv_2022_160236 crossref_primary_10_3390_w16213042 crossref_primary_10_1016_j_jenvman_2023_119086 crossref_primary_10_1016_j_jwpe_2023_103531 crossref_primary_10_1016_j_envadv_2022_100254 crossref_primary_10_3390_w16141993 crossref_primary_10_1016_j_scitotenv_2021_150829 crossref_primary_10_1016_j_procbio_2023_05_030 crossref_primary_10_3389_fenvs_2022_887093 crossref_primary_10_1080_10643389_2021_1877976 crossref_primary_10_1016_j_scitotenv_2024_173007 crossref_primary_10_1016_j_eti_2021_101814 crossref_primary_10_1016_j_biortech_2022_127692 crossref_primary_10_1016_j_biortech_2023_128823 crossref_primary_10_3389_fmicb_2022_982674 crossref_primary_10_1016_j_biortech_2022_127457 crossref_primary_10_1016_j_biortech_2023_128822 crossref_primary_10_1007_s41748_024_00377_1 crossref_primary_10_1007_s00449_023_02854_9 crossref_primary_10_1016_j_cej_2024_154960 crossref_primary_10_1016_j_scitotenv_2022_159147 crossref_primary_10_1080_09593330_2022_2046649 crossref_primary_10_1016_j_chemosphere_2024_142329 crossref_primary_10_1016_j_jclepro_2023_137565 crossref_primary_10_1016_j_biortech_2024_130874 crossref_primary_10_2166_wrd_2021_049 crossref_primary_10_1016_j_biteb_2023_101495 crossref_primary_10_1016_j_jwpe_2025_106942 crossref_primary_10_1016_j_watres_2024_122557 crossref_primary_10_1016_j_biortech_2021_126175 crossref_primary_10_1016_j_watres_2024_121102 crossref_primary_10_1016_j_jwpe_2023_103995 crossref_primary_10_1016_j_jwpe_2025_107474 crossref_primary_10_1016_j_biortech_2021_125761 crossref_primary_10_1016_j_biortech_2023_129805 crossref_primary_10_1016_j_eti_2022_102630 crossref_primary_10_1016_j_eti_2022_102997 crossref_primary_10_1007_s11356_023_26487_3 crossref_primary_10_1080_09593330_2022_2102940 crossref_primary_10_1016_j_procbio_2023_04_018 crossref_primary_10_1016_j_scitotenv_2021_145939 crossref_primary_10_1007_s00203_023_03597_7 crossref_primary_10_1016_j_scitotenv_2020_143580 crossref_primary_10_1016_j_jenvman_2024_123890 crossref_primary_10_1007_s13762_021_03253_x |
Cites_doi | 10.1016/j.jbiosc.2018.07.025 10.1016/j.biortech.2012.09.098 10.1007/BF00403948 10.1016/j.jhazmat.2013.02.026 10.1007/BF00408378 10.1016/j.biortech.2012.12.169 10.1016/j.biortech.2015.03.060 10.1016/j.biortech.2011.06.090 10.1016/j.biortech.2018.10.060 10.1263/jbb.106.498 10.1016/j.biortech.2017.03.084 10.1016/j.biortech.2011.10.026 10.1016/j.biortech.2013.03.094 10.1016/j.biortech.2014.06.001 10.1016/j.biortech.2018.10.052 10.1099/mic.0.000047 10.3390/w9110835 10.1016/j.biortech.2019.02.119 10.1016/j.biortech.2008.05.042 10.1016/j.biortech.2012.02.050 10.1021/ac60106a054 10.1016/j.biotechadv.2004.04.003 10.1016/j.biortech.2015.05.075 10.1016/j.biortech.2013.07.046 10.1111/j.1462-2920.2008.01732.x 10.1016/S0038-0717(01)00045-1 10.1007/s12010-014-1406-0 10.1007/s00253-016-7290-5 10.1016/j.biortech.2010.02.043 10.1016/j.biortech.2014.12.057 10.1111/j.1574-6968.2006.00306.x 10.1111/j.1574-6968.1999.tb13575.x 10.1016/j.jbiosc.2011.12.012 10.1016/j.biortech.2010.11.096 10.1016/S0032-9592(03)00249-8 10.1038/nature03911 10.1093/bib/bbn017 10.1128/jcm.33.5.1206-1211.1995 10.1016/j.scitotenv.2019.03.317 10.1016/j.biortech.2014.03.066 10.1016/j.biortech.2019.121360 10.1016/j.biortech.2017.04.125 10.1016/j.biortech.2011.12.139 10.1016/j.biortech.2011.12.033 10.1016/j.ecoenv.2009.06.008 10.1016/j.biotechadv.2016.07.001 10.1016/j.biortech.2012.10.009 10.1016/j.biortech.2013.03.189 10.1016/j.biortech.2015.01.100 10.1016/j.biortech.2017.07.186 10.1128/AEM.66.5.2096-2104.2000 10.1016/j.procbio.2004.08.001 10.1016/j.procbio.2006.03.033 10.1016/j.biortech.2015.10.064 10.1016/j.ibiod.2013.01.001 10.1016/j.biortech.2017.05.185 10.1007/s11356-015-4334-9 10.1007/s00253-007-1176-5 10.1016/j.biortech.2014.08.058 10.1080/09593330903508922 10.1007/s13213-013-0764-0 10.1016/j.biortech.2018.07.084 10.1016/j.biortech.2019.121506 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2020.122749 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 31951959 10_1016_j_biortech_2020_122749 S0960852420300183 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c467t-2e569067cb780b95b4960088cb591a1f9ca13f07fd8bd1fa01fdf669c24ff3753 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Aug 22 20:23:29 EDT 2025 Fri Jul 11 03:27:12 EDT 2025 Wed Feb 19 02:31:57 EST 2025 Thu Apr 24 23:11:22 EDT 2025 Tue Jul 01 03:18:38 EDT 2025 Sat Aug 10 15:31:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrogen removal Acinetobacter sp Wastewater treatment Heterotrophic nitrification-aerobic denitrification |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-2e569067cb780b95b4960088cb591a1f9ca13f07fd8bd1fa01fdf669c24ff3753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31951959 |
PQID | 2341614481 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2439375428 proquest_miscellaneous_2341614481 pubmed_primary_31951959 crossref_primary_10_1016_j_biortech_2020_122749 crossref_citationtrail_10_1016_j_biortech_2020_122749 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_122749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 2020-Apr 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Alvaro, Camargo (b0010) 2009; 72 Zhang, Andong, Zhang, Wang, Wei, Chen (b0305) 2014; 64 Kong, Wang, Jin, Shen, Li (b0120) 2006; 260 Shen, Wang (b0200) 2012; 102 Brierley, Wood (b0035) 2001; 33 Huang, Li, Zhang, Qin (b0090) 2013; 146 Jin, Chen, Xu, Cui, Zheng (b0095) 2019; 281 Ahn (b0005) 2006; 41 Zhang, Sun, Fan, Qiu, Gao, Wang (b0290) 2017; 241 Zhang, Liu, Ai, Miao, Zheng, Liu (b0300) 2012; 108 Shen, Zhou, Hu, Wang (b0210) 2013; 250–251 Braker, Zhou, Wu, Devol, Tiedje (b0030) 2000; 66 Padhi, Tripathy, Sen, Mahapatra, Mohanty, Maiti (b0170) 2013; 78 Zhao, He, Zhang (b0315) 2010; 31 Robertson, Kuenen (b0180) 1984; 139 Su, Zhang, Huang, Wen, Guo, Yang (b0220) 2015; 161 Kundu, Pramanik, Dasgupta, Mukherjee, Mukherjee (b0135) 2014; 2014 Duan, Fang, Su, Chen, Lin (b0065) 2015; 179 Tatusova, Madden (b0225) 1999; 174 Ashok, Hait (b0020) 2015; 22 Zou, Yao, Ni (b0325) 2014; 161 Hocaoglu, Insel, Cokgor, Orhon (b0085) 2011; 102 Chen, Li, Li, Wang, Li, Ren, Wang (b0050) 2012; 116 Yang, Wang, Cui, Ren, Yu, Chen, Xiao, Guo, Wang (b0260) 2019; 285 Yao, Ni, Chen, Borthwick (b0275) 2013; 127 He, Xie, Li, Ni, Sun (b0080) 2017; 239 Ren, Yang, Liang (b0175) 2014; 171 Chen, Ni (b0055) 2012; 113 Rout, Bhunia, Dash (b0190) 2017; 244 Chen, He, Wu, Du (b0040) 2019; 127 Zhao, He, Hughes, Zhang (b0310) 2010; 101 Shen, Zhou, Wang (b0205) 2013; 131 Bhuvanesh, Maneesh, Sreekrishnan (b0025) 2013; 129 Chen, Wang, Chen, Chen, Feng, Peng (b0060) 2018; 267 Robertson, Kuenen (b0185) 1990; 57 Zhu, Ding, Feng, Kong, Xu, Xu (b0320) 2012; 108 Frear, Burrell (b0070) 1955; 27 Yang, Wang, Chen, Lyu (b0255) 2019; 274 He, Li, Sun, Xu, Ye (b0075) 2015; 200 Lei, Wang, Liu, Xi, Song (b0145) 2016; 100 Wang, Yang (b0245) 2004; 39 Wan, Liu, Qu, Lei, Xiao, Hou (b0230) 2009; 100 Yao, Ni, Ma, Li (b0280) 2013; 139 Khardenavis, Kapley, Purohit (b0105) 2007; 77 Zhang, Li, Huang, Qin, Liu (b0295) 2013; 137 Yang, Wang, Zhou (b0270) 2012; 104 Jin, Liu, Liu, Zhou, Huang, Wang (b0100) 2014; 175 Li, Yang, Wang, Wang, Li, He, Yuan (b0150) 2015; 182 Ye, Li, Li, Xu, He, Tang, Xiang (b0285) 2017; 9 Medhi, Singhal, Chauhan, Thakur (b0165) 2017; 242 Wang, Chu (b0235) 2016; 34 Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (b0125) 2005; 437 Lei, Jia, Chen, Hu (b0140) 2019; 272 Liu, Wang (b0155) 2019; 671 Yang, Ren, Liang, Zhao, Wang, Xia (b0265) 2015; 193 Ma, Sun, Li, Zhang, Yang (b0160) 2015; 187 Stanley, Baquar, Burnens (b0215) 1995; 33 APHA (b0015) 1998 Chen, Wang, Feng, Zhu, Zhou, Tan, Li (b0045) 2014; 167 Wang, Wang, Zhang, Sun, Zhang, Chen, Li (b0250) 2019; 288 Kim, Jeong, Yoon, Cho, Kim, Kim, Ryu, Lee (b0115) 2008; 106 Schmid, Hooper, Klotz, Woebken, Lam, Kuypers, Pommerening-Roeser, Op den Camp, Jetten (b0195) 2008; 10 Kumar, Nei, Dudley, Tamura (b0130) 2008; 9 Wang, Jing (b0240) 2005; 40 Khin, Annachhatre (b0110) 2004; 22 Schmid (10.1016/j.biortech.2020.122749_b0195) 2008; 10 Wang (10.1016/j.biortech.2020.122749_b0245) 2004; 39 Yang (10.1016/j.biortech.2020.122749_b0265) 2015; 193 Hocaoglu (10.1016/j.biortech.2020.122749_b0085) 2011; 102 APHA (10.1016/j.biortech.2020.122749_b0015) 1998 Ashok (10.1016/j.biortech.2020.122749_b0020) 2015; 22 Ren (10.1016/j.biortech.2020.122749_b0175) 2014; 171 Khardenavis (10.1016/j.biortech.2020.122749_b0105) 2007; 77 Zhu (10.1016/j.biortech.2020.122749_b0320) 2012; 108 Kundu (10.1016/j.biortech.2020.122749_b0135) 2014; 2014 Ahn (10.1016/j.biortech.2020.122749_b0005) 2006; 41 Zou (10.1016/j.biortech.2020.122749_b0325) 2014; 161 Bhuvanesh (10.1016/j.biortech.2020.122749_b0025) 2013; 129 Jin (10.1016/j.biortech.2020.122749_b0095) 2019; 281 Wang (10.1016/j.biortech.2020.122749_b0235) 2016; 34 Su (10.1016/j.biortech.2020.122749_b0220) 2015; 161 Tatusova (10.1016/j.biortech.2020.122749_b0225) 1999; 174 Wan (10.1016/j.biortech.2020.122749_b0230) 2009; 100 Yao (10.1016/j.biortech.2020.122749_b0275) 2013; 127 Shen (10.1016/j.biortech.2020.122749_b0200) 2012; 102 Yao (10.1016/j.biortech.2020.122749_b0280) 2013; 139 Jin (10.1016/j.biortech.2020.122749_b0100) 2014; 175 Lei (10.1016/j.biortech.2020.122749_b0145) 2016; 100 Chen (10.1016/j.biortech.2020.122749_b0060) 2018; 267 Stanley (10.1016/j.biortech.2020.122749_b0215) 1995; 33 Yang (10.1016/j.biortech.2020.122749_b0255) 2019; 274 Braker (10.1016/j.biortech.2020.122749_b0030) 2000; 66 Duan (10.1016/j.biortech.2020.122749_b0065) 2015; 179 Robertson (10.1016/j.biortech.2020.122749_b0180) 1984; 139 Kim (10.1016/j.biortech.2020.122749_b0115) 2008; 106 Chen (10.1016/j.biortech.2020.122749_b0040) 2019; 127 Frear (10.1016/j.biortech.2020.122749_b0070) 1955; 27 Yang (10.1016/j.biortech.2020.122749_b0270) 2012; 104 Chen (10.1016/j.biortech.2020.122749_b0055) 2012; 113 Padhi (10.1016/j.biortech.2020.122749_b0170) 2013; 78 Medhi (10.1016/j.biortech.2020.122749_b0165) 2017; 242 Shen (10.1016/j.biortech.2020.122749_b0210) 2013; 250–251 Wang (10.1016/j.biortech.2020.122749_b0240) 2005; 40 Alvaro (10.1016/j.biortech.2020.122749_b0010) 2009; 72 Kumar (10.1016/j.biortech.2020.122749_b0130) 2008; 9 Shen (10.1016/j.biortech.2020.122749_b0205) 2013; 131 Liu (10.1016/j.biortech.2020.122749_b0155) 2019; 671 Kong (10.1016/j.biortech.2020.122749_b0120) 2006; 260 Chen (10.1016/j.biortech.2020.122749_b0045) 2014; 167 Zhang (10.1016/j.biortech.2020.122749_b0305) 2014; 64 He (10.1016/j.biortech.2020.122749_b0080) 2017; 239 Ma (10.1016/j.biortech.2020.122749_b0160) 2015; 187 He (10.1016/j.biortech.2020.122749_b0075) 2015; 200 Chen (10.1016/j.biortech.2020.122749_b0050) 2012; 116 Robertson (10.1016/j.biortech.2020.122749_b0185) 1990; 57 Brierley (10.1016/j.biortech.2020.122749_b0035) 2001; 33 Zhang (10.1016/j.biortech.2020.122749_b0295) 2013; 137 Ye (10.1016/j.biortech.2020.122749_b0285) 2017; 9 Huang (10.1016/j.biortech.2020.122749_b0090) 2013; 146 Rout (10.1016/j.biortech.2020.122749_b0190) 2017; 244 Li (10.1016/j.biortech.2020.122749_b0150) 2015; 182 Wang (10.1016/j.biortech.2020.122749_b0250) 2019; 288 Zhao (10.1016/j.biortech.2020.122749_b0315) 2010; 31 Yang (10.1016/j.biortech.2020.122749_b0260) 2019; 285 Zhao (10.1016/j.biortech.2020.122749_b0310) 2010; 101 Lei (10.1016/j.biortech.2020.122749_b0140) 2019; 272 Könneke (10.1016/j.biortech.2020.122749_b0125) 2005; 437 Zhang (10.1016/j.biortech.2020.122749_b0300) 2012; 108 Khin (10.1016/j.biortech.2020.122749_b0110) 2004; 22 Zhang (10.1016/j.biortech.2020.122749_b0290) 2017; 241 |
References_xml | – volume: 146 start-page: 44 year: 2013 end-page: 50 ident: b0090 article-title: Ammonium removal by a novel oligotrophic publication-title: Bioresour. Technol. – volume: 260 start-page: 150 year: 2006 end-page: 155 ident: b0120 article-title: Development and application of a novel and effective screening method for aerobic denitrifying bacteria publication-title: FEMS Microbiol. Lett. – volume: 100 start-page: 4219 year: 2016 end-page: 4229 ident: b0145 article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, publication-title: Appl. Microbiol. Biot. – volume: 57 start-page: 139 year: 1990 end-page: 152 ident: b0185 article-title: Combined heterotrophic nitrification and aerobic denitrification in publication-title: Antonie van Leeuwenhoek – volume: 179 start-page: 421 year: 2015 end-page: 428 ident: b0065 article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. – volume: 161 start-page: 288 year: 2014 end-page: 296 ident: b0325 article-title: High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature publication-title: Bioresour. Technol. – volume: 66 start-page: 2096 year: 2000 end-page: 2104 ident: b0030 article-title: Nitrite reductase genes ( publication-title: Appl. Environ. Microbiol. – volume: 100 start-page: 142 year: 2009 end-page: 148 ident: b0230 article-title: Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification publication-title: Bioresour. Technol. – volume: 187 start-page: 30 year: 2015 end-page: 36 ident: b0160 article-title: Activation of accumulated nitrite reduction by immobilized publication-title: Bioresour. Technol. – volume: 671 start-page: 388 year: 2019 end-page: 403 ident: b0155 article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review publication-title: Sci. Total Environ. – volume: 242 start-page: 334 year: 2017 end-page: 343 ident: b0165 article-title: Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by publication-title: Bioresour. Technol. – volume: 102 start-page: 8835 year: 2012 end-page: 8838 ident: b0200 article-title: Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier publication-title: Bioresour. Technol. – volume: 285 year: 2019 ident: b0260 article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium publication-title: Bioresour. Technol. – volume: 437 start-page: 543 year: 2005 end-page: 546 ident: b0125 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature – volume: 161 start-page: 829 year: 2015 end-page: 837 ident: b0220 article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, publication-title: Microbiology – volume: 102 start-page: 4333 year: 2011 end-page: 4340 ident: b0085 article-title: Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water publication-title: Bioresour. Technol. – volume: 22 start-page: 519 year: 2004 end-page: 532 ident: b0110 article-title: Novel microbial nitrogen removal processes publication-title: Biotechnol. Adv. – volume: 113 start-page: 619 year: 2012 end-page: 623 ident: b0055 article-title: Ammonium removal by publication-title: J. Biosci. Bioeng. – volume: 131 start-page: 33 year: 2013 end-page: 39 ident: b0205 article-title: Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal publication-title: Bioresour. Technol. – volume: 2014 start-page: 1 year: 2014 end-page: 12 ident: b0135 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by publication-title: Biomed. Res. Int. – volume: 40 start-page: 1973 year: 2005 end-page: 1978 ident: b0240 article-title: The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor publication-title: Process Biochem. – volume: 116 start-page: 266 year: 2012 end-page: 270 ident: b0050 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium publication-title: Bioresour. Technol. – volume: 127 start-page: 151 year: 2013 end-page: 157 ident: b0275 article-title: Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature publication-title: Bioresour. Technol. – volume: 139 start-page: 351 year: 1984 end-page: 354 ident: b0180 article-title: Aerobic denitrification: a controversy revived publication-title: Arch. Microbiol. – volume: 34 start-page: 1103 year: 2016 end-page: 1112 ident: b0235 article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process publication-title: Biotechnol. Adv. – volume: 31 start-page: 409 year: 2010 end-page: 416 ident: b0315 article-title: Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by publication-title: LY. Environ. Technol. – volume: 127 start-page: 201 year: 2019 end-page: 205 ident: b0040 article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium publication-title: J. Biosci. Bioeng. – volume: 274 start-page: 56 year: 2019 end-page: 64 ident: b0255 article-title: Ammonium removal characteristics of an acid-resistant bacterium publication-title: Bioresour. Technol. – volume: 33 start-page: 1206 year: 1995 end-page: 1211 ident: b0215 article-title: Molecular subtyping scheme for publication-title: J. Clin. Microbial. – volume: 200 start-page: 493 year: 2015 end-page: 499 ident: b0075 article-title: Heterotrophic nitrification and aerobic denitrification by publication-title: Bioresour. Technol. – volume: 9 start-page: 299 year: 2008 end-page: 306 ident: b0130 article-title: MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequence publication-title: Brief. Bioinform. – volume: 72 start-page: 2005 year: 2009 end-page: 2008 ident: b0010 article-title: Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod publication-title: Ecotox. Environ. Safe. – volume: 78 start-page: 67 year: 2013 end-page: 73 ident: b0170 article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying publication-title: Int. Biodeter. Biodegr. – volume: 244 start-page: 484 year: 2017 end-page: 495 ident: b0190 article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using publication-title: Bioresour. Technol. – volume: 22 start-page: 8075 year: 2015 end-page: 8093 ident: b0020 article-title: Remediation of nitrate-contaminated water by solid-phase denitrification process—a review publication-title: Environ. Sci. Pollut. Res. – volume: 267 start-page: 541 year: 2018 end-page: 549 ident: b0060 article-title: Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification publication-title: Bioresour. Technol. – volume: 288 year: 2019 ident: b0250 article-title: Simultaneous nitrification and denitrification by a novel isolated publication-title: Bioresour. Technol. – volume: 239 start-page: 66 year: 2017 end-page: 73 ident: b0080 article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by publication-title: Bioresour. Technol. – volume: 64 start-page: 1231 year: 2014 end-page: 1238 ident: b0305 article-title: Isolation and characterization of a heterotrophic nitrifier Proteus mirabilis strain V7 and its potential application in NH publication-title: Ann. Microbiol. – volume: 106 start-page: 498 year: 2008 end-page: 502 ident: b0115 article-title: Aerobic denitrification of publication-title: J. Biosci. Bioeng. – volume: 241 start-page: 500 year: 2017 end-page: 507 ident: b0290 article-title: Heterotrophic nitrification and aerobic denitrification by publication-title: Bioresour. Technol. – volume: 39 start-page: 1223 year: 2004 end-page: 1229 ident: b0245 article-title: Partial nitrification under limited dissolved oxygen conditions publication-title: Process Biochem. – volume: 281 start-page: 392 year: 2019 end-page: 400 ident: b0095 article-title: Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control publication-title: Bioresour. Technol. – volume: 182 start-page: 18 year: 2015 end-page: 25 ident: b0150 article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium publication-title: Bioresour. Technol. – volume: 9 start-page: 835 year: 2017 end-page: 910 ident: b0285 article-title: Heterotrophic nitrification-aerobic denitrification performance of strain Y-12 under low temperature and high concentration of inorganic nitrogen conditions publication-title: Water – volume: 250–251 start-page: 431 year: 2013 end-page: 438 ident: b0210 article-title: Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support publication-title: J. Hazard. Mater. – volume: 171 start-page: 1 year: 2014 end-page: 9 ident: b0175 article-title: The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, publication-title: Bioresour. Technol. – volume: 77 start-page: 403 year: 2007 end-page: 409 ident: b0105 article-title: Simultaneous nitrification and denitrification by diverse publication-title: Appl. Microbiol. Biotechnol. – volume: 175 start-page: 2000 year: 2014 end-page: 2011 ident: b0100 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium publication-title: Appl. Biochem. Biotechnol. – volume: 27 start-page: 1664 year: 1955 end-page: 1665 ident: b0070 article-title: Spectrophotometric method for determining hydroxylamine reductase activity in higher plants publication-title: Anal. Chem. – volume: 101 start-page: 5194 year: 2010 end-page: 5200 ident: b0310 article-title: Heterotrophic nitrogen removal by a newly isolated Acinetobacter publication-title: Bioresour. Technol. – volume: 272 start-page: 442 year: 2019 end-page: 450 ident: b0140 article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated publication-title: Bioresour. Technol. – volume: 167 start-page: 456 year: 2014 end-page: 461 ident: b0045 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium publication-title: Bioresour. Technol. – volume: 129 start-page: 78 year: 2013 end-page: 84 ident: b0025 article-title: Start-up and performance of a hybrid anoxic reactor for biological denitrification publication-title: Bioresour. Technol. – volume: 174 start-page: 247 year: 1999 end-page: 250 ident: b0225 article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences publication-title: FEMS. Microbiol. Lett. – volume: 33 start-page: 1403 year: 2001 end-page: 1409 ident: b0035 article-title: Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium publication-title: Soil Biol. Biochem. – volume: 104 start-page: 65 year: 2012 end-page: 72 ident: b0270 article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by publication-title: Bioresour. Technol. – volume: 10 start-page: 3140 year: 2008 end-page: 3149 ident: b0195 article-title: Environmental detection of octahaem cytochrome chydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria publication-title: Environ. Microbiol. – volume: 139 start-page: 80 year: 2013 end-page: 86 ident: b0280 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, publication-title: Bioresour. Technol. – year: 1998 ident: b0015 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 108 start-page: 35 year: 2012 end-page: 44 ident: b0300 article-title: The characteristics of a novel heterotrophic nitrifcation-aerobic denitrifcation bacterium, publication-title: Bioresour. Technol. – volume: 137 start-page: 147 year: 2013 end-page: 152 ident: b0295 article-title: Removal of ammonium in surface water at low temperature by a newly isolated publication-title: Bioresour. Technol. – volume: 108 start-page: 1 year: 2012 end-page: 7 ident: b0320 article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem publication-title: Bioresour. Technol. – volume: 193 start-page: 227 year: 2015 end-page: 233 ident: b0265 article-title: Nitrogen removal characteristics of a heterotrophic nitrifier publication-title: Bioresour. Technol. – volume: 41 start-page: 1709 year: 2006 end-page: 1721 ident: b0005 article-title: Sustainable nitrogen elimination biotechnologies: a review publication-title: Process Biochem. – volume: 127 start-page: 201 issue: 2 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0040 article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2018.07.025 – volume: 127 start-page: 151 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0275 article-title: Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.098 – volume: 57 start-page: 139 year: 1990 ident: 10.1016/j.biortech.2020.122749_b0185 article-title: Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria publication-title: Antonie van Leeuwenhoek doi: 10.1007/BF00403948 – volume: 250–251 start-page: 431 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0210 article-title: Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.02.026 – volume: 139 start-page: 351 issue: 4 year: 1984 ident: 10.1016/j.biortech.2020.122749_b0180 article-title: Aerobic denitrification: a controversy revived publication-title: Arch. Microbiol. doi: 10.1007/BF00408378 – volume: 131 start-page: 33 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0205 article-title: Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.169 – volume: 187 start-page: 30 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0160 article-title: Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.060 – volume: 102 start-page: 8835 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0200 article-title: Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.090 – volume: 272 start-page: 442 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0140 article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.060 – volume: 106 start-page: 498 year: 2008 ident: 10.1016/j.biortech.2020.122749_b0115 article-title: Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.106.498 – volume: 242 start-page: 334 year: 2017 ident: 10.1016/j.biortech.2020.122749_b0165 article-title: Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.084 – volume: 104 start-page: 65 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0270 article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.026 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0135 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by chryseobacterium sp. R31 Isolated from A battoir wastewater publication-title: Biomed. Res. Int. – volume: 137 start-page: 147 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0295 article-title: Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.094 – volume: 167 start-page: 456 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0045 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.001 – volume: 274 start-page: 56 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0255 article-title: Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.052 – volume: 161 start-page: 829 issue: 4 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0220 article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, Acinetobacter sp. SYF26 publication-title: Microbiology doi: 10.1099/mic.0.000047 – volume: 9 start-page: 835 year: 2017 ident: 10.1016/j.biortech.2020.122749_b0285 article-title: Heterotrophic nitrification-aerobic denitrification performance of strain Y-12 under low temperature and high concentration of inorganic nitrogen conditions publication-title: Water doi: 10.3390/w9110835 – volume: 281 start-page: 392 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0095 article-title: Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.02.119 – volume: 100 start-page: 142 year: 2009 ident: 10.1016/j.biortech.2020.122749_b0230 article-title: Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.05.042 – volume: 116 start-page: 266 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0050 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.050 – volume: 27 start-page: 1664 issue: 10 year: 1955 ident: 10.1016/j.biortech.2020.122749_b0070 article-title: Spectrophotometric method for determining hydroxylamine reductase activity in higher plants publication-title: Anal. Chem. doi: 10.1021/ac60106a054 – volume: 22 start-page: 519 issue: 7 year: 2004 ident: 10.1016/j.biortech.2020.122749_b0110 article-title: Novel microbial nitrogen removal processes publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2004.04.003 – volume: 193 start-page: 227 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0265 article-title: Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.075 – volume: 146 start-page: 44 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0090 article-title: Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.046 – volume: 10 start-page: 3140 issue: 11 year: 2008 ident: 10.1016/j.biortech.2020.122749_b0195 article-title: Environmental detection of octahaem cytochrome chydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01732.x – volume: 33 start-page: 1403 issue: 10 year: 2001 ident: 10.1016/j.biortech.2020.122749_b0035 article-title: Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00045-1 – volume: 175 start-page: 2000 issue: 4 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0100 article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1406-0 – volume: 100 start-page: 4219 issue: 9 year: 2016 ident: 10.1016/j.biortech.2020.122749_b0145 article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-016-7290-5 – volume: 101 start-page: 5194 year: 2010 ident: 10.1016/j.biortech.2020.122749_b0310 article-title: Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.043 – volume: 179 start-page: 421 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0065 article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.057 – volume: 260 start-page: 150 year: 2006 ident: 10.1016/j.biortech.2020.122749_b0120 article-title: Development and application of a novel and effective screening method for aerobic denitrifying bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2006.00306.x – volume: 174 start-page: 247 year: 1999 ident: 10.1016/j.biortech.2020.122749_b0225 article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences publication-title: FEMS. Microbiol. Lett. doi: 10.1111/j.1574-6968.1999.tb13575.x – volume: 113 start-page: 619 issue: 5 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0055 article-title: Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification–aerobic denitrification publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2011.12.012 – volume: 102 start-page: 4333 year: 2011 ident: 10.1016/j.biortech.2020.122749_b0085 article-title: Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.096 – volume: 39 start-page: 1223 year: 2004 ident: 10.1016/j.biortech.2020.122749_b0245 article-title: Partial nitrification under limited dissolved oxygen conditions publication-title: Process Biochem. doi: 10.1016/S0032-9592(03)00249-8 – volume: 437 start-page: 543 issue: 7058 year: 2005 ident: 10.1016/j.biortech.2020.122749_b0125 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 9 start-page: 299 year: 2008 ident: 10.1016/j.biortech.2020.122749_b0130 article-title: MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequence publication-title: Brief. Bioinform. doi: 10.1093/bib/bbn017 – volume: 33 start-page: 1206 issue: 5 year: 1995 ident: 10.1016/j.biortech.2020.122749_b0215 article-title: Molecular subtyping scheme for Salmonella panama publication-title: J. Clin. Microbial. doi: 10.1128/jcm.33.5.1206-1211.1995 – volume: 671 start-page: 388 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0155 article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.317 – volume: 161 start-page: 288 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0325 article-title: High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.066 – volume: 285 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0260 article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121360 – volume: 239 start-page: 66 year: 2017 ident: 10.1016/j.biortech.2020.122749_b0080 article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.125 – volume: 108 start-page: 35 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0300 article-title: The characteristics of a novel heterotrophic nitrifcation-aerobic denitrifcation bacterium, Bacillus methylotrophicus strain L7 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.139 – volume: 108 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2020.122749_b0320 article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.033 – volume: 72 start-page: 2005 year: 2009 ident: 10.1016/j.biortech.2020.122749_b0010 article-title: Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2009.06.008 – volume: 34 start-page: 1103 year: 2016 ident: 10.1016/j.biortech.2020.122749_b0235 article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.07.001 – year: 1998 ident: 10.1016/j.biortech.2020.122749_b0015 – volume: 129 start-page: 78 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0025 article-title: Start-up and performance of a hybrid anoxic reactor for biological denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.009 – volume: 139 start-page: 80 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0280 article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.189 – volume: 182 start-page: 18 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0150 article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.100 – volume: 244 start-page: 484 year: 2017 ident: 10.1016/j.biortech.2020.122749_b0190 article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.186 – volume: 66 start-page: 2096 year: 2000 ident: 10.1016/j.biortech.2020.122749_b0030 article-title: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.5.2096-2104.2000 – volume: 40 start-page: 1973 year: 2005 ident: 10.1016/j.biortech.2020.122749_b0240 article-title: The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor publication-title: Process Biochem. doi: 10.1016/j.procbio.2004.08.001 – volume: 41 start-page: 1709 year: 2006 ident: 10.1016/j.biortech.2020.122749_b0005 article-title: Sustainable nitrogen elimination biotechnologies: a review publication-title: Process Biochem. doi: 10.1016/j.procbio.2006.03.033 – volume: 200 start-page: 493 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0075 article-title: Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.064 – volume: 78 start-page: 67 year: 2013 ident: 10.1016/j.biortech.2020.122749_b0170 article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2013.01.001 – volume: 241 start-page: 500 year: 2017 ident: 10.1016/j.biortech.2020.122749_b0290 article-title: Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.185 – volume: 22 start-page: 8075 year: 2015 ident: 10.1016/j.biortech.2020.122749_b0020 article-title: Remediation of nitrate-contaminated water by solid-phase denitrification process—a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4334-9 – volume: 77 start-page: 403 issue: 2 year: 2007 ident: 10.1016/j.biortech.2020.122749_b0105 article-title: Simultaneous nitrification and denitrification by diverse diaphorobacter sp publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-1176-5 – volume: 171 start-page: 1 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0175 article-title: The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.058 – volume: 31 start-page: 409 year: 2010 ident: 10.1016/j.biortech.2020.122749_b0315 article-title: Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp publication-title: LY. Environ. Technol. doi: 10.1080/09593330903508922 – volume: 64 start-page: 1231 issue: 3 year: 2014 ident: 10.1016/j.biortech.2020.122749_b0305 article-title: Isolation and characterization of a heterotrophic nitrifier Proteus mirabilis strain V7 and its potential application in NH4+-N removal publication-title: Ann. Microbiol. doi: 10.1007/s13213-013-0764-0 – volume: 267 start-page: 541 year: 2018 ident: 10.1016/j.biortech.2020.122749_b0060 article-title: Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.084 – volume: 288 year: 2019 ident: 10.1016/j.biortech.2020.122749_b0250 article-title: Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121506 |
SSID | ssj0003172 |
Score | 2.6754591 |
Snippet | [Display omitted]
•A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and... A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122749 |
SubjectTerms | Acinetobacter Acinetobacter sp activated sludge Aerobiosis ammonium Ammonium Compounds ammonium nitrogen Denitrification Heterotrophic nitrification-aerobic denitrification Heterotrophic Processes nitrate nitrogen Nitrification nitrite nitrogen Nitrites Nitrogen Nitrogen removal phenotype Phylogeny Sewage technology temperature wastewater Wastewater treatment |
Title | Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge |
URI | https://dx.doi.org/10.1016/j.biortech.2020.122749 https://www.ncbi.nlm.nih.gov/pubmed/31951959 https://www.proquest.com/docview/2341614481 https://www.proquest.com/docview/2439375428 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOBQOFeW5pUVG4prdJBtvkuNqKdq20l4KEjfLTwhaJdE-kHpB4p93xkkoHCiHHhPbiuWZzDejmfkMcK4NwrpVEoMcx4PEORkoHdsgTnWYSJSz0r7aYjaaXic_bvjNBky6Xhgqq2xtf2PTvbVu3wza0xzURTH4Rc53xhFiUE9D1EzqYE9S0vL-498yD8RHn0nAyQHNftElfN9XBVW0-qRETEQLGKLlbwHUWw6oB6LLXfjYepBs3GzyE2zYcg92xreLlkXD7sGHSXeNG468YBzch6cplb9Uq0VV3xWa4f-8oFohLx4mS8OkJWImzdAcvRpTv5lkZfVg8cuUiyc7QDzPbFn32ewiZQUqMfqthlHDCvNNJ0WN-6TGiQc_sJyvza09gOvLb1eTadDewhBoNKKrILacyIxTrdIsVDlXCR4l2iateB7JyOVaRkMXps5kykROhpEzbjTKdYySH2I0dAibZVXaY2A6yyRHl4aHsUsMRyCMhybRiJAjrTA27QHvjl7olqKcbsqYi64W7V50IhMkMtGIrAeD53V1Q9Lx7oq8k6x4pW4CkeTdtWedKgiUJSVYZGmr9VLEQwoXMeCN_jEnIQpCjlFfD44aPXreM5pDT_bz-T92dwLb9NQUF32BzdVibb-i37RSp_7HOIWt8fef09kfK4QZcw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLYoPVAOiNIWFvoYpF6zm2Qzm-SItqBtS_cCSNxG84QglET7QOKCxD_HniQUDpRDr_GMYo09fmjszwDftUG3bpXEJMfxIHFOBkrHNohTHSYS5ay0r7aYjiZnya9zfr4C464XhsoqW9vf2HRvrdsvg_Y0B3VRDE4o-M44uhjU0xA18w28TfD60hiD_t3fOg90kP4pAVcHtPxJm_BVXxVU0upfJWJCWsAcLX_JQ70UgXpPdLQJG20IyQ4aLt_Dii23YP3gYtbCaNgtWBt3c9yQ8gRy8APcT6j-pVrMqvqy0Awv9IyKhbx8mCwNk5aQmTRDe_SMpm6ZZGV1Y_HP9BhPhoCAntm87rPpj5QVqMUYuBpGHSvMd50UNfJJnRM3njC_XpoL-xHOjg5Px5OgHcMQaLSiiyC2nNCMU63SLFQ5VwkeJRonrXgeycjlWkZDF6bOZMpEToaRM240ynWMoh9iOvQJVsuqtDvAdJZJjjEND2OXGI6eMB6aRKOLHGmFyWkPeHf0QrcY5TQq41p0xWhXohOZIJGJRmQ9GDzuqxuUjld35J1kxTN9E-hKXt2736mCQFnSC4ssbbWci3hI-SJmvNE_1iSEQcgx7evBdqNHjzyjPfRoP7v_wd03WJuc_jkWxz-nv_fgHVGaSqPPsLqYLe0XDKIW6qu_JA9qcxsB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterotrophic+nitrification+and+aerobic+denitrification+by+a+novel+Acinetobacter+sp.+ND7+isolated+from+municipal+activated+sludge&rft.jtitle=Bioresource+technology&rft.au=Xia%2C+Lin&rft.au=Li%2C+Xiaomin&rft.au=Fan%2C+Wenhong&rft.au=Wang%2C+Jianlong&rft.date=2020-04-01&rft.issn=0960-8524&rft.volume=301&rft.spage=122749&rft_id=info:doi/10.1016%2Fj.biortech.2020.122749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_122749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |