Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach

Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 11; pp. 2287 - 2301
Main Authors Morris, B. T., Trivedi, M. M.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.11.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.
AbstractList Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.
Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.
Author Morris, B. T.
Trivedi, M. M.
Author_xml – sequence: 1
  givenname: B. T.
  surname: Morris
  fullname: Morris, B. T.
  email: b1morris@ucsd.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: M. M.
  surname: Trivedi
  fullname: Trivedi, M. M.
  email: mtrivedi@ucsd.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25440595$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21422488$$D View this record in MEDLINE/PubMed
BookMark eNqF0Utr3DAQAGBRUppN2mNPhWIKpZd4q5dtKTcT-ghsaA-bs5ClcarFK7uSvLD_vtrupoVA6UkM-maGmblAZ370gNBrgpeEYPlx_b29u11STMiy5s_QgpIal5JKeoYWmNS0FIKKc3QR4wZjwivMXqBzSjilXIgFcuugN2DSGPbFCnTwzj8U_RiK1iS3c2lf3HsLISbtbf66zmGcJwg7F8FeFXfzkNwAOxiuiiyK1egfyjWEbdFaPeUKULTTFEZtfrxEz3s9RHh1ei_R_edP65uv5erbl9ubdlUaXjepJKKHjtlK95hhkLyBimJLKtoxpm0ved_1tKIUGLbcctOwWmCWxwEtqG46dok-HOvmtj9niEltXTQwDNrDOEclac1wIyX5v8Qir5XQKst3T-RmnIPPYyghGaNVdhm9PaG524JVU3BbHfbqcdkZvD8BHY0e-qC9cfGvqzjHlTx0Y0dnwhhjgF4Zl3Ryo09Bu0ERrA6nV79Prw6nVzXPWeWTrMfC__Jvjt4BwB9bNRxLStgvGN-26w
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_trb_2016_08_005
crossref_primary_10_1109_TITS_2020_3016304
crossref_primary_10_1109_TCYB_2019_2931139
crossref_primary_10_1109_TIP_2016_2531281
crossref_primary_10_3233_JIFS_211338
crossref_primary_10_1109_ACCESS_2024_3387972
crossref_primary_10_1016_j_neucom_2014_12_044
crossref_primary_10_1109_TMM_2018_2832601
crossref_primary_10_1007_s00521_016_2346_0
crossref_primary_10_1109_TSMC_2024_3404346
crossref_primary_10_1016_j_physa_2021_125790
crossref_primary_10_1109_MAES_2014_140062
crossref_primary_10_1109_TMC_2019_2915838
crossref_primary_10_1088_1742_6596_1691_1_012201
crossref_primary_10_1155_2021_5536386
crossref_primary_10_1109_TITS_2012_2208222
crossref_primary_10_1007_s11760_020_01659_7
crossref_primary_10_1007_s00371_018_1473_2
crossref_primary_10_1007_s12559_022_10029_z
crossref_primary_10_1016_j_patrec_2019_05_014
crossref_primary_10_1109_TMECH_2021_3073736
crossref_primary_10_1109_TIV_2016_2622921
crossref_primary_10_1145_3417989
crossref_primary_10_1049_iet_its_2014_0238
crossref_primary_10_1080_01691864_2019_1709895
crossref_primary_10_1109_TCSVT_2012_2199390
crossref_primary_10_1109_TNNLS_2020_3027667
crossref_primary_10_1145_3330138
crossref_primary_10_3233_JIFS_192062
crossref_primary_10_1049_iet_cvi_2019_0546
crossref_primary_10_1016_j_imavis_2021_104110
crossref_primary_10_1109_TCSVT_2016_2532719
crossref_primary_10_1109_TCSVT_2018_2857489
crossref_primary_10_1017_S0263574721000679
crossref_primary_10_1109_TIP_2015_2421435
crossref_primary_10_1007_s00138_017_0869_8
crossref_primary_10_1109_TIP_2016_2540813
crossref_primary_10_1016_j_is_2019_101452
crossref_primary_10_3390_s24041280
crossref_primary_10_3390_e15062218
crossref_primary_10_1088_1757_899X_715_1_012009
crossref_primary_10_1016_j_image_2019_115751
crossref_primary_10_1109_TII_2012_2218251
crossref_primary_10_1007_s11263_014_0735_3
crossref_primary_10_1109_TRO_2016_2645206
crossref_primary_10_1177_02783649231190428
crossref_primary_10_1016_j_ins_2016_06_016
crossref_primary_10_1155_2015_343869
crossref_primary_10_1109_JIOT_2022_3228818
crossref_primary_10_1109_ACCESS_2020_2970497
crossref_primary_10_1007_s00521_017_3148_8
crossref_primary_10_1109_TPAMI_2012_188
crossref_primary_10_1109_TPAMI_2021_3058679
crossref_primary_10_1109_TIV_2018_2804159
crossref_primary_10_3390_app9040757
crossref_primary_10_1007_s11390_015_1529_y
crossref_primary_10_1016_j_cviu_2013_11_007
crossref_primary_10_1007_s11263_018_1104_4
crossref_primary_10_1016_j_cviu_2018_02_006
crossref_primary_10_1007_s11042_019_7447_1
crossref_primary_10_1186_s13634_017_0444_5
crossref_primary_10_1109_TKDE_2019_2936847
crossref_primary_10_3390_s20236820
crossref_primary_10_1109_TCSVT_2020_3013254
crossref_primary_10_1177_0954409713501296
crossref_primary_10_1016_j_ophoto_2022_100013
crossref_primary_10_1109_ACCESS_2022_3200066
crossref_primary_10_1109_TNNLS_2023_3250485
crossref_primary_10_1109_TII_2017_2751072
crossref_primary_10_1080_10095020_2020_1843374
crossref_primary_10_1109_TITS_2022_3170874
crossref_primary_10_1109_TITS_2016_2530146
crossref_primary_10_3390_s17030524
crossref_primary_10_1109_TITS_2021_3090851
crossref_primary_10_2139_ssrn_3995245
crossref_primary_10_1016_j_neucom_2021_12_023
crossref_primary_10_1109_TITS_2014_2325776
crossref_primary_10_4236_ait_2013_32A006
crossref_primary_10_1109_TPAMI_2014_2300484
crossref_primary_10_1049_itr2_12257
crossref_primary_10_3389_frobt_2015_00028
crossref_primary_10_2174_0122127976268211231110055647
crossref_primary_10_1371_journal_pone_0243829
crossref_primary_10_1109_TITS_2015_2409889
crossref_primary_10_1109_TVCG_2022_3209459
crossref_primary_10_1186_s40537_023_00779_4
crossref_primary_10_1080_02533839_2014_912777
crossref_primary_10_1109_LRA_2023_3258685
crossref_primary_10_1007_s11263_022_01594_9
crossref_primary_10_1080_19475683_2019_1679254
crossref_primary_10_1016_j_physa_2025_130435
crossref_primary_10_1049_iet_cvi_2014_0311
crossref_primary_10_1007_s12652_022_03702_6
crossref_primary_10_1145_3449359
crossref_primary_10_3390_rs10060887
crossref_primary_10_1088_1755_1315_69_1_012143
crossref_primary_10_1016_j_celrep_2020_108651
crossref_primary_10_1007_s12652_014_0246_7
crossref_primary_10_1109_TITS_2022_3151263
crossref_primary_10_1109_TIP_2016_2590322
crossref_primary_10_1145_3410444
crossref_primary_10_1007_s00521_022_07665_9
crossref_primary_10_1109_TNNLS_2020_2975837
crossref_primary_10_1016_j_cja_2022_10_010
crossref_primary_10_1109_TITS_2018_2834958
crossref_primary_10_1109_TITS_2022_3155749
crossref_primary_10_1109_TRO_2019_2911800
crossref_primary_10_4018_IJSI_2017100101
crossref_primary_10_1049_ipr2_12258
crossref_primary_10_1145_2978578
crossref_primary_10_1109_TIFS_2013_2272243
crossref_primary_10_1142_S021800141455009X
crossref_primary_10_1007_s12652_016_0367_2
crossref_primary_10_1109_TITS_2015_2488287
crossref_primary_10_1142_S0218001415550113
crossref_primary_10_1016_j_neucom_2014_12_105
crossref_primary_10_1016_j_eswa_2017_02_026
crossref_primary_10_1016_j_neucom_2020_07_019
crossref_primary_10_2514_1_G000537
crossref_primary_10_1016_j_comcom_2023_05_021
crossref_primary_10_7717_peerj_cs_206
crossref_primary_10_1007_s12046_017_0705_x
crossref_primary_10_1109_TNNLS_2020_2979049
crossref_primary_10_1117_1_JEI_28_2_021012
crossref_primary_10_1016_j_neucom_2014_12_064
crossref_primary_10_3390_s23187830
crossref_primary_10_1109_TIP_2017_2670780
crossref_primary_10_1186_s43067_023_00124_y
crossref_primary_10_1109_TKDE_2013_33
crossref_primary_10_1109_TITS_2016_2587814
crossref_primary_10_1109_TPAMI_2016_2608884
crossref_primary_10_3141_2528_13
crossref_primary_10_1109_TCOMM_2021_3106686
crossref_primary_10_1109_TPAMI_2017_2756039
crossref_primary_10_1007_s11042_019_7332_y
crossref_primary_10_1109_TCSVT_2021_3076078
crossref_primary_10_3141_2386_19
crossref_primary_10_1109_ACCESS_2023_3303841
crossref_primary_10_1109_TMM_2017_2674622
crossref_primary_10_1109_LRA_2017_2655565
crossref_primary_10_3390_s23104882
crossref_primary_10_1109_MITS_2019_2907676
crossref_primary_10_1016_j_imavis_2024_105245
crossref_primary_10_1080_01691864_2018_1554508
crossref_primary_10_1080_15481603_2021_1973217
crossref_primary_10_1016_j_compag_2023_108591
crossref_primary_10_1109_ACCESS_2019_2907000
crossref_primary_10_1109_TCST_2023_3305100
crossref_primary_10_1080_15472450_2021_2021079
crossref_primary_10_4018_IJDWM_316460
crossref_primary_10_1016_j_patcog_2015_02_029
crossref_primary_10_1002_spe_2701
crossref_primary_10_1016_j_cviu_2013_06_007
crossref_primary_10_1016_j_knosys_2024_111387
crossref_primary_10_3390_app12010381
crossref_primary_10_1016_j_procs_2024_04_143
crossref_primary_10_1109_TITS_2022_3222769
crossref_primary_10_3390_s19194237
Cites_doi 10.1109/CVPR.2007.383072
10.1002/0471708607
10.1007/s10044-004-0239-9
10.1109/VS.2000.856860
10.1109/ICDE.2002.994784
10.1109/TIP.2007.898960
10.1109/TSMCC.2007.893280
10.1016/j.patrec.2006.02.004
10.1109/TPAMI.2007.70731
10.1109/IROS.2006.282362
10.1109/ICPR.2004.1334359
10.1109/ACVMOT.2005.67
10.1109/TPAMI.2007.70711
10.1109/TITS.2008.922970
10.1007/s00530-006-0058-5
10.1109/ICASSP.1985.1168477
10.5244/C.9.58
10.1016/s0262-8856(99)00073-6
10.1109/ICME.2004.1394427
10.1006/cviu.1998.0744
10.1109/ICIP.2005.1530635
10.1109/WMVC.2008.4544063
10.2307/2984875
10.1109/CVPR.2005.382
10.1109/TCSVT.2008.927109
10.1109/TSMCB.2004.826829
10.1109/TPAMI.2008.87
10.1109/MIS.2010.81
10.5555/2980539.2980649
10.1109/WMVC.2008.4544054
10.1109/MIS.2005.86
10.1109/ICPR.2006.392
10.1109/ICVES.2009.5400238
10.1109/ACV.2002.1182159
10.1109/TPAMI.2006.176
10.1109/CVPR.2009.5206559
10.1109/TIP.2006.891352
10.1109/AVSS.2008.65
10.1109/34.990138
10.1109/TSMCB.2005.846652
10.1109/CVPR.2008.4587718
10.1109/ICSLP.1996.607987
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2011.64
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 2301
ExternalDocumentID 2464928101
21422488
25440595
10_1109_TPAMI_2011_64
5740921
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c467t-18feb3d5af030e947e520d152b33adf94fbf2522e30d4d4c736803422ea82a7b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 16:40:12 EDT 2025
Fri Jul 11 11:31:35 EDT 2025
Mon Jun 30 05:34:59 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Mon Jul 21 09:14:13 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 05:24:15 EDT 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Recurrence
Vocabulary
Image processing
activity prediction
Modeling
Adaptive method
trajectory learning
Incomplete information
Localization
Time analysis
Monitoring
Mixed distribution
Cluster
Video cameras
Real time
Long term
Missing data
real-time activity analysis
Image analysis
Gaussian process
Surveillance
Trajectory clustering
abnormality detection
Scene analysis
Hidden Markov model
Maximum likelihood
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-18feb3d5af030e947e520d152b33adf94fbf2522e30d4d4c736803422ea82a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21422488
PQID 893325011
PQPubID 85458
PageCount 15
ParticipantIDs pascalfrancis_primary_25440595
crossref_citationtrail_10_1109_TPAMI_2011_64
proquest_miscellaneous_926307991
ieee_primary_5740921
proquest_miscellaneous_908011125
pubmed_primary_21422488
crossref_primary_10_1109_TPAMI_2011_64
proquest_journals_893325011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Rabiner (ref38) 1993
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1109/CVPR.2007.383072
– ident: ref36
  doi: 10.1002/0471708607
– ident: ref8
  doi: 10.1007/s10044-004-0239-9
– ident: ref12
  doi: 10.1109/VS.2000.856860
– ident: ref35
  doi: 10.1109/ICDE.2002.994784
– ident: ref18
  doi: 10.1109/TIP.2007.898960
– ident: ref4
  doi: 10.1109/TSMCC.2007.893280
– ident: ref19
  doi: 10.1016/j.patrec.2006.02.004
– ident: ref23
  doi: 10.1109/TPAMI.2007.70731
– ident: ref29
  doi: 10.1109/IROS.2006.282362
– ident: ref14
  doi: 10.1109/ICPR.2004.1334359
– ident: ref6
  doi: 10.1109/ACVMOT.2005.67
– ident: ref3
  doi: 10.1109/TPAMI.2007.70711
– ident: ref7
  doi: 10.1109/TITS.2008.922970
– ident: ref27
  doi: 10.1007/s00530-006-0058-5
– ident: ref41
  doi: 10.1109/ICASSP.1985.1168477
– ident: ref10
  doi: 10.5244/C.9.58
– ident: ref11
  doi: 10.1016/s0262-8856(99)00073-6
– ident: ref25
  doi: 10.1109/ICME.2004.1394427
– ident: ref1
  doi: 10.1006/cviu.1998.0744
– ident: ref26
  doi: 10.1109/ICIP.2005.1530635
– ident: ref39
  doi: 10.1109/WMVC.2008.4544063
– ident: ref31
  doi: 10.2307/2984875
– ident: ref2
  doi: 10.1109/CVPR.2005.382
– ident: ref24
  doi: 10.1109/TCSVT.2008.927109
– ident: ref13
  doi: 10.1109/TSMCB.2004.826829
– ident: ref22
  doi: 10.1109/TPAMI.2008.87
– ident: ref42
  doi: 10.1109/MIS.2010.81
– ident: ref33
  doi: 10.5555/2980539.2980649
– ident: ref30
  doi: 10.1109/WMVC.2008.4544054
– ident: ref5
  doi: 10.1109/MIS.2005.86
– ident: ref28
  doi: 10.1109/ICPR.2006.392
– ident: ref43
  doi: 10.1109/ICVES.2009.5400238
– ident: ref9
  doi: 10.1109/ACV.2002.1182159
– ident: ref15
  doi: 10.1109/TPAMI.2006.176
– ident: ref34
  doi: 10.1109/CVPR.2009.5206559
– ident: ref37
  doi: 10.1109/TIP.2006.891352
– ident: ref16
  doi: 10.1109/AVSS.2008.65
– ident: ref32
  doi: 10.1109/34.990138
– ident: ref17
  doi: 10.1109/TSMCB.2005.846652
– ident: ref21
  doi: 10.1109/CVPR.2008.4587718
– volume-title: Fundamentals of Speech Recognition
  year: 1993
  ident: ref38
– ident: ref40
  doi: 10.1109/ICSLP.1996.607987
SSID ssj0014503
Score 2.5287397
Snippet Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2287
SubjectTerms abnormality detection
activity prediction
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Construction
Exact sciences and technology
Hidden Markov models
Intelligence
Learning
Mathematical models
Pattern analysis
Pattern recognition. Digital image processing. Computational geometry
Probabilistic logic
real-time activity analysis
Regression
Retraining
Sparse matrices
Studies
Surveillance
Training
Trajectories
Trajectory
Trajectory clustering
trajectory learning
Title Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach
URI https://ieeexplore.ieee.org/document/5740921
https://www.ncbi.nlm.nih.gov/pubmed/21422488
https://www.proquest.com/docview/893325011
https://www.proquest.com/docview/908011125
https://www.proquest.com/docview/926307991
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCWynrbD2qZb67UrdCh2ijPHkhy7N6NY0Q1LsUMC9GZIFl10K5ygjg_brx8lK043tMNuNkzDH6TIR0l8BDgzUppYVxNrvDIU3IgwpSgTJmYSKYKwmms73zG7Tq4W4suNvBnAqK-FQUS3-QzH9tCt5Ztl2dqpMkreKRuxVeMvKHHrarX6FQMhXRdkQjA0wimN2PJpfpx_y2efO7bORDj2X0GBy_Va2YYi11vF7oxUDf2cqutq8TzsdOHnchdmmxfvdp38GLdrPS5__cXp-L9ftgevPQ5leWc4-zDAegi7mx4PzA_5Ibx6RFh4AHcU2r67ef6fzDOz3jKCvSwvuy4UbPG4WOacTpt2Zd1Rg2bEXLXvvd2mNGIkwb4u69twTrGB5UatrONluec4fwOLy0_zi6vQN2sIS_K163CSVpSXG6kqchuYiSnKODKEDjTnylSZqHQVE9hDHhlhRDnlSWrpB2NUaaymmr-FnXpZ4xEwrLg2IkpxqlEkEc9UqihrK9HS5cukDGC00VtReiZz21DjvnAZTZQVTuOF1XiRiAA-9OKrjsLjOcEDq5leyCslgNM_jKK_btndCJ3KAI43VlJ4D9AUhAM5wcsJ3c76qzR07XqMqnHZNkVGaJ1CTSz_IRIn5IQJwwdw2Jnf9uneit89_dbH8NJNf7uyyRPYWT-0-J7w01qfuoHzG0YKFVw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4h9rDtARhskDHAD9Oemi6N7TTZW4RAhbVoD63Em2XHDtpAaUWaB_jrOTtuyqYx7S1RLsqPO999Z_u-A_isOdexKgfWeHnIqGZhilEmTPQgkghhFVV2vmNylYxm7PKaX29Ar6uFMca4zWembw_dWr6eF42dKsPkHbMRWzX-CuM-j9tqrW7NgHHXBxkxDI5xTCTWjJpfpz_yyUXL15kwx__LMHS5bivrYOS6q9i9kbLG31O2fS1eBp4uAJ1vw2T16u2-k9t-s1T94vEPVsf__bYd2PJIlOSt6byDDVPtwvaqywPxg34X3j6jLNyDnxjcfrmZ_gfiuVlvCAJfkhdtHwoye14u8w1P62ZhHVJtdI-4et87u1GpR1CCjOfVTTjF6EByLRfW9ZLcs5y_h9n52fR0FPp2DWGB3nYZDtISM3PNZYmOw2RsaHgcacQHilKpy4yVqowR7hkaaaZZMaRJagkIYyPTWA4V_QCb1bwyB0BMSZVmUWqGyrAkoplMJeZthbGE-TwpAuit9CYKz2VuW2rcCZfTRJlwGhdW4yJhAXzpxBcticdLgntWM52QV0oAx78ZRXfd8rshPuUBHK6sRHgfUAtEghQB5gBvJ91VHLx2RUZWZt7UIkO8jsEm5v8QiRN0w4jiA9hvzW_9dG_FH__-1ifwejSdjMX44ur7Ibxxk-GuiPITbC7vG3OEaGqpjt0gegLcURim
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Learning+for+Activity+Understanding%3A+Unsupervised%2C+Multilevel%2C+and+Long-Term+Adaptive+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Morris%2C+B.+T.&rft.au=Trivedi%2C+M.+M.&rft.date=2011-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=33&rft.issue=11&rft.spage=2287&rft.epage=2301&rft_id=info:doi/10.1109%2FTPAMI.2011.64&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2011_64
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon