Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge

[Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 301; p. 122749
Main Authors Xia, Lin, Li, Xiaomin, Fan, Wenhong, Wang, Jianlong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application for nitrogen removal from wastewater. A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
AbstractList A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
[Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and aerobic denitrification.•The functional genes hao, napA and nirS were successfully amplified by PCR.•ND7 has significant potential for application for nitrogen removal from wastewater. A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
ArticleNumber 122749
Author Wang, Jianlong
Fan, Wenhong
Xia, Lin
Li, Xiaomin
Author_xml – sequence: 1
  givenname: Lin
  surname: Xia
  fullname: Xia, Lin
  organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
– sequence: 2
  givenname: Xiaomin
  surname: Li
  fullname: Li, Xiaomin
  organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
– sequence: 3
  givenname: Wenhong
  surname: Fan
  fullname: Fan, Wenhong
  organization: School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
– sequence: 4
  givenname: Jianlong
  surname: Wang
  fullname: Wang, Jianlong
  email: wangjl@tsinghua.edu.cn
  organization: Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31951959$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEcxYNU7Lb6FUqOXmZNMpnJBDxYWrVC0YueQ5L5x2aZScYks9Cj39y02wp6WQgE8n7vQd47QychBkDogpItJbR_t9saH1MBe7dlhNVHxgSXL9CGDqJtmBT9CdoQ2ZNm6Bg_RWc57wghLRXsFTptqezqkRv0-wYKpFhSXO68xcGX5J23uvgYsA4j1lU1VRnhX83cY41D3MOEL60PUKLRtkbhvGzx12uBfY6TLjBil-KM5zV46xc94Ur5_aOQp3X8Ca_RS6enDG-e7nP049PH71c3ze23z1-uLm8by3tRGgZdL0kvrBEDMbIzvH6ODIM1naSaOmk1bR0RbhzMSJ0m1I2u76Vl3LlWdO05envIXVL8tUIuavbZwjTpAHHNivFWVo6z4TjactpTzgda0YsndDUzjGpJftbpXj03XIH-ANgUc07g_iKUqIcp1U49T6keplSHKavx_X9G68tj9yVpPx23fzjYoXa695BUth6ChdEnsEWN0R-L-AM0c8AY
CitedBy_id crossref_primary_10_1016_j_eti_2024_103858
crossref_primary_10_1016_j_jclepro_2021_126658
crossref_primary_10_1080_10643389_2024_2350317
crossref_primary_10_1016_j_cej_2024_149109
crossref_primary_10_1007_s00449_021_02581_z
crossref_primary_10_1007_s11274_022_03311_7
crossref_primary_10_1016_j_jwpe_2023_104316
crossref_primary_10_1007_s11270_023_06524_0
crossref_primary_10_1016_j_biortech_2023_129656
crossref_primary_10_1016_j_chemosphere_2024_142470
crossref_primary_10_1016_j_cej_2025_161509
crossref_primary_10_1016_j_biortech_2022_127756
crossref_primary_10_1016_j_jenvman_2021_111961
crossref_primary_10_1016_j_jece_2023_111519
crossref_primary_10_1021_acs_est_2c08770
crossref_primary_10_1080_07388551_2021_1976099
crossref_primary_10_1016_j_scitotenv_2023_162211
crossref_primary_10_1016_j_chemosphere_2022_134054
crossref_primary_10_1016_j_chemosphere_2023_139465
crossref_primary_10_3390_w16101377
crossref_primary_10_3390_microorganisms10020235
crossref_primary_10_1016_j_jwpe_2025_107252
crossref_primary_10_1016_j_biortech_2021_125189
crossref_primary_10_1016_j_biortech_2023_129309
crossref_primary_10_1007_s10499_024_01660_8
crossref_primary_10_1016_j_biortech_2021_125620
crossref_primary_10_3724_aauj_2024072
crossref_primary_10_1016_j_biortech_2020_124105
crossref_primary_10_3390_foods12071485
crossref_primary_10_1016_j_ijbiomac_2022_11_264
crossref_primary_10_1089_ees_2021_0570
crossref_primary_10_3390_biotech12030053
crossref_primary_10_1016_j_jwpe_2025_107492
crossref_primary_10_2166_wst_2022_401
crossref_primary_10_1002_wer_10850
crossref_primary_10_1038_s41598_022_12972_1
crossref_primary_10_1016_j_biortech_2023_129670
crossref_primary_10_1002_jctb_7244
crossref_primary_10_1016_j_biortech_2022_127890
crossref_primary_10_1016_j_envres_2024_120730
crossref_primary_10_1016_j_jwpe_2023_103687
crossref_primary_10_3390_w16030416
crossref_primary_10_1016_j_biortech_2020_123922
crossref_primary_10_1016_j_jwpe_2023_103683
crossref_primary_10_1016_j_eti_2021_101731
crossref_primary_10_1016_j_jece_2024_113206
crossref_primary_10_1016_j_jes_2021_10_013
crossref_primary_10_1016_j_jwpe_2024_104807
crossref_primary_10_1016_j_watres_2025_123290
crossref_primary_10_1016_j_scitotenv_2020_139734
crossref_primary_10_1002_jobm_202100446
crossref_primary_10_1016_j_jece_2022_108859
crossref_primary_10_1016_j_scitotenv_2024_177419
crossref_primary_10_1016_j_wroa_2024_100246
crossref_primary_10_1016_j_jbiosc_2021_03_012
crossref_primary_10_1016_j_jwpe_2021_102260
crossref_primary_10_1016_j_biortech_2023_129681
crossref_primary_10_1016_j_biortech_2023_129682
crossref_primary_10_1016_j_scitotenv_2024_176323
crossref_primary_10_1016_j_biortech_2022_127643
crossref_primary_10_1016_j_jhazmat_2021_126608
crossref_primary_10_1016_j_biortech_2021_125960
crossref_primary_10_1016_j_scitotenv_2021_146436
crossref_primary_10_1016_j_scitotenv_2024_172081
crossref_primary_10_1016_j_biortech_2023_129569
crossref_primary_10_1016_j_envpol_2022_120312
crossref_primary_10_1016_j_biortech_2023_128907
crossref_primary_10_3389_fmicb_2023_1130512
crossref_primary_10_1016_j_cej_2021_132402
crossref_primary_10_1016_j_ecoenv_2024_116385
crossref_primary_10_1016_j_chemosphere_2023_138266
crossref_primary_10_1016_j_biortech_2023_130047
crossref_primary_10_1016_j_jwpe_2024_105285
crossref_primary_10_3390_microorganisms12122652
crossref_primary_10_1007_s12649_020_01286_w
crossref_primary_10_1016_j_biortech_2022_128007
crossref_primary_10_1016_j_jwpe_2022_103267
crossref_primary_10_1002_wer_10716
crossref_primary_10_1016_j_scitotenv_2021_149319
crossref_primary_10_3390_catal12040412
crossref_primary_10_1021_acsestwater_4c00339
crossref_primary_10_1016_j_biortech_2020_124445
crossref_primary_10_1016_j_seppur_2024_127131
crossref_primary_10_1016_j_chemosphere_2023_140923
crossref_primary_10_3390_ijerph191811323
crossref_primary_10_1016_j_chemosphere_2023_139027
crossref_primary_10_1016_j_envres_2024_120111
crossref_primary_10_1016_j_chemosphere_2021_133048
crossref_primary_10_1016_j_biortech_2022_127260
crossref_primary_10_1016_j_jenvman_2024_120199
crossref_primary_10_1016_j_biortech_2022_127148
crossref_primary_10_1016_j_scitotenv_2023_168348
crossref_primary_10_1016_j_biortech_2022_128236
crossref_primary_10_1016_j_biortech_2023_129507
crossref_primary_10_1016_j_scitotenv_2021_148910
crossref_primary_10_1080_09593330_2022_2077659
crossref_primary_10_1016_j_biortech_2021_126116
crossref_primary_10_1016_j_biortech_2021_125028
crossref_primary_10_1016_j_biortech_2020_124555
crossref_primary_10_1016_j_biortech_2020_124554
crossref_primary_10_1002_wer_70050
crossref_primary_10_1093_femsec_fiae069
crossref_primary_10_1016_j_jenvman_2023_119912
crossref_primary_10_3390_jmse11122267
crossref_primary_10_1016_j_chemosphere_2021_132728
crossref_primary_10_3389_fenvs_2021_818316
crossref_primary_10_1016_j_dwt_2024_100227
crossref_primary_10_1016_j_psep_2021_04_008
crossref_primary_10_1016_j_biortech_2022_128265
crossref_primary_10_1016_j_biortech_2022_127176
crossref_primary_10_1016_j_biortech_2023_130184
crossref_primary_10_3390_w16050784
crossref_primary_10_1016_j_jenvman_2023_119393
crossref_primary_10_1016_j_buildenv_2025_112677
crossref_primary_10_3390_w16111625
crossref_primary_10_1016_j_biortech_2023_129755
crossref_primary_10_1016_j_envres_2023_116591
crossref_primary_10_3390_biom15010063
crossref_primary_10_1016_j_chemosphere_2022_133785
crossref_primary_10_1016_j_envres_2021_111786
crossref_primary_10_1016_j_biortech_2021_125908
crossref_primary_10_1016_j_biortech_2024_130593
crossref_primary_10_1016_j_ecoenv_2021_112693
crossref_primary_10_1016_j_scitotenv_2023_162592
crossref_primary_10_1016_j_scitotenv_2022_155409
crossref_primary_10_1016_j_scitotenv_2021_150212
crossref_primary_10_1007_s42452_024_06277_3
crossref_primary_10_1080_10934529_2022_2134682
crossref_primary_10_1016_j_jece_2024_113511
crossref_primary_10_1016_j_biortech_2022_127959
crossref_primary_10_1016_j_biortech_2021_124823
crossref_primary_10_1016_j_watres_2020_116555
crossref_primary_10_2166_wst_2024_176
crossref_primary_10_1016_j_chemosphere_2022_137471
crossref_primary_10_1016_j_biortech_2024_131574
crossref_primary_10_1016_j_jhazmat_2024_135605
crossref_primary_10_1007_s00449_021_02523_9
crossref_primary_10_1016_j_scitotenv_2024_176614
crossref_primary_10_1016_j_biortech_2022_127353
crossref_primary_10_1016_j_biortech_2024_130408
crossref_primary_10_1016_j_eti_2023_103299
crossref_primary_10_1016_j_jenvman_2025_124405
crossref_primary_10_1016_j_biortech_2023_128720
crossref_primary_10_1016_j_biortech_2021_126423
crossref_primary_10_1007_s10499_023_01224_2
crossref_primary_10_1016_j_cej_2022_140499
crossref_primary_10_1016_j_biortech_2024_131069
crossref_primary_10_1016_j_envres_2022_113903
crossref_primary_10_1016_j_aquaculture_2021_736659
crossref_primary_10_1016_j_ijbiomac_2022_04_122
crossref_primary_10_1016_j_envres_2022_115199
crossref_primary_10_1016_j_jwpe_2024_105098
crossref_primary_10_1016_j_scitotenv_2022_153169
crossref_primary_10_1016_j_chemosphere_2024_142525
crossref_primary_10_1016_j_biortech_2021_125582
crossref_primary_10_1016_j_biortech_2021_126430
crossref_primary_10_1016_j_jwpe_2025_107412
crossref_primary_10_1016_j_biortech_2020_123533
crossref_primary_10_1016_j_bej_2024_109417
crossref_primary_10_1016_j_biteb_2021_100816
crossref_primary_10_1007_s12010_024_04980_w
crossref_primary_10_1016_j_jece_2024_112837
crossref_primary_10_1016_j_biortech_2020_124198
crossref_primary_10_1016_j_scitotenv_2020_144210
crossref_primary_10_1071_EN20097
crossref_primary_10_1016_j_jenvman_2022_116506
crossref_primary_10_1007_s10529_024_03529_5
crossref_primary_10_1016_j_biortech_2023_129038
crossref_primary_10_1007_s11270_024_07001_y
crossref_primary_10_1016_j_biortech_2022_127011
crossref_primary_10_1016_j_jece_2023_109387
crossref_primary_10_1016_j_jece_2024_112513
crossref_primary_10_1016_j_jwpe_2022_103245
crossref_primary_10_1007_s12010_022_03877_w
crossref_primary_10_1016_j_biortech_2022_128225
crossref_primary_10_1016_j_jwpe_2023_104138
crossref_primary_10_1016_j_biortech_2022_127933
crossref_primary_10_1016_j_biortech_2020_123888
crossref_primary_10_1016_j_scitotenv_2022_156475
crossref_primary_10_1016_j_scitotenv_2024_172901
crossref_primary_10_1016_j_jclepro_2023_137366
crossref_primary_10_1016_j_envres_2023_115476
crossref_primary_10_1002_wer_1568
crossref_primary_10_1016_j_biortech_2023_128994
crossref_primary_10_1016_j_biortech_2020_124608
crossref_primary_10_1016_j_jece_2023_110263
crossref_primary_10_1016_j_scitotenv_2021_150092
crossref_primary_10_1016_j_scitotenv_2021_148699
crossref_primary_10_1016_j_bej_2022_108759
crossref_primary_10_1016_j_jwpe_2024_104786
crossref_primary_10_1016_j_biortech_2020_123633
crossref_primary_10_1016_j_biotechadv_2021_107882
crossref_primary_10_1016_j_eti_2024_103694
crossref_primary_10_1007_s11356_022_20708_x
crossref_primary_10_1016_j_scitotenv_2022_157452
crossref_primary_10_1007_s00449_022_02771_3
crossref_primary_10_1016_j_biortech_2024_130322
crossref_primary_10_1016_j_cej_2023_148459
crossref_primary_10_3390_pr10030591
crossref_primary_10_1016_j_biortech_2022_127792
crossref_primary_10_1016_j_ecoenv_2023_115588
crossref_primary_10_1371_journal_pone_0293136
crossref_primary_10_1016_j_biortech_2022_128401
crossref_primary_10_1016_j_soilbio_2024_109706
crossref_primary_10_5004_dwt_2021_27096
crossref_primary_10_3390_w16030431
crossref_primary_10_1016_j_soilbio_2022_108611
crossref_primary_10_1016_j_chemosphere_2022_137648
crossref_primary_10_1016_j_biortech_2020_124280
crossref_primary_10_1007_s11356_022_19083_4
crossref_primary_10_1016_j_jwpe_2024_106544
crossref_primary_10_1016_j_scitotenv_2021_150033
crossref_primary_10_1016_j_scitotenv_2022_160236
crossref_primary_10_3390_w16213042
crossref_primary_10_1016_j_jenvman_2023_119086
crossref_primary_10_1016_j_jwpe_2023_103531
crossref_primary_10_1016_j_envadv_2022_100254
crossref_primary_10_3390_w16141993
crossref_primary_10_1016_j_scitotenv_2021_150829
crossref_primary_10_1016_j_procbio_2023_05_030
crossref_primary_10_3389_fenvs_2022_887093
crossref_primary_10_1080_10643389_2021_1877976
crossref_primary_10_1016_j_scitotenv_2024_173007
crossref_primary_10_1016_j_eti_2021_101814
crossref_primary_10_1016_j_biortech_2022_127692
crossref_primary_10_1016_j_biortech_2023_128823
crossref_primary_10_3389_fmicb_2022_982674
crossref_primary_10_1016_j_biortech_2022_127457
crossref_primary_10_1016_j_biortech_2023_128822
crossref_primary_10_1007_s41748_024_00377_1
crossref_primary_10_1007_s00449_023_02854_9
crossref_primary_10_1016_j_cej_2024_154960
crossref_primary_10_1016_j_scitotenv_2022_159147
crossref_primary_10_1080_09593330_2022_2046649
crossref_primary_10_1016_j_chemosphere_2024_142329
crossref_primary_10_1016_j_jclepro_2023_137565
crossref_primary_10_1016_j_biortech_2024_130874
crossref_primary_10_2166_wrd_2021_049
crossref_primary_10_1016_j_biteb_2023_101495
crossref_primary_10_1016_j_jwpe_2025_106942
crossref_primary_10_1016_j_watres_2024_122557
crossref_primary_10_1016_j_biortech_2021_126175
crossref_primary_10_1016_j_watres_2024_121102
crossref_primary_10_1016_j_jwpe_2023_103995
crossref_primary_10_1016_j_jwpe_2025_107474
crossref_primary_10_1016_j_biortech_2021_125761
crossref_primary_10_1016_j_biortech_2023_129805
crossref_primary_10_1016_j_eti_2022_102630
crossref_primary_10_1016_j_eti_2022_102997
crossref_primary_10_1007_s11356_023_26487_3
crossref_primary_10_1080_09593330_2022_2102940
crossref_primary_10_1016_j_procbio_2023_04_018
crossref_primary_10_1016_j_scitotenv_2021_145939
crossref_primary_10_1007_s00203_023_03597_7
crossref_primary_10_1016_j_scitotenv_2020_143580
crossref_primary_10_1016_j_jenvman_2024_123890
crossref_primary_10_1007_s13762_021_03253_x
Cites_doi 10.1016/j.jbiosc.2018.07.025
10.1016/j.biortech.2012.09.098
10.1007/BF00403948
10.1016/j.jhazmat.2013.02.026
10.1007/BF00408378
10.1016/j.biortech.2012.12.169
10.1016/j.biortech.2015.03.060
10.1016/j.biortech.2011.06.090
10.1016/j.biortech.2018.10.060
10.1263/jbb.106.498
10.1016/j.biortech.2017.03.084
10.1016/j.biortech.2011.10.026
10.1016/j.biortech.2013.03.094
10.1016/j.biortech.2014.06.001
10.1016/j.biortech.2018.10.052
10.1099/mic.0.000047
10.3390/w9110835
10.1016/j.biortech.2019.02.119
10.1016/j.biortech.2008.05.042
10.1016/j.biortech.2012.02.050
10.1021/ac60106a054
10.1016/j.biotechadv.2004.04.003
10.1016/j.biortech.2015.05.075
10.1016/j.biortech.2013.07.046
10.1111/j.1462-2920.2008.01732.x
10.1016/S0038-0717(01)00045-1
10.1007/s12010-014-1406-0
10.1007/s00253-016-7290-5
10.1016/j.biortech.2010.02.043
10.1016/j.biortech.2014.12.057
10.1111/j.1574-6968.2006.00306.x
10.1111/j.1574-6968.1999.tb13575.x
10.1016/j.jbiosc.2011.12.012
10.1016/j.biortech.2010.11.096
10.1016/S0032-9592(03)00249-8
10.1038/nature03911
10.1093/bib/bbn017
10.1128/jcm.33.5.1206-1211.1995
10.1016/j.scitotenv.2019.03.317
10.1016/j.biortech.2014.03.066
10.1016/j.biortech.2019.121360
10.1016/j.biortech.2017.04.125
10.1016/j.biortech.2011.12.139
10.1016/j.biortech.2011.12.033
10.1016/j.ecoenv.2009.06.008
10.1016/j.biotechadv.2016.07.001
10.1016/j.biortech.2012.10.009
10.1016/j.biortech.2013.03.189
10.1016/j.biortech.2015.01.100
10.1016/j.biortech.2017.07.186
10.1128/AEM.66.5.2096-2104.2000
10.1016/j.procbio.2004.08.001
10.1016/j.procbio.2006.03.033
10.1016/j.biortech.2015.10.064
10.1016/j.ibiod.2013.01.001
10.1016/j.biortech.2017.05.185
10.1007/s11356-015-4334-9
10.1007/s00253-007-1176-5
10.1016/j.biortech.2014.08.058
10.1080/09593330903508922
10.1007/s13213-013-0764-0
10.1016/j.biortech.2018.07.084
10.1016/j.biortech.2019.121506
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.122749
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 31951959
10_1016_j_biortech_2020_122749
S0960852420300183
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c467t-2e569067cb780b95b4960088cb591a1f9ca13f07fd8bd1fa01fdf669c24ff3753
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Aug 22 20:23:29 EDT 2025
Fri Jul 11 03:27:12 EDT 2025
Wed Feb 19 02:31:57 EST 2025
Thu Apr 24 23:11:22 EDT 2025
Tue Jul 01 03:18:38 EDT 2025
Sat Aug 10 15:31:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nitrogen removal
Acinetobacter sp
Wastewater treatment
Heterotrophic nitrification-aerobic denitrification
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-2e569067cb780b95b4960088cb591a1f9ca13f07fd8bd1fa01fdf669c24ff3753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31951959
PQID 2341614481
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439375428
proquest_miscellaneous_2341614481
pubmed_primary_31951959
crossref_primary_10_1016_j_biortech_2020_122749
crossref_citationtrail_10_1016_j_biortech_2020_122749
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_122749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-Apr
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alvaro, Camargo (b0010) 2009; 72
Zhang, Andong, Zhang, Wang, Wei, Chen (b0305) 2014; 64
Kong, Wang, Jin, Shen, Li (b0120) 2006; 260
Shen, Wang (b0200) 2012; 102
Brierley, Wood (b0035) 2001; 33
Huang, Li, Zhang, Qin (b0090) 2013; 146
Jin, Chen, Xu, Cui, Zheng (b0095) 2019; 281
Ahn (b0005) 2006; 41
Zhang, Sun, Fan, Qiu, Gao, Wang (b0290) 2017; 241
Zhang, Liu, Ai, Miao, Zheng, Liu (b0300) 2012; 108
Shen, Zhou, Hu, Wang (b0210) 2013; 250–251
Braker, Zhou, Wu, Devol, Tiedje (b0030) 2000; 66
Padhi, Tripathy, Sen, Mahapatra, Mohanty, Maiti (b0170) 2013; 78
Zhao, He, Zhang (b0315) 2010; 31
Robertson, Kuenen (b0180) 1984; 139
Su, Zhang, Huang, Wen, Guo, Yang (b0220) 2015; 161
Kundu, Pramanik, Dasgupta, Mukherjee, Mukherjee (b0135) 2014; 2014
Duan, Fang, Su, Chen, Lin (b0065) 2015; 179
Tatusova, Madden (b0225) 1999; 174
Ashok, Hait (b0020) 2015; 22
Zou, Yao, Ni (b0325) 2014; 161
Hocaoglu, Insel, Cokgor, Orhon (b0085) 2011; 102
Chen, Li, Li, Wang, Li, Ren, Wang (b0050) 2012; 116
Yang, Wang, Cui, Ren, Yu, Chen, Xiao, Guo, Wang (b0260) 2019; 285
Yao, Ni, Chen, Borthwick (b0275) 2013; 127
He, Xie, Li, Ni, Sun (b0080) 2017; 239
Ren, Yang, Liang (b0175) 2014; 171
Chen, Ni (b0055) 2012; 113
Rout, Bhunia, Dash (b0190) 2017; 244
Chen, He, Wu, Du (b0040) 2019; 127
Zhao, He, Hughes, Zhang (b0310) 2010; 101
Shen, Zhou, Wang (b0205) 2013; 131
Bhuvanesh, Maneesh, Sreekrishnan (b0025) 2013; 129
Chen, Wang, Chen, Chen, Feng, Peng (b0060) 2018; 267
Robertson, Kuenen (b0185) 1990; 57
Zhu, Ding, Feng, Kong, Xu, Xu (b0320) 2012; 108
Frear, Burrell (b0070) 1955; 27
Yang, Wang, Chen, Lyu (b0255) 2019; 274
He, Li, Sun, Xu, Ye (b0075) 2015; 200
Lei, Wang, Liu, Xi, Song (b0145) 2016; 100
Wang, Yang (b0245) 2004; 39
Wan, Liu, Qu, Lei, Xiao, Hou (b0230) 2009; 100
Yao, Ni, Ma, Li (b0280) 2013; 139
Khardenavis, Kapley, Purohit (b0105) 2007; 77
Zhang, Li, Huang, Qin, Liu (b0295) 2013; 137
Yang, Wang, Zhou (b0270) 2012; 104
Jin, Liu, Liu, Zhou, Huang, Wang (b0100) 2014; 175
Li, Yang, Wang, Wang, Li, He, Yuan (b0150) 2015; 182
Ye, Li, Li, Xu, He, Tang, Xiang (b0285) 2017; 9
Medhi, Singhal, Chauhan, Thakur (b0165) 2017; 242
Wang, Chu (b0235) 2016; 34
Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (b0125) 2005; 437
Lei, Jia, Chen, Hu (b0140) 2019; 272
Liu, Wang (b0155) 2019; 671
Yang, Ren, Liang, Zhao, Wang, Xia (b0265) 2015; 193
Ma, Sun, Li, Zhang, Yang (b0160) 2015; 187
Stanley, Baquar, Burnens (b0215) 1995; 33
APHA (b0015) 1998
Chen, Wang, Feng, Zhu, Zhou, Tan, Li (b0045) 2014; 167
Wang, Wang, Zhang, Sun, Zhang, Chen, Li (b0250) 2019; 288
Kim, Jeong, Yoon, Cho, Kim, Kim, Ryu, Lee (b0115) 2008; 106
Schmid, Hooper, Klotz, Woebken, Lam, Kuypers, Pommerening-Roeser, Op den Camp, Jetten (b0195) 2008; 10
Kumar, Nei, Dudley, Tamura (b0130) 2008; 9
Wang, Jing (b0240) 2005; 40
Khin, Annachhatre (b0110) 2004; 22
Schmid (10.1016/j.biortech.2020.122749_b0195) 2008; 10
Wang (10.1016/j.biortech.2020.122749_b0245) 2004; 39
Yang (10.1016/j.biortech.2020.122749_b0265) 2015; 193
Hocaoglu (10.1016/j.biortech.2020.122749_b0085) 2011; 102
APHA (10.1016/j.biortech.2020.122749_b0015) 1998
Ashok (10.1016/j.biortech.2020.122749_b0020) 2015; 22
Ren (10.1016/j.biortech.2020.122749_b0175) 2014; 171
Khardenavis (10.1016/j.biortech.2020.122749_b0105) 2007; 77
Zhu (10.1016/j.biortech.2020.122749_b0320) 2012; 108
Kundu (10.1016/j.biortech.2020.122749_b0135) 2014; 2014
Ahn (10.1016/j.biortech.2020.122749_b0005) 2006; 41
Zou (10.1016/j.biortech.2020.122749_b0325) 2014; 161
Bhuvanesh (10.1016/j.biortech.2020.122749_b0025) 2013; 129
Jin (10.1016/j.biortech.2020.122749_b0095) 2019; 281
Wang (10.1016/j.biortech.2020.122749_b0235) 2016; 34
Su (10.1016/j.biortech.2020.122749_b0220) 2015; 161
Tatusova (10.1016/j.biortech.2020.122749_b0225) 1999; 174
Wan (10.1016/j.biortech.2020.122749_b0230) 2009; 100
Yao (10.1016/j.biortech.2020.122749_b0275) 2013; 127
Shen (10.1016/j.biortech.2020.122749_b0200) 2012; 102
Yao (10.1016/j.biortech.2020.122749_b0280) 2013; 139
Jin (10.1016/j.biortech.2020.122749_b0100) 2014; 175
Lei (10.1016/j.biortech.2020.122749_b0145) 2016; 100
Chen (10.1016/j.biortech.2020.122749_b0060) 2018; 267
Stanley (10.1016/j.biortech.2020.122749_b0215) 1995; 33
Yang (10.1016/j.biortech.2020.122749_b0255) 2019; 274
Braker (10.1016/j.biortech.2020.122749_b0030) 2000; 66
Duan (10.1016/j.biortech.2020.122749_b0065) 2015; 179
Robertson (10.1016/j.biortech.2020.122749_b0180) 1984; 139
Kim (10.1016/j.biortech.2020.122749_b0115) 2008; 106
Chen (10.1016/j.biortech.2020.122749_b0040) 2019; 127
Frear (10.1016/j.biortech.2020.122749_b0070) 1955; 27
Yang (10.1016/j.biortech.2020.122749_b0270) 2012; 104
Chen (10.1016/j.biortech.2020.122749_b0055) 2012; 113
Padhi (10.1016/j.biortech.2020.122749_b0170) 2013; 78
Medhi (10.1016/j.biortech.2020.122749_b0165) 2017; 242
Shen (10.1016/j.biortech.2020.122749_b0210) 2013; 250–251
Wang (10.1016/j.biortech.2020.122749_b0240) 2005; 40
Alvaro (10.1016/j.biortech.2020.122749_b0010) 2009; 72
Kumar (10.1016/j.biortech.2020.122749_b0130) 2008; 9
Shen (10.1016/j.biortech.2020.122749_b0205) 2013; 131
Liu (10.1016/j.biortech.2020.122749_b0155) 2019; 671
Kong (10.1016/j.biortech.2020.122749_b0120) 2006; 260
Chen (10.1016/j.biortech.2020.122749_b0045) 2014; 167
Zhang (10.1016/j.biortech.2020.122749_b0305) 2014; 64
He (10.1016/j.biortech.2020.122749_b0080) 2017; 239
Ma (10.1016/j.biortech.2020.122749_b0160) 2015; 187
He (10.1016/j.biortech.2020.122749_b0075) 2015; 200
Chen (10.1016/j.biortech.2020.122749_b0050) 2012; 116
Robertson (10.1016/j.biortech.2020.122749_b0185) 1990; 57
Brierley (10.1016/j.biortech.2020.122749_b0035) 2001; 33
Zhang (10.1016/j.biortech.2020.122749_b0295) 2013; 137
Ye (10.1016/j.biortech.2020.122749_b0285) 2017; 9
Huang (10.1016/j.biortech.2020.122749_b0090) 2013; 146
Rout (10.1016/j.biortech.2020.122749_b0190) 2017; 244
Li (10.1016/j.biortech.2020.122749_b0150) 2015; 182
Wang (10.1016/j.biortech.2020.122749_b0250) 2019; 288
Zhao (10.1016/j.biortech.2020.122749_b0315) 2010; 31
Yang (10.1016/j.biortech.2020.122749_b0260) 2019; 285
Zhao (10.1016/j.biortech.2020.122749_b0310) 2010; 101
Lei (10.1016/j.biortech.2020.122749_b0140) 2019; 272
Könneke (10.1016/j.biortech.2020.122749_b0125) 2005; 437
Zhang (10.1016/j.biortech.2020.122749_b0300) 2012; 108
Khin (10.1016/j.biortech.2020.122749_b0110) 2004; 22
Zhang (10.1016/j.biortech.2020.122749_b0290) 2017; 241
References_xml – volume: 146
  start-page: 44
  year: 2013
  end-page: 50
  ident: b0090
  article-title: Ammonium removal by a novel oligotrophic
  publication-title: Bioresour. Technol.
– volume: 260
  start-page: 150
  year: 2006
  end-page: 155
  ident: b0120
  article-title: Development and application of a novel and effective screening method for aerobic denitrifying bacteria
  publication-title: FEMS Microbiol. Lett.
– volume: 100
  start-page: 4219
  year: 2016
  end-page: 4229
  ident: b0145
  article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium,
  publication-title: Appl. Microbiol. Biot.
– volume: 57
  start-page: 139
  year: 1990
  end-page: 152
  ident: b0185
  article-title: Combined heterotrophic nitrification and aerobic denitrification in
  publication-title: Antonie van Leeuwenhoek
– volume: 179
  start-page: 421
  year: 2015
  end-page: 428
  ident: b0065
  article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
– volume: 161
  start-page: 288
  year: 2014
  end-page: 296
  ident: b0325
  article-title: High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature
  publication-title: Bioresour. Technol.
– volume: 66
  start-page: 2096
  year: 2000
  end-page: 2104
  ident: b0030
  article-title: Nitrite reductase genes (
  publication-title: Appl. Environ. Microbiol.
– volume: 100
  start-page: 142
  year: 2009
  end-page: 148
  ident: b0230
  article-title: Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification
  publication-title: Bioresour. Technol.
– volume: 187
  start-page: 30
  year: 2015
  end-page: 36
  ident: b0160
  article-title: Activation of accumulated nitrite reduction by immobilized
  publication-title: Bioresour. Technol.
– volume: 671
  start-page: 388
  year: 2019
  end-page: 403
  ident: b0155
  article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review
  publication-title: Sci. Total Environ.
– volume: 242
  start-page: 334
  year: 2017
  end-page: 343
  ident: b0165
  article-title: Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 8835
  year: 2012
  end-page: 8838
  ident: b0200
  article-title: Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier
  publication-title: Bioresour. Technol.
– volume: 285
  year: 2019
  ident: b0260
  article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium
  publication-title: Bioresour. Technol.
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  ident: b0125
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
– volume: 161
  start-page: 829
  year: 2015
  end-page: 837
  ident: b0220
  article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium,
  publication-title: Microbiology
– volume: 102
  start-page: 4333
  year: 2011
  end-page: 4340
  ident: b0085
  article-title: Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water
  publication-title: Bioresour. Technol.
– volume: 22
  start-page: 519
  year: 2004
  end-page: 532
  ident: b0110
  article-title: Novel microbial nitrogen removal processes
  publication-title: Biotechnol. Adv.
– volume: 113
  start-page: 619
  year: 2012
  end-page: 623
  ident: b0055
  article-title: Ammonium removal by
  publication-title: J. Biosci. Bioeng.
– volume: 131
  start-page: 33
  year: 2013
  end-page: 39
  ident: b0205
  article-title: Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal
  publication-title: Bioresour. Technol.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0135
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by
  publication-title: Biomed. Res. Int.
– volume: 40
  start-page: 1973
  year: 2005
  end-page: 1978
  ident: b0240
  article-title: The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor
  publication-title: Process Biochem.
– volume: 116
  start-page: 266
  year: 2012
  end-page: 270
  ident: b0050
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium
  publication-title: Bioresour. Technol.
– volume: 127
  start-page: 151
  year: 2013
  end-page: 157
  ident: b0275
  article-title: Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature
  publication-title: Bioresour. Technol.
– volume: 139
  start-page: 351
  year: 1984
  end-page: 354
  ident: b0180
  article-title: Aerobic denitrification: a controversy revived
  publication-title: Arch. Microbiol.
– volume: 34
  start-page: 1103
  year: 2016
  end-page: 1112
  ident: b0235
  article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process
  publication-title: Biotechnol. Adv.
– volume: 31
  start-page: 409
  year: 2010
  end-page: 416
  ident: b0315
  article-title: Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by
  publication-title: LY. Environ. Technol.
– volume: 127
  start-page: 201
  year: 2019
  end-page: 205
  ident: b0040
  article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium
  publication-title: J. Biosci. Bioeng.
– volume: 274
  start-page: 56
  year: 2019
  end-page: 64
  ident: b0255
  article-title: Ammonium removal characteristics of an acid-resistant bacterium
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 1206
  year: 1995
  end-page: 1211
  ident: b0215
  article-title: Molecular subtyping scheme for
  publication-title: J. Clin. Microbial.
– volume: 200
  start-page: 493
  year: 2015
  end-page: 499
  ident: b0075
  article-title: Heterotrophic nitrification and aerobic denitrification by
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 299
  year: 2008
  end-page: 306
  ident: b0130
  article-title: MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequence
  publication-title: Brief. Bioinform.
– volume: 72
  start-page: 2005
  year: 2009
  end-page: 2008
  ident: b0010
  article-title: Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod
  publication-title: Ecotox. Environ. Safe.
– volume: 78
  start-page: 67
  year: 2013
  end-page: 73
  ident: b0170
  article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying
  publication-title: Int. Biodeter. Biodegr.
– volume: 244
  start-page: 484
  year: 2017
  end-page: 495
  ident: b0190
  article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using
  publication-title: Bioresour. Technol.
– volume: 22
  start-page: 8075
  year: 2015
  end-page: 8093
  ident: b0020
  article-title: Remediation of nitrate-contaminated water by solid-phase denitrification process—a review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 267
  start-page: 541
  year: 2018
  end-page: 549
  ident: b0060
  article-title: Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification
  publication-title: Bioresour. Technol.
– volume: 288
  year: 2019
  ident: b0250
  article-title: Simultaneous nitrification and denitrification by a novel isolated
  publication-title: Bioresour. Technol.
– volume: 239
  start-page: 66
  year: 2017
  end-page: 73
  ident: b0080
  article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by
  publication-title: Bioresour. Technol.
– volume: 64
  start-page: 1231
  year: 2014
  end-page: 1238
  ident: b0305
  article-title: Isolation and characterization of a heterotrophic nitrifier Proteus mirabilis strain V7 and its potential application in NH
  publication-title: Ann. Microbiol.
– volume: 106
  start-page: 498
  year: 2008
  end-page: 502
  ident: b0115
  article-title: Aerobic denitrification of
  publication-title: J. Biosci. Bioeng.
– volume: 241
  start-page: 500
  year: 2017
  end-page: 507
  ident: b0290
  article-title: Heterotrophic nitrification and aerobic denitrification by
  publication-title: Bioresour. Technol.
– volume: 39
  start-page: 1223
  year: 2004
  end-page: 1229
  ident: b0245
  article-title: Partial nitrification under limited dissolved oxygen conditions
  publication-title: Process Biochem.
– volume: 281
  start-page: 392
  year: 2019
  end-page: 400
  ident: b0095
  article-title: Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control
  publication-title: Bioresour. Technol.
– volume: 182
  start-page: 18
  year: 2015
  end-page: 25
  ident: b0150
  article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 835
  year: 2017
  end-page: 910
  ident: b0285
  article-title: Heterotrophic nitrification-aerobic denitrification performance of strain Y-12 under low temperature and high concentration of inorganic nitrogen conditions
  publication-title: Water
– volume: 250–251
  start-page: 431
  year: 2013
  end-page: 438
  ident: b0210
  article-title: Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support
  publication-title: J. Hazard. Mater.
– volume: 171
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0175
  article-title: The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium,
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 403
  year: 2007
  end-page: 409
  ident: b0105
  article-title: Simultaneous nitrification and denitrification by diverse
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 175
  start-page: 2000
  year: 2014
  end-page: 2011
  ident: b0100
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium
  publication-title: Appl. Biochem. Biotechnol.
– volume: 27
  start-page: 1664
  year: 1955
  end-page: 1665
  ident: b0070
  article-title: Spectrophotometric method for determining hydroxylamine reductase activity in higher plants
  publication-title: Anal. Chem.
– volume: 101
  start-page: 5194
  year: 2010
  end-page: 5200
  ident: b0310
  article-title: Heterotrophic nitrogen removal by a newly isolated Acinetobacter
  publication-title: Bioresour. Technol.
– volume: 272
  start-page: 442
  year: 2019
  end-page: 450
  ident: b0140
  article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated
  publication-title: Bioresour. Technol.
– volume: 167
  start-page: 456
  year: 2014
  end-page: 461
  ident: b0045
  article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium
  publication-title: Bioresour. Technol.
– volume: 129
  start-page: 78
  year: 2013
  end-page: 84
  ident: b0025
  article-title: Start-up and performance of a hybrid anoxic reactor for biological denitrification
  publication-title: Bioresour. Technol.
– volume: 174
  start-page: 247
  year: 1999
  end-page: 250
  ident: b0225
  article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences
  publication-title: FEMS. Microbiol. Lett.
– volume: 33
  start-page: 1403
  year: 2001
  end-page: 1409
  ident: b0035
  article-title: Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium
  publication-title: Soil Biol. Biochem.
– volume: 104
  start-page: 65
  year: 2012
  end-page: 72
  ident: b0270
  article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 3140
  year: 2008
  end-page: 3149
  ident: b0195
  article-title: Environmental detection of octahaem cytochrome chydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria
  publication-title: Environ. Microbiol.
– volume: 139
  start-page: 80
  year: 2013
  end-page: 86
  ident: b0280
  article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium,
  publication-title: Bioresour. Technol.
– year: 1998
  ident: b0015
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 108
  start-page: 35
  year: 2012
  end-page: 44
  ident: b0300
  article-title: The characteristics of a novel heterotrophic nitrifcation-aerobic denitrifcation bacterium,
  publication-title: Bioresour. Technol.
– volume: 137
  start-page: 147
  year: 2013
  end-page: 152
  ident: b0295
  article-title: Removal of ammonium in surface water at low temperature by a newly isolated
  publication-title: Bioresour. Technol.
– volume: 108
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0320
  article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem
  publication-title: Bioresour. Technol.
– volume: 193
  start-page: 227
  year: 2015
  end-page: 233
  ident: b0265
  article-title: Nitrogen removal characteristics of a heterotrophic nitrifier
  publication-title: Bioresour. Technol.
– volume: 41
  start-page: 1709
  year: 2006
  end-page: 1721
  ident: b0005
  article-title: Sustainable nitrogen elimination biotechnologies: a review
  publication-title: Process Biochem.
– volume: 127
  start-page: 201
  issue: 2
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0040
  article-title: Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2018.07.025
– volume: 127
  start-page: 151
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0275
  article-title: Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.098
– volume: 57
  start-page: 139
  year: 1990
  ident: 10.1016/j.biortech.2020.122749_b0185
  article-title: Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/BF00403948
– volume: 250–251
  start-page: 431
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0210
  article-title: Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.02.026
– volume: 139
  start-page: 351
  issue: 4
  year: 1984
  ident: 10.1016/j.biortech.2020.122749_b0180
  article-title: Aerobic denitrification: a controversy revived
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00408378
– volume: 131
  start-page: 33
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0205
  article-title: Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.169
– volume: 187
  start-page: 30
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0160
  article-title: Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.060
– volume: 102
  start-page: 8835
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0200
  article-title: Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.090
– volume: 272
  start-page: 442
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0140
  article-title: Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.10.060
– volume: 106
  start-page: 498
  year: 2008
  ident: 10.1016/j.biortech.2020.122749_b0115
  article-title: Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.106.498
– volume: 242
  start-page: 334
  year: 2017
  ident: 10.1016/j.biortech.2020.122749_b0165
  article-title: Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.084
– volume: 104
  start-page: 65
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0270
  article-title: Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.026
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0135
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by chryseobacterium sp. R31 Isolated from A battoir wastewater
  publication-title: Biomed. Res. Int.
– volume: 137
  start-page: 147
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0295
  article-title: Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.094
– volume: 167
  start-page: 456
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0045
  article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.001
– volume: 274
  start-page: 56
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0255
  article-title: Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.10.052
– volume: 161
  start-page: 829
  issue: 4
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0220
  article-title: Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, Acinetobacter sp. SYF26
  publication-title: Microbiology
  doi: 10.1099/mic.0.000047
– volume: 9
  start-page: 835
  year: 2017
  ident: 10.1016/j.biortech.2020.122749_b0285
  article-title: Heterotrophic nitrification-aerobic denitrification performance of strain Y-12 under low temperature and high concentration of inorganic nitrogen conditions
  publication-title: Water
  doi: 10.3390/w9110835
– volume: 281
  start-page: 392
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0095
  article-title: Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.02.119
– volume: 100
  start-page: 142
  year: 2009
  ident: 10.1016/j.biortech.2020.122749_b0230
  article-title: Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.05.042
– volume: 116
  start-page: 266
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0050
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.02.050
– volume: 27
  start-page: 1664
  issue: 10
  year: 1955
  ident: 10.1016/j.biortech.2020.122749_b0070
  article-title: Spectrophotometric method for determining hydroxylamine reductase activity in higher plants
  publication-title: Anal. Chem.
  doi: 10.1021/ac60106a054
– volume: 22
  start-page: 519
  issue: 7
  year: 2004
  ident: 10.1016/j.biortech.2020.122749_b0110
  article-title: Novel microbial nitrogen removal processes
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2004.04.003
– volume: 193
  start-page: 227
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0265
  article-title: Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.075
– volume: 146
  start-page: 44
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0090
  article-title: Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.046
– volume: 10
  start-page: 3140
  issue: 11
  year: 2008
  ident: 10.1016/j.biortech.2020.122749_b0195
  article-title: Environmental detection of octahaem cytochrome chydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2008.01732.x
– volume: 33
  start-page: 1403
  issue: 10
  year: 2001
  ident: 10.1016/j.biortech.2020.122749_b0035
  article-title: Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00045-1
– volume: 175
  start-page: 2000
  issue: 4
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0100
  article-title: Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1406-0
– volume: 100
  start-page: 4219
  issue: 9
  year: 2016
  ident: 10.1016/j.biortech.2020.122749_b0145
  article-title: A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-016-7290-5
– volume: 101
  start-page: 5194
  year: 2010
  ident: 10.1016/j.biortech.2020.122749_b0310
  article-title: Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.043
– volume: 179
  start-page: 421
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0065
  article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.057
– volume: 260
  start-page: 150
  year: 2006
  ident: 10.1016/j.biortech.2020.122749_b0120
  article-title: Development and application of a novel and effective screening method for aerobic denitrifying bacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2006.00306.x
– volume: 174
  start-page: 247
  year: 1999
  ident: 10.1016/j.biortech.2020.122749_b0225
  article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences
  publication-title: FEMS. Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1999.tb13575.x
– volume: 113
  start-page: 619
  issue: 5
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0055
  article-title: Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification–aerobic denitrification
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2011.12.012
– volume: 102
  start-page: 4333
  year: 2011
  ident: 10.1016/j.biortech.2020.122749_b0085
  article-title: Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.096
– volume: 39
  start-page: 1223
  year: 2004
  ident: 10.1016/j.biortech.2020.122749_b0245
  article-title: Partial nitrification under limited dissolved oxygen conditions
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(03)00249-8
– volume: 437
  start-page: 543
  issue: 7058
  year: 2005
  ident: 10.1016/j.biortech.2020.122749_b0125
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
  doi: 10.1038/nature03911
– volume: 9
  start-page: 299
  year: 2008
  ident: 10.1016/j.biortech.2020.122749_b0130
  article-title: MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequence
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbn017
– volume: 33
  start-page: 1206
  issue: 5
  year: 1995
  ident: 10.1016/j.biortech.2020.122749_b0215
  article-title: Molecular subtyping scheme for Salmonella panama
  publication-title: J. Clin. Microbial.
  doi: 10.1128/jcm.33.5.1206-1211.1995
– volume: 671
  start-page: 388
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0155
  article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.317
– volume: 161
  start-page: 288
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0325
  article-title: High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.066
– volume: 285
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0260
  article-title: Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121360
– volume: 239
  start-page: 66
  year: 2017
  ident: 10.1016/j.biortech.2020.122749_b0080
  article-title: Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.125
– volume: 108
  start-page: 35
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0300
  article-title: The characteristics of a novel heterotrophic nitrifcation-aerobic denitrifcation bacterium, Bacillus methylotrophicus strain L7
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.12.139
– volume: 108
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2020.122749_b0320
  article-title: Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.12.033
– volume: 72
  start-page: 2005
  year: 2009
  ident: 10.1016/j.biortech.2020.122749_b0010
  article-title: Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2009.06.008
– volume: 34
  start-page: 1103
  year: 2016
  ident: 10.1016/j.biortech.2020.122749_b0235
  article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.07.001
– year: 1998
  ident: 10.1016/j.biortech.2020.122749_b0015
– volume: 129
  start-page: 78
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0025
  article-title: Start-up and performance of a hybrid anoxic reactor for biological denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.009
– volume: 139
  start-page: 80
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0280
  article-title: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.189
– volume: 182
  start-page: 18
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0150
  article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.100
– volume: 244
  start-page: 484
  year: 2017
  ident: 10.1016/j.biortech.2020.122749_b0190
  article-title: Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.186
– volume: 66
  start-page: 2096
  year: 2000
  ident: 10.1016/j.biortech.2020.122749_b0030
  article-title: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.5.2096-2104.2000
– volume: 40
  start-page: 1973
  year: 2005
  ident: 10.1016/j.biortech.2020.122749_b0240
  article-title: The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2004.08.001
– volume: 41
  start-page: 1709
  year: 2006
  ident: 10.1016/j.biortech.2020.122749_b0005
  article-title: Sustainable nitrogen elimination biotechnologies: a review
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2006.03.033
– volume: 200
  start-page: 493
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0075
  article-title: Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.10.064
– volume: 78
  start-page: 67
  year: 2013
  ident: 10.1016/j.biortech.2020.122749_b0170
  article-title: Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater
  publication-title: Int. Biodeter. Biodegr.
  doi: 10.1016/j.ibiod.2013.01.001
– volume: 241
  start-page: 500
  year: 2017
  ident: 10.1016/j.biortech.2020.122749_b0290
  article-title: Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.185
– volume: 22
  start-page: 8075
  year: 2015
  ident: 10.1016/j.biortech.2020.122749_b0020
  article-title: Remediation of nitrate-contaminated water by solid-phase denitrification process—a review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4334-9
– volume: 77
  start-page: 403
  issue: 2
  year: 2007
  ident: 10.1016/j.biortech.2020.122749_b0105
  article-title: Simultaneous nitrification and denitrification by diverse diaphorobacter sp
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-1176-5
– volume: 171
  start-page: 1
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0175
  article-title: The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.058
– volume: 31
  start-page: 409
  year: 2010
  ident: 10.1016/j.biortech.2020.122749_b0315
  article-title: Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp
  publication-title: LY. Environ. Technol.
  doi: 10.1080/09593330903508922
– volume: 64
  start-page: 1231
  issue: 3
  year: 2014
  ident: 10.1016/j.biortech.2020.122749_b0305
  article-title: Isolation and characterization of a heterotrophic nitrifier Proteus mirabilis strain V7 and its potential application in NH4+-N removal
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-013-0764-0
– volume: 267
  start-page: 541
  year: 2018
  ident: 10.1016/j.biortech.2020.122749_b0060
  article-title: Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.084
– volume: 288
  year: 2019
  ident: 10.1016/j.biortech.2020.122749_b0250
  article-title: Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121506
SSID ssj0003172
Score 2.6754591
Snippet [Display omitted] •A novel strain of Acinetobacter sp. ND7 was isolated and identified.•ND7 had efficient capability for heterotrophic nitrification and...
A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122749
SubjectTerms Acinetobacter
Acinetobacter sp
activated sludge
Aerobiosis
ammonium
Ammonium Compounds
ammonium nitrogen
Denitrification
Heterotrophic nitrification-aerobic denitrification
Heterotrophic Processes
nitrate nitrogen
Nitrification
nitrite nitrogen
Nitrites
Nitrogen
Nitrogen removal
phenotype
Phylogeny
Sewage
technology
temperature
wastewater
Wastewater treatment
Title Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge
URI https://dx.doi.org/10.1016/j.biortech.2020.122749
https://www.ncbi.nlm.nih.gov/pubmed/31951959
https://www.proquest.com/docview/2341614481
https://www.proquest.com/docview/2439375428
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOBQOFeW5pUVG4prdJBtvkuNqKdq20l4KEjfLTwhaJdE-kHpB4p93xkkoHCiHHhPbiuWZzDejmfkMcK4NwrpVEoMcx4PEORkoHdsgTnWYSJSz0r7aYjaaXic_bvjNBky6Xhgqq2xtf2PTvbVu3wza0xzURTH4Rc53xhFiUE9D1EzqYE9S0vL-498yD8RHn0nAyQHNftElfN9XBVW0-qRETEQLGKLlbwHUWw6oB6LLXfjYepBs3GzyE2zYcg92xreLlkXD7sGHSXeNG468YBzch6cplb9Uq0VV3xWa4f-8oFohLx4mS8OkJWImzdAcvRpTv5lkZfVg8cuUiyc7QDzPbFn32ewiZQUqMfqthlHDCvNNJ0WN-6TGiQc_sJyvza09gOvLb1eTadDewhBoNKKrILacyIxTrdIsVDlXCR4l2iateB7JyOVaRkMXps5kykROhpEzbjTKdYySH2I0dAibZVXaY2A6yyRHl4aHsUsMRyCMhybRiJAjrTA27QHvjl7olqKcbsqYi64W7V50IhMkMtGIrAeD53V1Q9Lx7oq8k6x4pW4CkeTdtWedKgiUJSVYZGmr9VLEQwoXMeCN_jEnIQpCjlFfD44aPXreM5pDT_bz-T92dwLb9NQUF32BzdVibb-i37RSp_7HOIWt8fef09kfK4QZcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLYoPVAOiNIWFvoYpF6zm2Qzm-SItqBtS_cCSNxG84QglET7QOKCxD_HniQUDpRDr_GMYo09fmjszwDftUG3bpXEJMfxIHFOBkrHNohTHSYS5ay0r7aYjiZnya9zfr4C464XhsoqW9vf2HRvrdsvg_Y0B3VRDE4o-M44uhjU0xA18w28TfD60hiD_t3fOg90kP4pAVcHtPxJm_BVXxVU0upfJWJCWsAcLX_JQ70UgXpPdLQJG20IyQ4aLt_Dii23YP3gYtbCaNgtWBt3c9yQ8gRy8APcT6j-pVrMqvqy0Awv9IyKhbx8mCwNk5aQmTRDe_SMpm6ZZGV1Y_HP9BhPhoCAntm87rPpj5QVqMUYuBpGHSvMd50UNfJJnRM3njC_XpoL-xHOjg5Px5OgHcMQaLSiiyC2nNCMU63SLFQ5VwkeJRonrXgeycjlWkZDF6bOZMpEToaRM240ynWMoh9iOvQJVsuqtDvAdJZJjjEND2OXGI6eMB6aRKOLHGmFyWkPeHf0QrcY5TQq41p0xWhXohOZIJGJRmQ9GDzuqxuUjld35J1kxTN9E-hKXt2736mCQFnSC4ssbbWci3hI-SJmvNE_1iSEQcgx7evBdqNHjzyjPfRoP7v_wd03WJuc_jkWxz-nv_fgHVGaSqPPsLqYLe0XDKIW6qu_JA9qcxsB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterotrophic+nitrification+and+aerobic+denitrification+by+a+novel+Acinetobacter+sp.+ND7+isolated+from+municipal+activated+sludge&rft.jtitle=Bioresource+technology&rft.au=Xia%2C+Lin&rft.au=Li%2C+Xiaomin&rft.au=Fan%2C+Wenhong&rft.au=Wang%2C+Jianlong&rft.date=2020-04-01&rft.issn=0960-8524&rft.volume=301&rft.spage=122749&rft_id=info:doi/10.1016%2Fj.biortech.2020.122749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_122749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon