Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach
Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 11; pp. 2287 - 2301 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.11.2011
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis. |
---|---|
AbstractList | Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis. Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis. |
Author | Morris, B. T. Trivedi, M. M. |
Author_xml | – sequence: 1 givenname: B. T. surname: Morris fullname: Morris, B. T. email: b1morris@ucsd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA – sequence: 2 givenname: M. M. surname: Trivedi fullname: Trivedi, M. M. email: mtrivedi@ucsd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25440595$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21422488$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0Utr3DAQAGBRUppN2mNPhWIKpZd4q5dtKTcT-ghsaA-bs5ClcarFK7uSvLD_vtrupoVA6UkM-maGmblAZ370gNBrgpeEYPlx_b29u11STMiy5s_QgpIal5JKeoYWmNS0FIKKc3QR4wZjwivMXqBzSjilXIgFcuugN2DSGPbFCnTwzj8U_RiK1iS3c2lf3HsLISbtbf66zmGcJwg7F8FeFXfzkNwAOxiuiiyK1egfyjWEbdFaPeUKULTTFEZtfrxEz3s9RHh1ei_R_edP65uv5erbl9ubdlUaXjepJKKHjtlK95hhkLyBimJLKtoxpm0ved_1tKIUGLbcctOwWmCWxwEtqG46dok-HOvmtj9niEltXTQwDNrDOEclac1wIyX5v8Qir5XQKst3T-RmnIPPYyghGaNVdhm9PaG524JVU3BbHfbqcdkZvD8BHY0e-qC9cfGvqzjHlTx0Y0dnwhhjgF4Zl3Ryo09Bu0ERrA6nV79Prw6nVzXPWeWTrMfC__Jvjt4BwB9bNRxLStgvGN-26w |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_trb_2016_08_005 crossref_primary_10_1109_TITS_2020_3016304 crossref_primary_10_1109_TCYB_2019_2931139 crossref_primary_10_1109_TIP_2016_2531281 crossref_primary_10_3233_JIFS_211338 crossref_primary_10_1109_ACCESS_2024_3387972 crossref_primary_10_1016_j_neucom_2014_12_044 crossref_primary_10_1109_TMM_2018_2832601 crossref_primary_10_1007_s00521_016_2346_0 crossref_primary_10_1109_TSMC_2024_3404346 crossref_primary_10_1016_j_physa_2021_125790 crossref_primary_10_1109_MAES_2014_140062 crossref_primary_10_1109_TMC_2019_2915838 crossref_primary_10_1088_1742_6596_1691_1_012201 crossref_primary_10_1155_2021_5536386 crossref_primary_10_1109_TITS_2012_2208222 crossref_primary_10_1007_s11760_020_01659_7 crossref_primary_10_1007_s00371_018_1473_2 crossref_primary_10_1007_s12559_022_10029_z crossref_primary_10_1016_j_patrec_2019_05_014 crossref_primary_10_1109_TMECH_2021_3073736 crossref_primary_10_1109_TIV_2016_2622921 crossref_primary_10_1145_3417989 crossref_primary_10_1049_iet_its_2014_0238 crossref_primary_10_1080_01691864_2019_1709895 crossref_primary_10_1109_TCSVT_2012_2199390 crossref_primary_10_1109_TNNLS_2020_3027667 crossref_primary_10_1145_3330138 crossref_primary_10_3233_JIFS_192062 crossref_primary_10_1049_iet_cvi_2019_0546 crossref_primary_10_1016_j_imavis_2021_104110 crossref_primary_10_1109_TCSVT_2016_2532719 crossref_primary_10_1109_TCSVT_2018_2857489 crossref_primary_10_1017_S0263574721000679 crossref_primary_10_1109_TIP_2015_2421435 crossref_primary_10_1007_s00138_017_0869_8 crossref_primary_10_1109_TIP_2016_2540813 crossref_primary_10_1016_j_is_2019_101452 crossref_primary_10_3390_s24041280 crossref_primary_10_3390_e15062218 crossref_primary_10_1088_1757_899X_715_1_012009 crossref_primary_10_1016_j_image_2019_115751 crossref_primary_10_1109_TII_2012_2218251 crossref_primary_10_1007_s11263_014_0735_3 crossref_primary_10_1109_TRO_2016_2645206 crossref_primary_10_1177_02783649231190428 crossref_primary_10_1016_j_ins_2016_06_016 crossref_primary_10_1155_2015_343869 crossref_primary_10_1109_JIOT_2022_3228818 crossref_primary_10_1109_ACCESS_2020_2970497 crossref_primary_10_1007_s00521_017_3148_8 crossref_primary_10_1109_TPAMI_2012_188 crossref_primary_10_1109_TPAMI_2021_3058679 crossref_primary_10_1109_TIV_2018_2804159 crossref_primary_10_3390_app9040757 crossref_primary_10_1007_s11390_015_1529_y crossref_primary_10_1016_j_cviu_2013_11_007 crossref_primary_10_1007_s11263_018_1104_4 crossref_primary_10_1016_j_cviu_2018_02_006 crossref_primary_10_1007_s11042_019_7447_1 crossref_primary_10_1186_s13634_017_0444_5 crossref_primary_10_1109_TKDE_2019_2936847 crossref_primary_10_3390_s20236820 crossref_primary_10_1109_TCSVT_2020_3013254 crossref_primary_10_1177_0954409713501296 crossref_primary_10_1016_j_ophoto_2022_100013 crossref_primary_10_1109_ACCESS_2022_3200066 crossref_primary_10_1109_TNNLS_2023_3250485 crossref_primary_10_1109_TII_2017_2751072 crossref_primary_10_1080_10095020_2020_1843374 crossref_primary_10_1109_TITS_2022_3170874 crossref_primary_10_1109_TITS_2016_2530146 crossref_primary_10_3390_s17030524 crossref_primary_10_1109_TITS_2021_3090851 crossref_primary_10_2139_ssrn_3995245 crossref_primary_10_1016_j_neucom_2021_12_023 crossref_primary_10_1109_TITS_2014_2325776 crossref_primary_10_4236_ait_2013_32A006 crossref_primary_10_1109_TPAMI_2014_2300484 crossref_primary_10_1049_itr2_12257 crossref_primary_10_3389_frobt_2015_00028 crossref_primary_10_2174_0122127976268211231110055647 crossref_primary_10_1371_journal_pone_0243829 crossref_primary_10_1109_TITS_2015_2409889 crossref_primary_10_1109_TVCG_2022_3209459 crossref_primary_10_1186_s40537_023_00779_4 crossref_primary_10_1080_02533839_2014_912777 crossref_primary_10_1109_LRA_2023_3258685 crossref_primary_10_1007_s11263_022_01594_9 crossref_primary_10_1080_19475683_2019_1679254 crossref_primary_10_1016_j_physa_2025_130435 crossref_primary_10_1049_iet_cvi_2014_0311 crossref_primary_10_1007_s12652_022_03702_6 crossref_primary_10_1145_3449359 crossref_primary_10_3390_rs10060887 crossref_primary_10_1088_1755_1315_69_1_012143 crossref_primary_10_1016_j_celrep_2020_108651 crossref_primary_10_1007_s12652_014_0246_7 crossref_primary_10_1109_TITS_2022_3151263 crossref_primary_10_1109_TIP_2016_2590322 crossref_primary_10_1145_3410444 crossref_primary_10_1007_s00521_022_07665_9 crossref_primary_10_1109_TNNLS_2020_2975837 crossref_primary_10_1016_j_cja_2022_10_010 crossref_primary_10_1109_TITS_2018_2834958 crossref_primary_10_1109_TITS_2022_3155749 crossref_primary_10_1109_TRO_2019_2911800 crossref_primary_10_4018_IJSI_2017100101 crossref_primary_10_1049_ipr2_12258 crossref_primary_10_1145_2978578 crossref_primary_10_1109_TIFS_2013_2272243 crossref_primary_10_1142_S021800141455009X crossref_primary_10_1007_s12652_016_0367_2 crossref_primary_10_1109_TITS_2015_2488287 crossref_primary_10_1142_S0218001415550113 crossref_primary_10_1016_j_neucom_2014_12_105 crossref_primary_10_1016_j_eswa_2017_02_026 crossref_primary_10_1016_j_neucom_2020_07_019 crossref_primary_10_2514_1_G000537 crossref_primary_10_1016_j_comcom_2023_05_021 crossref_primary_10_7717_peerj_cs_206 crossref_primary_10_1007_s12046_017_0705_x crossref_primary_10_1109_TNNLS_2020_2979049 crossref_primary_10_1117_1_JEI_28_2_021012 crossref_primary_10_1016_j_neucom_2014_12_064 crossref_primary_10_3390_s23187830 crossref_primary_10_1109_TIP_2017_2670780 crossref_primary_10_1186_s43067_023_00124_y crossref_primary_10_1109_TKDE_2013_33 crossref_primary_10_1109_TITS_2016_2587814 crossref_primary_10_1109_TPAMI_2016_2608884 crossref_primary_10_3141_2528_13 crossref_primary_10_1109_TCOMM_2021_3106686 crossref_primary_10_1109_TPAMI_2017_2756039 crossref_primary_10_1007_s11042_019_7332_y crossref_primary_10_1109_TCSVT_2021_3076078 crossref_primary_10_3141_2386_19 crossref_primary_10_1109_ACCESS_2023_3303841 crossref_primary_10_1109_TMM_2017_2674622 crossref_primary_10_1109_LRA_2017_2655565 crossref_primary_10_3390_s23104882 crossref_primary_10_1109_MITS_2019_2907676 crossref_primary_10_1016_j_imavis_2024_105245 crossref_primary_10_1080_01691864_2018_1554508 crossref_primary_10_1080_15481603_2021_1973217 crossref_primary_10_1016_j_compag_2023_108591 crossref_primary_10_1109_ACCESS_2019_2907000 crossref_primary_10_1109_TCST_2023_3305100 crossref_primary_10_1080_15472450_2021_2021079 crossref_primary_10_4018_IJDWM_316460 crossref_primary_10_1016_j_patcog_2015_02_029 crossref_primary_10_1002_spe_2701 crossref_primary_10_1016_j_cviu_2013_06_007 crossref_primary_10_1016_j_knosys_2024_111387 crossref_primary_10_3390_app12010381 crossref_primary_10_1016_j_procs_2024_04_143 crossref_primary_10_1109_TITS_2022_3222769 crossref_primary_10_3390_s19194237 |
Cites_doi | 10.1109/CVPR.2007.383072 10.1002/0471708607 10.1007/s10044-004-0239-9 10.1109/VS.2000.856860 10.1109/ICDE.2002.994784 10.1109/TIP.2007.898960 10.1109/TSMCC.2007.893280 10.1016/j.patrec.2006.02.004 10.1109/TPAMI.2007.70731 10.1109/IROS.2006.282362 10.1109/ICPR.2004.1334359 10.1109/ACVMOT.2005.67 10.1109/TPAMI.2007.70711 10.1109/TITS.2008.922970 10.1007/s00530-006-0058-5 10.1109/ICASSP.1985.1168477 10.5244/C.9.58 10.1016/s0262-8856(99)00073-6 10.1109/ICME.2004.1394427 10.1006/cviu.1998.0744 10.1109/ICIP.2005.1530635 10.1109/WMVC.2008.4544063 10.2307/2984875 10.1109/CVPR.2005.382 10.1109/TCSVT.2008.927109 10.1109/TSMCB.2004.826829 10.1109/TPAMI.2008.87 10.1109/MIS.2010.81 10.5555/2980539.2980649 10.1109/WMVC.2008.4544054 10.1109/MIS.2005.86 10.1109/ICPR.2006.392 10.1109/ICVES.2009.5400238 10.1109/ACV.2002.1182159 10.1109/TPAMI.2006.176 10.1109/CVPR.2009.5206559 10.1109/TIP.2006.891352 10.1109/AVSS.2008.65 10.1109/34.990138 10.1109/TSMCB.2005.846652 10.1109/CVPR.2008.4587718 10.1109/ICSLP.1996.607987 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011 |
DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TPAMI.2011.64 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 2160-9292 1939-3539 |
EndPage | 2301 |
ExternalDocumentID | 2464928101 21422488 25440595 10_1109_TPAMI_2011_64 5740921 |
Genre | orig-research Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c467t-18feb3d5af030e947e520d152b33adf94fbf2522e30d4d4c736803422ea82a7b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 16:40:12 EDT 2025 Fri Jul 11 11:31:35 EDT 2025 Mon Jun 30 05:34:59 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Mon Jul 21 09:14:13 EDT 2025 Thu Apr 24 23:03:56 EDT 2025 Tue Jul 01 05:24:15 EDT 2025 Wed Aug 27 02:47:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Recurrence Vocabulary Image processing activity prediction Modeling Adaptive method trajectory learning Incomplete information Localization Time analysis Monitoring Mixed distribution Cluster Video cameras Real time Long term Missing data real-time activity analysis Image analysis Gaussian process Surveillance Trajectory clustering abnormality detection Scene analysis Hidden Markov model Maximum likelihood |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-18feb3d5af030e947e520d152b33adf94fbf2522e30d4d4c736803422ea82a7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21422488 |
PQID | 893325011 |
PQPubID | 85458 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_25440595 crossref_citationtrail_10_1109_TPAMI_2011_64 proquest_miscellaneous_926307991 ieee_primary_5740921 proquest_miscellaneous_908011125 pubmed_primary_21422488 crossref_primary_10_1109_TPAMI_2011_64 proquest_journals_893325011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-01 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2011 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Rabiner (ref38) 1993 ref1 ref17 ref39 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref20 doi: 10.1109/CVPR.2007.383072 – ident: ref36 doi: 10.1002/0471708607 – ident: ref8 doi: 10.1007/s10044-004-0239-9 – ident: ref12 doi: 10.1109/VS.2000.856860 – ident: ref35 doi: 10.1109/ICDE.2002.994784 – ident: ref18 doi: 10.1109/TIP.2007.898960 – ident: ref4 doi: 10.1109/TSMCC.2007.893280 – ident: ref19 doi: 10.1016/j.patrec.2006.02.004 – ident: ref23 doi: 10.1109/TPAMI.2007.70731 – ident: ref29 doi: 10.1109/IROS.2006.282362 – ident: ref14 doi: 10.1109/ICPR.2004.1334359 – ident: ref6 doi: 10.1109/ACVMOT.2005.67 – ident: ref3 doi: 10.1109/TPAMI.2007.70711 – ident: ref7 doi: 10.1109/TITS.2008.922970 – ident: ref27 doi: 10.1007/s00530-006-0058-5 – ident: ref41 doi: 10.1109/ICASSP.1985.1168477 – ident: ref10 doi: 10.5244/C.9.58 – ident: ref11 doi: 10.1016/s0262-8856(99)00073-6 – ident: ref25 doi: 10.1109/ICME.2004.1394427 – ident: ref1 doi: 10.1006/cviu.1998.0744 – ident: ref26 doi: 10.1109/ICIP.2005.1530635 – ident: ref39 doi: 10.1109/WMVC.2008.4544063 – ident: ref31 doi: 10.2307/2984875 – ident: ref2 doi: 10.1109/CVPR.2005.382 – ident: ref24 doi: 10.1109/TCSVT.2008.927109 – ident: ref13 doi: 10.1109/TSMCB.2004.826829 – ident: ref22 doi: 10.1109/TPAMI.2008.87 – ident: ref42 doi: 10.1109/MIS.2010.81 – ident: ref33 doi: 10.5555/2980539.2980649 – ident: ref30 doi: 10.1109/WMVC.2008.4544054 – ident: ref5 doi: 10.1109/MIS.2005.86 – ident: ref28 doi: 10.1109/ICPR.2006.392 – ident: ref43 doi: 10.1109/ICVES.2009.5400238 – ident: ref9 doi: 10.1109/ACV.2002.1182159 – ident: ref15 doi: 10.1109/TPAMI.2006.176 – ident: ref34 doi: 10.1109/CVPR.2009.5206559 – ident: ref37 doi: 10.1109/TIP.2006.891352 – ident: ref16 doi: 10.1109/AVSS.2008.65 – ident: ref32 doi: 10.1109/34.990138 – ident: ref17 doi: 10.1109/TSMCB.2005.846652 – ident: ref21 doi: 10.1109/CVPR.2008.4587718 – volume-title: Fundamentals of Speech Recognition year: 1993 ident: ref38 – ident: ref40 doi: 10.1109/ICSLP.1996.607987 |
SSID | ssj0014503 |
Score | 2.5287397 |
Snippet | Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2287 |
SubjectTerms | abnormality detection activity prediction Applied sciences Artificial intelligence Computer science; control theory; systems Construction Exact sciences and technology Hidden Markov models Intelligence Learning Mathematical models Pattern analysis Pattern recognition. Digital image processing. Computational geometry Probabilistic logic real-time activity analysis Regression Retraining Sparse matrices Studies Surveillance Training Trajectories Trajectory Trajectory clustering trajectory learning |
Title | Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach |
URI | https://ieeexplore.ieee.org/document/5740921 https://www.ncbi.nlm.nih.gov/pubmed/21422488 https://www.proquest.com/docview/893325011 https://www.proquest.com/docview/908011125 https://www.proquest.com/docview/926307991 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCWynrbD2qZb67UrdCh2ijPHkhy7N6NY0Q1LsUMC9GZIFl10K5ygjg_brx8lK043tMNuNkzDH6TIR0l8BDgzUppYVxNrvDIU3IgwpSgTJmYSKYKwmms73zG7Tq4W4suNvBnAqK-FQUS3-QzH9tCt5Ztl2dqpMkreKRuxVeMvKHHrarX6FQMhXRdkQjA0wimN2PJpfpx_y2efO7bORDj2X0GBy_Va2YYi11vF7oxUDf2cqutq8TzsdOHnchdmmxfvdp38GLdrPS5__cXp-L9ftgevPQ5leWc4-zDAegi7mx4PzA_5Ibx6RFh4AHcU2r67ef6fzDOz3jKCvSwvuy4UbPG4WOacTpt2Zd1Rg2bEXLXvvd2mNGIkwb4u69twTrGB5UatrONluec4fwOLy0_zi6vQN2sIS_K163CSVpSXG6kqchuYiSnKODKEDjTnylSZqHQVE9hDHhlhRDnlSWrpB2NUaaymmr-FnXpZ4xEwrLg2IkpxqlEkEc9UqihrK9HS5cukDGC00VtReiZz21DjvnAZTZQVTuOF1XiRiAA-9OKrjsLjOcEDq5leyCslgNM_jKK_btndCJ3KAI43VlJ4D9AUhAM5wcsJ3c76qzR07XqMqnHZNkVGaJ1CTSz_IRIn5IQJwwdw2Jnf9uneit89_dbH8NJNf7uyyRPYWT-0-J7w01qfuoHzG0YKFVw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4h9rDtARhskDHAD9Oemi6N7TTZW4RAhbVoD63Em2XHDtpAaUWaB_jrOTtuyqYx7S1RLsqPO999Z_u-A_isOdexKgfWeHnIqGZhilEmTPQgkghhFVV2vmNylYxm7PKaX29Ar6uFMca4zWembw_dWr6eF42dKsPkHbMRWzX-CuM-j9tqrW7NgHHXBxkxDI5xTCTWjJpfpz_yyUXL15kwx__LMHS5bivrYOS6q9i9kbLG31O2fS1eBp4uAJ1vw2T16u2-k9t-s1T94vEPVsf__bYd2PJIlOSt6byDDVPtwvaqywPxg34X3j6jLNyDnxjcfrmZ_gfiuVlvCAJfkhdtHwoye14u8w1P62ZhHVJtdI-4et87u1GpR1CCjOfVTTjF6EByLRfW9ZLcs5y_h9n52fR0FPp2DWGB3nYZDtISM3PNZYmOw2RsaHgcacQHilKpy4yVqowR7hkaaaZZMaRJagkIYyPTWA4V_QCb1bwyB0BMSZVmUWqGyrAkoplMJeZthbGE-TwpAuit9CYKz2VuW2rcCZfTRJlwGhdW4yJhAXzpxBcticdLgntWM52QV0oAx78ZRXfd8rshPuUBHK6sRHgfUAtEghQB5gBvJ91VHLx2RUZWZt7UIkO8jsEm5v8QiRN0w4jiA9hvzW_9dG_FH__-1ifwejSdjMX44ur7Ibxxk-GuiPITbC7vG3OEaGqpjt0gegLcURim |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Learning+for+Activity+Understanding%3A+Unsupervised%2C+Multilevel%2C+and+Long-Term+Adaptive+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Morris%2C+B.+T.&rft.au=Trivedi%2C+M.+M.&rft.date=2011-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=33&rft.issue=11&rft.spage=2287&rft.epage=2301&rft_id=info:doi/10.1109%2FTPAMI.2011.64&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2011_64 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |