Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach
Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-us...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2020; no. 1; pp. 1 - 21 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
29.09.2020
SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies. |
---|---|
AbstractList | Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies. Abstract Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies. |
ArticleNumber | 188 |
Author | Wang, Xiaodong Chen, Zhao |
Author_xml | – sequence: 1 givenname: Zhao orcidid: 0000-0002-8817-8270 surname: Chen fullname: Chen, Zhao email: zhao_chen@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 2 givenname: Xiaodong surname: Wang fullname: Wang, Xiaodong organization: Department of Electrical Engineering, Columbia University |
BookMark | eNp9kctOxCAUhonRxOsLuOIFqlBaoO6M98TEja7JGTiMTDpQaWehTy_aiTEuXPGH8H3A-Q_JbkwRCTnl7IxzLc9HLqTQFatZxbhmvJI75IBLrSredN3ur7xPDsdxxZgQTVcfkLdrtBinDH34QEdtWg-bCaaQIk3e9wlciEvqU6brTT-FajNiiWkReqTolrglyqELCtQhDjRjiAWwuC5i2iPk-OWAYcgJ7Osx2fPQj3iyXY_Iy-3N89V99fh093B1-VjZRqqp4k7IBqBtuauh7njrePmZVeXdjWUoeS1ANR61UFo6tegsk4idVdopqKUTR-Rh9roEKzPksIb8bhIE872R8tJAnoLt0fi2gU61CtuSrETtFtjUgnvdtc6jKK56dtmcxjGj__FxZr4KMHMBphRgvgswskD6D2TDPNoy7tD_j4oZHcs9cYnZrNImxzKu_6hPDcuewA |
CitedBy_id | crossref_primary_10_1002_cpe_8156 crossref_primary_10_1109_ACCESS_2023_3310808 crossref_primary_10_1109_JSAC_2023_3310048 crossref_primary_10_1109_JIOT_2021_3113872 crossref_primary_10_1109_TNSM_2024_3447753 crossref_primary_10_1016_j_sysarc_2021_102225 crossref_primary_10_1109_TCOMM_2022_3152262 crossref_primary_10_1007_s10586_023_04100_z crossref_primary_10_1109_TMC_2023_3266226 crossref_primary_10_1109_TMC_2022_3183098 crossref_primary_10_1109_ACCESS_2023_3344389 crossref_primary_10_1186_s13677_022_00342_1 crossref_primary_10_1109_TII_2022_3227652 crossref_primary_10_1109_JIOT_2023_3305549 crossref_primary_10_1049_cmu2_12826 crossref_primary_10_1007_s10586_024_04426_2 crossref_primary_10_1109_JIOT_2021_3109003 crossref_primary_10_1109_JIOT_2022_3209714 crossref_primary_10_1109_JIOT_2023_3327121 crossref_primary_10_37394_23209_2024_21_30 crossref_primary_10_1109_TVT_2024_3427814 crossref_primary_10_1109_TMC_2023_3254553 crossref_primary_10_1109_TMC_2023_3315232 crossref_primary_10_1186_s13677_023_00461_3 crossref_primary_10_1016_j_comcom_2023_09_003 crossref_primary_10_1016_j_comnet_2023_109878 crossref_primary_10_1109_TVT_2024_3370196 crossref_primary_10_7717_peerj_cs_2708 crossref_primary_10_1016_j_aej_2024_07_049 crossref_primary_10_3390_s23083883 crossref_primary_10_1109_JSYST_2022_3190926 crossref_primary_10_1186_s13638_022_02205_4 crossref_primary_10_1109_ACCESS_2023_3278591 crossref_primary_10_3390_app13116708 crossref_primary_10_3390_electronics12214392 crossref_primary_10_1145_3603703 crossref_primary_10_1016_j_pmcj_2024_101987 crossref_primary_10_1109_TCCN_2021_3093436 crossref_primary_10_32604_cmes_2022_021394 crossref_primary_10_3390_electronics13132655 crossref_primary_10_1109_TVT_2023_3290954 crossref_primary_10_1016_j_vehcom_2024_100858 crossref_primary_10_1007_s10586_024_04893_7 crossref_primary_10_1016_j_comcom_2023_06_021 crossref_primary_10_1109_TMC_2022_3141080 crossref_primary_10_1007_s12083_025_01904_1 crossref_primary_10_1007_s10586_024_04705_y crossref_primary_10_1109_JIOT_2021_3081694 crossref_primary_10_3390_math12030424 crossref_primary_10_1109_JIOT_2023_3264253 crossref_primary_10_1016_j_future_2022_11_025 crossref_primary_10_1109_JIOT_2023_3292368 crossref_primary_10_1109_TCOMM_2021_3119689 crossref_primary_10_1016_j_comcom_2023_05_021 crossref_primary_10_1016_j_jnca_2023_103669 crossref_primary_10_1016_j_sysarc_2024_103139 crossref_primary_10_1109_TII_2022_3168292 crossref_primary_10_1186_s13638_022_02196_2 crossref_primary_10_1109_TNSM_2021_3118696 crossref_primary_10_1016_j_comnet_2021_108690 crossref_primary_10_1002_ett_4874 crossref_primary_10_1109_TITS_2024_3440391 crossref_primary_10_1007_s11276_022_03043_4 crossref_primary_10_1109_MWC_020_2200533 crossref_primary_10_1109_JIOT_2022_3202797 crossref_primary_10_1109_TKDE_2022_3178211 crossref_primary_10_1007_s00354_022_00199_7 crossref_primary_10_1007_s11276_023_03553_9 crossref_primary_10_1109_TGCN_2021_3125543 crossref_primary_10_1587_transinf_2021DAP0010 crossref_primary_10_1109_TVT_2023_3285069 crossref_primary_10_1109_TSC_2021_3116280 crossref_primary_10_1002_cpe_7951 crossref_primary_10_1016_j_pmcj_2024_101892 crossref_primary_10_3390_electronics14010192 crossref_primary_10_1109_JIOT_2025_3529836 crossref_primary_10_1007_s10723_024_09750_w crossref_primary_10_1016_j_aej_2023_03_026 crossref_primary_10_3390_s22249595 crossref_primary_10_1109_TNSM_2023_3316626 crossref_primary_10_1155_2022_6216372 crossref_primary_10_7717_peerj_cs_1126 crossref_primary_10_1109_ACCESS_2023_3249153 crossref_primary_10_1109_TVT_2023_3253905 crossref_primary_10_1016_j_comnet_2022_109430 crossref_primary_10_1109_JIOT_2024_3447090 crossref_primary_10_1016_j_hcc_2023_100124 crossref_primary_10_1109_JIOT_2023_3264206 crossref_primary_10_1016_j_sysarc_2024_103090 crossref_primary_10_1109_ACCESS_2024_3495615 crossref_primary_10_1109_JIOT_2021_3054866 |
Cites_doi | 10.1038/nature14236 10.1109/JSAC.2018.2815360 10.1109/TWC.2017.2717986 10.1109/TSC.2018.2826544 10.1109/TVT.2018.2890685 10.1103/PhysRev.36.823 10.1109/TSIPN.2015.2448520 10.1109/JSAC.2017.2760186 10.1109/TWC.2018.2821664 10.1287/opre.1070.0445 10.1109/TCOMM.2018.2870894 10.1109/JIOT.2018.2838584 10.1109/JIOT.2018.2876279 10.1109/MC.2017.9 10.1109/COMST.2017.2745201 10.1109/JIOT.2016.2579198 10.1109/COMST.2017.2682318 10.1017/CBO9780511807213 10.1109/TVT.2019.2935450 10.1109/TVT.2011.2112786 10.1109/TWC.2020.2988532 10.1109/JSAC.2015.2478718 10.1109/TCOMM.2019.2949994 10.1109/JSAC.2016.2611964 10.1109/MCOM.2016.1600492CM 10.1109/TCOMM.2013.020413.110848 10.1002/9781119453765 10.1109/TCOMM.2018.2866572 10.1109/MVT.2017.2668838 10.1109/JIOT.2017.2786343 10.1007/BF01130406 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1186/s13638-020-01801-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3 10_1186_s13638_020_01801_6 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT PUEGO |
ID | FETCH-LOGICAL-c467t-1d364aa551d2a2915d1018c73344c0e6123a74fe83786d7b9c06ee9c78d7a26d3 |
IEDL.DBID | DOA |
ISSN | 1687-1499 |
IngestDate | Wed Aug 27 01:30:35 EDT 2025 Tue Jul 01 00:40:55 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri Feb 21 02:35:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep reinforcement learning Computation offloading Multi-user MIMO Mobile edge computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-1d364aa551d2a2915d1018c73344c0e6123a74fe83786d7b9c06ee9c78d7a26d3 |
ORCID | 0000-0002-8817-8270 |
OpenAccessLink | https://doaj.org/article/f54a9757e5f54c6e8dbe4231f895dfe3 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3 crossref_primary_10_1186_s13638_020_01801_6 crossref_citationtrail_10_1186_s13638_020_01801_6 springer_journals_10_1186_s13638_020_01801_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-29 |
PublicationDateYYYYMMDD | 2020-09-29 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationYear | 2020 |
Publisher | Springer International Publishing SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: SpringerOpen |
References | Miettinen, Nurminen (CR33) 2010; 10 Ding, Fan, Poor (CR10) 2018; 67 Mao, Zhang, Song, Letaief (CR16) 2017; 16 Chen, Wang, Li (CR18) 2018; 12 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (CR22) 2015; 518 Shortle, Thompson, Gross, Harris (CR34) 2018 Abramowitz, Stegun (CR30) 1972 Sardellitti, Scutari, Barbarossa (CR14) 2015; 1 Burd, Brodersen (CR32) 1996; 13 Wu, Zhou, Hu, Wang (CR11) 2019; 68 Guo, Liu, Zhang, Sun, Kato (CR7) 2018; 5 CR37 Tse, Viswanath (CR38) 2005 CR35 Li, Gao, Lv, Lu (CR23) 2018 Zhang, Mao, Leng, He, Zhang (CR3) 2017; 12 Sutton, Barto (CR21) 1998 Uhlenbeck, Ornstein (CR41) 1930; 36 Shi, Cao, Zhang, Li, Xu (CR1) 2016; 3 Zhang, Hu, Ning, Ngai, Zhou, Wei, Cheng, Hu (CR8) 2018; 5 Lyu, Ni, Tian, Liu, Wang, Giannakis, Paulraj (CR17) 2017; 35 Suraweera, Tsiftsis, Karagiannidis, Nallanathan (CR29) 2011; 60 Zhu, Wang, Huang, Fang, Navaie, Ding (CR12) 2020; 19 Liu, Yu, Xie, Zhang (CR27) 2019; 68 Adelman, Mersereau (CR39) 2008; 56 Ngo, Larsson, Marzetta (CR31) 2013; 61 Kwak, Kim, Lee, Chong (CR13) 2015; 33 Liu, Mao, Zhang, Letaief (CR19) 2016 Watkins, Dayan (CR36) 1992; 8 Min, Xu, Xiao, Tang, Wu (CR25) 2019; 68 CR24 Dinh, La, Quek, Shin (CR20) 2018; 66 Sun, Ansari (CR2) 2016; 54 Mao, You, Zhang, Huang, Letaief (CR5) 2017; 19 CR40 Chen, Zhang, Wu, Mao, Ji, Bennis (CR26) 2018; 6 Mach, Becvar (CR28) 2017; 19 Satyanarayanan (CR4) 2017; 50 Bi, Zhang (CR9) 2018; 17 Chen, Hao (CR6) 2018; 36 Mao, Zhang, Letaief (CR15) 2016; 34 D. Tse (1801_CR38) 2005 W. Shi (1801_CR1) 2016; 3 M. Satyanarayanan (1801_CR4) 2017; 50 C. J. C. H. Watkins (1801_CR36) 1992; 8 Y. Mao (1801_CR16) 2017; 16 Y. Liu (1801_CR27) 2019; 68 K. Zhang (1801_CR3) 2017; 12 Z. Ding (1801_CR10) 2018; 67 X. Sun (1801_CR2) 2016; 54 P. Mach (1801_CR28) 2017; 19 H. Guo (1801_CR7) 2018; 5 W. Chen (1801_CR18) 2018; 12 1801_CR24 T. D. Burd (1801_CR32) 1996; 13 R. S. Sutton (1801_CR21) 1998 A. P. Miettinen (1801_CR33) 2010; 10 J. Zhu (1801_CR12) 2020; 19 T. Q. Dinh (1801_CR20) 2018; 66 X. Chen (1801_CR26) 2018; 6 H. A. Suraweera (1801_CR29) 2011; 60 1801_CR40 M. Abramowitz (1801_CR30) 1972 Y. Mao (1801_CR5) 2017; 19 M. Chen (1801_CR6) 2018; 36 J. Liu (1801_CR19) 2016 G. E. Uhlenbeck (1801_CR41) 1930; 36 J. Zhang (1801_CR8) 2018; 5 S. Sardellitti (1801_CR14) 2015; 1 W. Wu (1801_CR11) 2019; 68 J. Kwak (1801_CR13) 2015; 33 V. Mnih (1801_CR22) 2015; 518 D. Adelman (1801_CR39) 2008; 56 M. Min (1801_CR25) 2019; 68 J. Li (1801_CR23) 2018 1801_CR37 1801_CR35 Y. Mao (1801_CR15) 2016; 34 H. Q. Ngo (1801_CR31) 2013; 61 J. F. Shortle (1801_CR34) 2018 S. Bi (1801_CR9) 2018; 17 X. Lyu (1801_CR17) 2017; 35 |
References_xml | – start-page: 1451 year: 2016 end-page: 1455 ident: CR19 article-title: Delay-optimal computation task scheduling for mobile-edge computing systems publication-title: Proc. IEEE International Symposium on Information Theory (ISIT) – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: CR22 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 36 start-page: 587 issue: 3 year: 2018 end-page: 597 ident: CR6 article-title: Task offloading for mobile edge computing in software defined ultra-dense network publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2815360 – volume: 16 start-page: 5994 issue: 9 year: 2017 end-page: 6009 ident: CR16 article-title: Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2717986 – volume: 12 start-page: 726 issue: 5 year: 2018 end-page: 738 ident: CR18 article-title: Multi-user multi-task computation offloading in green mobile edge cloud computing publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2018.2826544 – volume: 68 start-page: 1930 issue: 2 year: 2019 end-page: 1941 ident: CR25 article-title: Learning-based computation offloading for IoT devices with energy harvesting publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2890685 – volume: 36 start-page: 823 issue: 5 year: 1930 ident: CR41 article-title: On the theory of the Brownian motion publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.823 – volume: 1 start-page: 89 issue: 2 year: 2015 end-page: 103 ident: CR14 article-title: Joint optimization of radio and computational resources for multicell mobile-edge computing publication-title: IEEE Trans. Signal Inf. Process. Over Netw. doi: 10.1109/TSIPN.2015.2448520 – volume: 35 start-page: 2606 issue: 11 year: 2017 end-page: 2615 ident: CR17 article-title: Optimal schedule of mobile edge computing for Internet of Things using partial information publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2760186 – ident: CR37 – volume: 17 start-page: 4177 issue: 6 year: 2018 end-page: 4190 ident: CR9 article-title: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2821664 – ident: CR35 – volume: 56 start-page: 712 issue: 3 year: 2008 end-page: 727 ident: CR39 article-title: Relaxations of weakly coupled stochastic dynamic programs publication-title: Oper. Res. doi: 10.1287/opre.1070.0445 – volume: 67 start-page: 375 issue: 1 year: 2018 end-page: 390 ident: CR10 article-title: Impact of non-orthogonal multiple access on the offloading of mobile edge computing publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2018.2870894 – volume: 5 start-page: 4977 issue: 6 year: 2018 end-page: 4988 ident: CR7 article-title: Mobile-edge computation offloading for ultra-dense IoT networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2838584 – volume: 6 start-page: 4005 issue: 3 year: 2018 end-page: 4018 ident: CR26 article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning publication-title: IEEE Int Things J doi: 10.1109/JIOT.2018.2876279 – volume: 50 start-page: 30 issue: 1 year: 2017 end-page: 39 ident: CR4 article-title: The emergence of edge computing publication-title: Computer doi: 10.1109/MC.2017.9 – start-page: 1 year: 2018 end-page: 6 ident: CR23 article-title: Deep reinforcement learning based computation offloading and resource allocation for MEC publication-title: Proc. IEEE Wireless Communications and Networking Conference (WCNC) – volume: 19 start-page: 2322 issue: 4 year: 2017 end-page: 2358 ident: CR5 article-title: A survey on mobile edge computing: the communication perspective publication-title: IEEE Commun. Surv. Tuts. doi: 10.1109/COMST.2017.2745201 – ident: CR40 – year: 1998 ident: CR21 publication-title: Reinforcement learning: an introduction – volume: 3 start-page: 637 issue: 5 year: 2016 end-page: 646 ident: CR1 article-title: Edge computing: vision and challenges publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2016.2579198 – volume: 19 start-page: 1628 issue: 3 year: 2017 end-page: 1656 ident: CR28 article-title: Mobile edge computing: a survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tuts. doi: 10.1109/COMST.2017.2682318 – year: 2005 ident: CR38 publication-title: Fundamentals of wireless communication doi: 10.1017/CBO9780511807213 – volume: 68 start-page: 11158 issue: 11 year: 2019 end-page: 11168 ident: CR27 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume: 10 start-page: 4 year: 2010 end-page: 4 ident: CR33 article-title: Energy efficiency of mobile clients in cloud computing publication-title: HotCloud – volume: 60 start-page: 1265 issue: 3 year: 2011 end-page: 1271 ident: CR29 article-title: Effect of feedback delay on amplify-and-forward relay networks with beamforming publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2011.2112786 – volume: 19 start-page: 4964 issue: 7 year: 2020 end-page: 4977 ident: CR12 article-title: Resource allocation for hybrid NOMA MEC offloading publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2988532 – volume: 33 start-page: 2510 issue: 12 year: 2015 end-page: 2523 ident: CR13 article-title: Dream: dynamic resource and task allocation for energy minimization in mobile cloud systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2015.2478718 – volume: 68 start-page: 493 issue: 1 year: 2019 end-page: 505 ident: CR11 article-title: Energy-efficient resource allocation for secure noma-enabled mobile edge computing networks publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2949994 – volume: 34 start-page: 3590 issue: 12 year: 2016 end-page: 3605 ident: CR15 article-title: Dynamic computation offloading for mobile-edge computing with energy harvesting devices publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2016.2611964 – year: 1972 ident: CR30 publication-title: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55 – volume: 54 start-page: 22 issue: 12 year: 2016 end-page: 29 ident: CR2 article-title: EdgeIoT: mobile edge computing for the Internet of Things publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.1600492CM – volume: 61 start-page: 1436 issue: 4 year: 2013 end-page: 1449 ident: CR31 article-title: Energy and spectral efficiency of very large multiuser MIMO systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2013.020413.110848 – year: 2018 ident: CR34 publication-title: Fundamentals of Queueing Theory, vol. 399 doi: 10.1002/9781119453765 – volume: 66 start-page: 6353 issue: 12 year: 2018 end-page: 6367 ident: CR20 article-title: Distributed learning for computation offloading in mobile edge computing publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2866572 – volume: 12 start-page: 36 issue: 2 year: 2017 end-page: 44 ident: CR3 article-title: Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2017.2668838 – ident: CR24 – volume: 5 start-page: 2633 issue: 4 year: 2018 end-page: 2645 ident: CR8 article-title: Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2786343 – volume: 13 start-page: 203 issue: 2-3 year: 1996 end-page: 221 ident: CR32 article-title: Processor design for portable systems publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol. doi: 10.1007/BF01130406 – volume: 8 start-page: 279 issue: 3 year: 1992 end-page: 292 ident: CR36 article-title: Q-learning publication-title: Mach. Learn. – volume: 33 start-page: 2510 issue: 12 year: 2015 ident: 1801_CR13 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2015.2478718 – volume: 61 start-page: 1436 issue: 4 year: 2013 ident: 1801_CR31 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2013.020413.110848 – volume: 35 start-page: 2606 issue: 11 year: 2017 ident: 1801_CR17 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2760186 – volume: 68 start-page: 493 issue: 1 year: 2019 ident: 1801_CR11 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2949994 – volume: 1 start-page: 89 issue: 2 year: 2015 ident: 1801_CR14 publication-title: IEEE Trans. Signal Inf. Process. Over Netw. doi: 10.1109/TSIPN.2015.2448520 – start-page: 1 volume-title: Proc. IEEE Wireless Communications and Networking Conference (WCNC) year: 2018 ident: 1801_CR23 – volume: 12 start-page: 36 issue: 2 year: 2017 ident: 1801_CR3 publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2017.2668838 – volume: 19 start-page: 1628 issue: 3 year: 2017 ident: 1801_CR28 publication-title: IEEE Commun. Surv. Tuts. doi: 10.1109/COMST.2017.2682318 – volume: 60 start-page: 1265 issue: 3 year: 2011 ident: 1801_CR29 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2011.2112786 – volume: 10 start-page: 4 year: 2010 ident: 1801_CR33 publication-title: HotCloud – volume: 50 start-page: 30 issue: 1 year: 2017 ident: 1801_CR4 publication-title: Computer doi: 10.1109/MC.2017.9 – ident: 1801_CR24 – ident: 1801_CR40 – start-page: 1451 volume-title: Proc. IEEE International Symposium on Information Theory (ISIT) year: 2016 ident: 1801_CR19 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 1801_CR22 publication-title: Nature doi: 10.1038/nature14236 – volume-title: Reinforcement learning: an introduction year: 1998 ident: 1801_CR21 – volume: 5 start-page: 2633 issue: 4 year: 2018 ident: 1801_CR8 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2786343 – volume: 19 start-page: 2322 issue: 4 year: 2017 ident: 1801_CR5 publication-title: IEEE Commun. Surv. Tuts. doi: 10.1109/COMST.2017.2745201 – volume: 36 start-page: 587 issue: 3 year: 2018 ident: 1801_CR6 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2815360 – volume: 6 start-page: 4005 issue: 3 year: 2018 ident: 1801_CR26 publication-title: IEEE Int Things J doi: 10.1109/JIOT.2018.2876279 – volume: 19 start-page: 4964 issue: 7 year: 2020 ident: 1801_CR12 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2988532 – volume: 66 start-page: 6353 issue: 12 year: 2018 ident: 1801_CR20 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2866572 – volume: 34 start-page: 3590 issue: 12 year: 2016 ident: 1801_CR15 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2016.2611964 – volume: 3 start-page: 637 issue: 5 year: 2016 ident: 1801_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2016.2579198 – volume: 56 start-page: 712 issue: 3 year: 2008 ident: 1801_CR39 publication-title: Oper. Res. doi: 10.1287/opre.1070.0445 – volume: 68 start-page: 11158 issue: 11 year: 2019 ident: 1801_CR27 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume-title: Fundamentals of wireless communication year: 2005 ident: 1801_CR38 doi: 10.1017/CBO9780511807213 – volume-title: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55 year: 1972 ident: 1801_CR30 – volume: 54 start-page: 22 issue: 12 year: 2016 ident: 1801_CR2 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.1600492CM – volume: 17 start-page: 4177 issue: 6 year: 2018 ident: 1801_CR9 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2821664 – volume-title: Fundamentals of Queueing Theory, vol. 399 year: 2018 ident: 1801_CR34 doi: 10.1002/9781119453765 – volume: 67 start-page: 375 issue: 1 year: 2018 ident: 1801_CR10 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2018.2870894 – volume: 12 start-page: 726 issue: 5 year: 2018 ident: 1801_CR18 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2018.2826544 – volume: 36 start-page: 823 issue: 5 year: 1930 ident: 1801_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.823 – volume: 68 start-page: 1930 issue: 2 year: 2019 ident: 1801_CR25 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2890685 – volume: 8 start-page: 279 issue: 3 year: 1992 ident: 1801_CR36 publication-title: Mach. Learn. – ident: 1801_CR37 – volume: 16 start-page: 5994 issue: 9 year: 2017 ident: 1801_CR16 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2717986 – ident: 1801_CR35 – volume: 5 start-page: 4977 issue: 6 year: 2018 ident: 1801_CR7 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2838584 – volume: 13 start-page: 203 issue: 2-3 year: 1996 ident: 1801_CR32 publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol. doi: 10.1007/BF01130406 |
SSID | ssj0033492 |
Score | 2.582881 |
Snippet | Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables... Abstract Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks,... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Communications Engineering Computation offloading Deep reinforcement learning Engineering Information Systems Applications (incl.Internet) Machine Learning and Deep Learning Methods for Wireless Network Applications Mobile edge computing Multi-user MIMO Networks Signal,Image and Speech Processing |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1hf5OBNg91XsutNq6UIerLQW8gmkyLUbm3rxV_vJJstilLwFpYJC_PKTDLzDSEXNs2sEqlmnRSNPFWiQD9YGoaHnYrA2Nz4DrmnZ94fpI_DbBiawuZNtXvzJOk9tTfrnF_PowR1hbl0x4FORYyvk40Mc3en113X41D738Th7TXtMX_u-3EEeaT-X8-g_nTp7ZDtEBbS21qOu2QNJntk6xtY4D55v4dQSfn6CYZqP47B85VW1o4rXwxPMQalvkiQuesH-laVaPbUXZqFHUh0QxU1AFM6A4-bqv0VIQ0DJEa0wRk_IIPew0u3z8LABKbR3y1YZBKeKoVBkIlVXESZcXhcWiBLUt0Bh7SCcrHgQOS5EWWhOxyg0CI3QsXcJIekNakmcERoYnVilY2FxYgLvYBKTImpSFQqXHVs2SZRw0OpA5q4G2oxlj6ryLms-S6R79LzXfI2uVzumdZYGiup75xolpQOB9t_qGYjGcxK2ixVhcgEZLjSHHJTAgaIkc2LzFhI2uSqEawMxjlf8c_j_5GfkM3Y61XB4uKUtBazDzjDGGVRnnuV_ALxgd_D priority: 102 providerName: Springer Nature |
Title | Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach |
URI | https://link.springer.com/article/10.1186/s13638-020-01801-6 https://doaj.org/article/f54a9757e5f54c6e8dbe4231f895dfe3 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4-LnoQn1gfJQdvGtxHNtn11tZHESwiFryFbDIRoba11ou_3kl2VxRBL15CdknIMpnMayffEHLkeOa05IZFHA8517JAOVhahspOx2BdbsMNuZuB6A_59UP28KXUl88Jq-CBK8KduozrQmYSMuwZAbktAU2A2OVFZh0EnE_UeY0zVcng1GPuNVdkcnH6GqfIZ8y7Sh6wKmbimxoKaP0_foUGDXO5TtZq05B2qk_aIAsw3iSrXwADt8jLOdTZlE_vYKkJJRkCbenEudEkJMRTtENpSBRkPgRBnyclHn3qA2f1DBx0RjW1AFM6g4CdakKYkNZFJB5pgzW-TYaXF_e9PquLJjCDMm_OYpsKrjUaQjbRSRFn1mNyGYkk4SYCj7aCe-PAA8kLK8vCRAKgMDK3UifCpjtkaTwZwy6hqTOp0y6RDq0ulAQ6tSW6I3GpsRe5skXihobK1IjivrDFSAXPIheqortCuqtAdyVa5PhzzrTC0_h1dNdvzedIj4UdXiCHqJpD1F8c0iInzcaq-oC-_rLm3n-suU9WksBtBUuKA7I0n73BIVov87JNFnl01SbL3YvB7R0-9RLuW9FrBxbGdph0PgCDB_E6 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ95uBNg81uNtn1ptVSnycFbyGbTETQ1ke9-OudpFlRFMFbWCYszHuSyTeE7HhReKOEZR2BRi6MqtAP1o5hsDMcnC9dfCF3eSX7N-LstrhNMDnhLczX-3teyv1XnqOGsFDkBKgpzuQkmRJYKYf2va7sNl43Dyh7zaOYX_d9CzwRn__H5WeMKb15MpeSQXo4lt4CmYDBIpn9AhG4RJ6PIfVP3r-DozYOYYjcpEPvH4axBZ5i5kljayALhw70cVijsdNwVJZ2INEBNdQBPNEXiGipNh4M0jQ24o426OLL5KZ3ct3tszQmgVn0ciPGXS6FMZj6uMxkFS9cQOGyClkibAcCvgpKw0OAjpdO1ZXtSIDKqtIpk0mXr5DWYDiAVUJzb3NvfKY85llo-yZ3NRYgvDa46vi6TXjDQ20ThngYZfGgYy1RSj3mu0a-68h3Ldtk93PP0xhB40_qoyCaT8qAfh0_oFLoZEzaF8JUqlBQ4MpKKF0NmBZyX1aF85C3yV4jWJ1M8vWPf679j3ybTPevLy_0xenV-TqZyaKOVSyrNkhr9PIGm5iljOqtqJ4f1tfe1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QPQgPrE-c_Cmod1XsutNW4tvPCh4C9lkUoTarXW9-OudZHdFUQrewjJhYV6ZSWa-IeTQxolVItasE6ORx0pk6Adzw_CwUwEYmxrfIXd7xy8e46un5OlbF7-vdm-eJKueBofSNCrbY2MrE095-y2IUG-YS30cAFXA-CyZx0wlcEV9XdfvUPniyGHvNa0yf-77cRx51P5fT6L-pOmvkOU6RKSnlUxXyQyM1sjSN-DAdfLag7qq8vkDDNV-NIPnMS2sHRa-MJ5iPEp9wSBzVxH0pcjRBVB3gVbvQKITqqgBGNMJeAxV7a8LaT1MYkAbzPEN8tg_f-hesHp4AtPo-0oWmIjHSmFAZEIVImeMw-bSAlkS6w441BWUkQUHKM-NyDPd4QCZFqkRKuQm2iRzo2IEW4RGVkdW2VBYjL7QI6jI5JiWBLnCVcfmLRI0PJS6RhZ3Ay6G0mcYKZcV3yXyXXq-S94iR197xhWuxlTqMyeaL0qHie0_FJOBrE1M2iRWmUgEJLjSHFKTAwaLgU2zxFiIWuS4EaysDfVtyj-3_0d-QBbue315c3l3vUMWQ69iGQuzXTJXTt5hD0OXMt_32vkJtD7m9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+computation+offloading+for+multi-user+mobile+edge+computing%3A+a+deep+reinforcement+learning+approach&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Zhao+Chen&rft.au=Xiaodong+Wang&rft.date=2020-09-29&rft.pub=SpringerOpen&rft.eissn=1687-1499&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1186%2Fs13638-020-01801-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |