Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach

Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-us...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2020; no. 1; pp. 1 - 21
Main Authors Chen, Zhao, Wang, Xiaodong
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 29.09.2020
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies.
AbstractList Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies.
Abstract Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. In this paper, an MEC enabled multi-user multi-input multi-output (MIMO) system with stochastic wireless channels and task arrivals is considered. In order to minimize long-term average computation cost in terms of power consumption and buffering delay at each user, a deep reinforcement learning (DRL)-based dynamic computation offloading strategy is investigated to build a scalable system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn decentralized computation offloading policies at all users respectively, where local execution and task offloading powers will be adaptively allocated according to each user’s local observation. Numerical results demonstrate that the proposed DDPG-based strategy can help each user learn an efficient dynamic offloading policy and also verify the superiority of its continuous power allocation capability to policies learned by conventional discrete action space-based reinforcement learning approaches like deep Q-network (DQN) as well as some other greedy strategies with reduced computation cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both the DDPG-based and DQN-based strategies.
ArticleNumber 188
Author Wang, Xiaodong
Chen, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0002-8817-8270
  surname: Chen
  fullname: Chen, Zhao
  email: zhao_chen@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 2
  givenname: Xiaodong
  surname: Wang
  fullname: Wang, Xiaodong
  organization: Department of Electrical Engineering, Columbia University
BookMark eNp9kctOxCAUhonRxOsLuOIFqlBaoO6M98TEja7JGTiMTDpQaWehTy_aiTEuXPGH8H3A-Q_JbkwRCTnl7IxzLc9HLqTQFatZxbhmvJI75IBLrSredN3ur7xPDsdxxZgQTVcfkLdrtBinDH34QEdtWg-bCaaQIk3e9wlciEvqU6brTT-FajNiiWkReqTolrglyqELCtQhDjRjiAWwuC5i2iPk-OWAYcgJ7Osx2fPQj3iyXY_Iy-3N89V99fh093B1-VjZRqqp4k7IBqBtuauh7njrePmZVeXdjWUoeS1ANR61UFo6tegsk4idVdopqKUTR-Rh9roEKzPksIb8bhIE872R8tJAnoLt0fi2gU61CtuSrETtFtjUgnvdtc6jKK56dtmcxjGj__FxZr4KMHMBphRgvgswskD6D2TDPNoy7tD_j4oZHcs9cYnZrNImxzKu_6hPDcuewA
CitedBy_id crossref_primary_10_1002_cpe_8156
crossref_primary_10_1109_ACCESS_2023_3310808
crossref_primary_10_1109_JSAC_2023_3310048
crossref_primary_10_1109_JIOT_2021_3113872
crossref_primary_10_1109_TNSM_2024_3447753
crossref_primary_10_1016_j_sysarc_2021_102225
crossref_primary_10_1109_TCOMM_2022_3152262
crossref_primary_10_1007_s10586_023_04100_z
crossref_primary_10_1109_TMC_2023_3266226
crossref_primary_10_1109_TMC_2022_3183098
crossref_primary_10_1109_ACCESS_2023_3344389
crossref_primary_10_1186_s13677_022_00342_1
crossref_primary_10_1109_TII_2022_3227652
crossref_primary_10_1109_JIOT_2023_3305549
crossref_primary_10_1049_cmu2_12826
crossref_primary_10_1007_s10586_024_04426_2
crossref_primary_10_1109_JIOT_2021_3109003
crossref_primary_10_1109_JIOT_2022_3209714
crossref_primary_10_1109_JIOT_2023_3327121
crossref_primary_10_37394_23209_2024_21_30
crossref_primary_10_1109_TVT_2024_3427814
crossref_primary_10_1109_TMC_2023_3254553
crossref_primary_10_1109_TMC_2023_3315232
crossref_primary_10_1186_s13677_023_00461_3
crossref_primary_10_1016_j_comcom_2023_09_003
crossref_primary_10_1016_j_comnet_2023_109878
crossref_primary_10_1109_TVT_2024_3370196
crossref_primary_10_7717_peerj_cs_2708
crossref_primary_10_1016_j_aej_2024_07_049
crossref_primary_10_3390_s23083883
crossref_primary_10_1109_JSYST_2022_3190926
crossref_primary_10_1186_s13638_022_02205_4
crossref_primary_10_1109_ACCESS_2023_3278591
crossref_primary_10_3390_app13116708
crossref_primary_10_3390_electronics12214392
crossref_primary_10_1145_3603703
crossref_primary_10_1016_j_pmcj_2024_101987
crossref_primary_10_1109_TCCN_2021_3093436
crossref_primary_10_32604_cmes_2022_021394
crossref_primary_10_3390_electronics13132655
crossref_primary_10_1109_TVT_2023_3290954
crossref_primary_10_1016_j_vehcom_2024_100858
crossref_primary_10_1007_s10586_024_04893_7
crossref_primary_10_1016_j_comcom_2023_06_021
crossref_primary_10_1109_TMC_2022_3141080
crossref_primary_10_1007_s12083_025_01904_1
crossref_primary_10_1007_s10586_024_04705_y
crossref_primary_10_1109_JIOT_2021_3081694
crossref_primary_10_3390_math12030424
crossref_primary_10_1109_JIOT_2023_3264253
crossref_primary_10_1016_j_future_2022_11_025
crossref_primary_10_1109_JIOT_2023_3292368
crossref_primary_10_1109_TCOMM_2021_3119689
crossref_primary_10_1016_j_comcom_2023_05_021
crossref_primary_10_1016_j_jnca_2023_103669
crossref_primary_10_1016_j_sysarc_2024_103139
crossref_primary_10_1109_TII_2022_3168292
crossref_primary_10_1186_s13638_022_02196_2
crossref_primary_10_1109_TNSM_2021_3118696
crossref_primary_10_1016_j_comnet_2021_108690
crossref_primary_10_1002_ett_4874
crossref_primary_10_1109_TITS_2024_3440391
crossref_primary_10_1007_s11276_022_03043_4
crossref_primary_10_1109_MWC_020_2200533
crossref_primary_10_1109_JIOT_2022_3202797
crossref_primary_10_1109_TKDE_2022_3178211
crossref_primary_10_1007_s00354_022_00199_7
crossref_primary_10_1007_s11276_023_03553_9
crossref_primary_10_1109_TGCN_2021_3125543
crossref_primary_10_1587_transinf_2021DAP0010
crossref_primary_10_1109_TVT_2023_3285069
crossref_primary_10_1109_TSC_2021_3116280
crossref_primary_10_1002_cpe_7951
crossref_primary_10_1016_j_pmcj_2024_101892
crossref_primary_10_3390_electronics14010192
crossref_primary_10_1109_JIOT_2025_3529836
crossref_primary_10_1007_s10723_024_09750_w
crossref_primary_10_1016_j_aej_2023_03_026
crossref_primary_10_3390_s22249595
crossref_primary_10_1109_TNSM_2023_3316626
crossref_primary_10_1155_2022_6216372
crossref_primary_10_7717_peerj_cs_1126
crossref_primary_10_1109_ACCESS_2023_3249153
crossref_primary_10_1109_TVT_2023_3253905
crossref_primary_10_1016_j_comnet_2022_109430
crossref_primary_10_1109_JIOT_2024_3447090
crossref_primary_10_1016_j_hcc_2023_100124
crossref_primary_10_1109_JIOT_2023_3264206
crossref_primary_10_1016_j_sysarc_2024_103090
crossref_primary_10_1109_ACCESS_2024_3495615
crossref_primary_10_1109_JIOT_2021_3054866
Cites_doi 10.1038/nature14236
10.1109/JSAC.2018.2815360
10.1109/TWC.2017.2717986
10.1109/TSC.2018.2826544
10.1109/TVT.2018.2890685
10.1103/PhysRev.36.823
10.1109/TSIPN.2015.2448520
10.1109/JSAC.2017.2760186
10.1109/TWC.2018.2821664
10.1287/opre.1070.0445
10.1109/TCOMM.2018.2870894
10.1109/JIOT.2018.2838584
10.1109/JIOT.2018.2876279
10.1109/MC.2017.9
10.1109/COMST.2017.2745201
10.1109/JIOT.2016.2579198
10.1109/COMST.2017.2682318
10.1017/CBO9780511807213
10.1109/TVT.2019.2935450
10.1109/TVT.2011.2112786
10.1109/TWC.2020.2988532
10.1109/JSAC.2015.2478718
10.1109/TCOMM.2019.2949994
10.1109/JSAC.2016.2611964
10.1109/MCOM.2016.1600492CM
10.1109/TCOMM.2013.020413.110848
10.1002/9781119453765
10.1109/TCOMM.2018.2866572
10.1109/MVT.2017.2668838
10.1109/JIOT.2017.2786343
10.1007/BF01130406
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1186/s13638-020-01801-6
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 21
ExternalDocumentID oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3
10_1186_s13638_020_01801_6
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
PUEGO
ID FETCH-LOGICAL-c467t-1d364aa551d2a2915d1018c73344c0e6123a74fe83786d7b9c06ee9c78d7a26d3
IEDL.DBID DOA
ISSN 1687-1499
IngestDate Wed Aug 27 01:30:35 EDT 2025
Tue Jul 01 00:40:55 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Fri Feb 21 02:35:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep reinforcement learning
Computation offloading
Multi-user MIMO
Mobile edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-1d364aa551d2a2915d1018c73344c0e6123a74fe83786d7b9c06ee9c78d7a26d3
ORCID 0000-0002-8817-8270
OpenAccessLink https://doaj.org/article/f54a9757e5f54c6e8dbe4231f895dfe3
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3
crossref_primary_10_1186_s13638_020_01801_6
crossref_citationtrail_10_1186_s13638_020_01801_6
springer_journals_10_1186_s13638_020_01801_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-29
PublicationDateYYYYMMDD 2020-09-29
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-29
  day: 29
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2020
Publisher Springer International Publishing
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: SpringerOpen
References Miettinen, Nurminen (CR33) 2010; 10
Ding, Fan, Poor (CR10) 2018; 67
Mao, Zhang, Song, Letaief (CR16) 2017; 16
Chen, Wang, Li (CR18) 2018; 12
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (CR22) 2015; 518
Shortle, Thompson, Gross, Harris (CR34) 2018
Abramowitz, Stegun (CR30) 1972
Sardellitti, Scutari, Barbarossa (CR14) 2015; 1
Burd, Brodersen (CR32) 1996; 13
Wu, Zhou, Hu, Wang (CR11) 2019; 68
Guo, Liu, Zhang, Sun, Kato (CR7) 2018; 5
CR37
Tse, Viswanath (CR38) 2005
CR35
Li, Gao, Lv, Lu (CR23) 2018
Zhang, Mao, Leng, He, Zhang (CR3) 2017; 12
Sutton, Barto (CR21) 1998
Uhlenbeck, Ornstein (CR41) 1930; 36
Shi, Cao, Zhang, Li, Xu (CR1) 2016; 3
Zhang, Hu, Ning, Ngai, Zhou, Wei, Cheng, Hu (CR8) 2018; 5
Lyu, Ni, Tian, Liu, Wang, Giannakis, Paulraj (CR17) 2017; 35
Suraweera, Tsiftsis, Karagiannidis, Nallanathan (CR29) 2011; 60
Zhu, Wang, Huang, Fang, Navaie, Ding (CR12) 2020; 19
Liu, Yu, Xie, Zhang (CR27) 2019; 68
Adelman, Mersereau (CR39) 2008; 56
Ngo, Larsson, Marzetta (CR31) 2013; 61
Kwak, Kim, Lee, Chong (CR13) 2015; 33
Liu, Mao, Zhang, Letaief (CR19) 2016
Watkins, Dayan (CR36) 1992; 8
Min, Xu, Xiao, Tang, Wu (CR25) 2019; 68
CR24
Dinh, La, Quek, Shin (CR20) 2018; 66
Sun, Ansari (CR2) 2016; 54
Mao, You, Zhang, Huang, Letaief (CR5) 2017; 19
CR40
Chen, Zhang, Wu, Mao, Ji, Bennis (CR26) 2018; 6
Mach, Becvar (CR28) 2017; 19
Satyanarayanan (CR4) 2017; 50
Bi, Zhang (CR9) 2018; 17
Chen, Hao (CR6) 2018; 36
Mao, Zhang, Letaief (CR15) 2016; 34
D. Tse (1801_CR38) 2005
W. Shi (1801_CR1) 2016; 3
M. Satyanarayanan (1801_CR4) 2017; 50
C. J. C. H. Watkins (1801_CR36) 1992; 8
Y. Mao (1801_CR16) 2017; 16
Y. Liu (1801_CR27) 2019; 68
K. Zhang (1801_CR3) 2017; 12
Z. Ding (1801_CR10) 2018; 67
X. Sun (1801_CR2) 2016; 54
P. Mach (1801_CR28) 2017; 19
H. Guo (1801_CR7) 2018; 5
W. Chen (1801_CR18) 2018; 12
1801_CR24
T. D. Burd (1801_CR32) 1996; 13
R. S. Sutton (1801_CR21) 1998
A. P. Miettinen (1801_CR33) 2010; 10
J. Zhu (1801_CR12) 2020; 19
T. Q. Dinh (1801_CR20) 2018; 66
X. Chen (1801_CR26) 2018; 6
H. A. Suraweera (1801_CR29) 2011; 60
1801_CR40
M. Abramowitz (1801_CR30) 1972
Y. Mao (1801_CR5) 2017; 19
M. Chen (1801_CR6) 2018; 36
J. Liu (1801_CR19) 2016
G. E. Uhlenbeck (1801_CR41) 1930; 36
J. Zhang (1801_CR8) 2018; 5
S. Sardellitti (1801_CR14) 2015; 1
W. Wu (1801_CR11) 2019; 68
J. Kwak (1801_CR13) 2015; 33
V. Mnih (1801_CR22) 2015; 518
D. Adelman (1801_CR39) 2008; 56
M. Min (1801_CR25) 2019; 68
J. Li (1801_CR23) 2018
1801_CR37
1801_CR35
Y. Mao (1801_CR15) 2016; 34
H. Q. Ngo (1801_CR31) 2013; 61
J. F. Shortle (1801_CR34) 2018
S. Bi (1801_CR9) 2018; 17
X. Lyu (1801_CR17) 2017; 35
References_xml – start-page: 1451
  year: 2016
  end-page: 1455
  ident: CR19
  article-title: Delay-optimal computation task scheduling for mobile-edge computing systems
  publication-title: Proc. IEEE International Symposium on Information Theory (ISIT)
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: CR22
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 36
  start-page: 587
  issue: 3
  year: 2018
  end-page: 597
  ident: CR6
  article-title: Task offloading for mobile edge computing in software defined ultra-dense network
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2815360
– volume: 16
  start-page: 5994
  issue: 9
  year: 2017
  end-page: 6009
  ident: CR16
  article-title: Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2717986
– volume: 12
  start-page: 726
  issue: 5
  year: 2018
  end-page: 738
  ident: CR18
  article-title: Multi-user multi-task computation offloading in green mobile edge cloud computing
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2826544
– volume: 68
  start-page: 1930
  issue: 2
  year: 2019
  end-page: 1941
  ident: CR25
  article-title: Learning-based computation offloading for IoT devices with energy harvesting
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2890685
– volume: 36
  start-page: 823
  issue: 5
  year: 1930
  ident: CR41
  article-title: On the theory of the Brownian motion
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– volume: 1
  start-page: 89
  issue: 2
  year: 2015
  end-page: 103
  ident: CR14
  article-title: Joint optimization of radio and computational resources for multicell mobile-edge computing
  publication-title: IEEE Trans. Signal Inf. Process. Over Netw.
  doi: 10.1109/TSIPN.2015.2448520
– volume: 35
  start-page: 2606
  issue: 11
  year: 2017
  end-page: 2615
  ident: CR17
  article-title: Optimal schedule of mobile edge computing for Internet of Things using partial information
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760186
– ident: CR37
– volume: 17
  start-page: 4177
  issue: 6
  year: 2018
  end-page: 4190
  ident: CR9
  article-title: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2821664
– ident: CR35
– volume: 56
  start-page: 712
  issue: 3
  year: 2008
  end-page: 727
  ident: CR39
  article-title: Relaxations of weakly coupled stochastic dynamic programs
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0445
– volume: 67
  start-page: 375
  issue: 1
  year: 2018
  end-page: 390
  ident: CR10
  article-title: Impact of non-orthogonal multiple access on the offloading of mobile edge computing
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2018.2870894
– volume: 5
  start-page: 4977
  issue: 6
  year: 2018
  end-page: 4988
  ident: CR7
  article-title: Mobile-edge computation offloading for ultra-dense IoT networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2838584
– volume: 6
  start-page: 4005
  issue: 3
  year: 2018
  end-page: 4018
  ident: CR26
  article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning
  publication-title: IEEE Int Things J
  doi: 10.1109/JIOT.2018.2876279
– volume: 50
  start-page: 30
  issue: 1
  year: 2017
  end-page: 39
  ident: CR4
  article-title: The emergence of edge computing
  publication-title: Computer
  doi: 10.1109/MC.2017.9
– start-page: 1
  year: 2018
  end-page: 6
  ident: CR23
  article-title: Deep reinforcement learning based computation offloading and resource allocation for MEC
  publication-title: Proc. IEEE Wireless Communications and Networking Conference (WCNC)
– volume: 19
  start-page: 2322
  issue: 4
  year: 2017
  end-page: 2358
  ident: CR5
  article-title: A survey on mobile edge computing: the communication perspective
  publication-title: IEEE Commun. Surv. Tuts.
  doi: 10.1109/COMST.2017.2745201
– ident: CR40
– year: 1998
  ident: CR21
  publication-title: Reinforcement learning: an introduction
– volume: 3
  start-page: 637
  issue: 5
  year: 2016
  end-page: 646
  ident: CR1
  article-title: Edge computing: vision and challenges
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2016.2579198
– volume: 19
  start-page: 1628
  issue: 3
  year: 2017
  end-page: 1656
  ident: CR28
  article-title: Mobile edge computing: a survey on architecture and computation offloading
  publication-title: IEEE Commun. Surv. Tuts.
  doi: 10.1109/COMST.2017.2682318
– year: 2005
  ident: CR38
  publication-title: Fundamentals of wireless communication
  doi: 10.1017/CBO9780511807213
– volume: 68
  start-page: 11158
  issue: 11
  year: 2019
  end-page: 11168
  ident: CR27
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 10
  start-page: 4
  year: 2010
  end-page: 4
  ident: CR33
  article-title: Energy efficiency of mobile clients in cloud computing
  publication-title: HotCloud
– volume: 60
  start-page: 1265
  issue: 3
  year: 2011
  end-page: 1271
  ident: CR29
  article-title: Effect of feedback delay on amplify-and-forward relay networks with beamforming
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2112786
– volume: 19
  start-page: 4964
  issue: 7
  year: 2020
  end-page: 4977
  ident: CR12
  article-title: Resource allocation for hybrid NOMA MEC offloading
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2988532
– volume: 33
  start-page: 2510
  issue: 12
  year: 2015
  end-page: 2523
  ident: CR13
  article-title: Dream: dynamic resource and task allocation for energy minimization in mobile cloud systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2015.2478718
– volume: 68
  start-page: 493
  issue: 1
  year: 2019
  end-page: 505
  ident: CR11
  article-title: Energy-efficient resource allocation for secure noma-enabled mobile edge computing networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2949994
– volume: 34
  start-page: 3590
  issue: 12
  year: 2016
  end-page: 3605
  ident: CR15
  article-title: Dynamic computation offloading for mobile-edge computing with energy harvesting devices
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2611964
– year: 1972
  ident: CR30
  publication-title: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55
– volume: 54
  start-page: 22
  issue: 12
  year: 2016
  end-page: 29
  ident: CR2
  article-title: EdgeIoT: mobile edge computing for the Internet of Things
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.1600492CM
– volume: 61
  start-page: 1436
  issue: 4
  year: 2013
  end-page: 1449
  ident: CR31
  article-title: Energy and spectral efficiency of very large multiuser MIMO systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2013.020413.110848
– year: 2018
  ident: CR34
  publication-title: Fundamentals of Queueing Theory, vol. 399
  doi: 10.1002/9781119453765
– volume: 66
  start-page: 6353
  issue: 12
  year: 2018
  end-page: 6367
  ident: CR20
  article-title: Distributed learning for computation offloading in mobile edge computing
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2866572
– volume: 12
  start-page: 36
  issue: 2
  year: 2017
  end-page: 44
  ident: CR3
  article-title: Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2017.2668838
– ident: CR24
– volume: 5
  start-page: 2633
  issue: 4
  year: 2018
  end-page: 2645
  ident: CR8
  article-title: Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2786343
– volume: 13
  start-page: 203
  issue: 2-3
  year: 1996
  end-page: 221
  ident: CR32
  article-title: Processor design for portable systems
  publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol.
  doi: 10.1007/BF01130406
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  end-page: 292
  ident: CR36
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 33
  start-page: 2510
  issue: 12
  year: 2015
  ident: 1801_CR13
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2015.2478718
– volume: 61
  start-page: 1436
  issue: 4
  year: 2013
  ident: 1801_CR31
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2013.020413.110848
– volume: 35
  start-page: 2606
  issue: 11
  year: 2017
  ident: 1801_CR17
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760186
– volume: 68
  start-page: 493
  issue: 1
  year: 2019
  ident: 1801_CR11
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2949994
– volume: 1
  start-page: 89
  issue: 2
  year: 2015
  ident: 1801_CR14
  publication-title: IEEE Trans. Signal Inf. Process. Over Netw.
  doi: 10.1109/TSIPN.2015.2448520
– start-page: 1
  volume-title: Proc. IEEE Wireless Communications and Networking Conference (WCNC)
  year: 2018
  ident: 1801_CR23
– volume: 12
  start-page: 36
  issue: 2
  year: 2017
  ident: 1801_CR3
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2017.2668838
– volume: 19
  start-page: 1628
  issue: 3
  year: 2017
  ident: 1801_CR28
  publication-title: IEEE Commun. Surv. Tuts.
  doi: 10.1109/COMST.2017.2682318
– volume: 60
  start-page: 1265
  issue: 3
  year: 2011
  ident: 1801_CR29
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2112786
– volume: 10
  start-page: 4
  year: 2010
  ident: 1801_CR33
  publication-title: HotCloud
– volume: 50
  start-page: 30
  issue: 1
  year: 2017
  ident: 1801_CR4
  publication-title: Computer
  doi: 10.1109/MC.2017.9
– ident: 1801_CR24
– ident: 1801_CR40
– start-page: 1451
  volume-title: Proc. IEEE International Symposium on Information Theory (ISIT)
  year: 2016
  ident: 1801_CR19
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 1801_CR22
  publication-title: Nature
  doi: 10.1038/nature14236
– volume-title: Reinforcement learning: an introduction
  year: 1998
  ident: 1801_CR21
– volume: 5
  start-page: 2633
  issue: 4
  year: 2018
  ident: 1801_CR8
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2786343
– volume: 19
  start-page: 2322
  issue: 4
  year: 2017
  ident: 1801_CR5
  publication-title: IEEE Commun. Surv. Tuts.
  doi: 10.1109/COMST.2017.2745201
– volume: 36
  start-page: 587
  issue: 3
  year: 2018
  ident: 1801_CR6
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2815360
– volume: 6
  start-page: 4005
  issue: 3
  year: 2018
  ident: 1801_CR26
  publication-title: IEEE Int Things J
  doi: 10.1109/JIOT.2018.2876279
– volume: 19
  start-page: 4964
  issue: 7
  year: 2020
  ident: 1801_CR12
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2988532
– volume: 66
  start-page: 6353
  issue: 12
  year: 2018
  ident: 1801_CR20
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2866572
– volume: 34
  start-page: 3590
  issue: 12
  year: 2016
  ident: 1801_CR15
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2611964
– volume: 3
  start-page: 637
  issue: 5
  year: 2016
  ident: 1801_CR1
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2016.2579198
– volume: 56
  start-page: 712
  issue: 3
  year: 2008
  ident: 1801_CR39
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0445
– volume: 68
  start-page: 11158
  issue: 11
  year: 2019
  ident: 1801_CR27
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume-title: Fundamentals of wireless communication
  year: 2005
  ident: 1801_CR38
  doi: 10.1017/CBO9780511807213
– volume-title: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55
  year: 1972
  ident: 1801_CR30
– volume: 54
  start-page: 22
  issue: 12
  year: 2016
  ident: 1801_CR2
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.1600492CM
– volume: 17
  start-page: 4177
  issue: 6
  year: 2018
  ident: 1801_CR9
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2821664
– volume-title: Fundamentals of Queueing Theory, vol. 399
  year: 2018
  ident: 1801_CR34
  doi: 10.1002/9781119453765
– volume: 67
  start-page: 375
  issue: 1
  year: 2018
  ident: 1801_CR10
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2018.2870894
– volume: 12
  start-page: 726
  issue: 5
  year: 2018
  ident: 1801_CR18
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2826544
– volume: 36
  start-page: 823
  issue: 5
  year: 1930
  ident: 1801_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– volume: 68
  start-page: 1930
  issue: 2
  year: 2019
  ident: 1801_CR25
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2890685
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  ident: 1801_CR36
  publication-title: Mach. Learn.
– ident: 1801_CR37
– volume: 16
  start-page: 5994
  issue: 9
  year: 2017
  ident: 1801_CR16
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2717986
– ident: 1801_CR35
– volume: 5
  start-page: 4977
  issue: 6
  year: 2018
  ident: 1801_CR7
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2838584
– volume: 13
  start-page: 203
  issue: 2-3
  year: 1996
  ident: 1801_CR32
  publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol.
  doi: 10.1007/BF01130406
SSID ssj0033492
Score 2.582881
Snippet Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables...
Abstract Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks,...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Communications Engineering
Computation offloading
Deep reinforcement learning
Engineering
Information Systems Applications (incl.Internet)
Machine Learning and Deep Learning Methods for Wireless Network Applications
Mobile edge computing
Multi-user MIMO
Networks
Signal,Image and Speech Processing
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1hf5OBNg91XsutNq6UIerLQW8gmkyLUbm3rxV_vJJstilLwFpYJC_PKTDLzDSEXNs2sEqlmnRSNPFWiQD9YGoaHnYrA2Nz4DrmnZ94fpI_DbBiawuZNtXvzJOk9tTfrnF_PowR1hbl0x4FORYyvk40Mc3en113X41D738Th7TXtMX_u-3EEeaT-X8-g_nTp7ZDtEBbS21qOu2QNJntk6xtY4D55v4dQSfn6CYZqP47B85VW1o4rXwxPMQalvkiQuesH-laVaPbUXZqFHUh0QxU1AFM6A4-bqv0VIQ0DJEa0wRk_IIPew0u3z8LABKbR3y1YZBKeKoVBkIlVXESZcXhcWiBLUt0Bh7SCcrHgQOS5EWWhOxyg0CI3QsXcJIekNakmcERoYnVilY2FxYgLvYBKTImpSFQqXHVs2SZRw0OpA5q4G2oxlj6ryLms-S6R79LzXfI2uVzumdZYGiup75xolpQOB9t_qGYjGcxK2ixVhcgEZLjSHHJTAgaIkc2LzFhI2uSqEawMxjlf8c_j_5GfkM3Y61XB4uKUtBazDzjDGGVRnnuV_ALxgd_D
  priority: 102
  providerName: Springer Nature
Title Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach
URI https://link.springer.com/article/10.1186/s13638-020-01801-6
https://doaj.org/article/f54a9757e5f54c6e8dbe4231f895dfe3
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4-LnoQn1gfJQdvGtxHNtn11tZHESwiFryFbDIRoba11ou_3kl2VxRBL15CdknIMpnMayffEHLkeOa05IZFHA8517JAOVhahspOx2BdbsMNuZuB6A_59UP28KXUl88Jq-CBK8KduozrQmYSMuwZAbktAU2A2OVFZh0EnE_UeY0zVcng1GPuNVdkcnH6GqfIZ8y7Sh6wKmbimxoKaP0_foUGDXO5TtZq05B2qk_aIAsw3iSrXwADt8jLOdTZlE_vYKkJJRkCbenEudEkJMRTtENpSBRkPgRBnyclHn3qA2f1DBx0RjW1AFM6g4CdakKYkNZFJB5pgzW-TYaXF_e9PquLJjCDMm_OYpsKrjUaQjbRSRFn1mNyGYkk4SYCj7aCe-PAA8kLK8vCRAKgMDK3UifCpjtkaTwZwy6hqTOp0y6RDq0ulAQ6tSW6I3GpsRe5skXihobK1IjivrDFSAXPIheqortCuqtAdyVa5PhzzrTC0_h1dNdvzedIj4UdXiCHqJpD1F8c0iInzcaq-oC-_rLm3n-suU9WksBtBUuKA7I0n73BIVov87JNFnl01SbL3YvB7R0-9RLuW9FrBxbGdph0PgCDB_E6
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ95uBNg81uNtn1ptVSnycFbyGbTETQ1ke9-OudpFlRFMFbWCYszHuSyTeE7HhReKOEZR2BRi6MqtAP1o5hsDMcnC9dfCF3eSX7N-LstrhNMDnhLczX-3teyv1XnqOGsFDkBKgpzuQkmRJYKYf2va7sNl43Dyh7zaOYX_d9CzwRn__H5WeMKb15MpeSQXo4lt4CmYDBIpn9AhG4RJ6PIfVP3r-DozYOYYjcpEPvH4axBZ5i5kljayALhw70cVijsdNwVJZ2INEBNdQBPNEXiGipNh4M0jQ24o426OLL5KZ3ct3tszQmgVn0ciPGXS6FMZj6uMxkFS9cQOGyClkibAcCvgpKw0OAjpdO1ZXtSIDKqtIpk0mXr5DWYDiAVUJzb3NvfKY85llo-yZ3NRYgvDa46vi6TXjDQ20ThngYZfGgYy1RSj3mu0a-68h3Ldtk93PP0xhB40_qoyCaT8qAfh0_oFLoZEzaF8JUqlBQ4MpKKF0NmBZyX1aF85C3yV4jWJ1M8vWPf679j3ybTPevLy_0xenV-TqZyaKOVSyrNkhr9PIGm5iljOqtqJ4f1tfe1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QPQgPrE-c_Cmod1XsutNW4tvPCh4C9lkUoTarXW9-OudZHdFUQrewjJhYV6ZSWa-IeTQxolVItasE6ORx0pk6Adzw_CwUwEYmxrfIXd7xy8e46un5OlbF7-vdm-eJKueBofSNCrbY2MrE095-y2IUG-YS30cAFXA-CyZx0wlcEV9XdfvUPniyGHvNa0yf-77cRx51P5fT6L-pOmvkOU6RKSnlUxXyQyM1sjSN-DAdfLag7qq8vkDDNV-NIPnMS2sHRa-MJ5iPEp9wSBzVxH0pcjRBVB3gVbvQKITqqgBGNMJeAxV7a8LaT1MYkAbzPEN8tg_f-hesHp4AtPo-0oWmIjHSmFAZEIVImeMw-bSAlkS6w441BWUkQUHKM-NyDPd4QCZFqkRKuQm2iRzo2IEW4RGVkdW2VBYjL7QI6jI5JiWBLnCVcfmLRI0PJS6RhZ3Ay6G0mcYKZcV3yXyXXq-S94iR197xhWuxlTqMyeaL0qHie0_FJOBrE1M2iRWmUgEJLjSHFKTAwaLgU2zxFiIWuS4EaysDfVtyj-3_0d-QBbue315c3l3vUMWQ69iGQuzXTJXTt5hD0OXMt_32vkJtD7m9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+computation+offloading+for+multi-user+mobile+edge+computing%3A+a+deep+reinforcement+learning+approach&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Zhao+Chen&rft.au=Xiaodong+Wang&rft.date=2020-09-29&rft.pub=SpringerOpen&rft.eissn=1687-1499&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1186%2Fs13638-020-01801-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f54a9757e5f54c6e8dbe4231f895dfe3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon