Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient

Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic r...

Full description

Saved in:
Bibliographic Details
Published inCancer imaging Vol. 23; no. 1; pp. 1 - 114
Main Authors Kamimura, Kiyohisa, Nakano, Tsubasa, Hasegawa, Tomohito, Nakajo, Masanori, Yamada, Chihiro, Kamimura, Yoshiki, Akune, Kentaro, Ejima, Fumitaka, Ayukawa, Takuro, Nagano, Hiroaki, Takumi, Koji, Nakajo, Masatoyo, Higa, Nayuta, Yonezawa, Hajime, Hanaya, Ryosuke, Kirishima, Mari, Tanimoto, Akihide, Iwanaga, Takashi, Imai, Hiroshi, Feiweier, Thorsten, Yoshiura, Takashi
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 30.11.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. Methods A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo ([DELA].sub.eff = 7.1 ms) and conventional pulsed gradient ([DELA].sub.eff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC.sub.7.1 ms and ADC.sub.44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95.sup.th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. Results In enhancing regions, the mean and fifth and 95.sup.th percentile values of ADC.sub.44.5 ms and ADC.sub.7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95.sup.th percentile of ADC.sub.44.5 ms, p = 0.04 for ADC.sub.7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95.sup.th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC.sub.7.1 ms was significantly lower than that for ADC.sub.44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC.sub.44.5 ms, ADC.sub.7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. Conclusions Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions. Keywords: Diffusion, Glioblastoma, Magnetic resonance imaging, Primary central nervous system lymphoma
AbstractList Abstract Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. Methods A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δ eff  = 7.1 ms) and conventional pulsed gradient (Δ eff  = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC 7.1 ms and ADC 44.5 ms ), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95 th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. Results In enhancing regions, the mean and fifth and 95 th percentile values of ADC 44.5 ms and ADC 7.1 ms in PCNSLs were significantly lower than those in GBMs ( p  = 0.02 for 95 th percentile of ADC 44.5 ms , p  = 0.04 for ADC 7.1 ms , and p  < 0.01 for others). Furthermore, the mean and fifth and 95 th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p  < 0.01). The AUC of the best-performing index for ADC 7.1 ms was significantly lower than that for ADC 44.5 ms ( p  < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC 44.5 ms , ADC 7.1 ms , cADC, and rcADC was observed between PCNSLs and GBMs. Conclusions Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. Methods A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo ([DELA].sub.eff = 7.1 ms) and conventional pulsed gradient ([DELA].sub.eff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC.sub.7.1 ms and ADC.sub.44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95.sup.th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. Results In enhancing regions, the mean and fifth and 95.sup.th percentile values of ADC.sub.44.5 ms and ADC.sub.7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95.sup.th percentile of ADC.sub.44.5 ms, p = 0.04 for ADC.sub.7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95.sup.th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC.sub.7.1 ms was significantly lower than that for ADC.sub.44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC.sub.44.5 ms, ADC.sub.7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. Conclusions Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions. Keywords: Diffusion, Glioblastoma, Magnetic resonance imaging, Primary central nervous system lymphoma
This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo ([DELA].sub.eff = 7.1 ms) and conventional pulsed gradient ([DELA].sub.eff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC.sub.7.1 ms and ADC.sub.44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95.sup.th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. In enhancing regions, the mean and fifth and 95.sup.th percentile values of ADC.sub.44.5 ms and ADC.sub.7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95.sup.th percentile of ADC.sub.44.5 ms, p = 0.04 for ADC.sub.7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95.sup.th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC.sub.7.1 ms was significantly lower than that for ADC.sub.44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC.sub.44.5 ms, ADC.sub.7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
BACKGROUNDThis study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters.METHODSA retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δeff = 7.1 ms) and conventional pulsed gradient (Δeff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC7.1 ms and ADC44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices.RESULTSIn enhancing regions, the mean and fifth and 95th percentile values of ADC44.5 ms and ADC7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95th percentile of ADC44.5 ms, p = 0.04 for ADC7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC7.1 ms was significantly lower than that for ADC44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC44.5 ms, ADC7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs.CONCLUSIONSEffective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
Abstract Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. Methods A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δeff = 7.1 ms) and conventional pulsed gradient (Δeff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC7.1 ms and ADC44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. Results In enhancing regions, the mean and fifth and 95th percentile values of ADC44.5 ms and ADC7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95th percentile of ADC44.5 ms, p = 0.04 for ADC7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC7.1 ms was significantly lower than that for ADC44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC44.5 ms, ADC7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. Conclusions Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
ArticleNumber 114
Audience Academic
Author Hanaya, Ryosuke
Kirishima, Mari
Nakano, Tsubasa
Nakajo, Masatoyo
Ejima, Fumitaka
Kamimura, Kiyohisa
Ayukawa, Takuro
Nagano, Hiroaki
Higa, Nayuta
Kamimura, Yoshiki
Yoshiura, Takashi
Nakajo, Masanori
Imai, Hiroshi
Akune, Kentaro
Hasegawa, Tomohito
Feiweier, Thorsten
Yonezawa, Hajime
Yamada, Chihiro
Iwanaga, Takashi
Takumi, Koji
Tanimoto, Akihide
Author_xml – sequence: 1
  fullname: Kamimura, Kiyohisa
– sequence: 2
  fullname: Nakano, Tsubasa
– sequence: 3
  fullname: Hasegawa, Tomohito
– sequence: 4
  fullname: Nakajo, Masanori
– sequence: 5
  fullname: Yamada, Chihiro
– sequence: 6
  fullname: Kamimura, Yoshiki
– sequence: 7
  fullname: Akune, Kentaro
– sequence: 8
  fullname: Ejima, Fumitaka
– sequence: 9
  fullname: Ayukawa, Takuro
– sequence: 10
  fullname: Nagano, Hiroaki
– sequence: 11
  fullname: Takumi, Koji
– sequence: 12
  fullname: Nakajo, Masatoyo
– sequence: 13
  fullname: Higa, Nayuta
– sequence: 14
  fullname: Yonezawa, Hajime
– sequence: 15
  fullname: Hanaya, Ryosuke
– sequence: 16
  fullname: Kirishima, Mari
– sequence: 17
  fullname: Tanimoto, Akihide
– sequence: 18
  fullname: Iwanaga, Takashi
– sequence: 19
  fullname: Imai, Hiroshi
– sequence: 20
  fullname: Feiweier, Thorsten
– sequence: 21
  fullname: Yoshiura, Takashi
BookMark eNptUk1r3DAUNCWFJmn_QE-GQunFqSTLknwM6Vcg0Et7FpL85NUiW1vJLuytP71v49AmpQgkMZo3jzeai-psTjNU1WtKrihV4n3hRHDeENY2hIi2b-Sz6pxySRrZtuTs0f1FdVHKnhDWq16eV78-BO8hw7wEs4R5rA85TCYfa4dQNrGeIf9Ma6nLsSww1fE4HXZpMrXPaarHGJKNpiwnxB7rJUzQDHCAecDyekDttYQ017ijdiouxLj1GbMZApJeVs-9iQVePZyX1fdPH7_dfGnuvn6-vbm-axwXcmkYU7TzspOC9NIrogyjzviOgoPWDIp7GJiwRnJpOT5JZYVX1lqHW09Ie1ndbrpDMnv9MKVOJuh7IOVRm7wEF0G30prBcd8ZB1wQrtBS4qVxzNtBWIZa7zatQ04_ViiLnkJxgKPNgF5ppnqhCJOdQuqbf6j7tOYZJ9WsJ4y2rO_5X9ZosH-YfULv3UlUX0vZkbYT9NT26j8sXANMwWEgfED8ScHbRwU7MHHZlRTXBb-kPCWyjehyKiWD_2MQJfoUML0FTGPA9H3AtGx_A66gxjM
Cites_doi 10.1002/mrm.25441
10.1002/jmri.26578
10.1093/neuonc/noad003
10.1148/radiol.2231010594
10.1002/mrm.10385
10.3390/brainsci10110886
10.5795/jjscc.35.105
10.1016/j.wneu.2017.10.141
10.1016/j.mri.2010.10.002
10.3174/ajnr.A0872
10.1148/radiol.13130016
10.1111/cas.14597
10.1002/mrm.24987
10.1037//0033-2909.86.2.420
10.1016/j.ejrad.2010.11.005
10.1097/RCT.0000000000000636
10.1063/1.1696526
10.1371/journal.pone.0079008
10.1371/journal.pone.0134761
10.5414/NP301075
10.1002/nbm.3070
10.1186/s40644-023-00595-2
10.1007/s00234-020-02522-9
10.1016/j.jocn.2014.10.029
10.1016/j.mri.2022.11.010
10.1002/mrm.29758
10.1007/s00234-012-1089-6
10.1016/j.wneu.2015.10.049
10.1002/mrm.24921
10.1148/radiol.2241010637
10.1016/S1474-4422(09)70091-2
10.1063/1.1695690
10.3174/ajnr.A2333
10.1016/j.ejrad.2005.12.032
10.1371/journal.pone.0162565
10.1016/j.mri.2020.06.018
ContentType Journal Article
Copyright COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X7
7XB
88C
88E
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
M0S
M0T
M1P
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1186/s40644-023-00639-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1470-7330
EndPage 114
ExternalDocumentID oai_doaj_org_article_37badc4f5ace460480060f7ac2fbd6b2
A775035612
10_1186_s40644_023_00639_7
GroupedDBID ---
0R~
1.S
29B
2WC
3V.
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACIHN
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
ASPBG
AVWKF
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M0T
M1P
M48
M~E
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
SV3
TR2
UKHRP
WOQ
AFGXO
ABVAZ
AFNRJ
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c467t-22815f7576097f808a21caf51ece3ad84fed26ba747b421c78b6f8bbbc8bb9003
IEDL.DBID BENPR
ISSN 1470-7330
1740-5025
IngestDate Tue Oct 22 15:14:59 EDT 2024
Fri Oct 25 22:43:37 EDT 2024
Thu Oct 10 15:46:32 EDT 2024
Fri Feb 23 00:22:24 EST 2024
Fri Feb 02 04:36:39 EST 2024
Tue Aug 20 22:06:33 EDT 2024
Thu Sep 12 16:43:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-22815f7576097f808a21caf51ece3ad84fed26ba747b421c78b6f8bbbc8bb9003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4191-9358
OpenAccessLink https://www.proquest.com/docview/2902132994?pq-origsite=%requestingapplication%
PQID 2902132994
PQPubID 2040154
ParticipantIDs doaj_primary_oai_doaj_org_article_37badc4f5ace460480060f7ac2fbd6b2
proquest_miscellaneous_2896802758
proquest_journals_2902132994
gale_infotracmisc_A775035612
gale_infotracacademiconefile_A775035612
gale_healthsolutions_A775035612
crossref_primary_10_1186_s40644_023_00639_7
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Cancer imaging
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References MN Thuy (639_CR1) 2015; 22
A Surov (639_CR9) 2016; 88
S Wang (639_CR31) 2011; 32
T Maekawa (639_CR32) 2023; 96
S Portnoy (639_CR15) 2014; 27
N Higa (639_CR21) 2020; 111
WJ Chung (639_CR26) 2013; 269
EO Stejskal (639_CR19) 1965; 43
A Doskaliyev (639_CR13) 2012; 81
K Kono (639_CR10) 2001; 22
639_CR20
CC Ko (639_CR29) 2016; 11
AC Guo (639_CR3) 2002; 224
T Inagaki (639_CR38) 1996; 5
M Iima (639_CR24) 2019; 50
J Xu (639_CR39) 2011; 9
T Maekawa (639_CR25) 2020; 72
E Cindil (639_CR30) 2021; 63
H Zhang (639_CR33) 2023; 7
A Zhu (639_CR34) 2023; 90
K Kamimura (639_CR22) 2023; 23
PE Shrout (639_CR27) 1979; 86
K Yamashita (639_CR7) 2013; 55
K Makino (639_CR35) 2018; 112
JB Wen (639_CR12) 2017; 41
C Calli (639_CR5) 2006; 58
N Pyatigorskaya (639_CR17) 2014; 72
EO Stejskal (639_CR18) 1965; 42
MD Does (639_CR23) 2003; 49
CA Baron (639_CR14) 2014; 72
Y Sato (639_CR37) 2018
PG Morris (639_CR4) 2009; 8
S Cha (639_CR2) 2002; 223
YJ Cha (639_CR36) 2018; 37
CH Toh (639_CR6) 2008; 29
WH Shim (639_CR28) 2015; 30
F Eisenhut (639_CR11) 2020; 10
D Wu (639_CR16) 2014; 72
L Chen (639_CR8) 2013; 8
References_xml – volume: 72
  start-page: 1366
  year: 2014
  ident: 639_CR16
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25441
  contributor:
    fullname: D Wu
– volume: 50
  start-page: 88
  year: 2019
  ident: 639_CR24
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26578
  contributor:
    fullname: M Iima
– volume: 7
  start-page: noad003
  year: 2023
  ident: 639_CR33
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/noad003
  contributor:
    fullname: H Zhang
– volume: 223
  start-page: 11
  year: 2002
  ident: 639_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2231010594
  contributor:
    fullname: S Cha
– volume: 49
  start-page: 206
  year: 2003
  ident: 639_CR23
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10385
  contributor:
    fullname: MD Does
– ident: 639_CR20
– volume: 10
  start-page: 886
  year: 2020
  ident: 639_CR11
  publication-title: Brain Sci
  doi: 10.3390/brainsci10110886
  contributor:
    fullname: F Eisenhut
– volume: 5
  start-page: 105
  year: 1996
  ident: 639_CR38
  publication-title: J Jpn Soc Clin Cytol
  doi: 10.5795/jjscc.35.105
  contributor:
    fullname: T Inagaki
– volume: 112
  start-page: e1
  year: 2018
  ident: 639_CR35
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2017.10.141
  contributor:
    fullname: K Makino
– volume: 9
  start-page: 380
  year: 2011
  ident: 639_CR39
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2010.10.002
  contributor:
    fullname: J Xu
– volume: 29
  start-page: 471
  year: 2008
  ident: 639_CR6
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A0872
  contributor:
    fullname: CH Toh
– volume: 269
  start-page: 561
  year: 2013
  ident: 639_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.13130016
  contributor:
    fullname: WJ Chung
– volume: 111
  start-page: 3902
  year: 2020
  ident: 639_CR21
  publication-title: Cancer Sci
  doi: 10.1111/cas.14597
  contributor:
    fullname: N Higa
– volume: 72
  start-page: 726
  year: 2014
  ident: 639_CR14
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24987
  contributor:
    fullname: CA Baron
– volume: 86
  start-page: 420
  year: 1979
  ident: 639_CR27
  publication-title: Psychol Bull
  doi: 10.1037//0033-2909.86.2.420
  contributor:
    fullname: PE Shrout
– volume: 81
  start-page: 339
  year: 2012
  ident: 639_CR13
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2010.11.005
  contributor:
    fullname: A Doskaliyev
– volume: 41
  start-page: 904
  year: 2017
  ident: 639_CR12
  publication-title: J Comput Assist Tomogr.
  doi: 10.1097/RCT.0000000000000636
  contributor:
    fullname: JB Wen
– volume: 22
  start-page: 1081
  year: 2001
  ident: 639_CR10
  publication-title: AJNR Am J Neuroradiol
  contributor:
    fullname: K Kono
– volume: 43
  start-page: 3597
  year: 1965
  ident: 639_CR19
  publication-title: J Chem Phys
  doi: 10.1063/1.1696526
  contributor:
    fullname: EO Stejskal
– volume: 8
  start-page: e79008
  year: 2013
  ident: 639_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079008
  contributor:
    fullname: L Chen
– volume: 30
  start-page: e0134761
  year: 2015
  ident: 639_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0134761
  contributor:
    fullname: WH Shim
– volume: 37
  start-page: 105
  year: 2018
  ident: 639_CR36
  publication-title: Clin Neuropathol
  doi: 10.5414/NP301075
  contributor:
    fullname: YJ Cha
– volume: 27
  start-page: 371
  year: 2014
  ident: 639_CR15
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3070
  contributor:
    fullname: S Portnoy
– volume: 23
  start-page: 75
  year: 2023
  ident: 639_CR22
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00595-2
  contributor:
    fullname: K Kamimura
– volume: 63
  start-page: 331
  year: 2021
  ident: 639_CR30
  publication-title: Neuroradiology
  doi: 10.1007/s00234-020-02522-9
  contributor:
    fullname: E Cindil
– volume: 22
  start-page: 785
  year: 2015
  ident: 639_CR1
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2014.10.029
  contributor:
    fullname: MN Thuy
– volume: 96
  start-page: 67
  year: 2023
  ident: 639_CR32
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.11.010
  contributor:
    fullname: T Maekawa
– volume: 90
  start-page: 1789
  year: 2023
  ident: 639_CR34
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29758
  contributor:
    fullname: A Zhu
– volume: 55
  start-page: 135
  year: 2013
  ident: 639_CR7
  publication-title: Neuroradiology
  doi: 10.1007/s00234-012-1089-6
  contributor:
    fullname: K Yamashita
– volume: 88
  start-page: 598
  year: 2016
  ident: 639_CR9
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2015.10.049
  contributor:
    fullname: A Surov
– volume: 72
  start-page: 492
  year: 2014
  ident: 639_CR17
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.24921
  contributor:
    fullname: N Pyatigorskaya
– volume: 224
  start-page: 177
  year: 2002
  ident: 639_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2241010637
  contributor:
    fullname: AC Guo
– volume: 8
  start-page: 581
  year: 2009
  ident: 639_CR4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70091-2
  contributor:
    fullname: PG Morris
– volume-title: Textbook of cytopathology
  year: 2018
  ident: 639_CR37
  contributor:
    fullname: Y Sato
– volume: 42
  start-page: 288
  year: 1965
  ident: 639_CR18
  publication-title: J Chem Phys
  doi: 10.1063/1.1695690
  contributor:
    fullname: EO Stejskal
– volume: 32
  start-page: 507
  year: 2011
  ident: 639_CR31
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2333
  contributor:
    fullname: S Wang
– volume: 58
  start-page: 394
  year: 2006
  ident: 639_CR5
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2005.12.032
  contributor:
    fullname: C Calli
– volume: 11
  start-page: e0162565
  year: 2016
  ident: 639_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162565
  contributor:
    fullname: CC Ko
– volume: 72
  start-page: 34
  year: 2020
  ident: 639_CR25
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.06.018
  contributor:
    fullname: T Maekawa
SSID ssj0029897
Score 2.3741548
Snippet Abstract Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation...
Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between...
This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary...
BackgroundThis study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between...
BACKGROUNDThis study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between...
Abstract Background This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1
SubjectTerms Age
Brain cancer
Central nervous system
Differentiation
Diffusion
Diffusion coefficient
Drunk driving
Glioblastoma
Glioblastoma multiforme
Lymphoma
Magnetic resonance imaging
Medical imaging
Medical research
Medicine, Experimental
Nervous system
Non-Hodgkin's lymphomas
Parameters
Primary central nervous system lymphoma
Time dependence
Time setting
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA_iQbyIn7hPn0YQPEiw7aZJevT5gQh6UvAWkjRZhH1d0Xrw5p_uTJIu7uHxLl56SKa0mclkMsnMbwg5rlowsmCImGlLzngJ66Ap6wAa75oilDXih2C0xb24eeS3T_XTt1JfGBOW4IET487G0prW8VAb57nADOhCFEEaVwXbCptW36IZnKnsajWqkUOKjBJnb2C2OGdgn1i0yUwumKGI1v-vNTkamut1spZ3iPQ8_dkGWfLdJlm5y3fgW-TzMtc06ZGr3YS-JMAImuMsaQfqD_48TSDNdPoBApv9NRQzSehk-jyzsGPuscV-UKwtz4ZKuD3FeinveIBGMSB-QhHqcjpN35m8xvCwfps8Xl89XNywXEeBOVgGe1ZVCtgvge9FI4MqlKlKZ0JdeufHplU8-LYS1oBnYTl0SWVFUNZaBw886dwhy92s87uEemM5d6KWth5zHoBE1pVvTfCqccHyETkd2Krz6HV0M5TQSQgahKCjELQckT_I-TklQl3HBpgAOk8A_b8JMCKHKDed8kbnCqvPJV7RYvHPETmJFKiyIAdncuYBDAnBrxYo9xcoQdXcYvcwN3RW9TddNbBNGoNVh8EfzbvxTQxf6zwIXINXKxReEKtfPzHkPbKKVe8TAuU-We5f3_1v2Bv19iCqwRe_3Q7q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-1gvhS_MSrVSMIPkh0N5evexBpq6UI-uRB30KSTRZh3WuvW_De_NOdyWYPDqov-7CZ3SX5ZTKZzcxvCHnDGzCyYIiYa2rBRA3roKtlAo0PiyrVEvlDMNriuzpfiq8X8mKPTOWOygBe3-raYT2p5bp7__tq8wkU_mNWeKM-XINREoKB9WHZ4jJ9h9zlSMyFoXxie6qAZON6TJCsmARjPyXR3PqOHUOV-fz_tWpnU3T2gByUPSQ9HkF_SPZi_4jc-1ZOyR-TP59L1ZMBx71v6eVIKUFLJCbtYYEAj5-ONM602wCkq1-OYq4JbbufKw976gHv-A3F6vNsqpU7UKyocoO_2CiGzLcUyTC7bvxOu84BZMMTsjz78uP0nJVKCyzAQjkwzg0ApAGZaqGTqYzjdXBJ1jHEuWuMSLHhyjvwPbyAJm28SsZ7H-CC_0Kfkv1-1cdnhEbnhQhKai_nQiQQ0ZLHxqVoFiF5MSPvpmG1pfc2OyJG2REECyDYDILVM3KCI7-VRDLsfGO1bm3RLTvX3jVBJOlCFAqT5CtVJe0CT75Rns_IK8TNjpmlW5W2xxoPcbE86Iy8zRI4zQCH4EpuAnQJ6bF2JI92JEEZw27zNDfsNJctX8BGag52Hzr_etuMT2KAWx8BcAt-rzJ4hGwO__-K5-Q-Vrwf2SePyP6wvokvYF80-Jd5sv8FRe0KUw
  priority: 102
  providerName: Scholars Portal
Title Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient
URI https://www.proquest.com/docview/2902132994
https://search.proquest.com/docview/2896802758
https://doaj.org/article/37badc4f5ace460480060f7ac2fbd6b2
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELboVkJcEE8RKIuRkDggq4nXsZ0TaqFLhdQKISrtzbIdO6q0JGU3PfTGT2cmcRbtAS4-xJNdxeOZ8Yxn5iPkHa_ByIIhYrYuBBMF6EFblBEk3ld5LErsH4LZFpfy_Ep8XZWrFHDbprTKSScOirruPMbIj3kF1mgBylN8vPnFEDUKb1cThMYBOeTgKfAZOTw9u_z2fedyVXqEV1EiZyWY96lsRsvjLZgyIRjYLDbYaab2TNPQwf9fenowPstH5GE6NdKTkc2Pyb3QPiH3L9K9-FPy-3PCOelxpduG3oxNJGjKvaQtqATw8enYuJmu74CJ3U9LsbqENuvrzsEpuscn7o4i3jyb0HF7ihgqtxhUo5gk31Bsf7lej__TbIaUsf4ZuVqe_fh0zhK2AvOgGnvGuQaWKOBFXqmoc2154W0si-DDwtZaxFBz6Sx4G07AlNJORu2c8zBg9PM5mbVdG14QGqwTwstSuXIhRAQSVfJQ2xh05aMTGfkwLatJX28G10NLMzLBABPMwASjMnKKK7-jxPbXw4Nu05gkTWahnK29iKX1QUgsi89lHpX1PLpaOp6RN8g3M9aS7oTYnCi8tkVA0Iy8HyhQjIEP3qZqBPgkbIi1R3m0Rwni5_enp71hkvhvzd_NmpG3u2l8E1Pa2gAMN-DpSo2Xxvrl_3_iFXmAGPdjv8kjMus3t-E1nIR6NycHaqVg1Msv87T150NUAcYLof8AbtAMHA
link.rule.ids 315,783,787,867,2109,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSMAF8RSBPoyExAFZTbKO7ZxQS6kWaHtqpb1ZtmNHlZak7KaH3vjpzDjOVnuAyx7i2V3F45nx2DPfR8jHsoEgC4GImabgjBfgB01RBbB4V-ehqBA_BKstLsT8iv9YVIt04LZOZZWTT4yOuukdnpEfljVEoxk4T_7l5jdD1ii8XU0UGg_JI8ThQux8ubhPuGo1kqtInrMKgvvUNKPE4RoCGecMIhaLUZrJrcAU8fv_5aVj6Dl9Tp6lPSM9GpX8gjzw3Uvy-Dzdir8if04Sy8mA89y19GaEkKCp8pJ24BAgw6cjbDNd3oEK-1-GYm8JbZfXvYU99IBP7B1Ftnk2ceMOFBlUbvFIjWKJfEsR_HK5HP-nXcWCseE1uTr9dvl1zhKzAnPgGAdWlgoUIkETeS2DypUpC2dCVXjnZ6ZRPPimFNZArmE5DEllRVDWWgcfePb5hux0feffEuqN5dyJStpqxnkAEVmVvjHBq9oFyzPyeZpWnd5ex8RDCT0qQYMSdFSClhk5xpnfSCL4dXzQr1qdbEnPpDWN46EyznOBTfG5yIM0rgy2EbbMyAHqTY-dpBsT1kcSL22RDjQjn6IEGjHowZnUiwCvhHBYW5K7W5JgfG57eFobOhn_Wt8v1Yx82AzjN7GgrfOgcA15rlB4Zaze_f8nDsiT-eX5mT77fvHzPXmKbPcj8uQu2RlWt34P9kSD3Y8L_y-kmQoL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiating+primary+central+nervous+system+lymphoma+from+glioblastoma+by+time-dependent+diffusion+using+oscillating+gradient&rft.jtitle=Cancer+imaging&rft.au=Kamimura%2C+Kiyohisa&rft.au=Nakano%2C+Tsubasa&rft.au=Hasegawa%2C+Tomohito&rft.au=Nakajo%2C+Masanori&rft.date=2023-11-30&rft.pub=BioMed+Central&rft.issn=1740-5025&rft.eissn=1470-7330&rft.volume=23&rft.spage=1&rft_id=info:doi/10.1186%2Fs40644-023-00639-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-7330&client=summon