Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives

[Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have b...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 331; p. 124985
Main Authors De Donno Novelli, Laura, Moreno Sayavedra, Sarah, Rene, Eldon R.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2021.124985

Cover

Loading…
Abstract [Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have been reported in pilot-scale studies.•Research on process optimization and downstream processing should be intensified. The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
AbstractList The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
[Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have been reported in pilot-scale studies.•Research on process optimization and downstream processing should be intensified. The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
ArticleNumber 124985
Author Rene, Eldon R.
De Donno Novelli, Laura
Moreno Sayavedra, Sarah
Author_xml – sequence: 1
  givenname: Laura
  surname: De Donno Novelli
  fullname: De Donno Novelli, Laura
– sequence: 2
  givenname: Sarah
  surname: Moreno Sayavedra
  fullname: Moreno Sayavedra, Sarah
– sequence: 3
  givenname: Eldon R.
  surname: Rene
  fullname: Rene, Eldon R.
  email: e.raj@un-ihe.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33819906$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUhS0URDaBvxC5DMUsfszLiIJVFAhSJFIkteWxrxUvM_Ziz2yYll8ejzbb0ITKtvSd43vPOUMnPnhA6IKSNSW0_rRddy7EEfTjmhFG15SVoq3eoBVtG14w0dQnaEVETYq2YuUpOktpSwjhtGHv0CnnLRWC1Cv09y708-NsYvgzq_6X8kGNgC_vbjYf8S4GM-nRBY_3TuEIKUxRQ77osIc4YxvDgJ03UxqjUz1-UimL8wPUkD7jTSb3Dp5wsHiZ1LvfEySsvME7iGkH2XsP6T16a1Wf4MPLeY4evl3fX90Utz-__7ja3Ba6rJuxoDXnnaLKWkNIZ42xvNVCtEZQBnXdcGU0M50hWutKVcRqTiretR2tWl5pw8_R5cE377UMMsrBJQ19rzyEKUmWg2K0FWX5HygRrOFVQzN68YJO3QBG7qIbVJzlMeIMfDkAOoaUIlip3aiWVMeoXC8pkUujciuPjcqlUXloNMvrf-THH14Vfj0IIWeaa4gyaQdeg3G5wFGa4F6zeAaDvcIO
CitedBy_id crossref_primary_10_1007_s11783_024_1914_2
crossref_primary_10_3390_ma15031181
crossref_primary_10_3390_polym13193302
crossref_primary_10_1016_j_jece_2024_114755
crossref_primary_10_1016_j_jwpe_2023_103740
crossref_primary_10_1016_j_procbio_2024_12_018
crossref_primary_10_3390_polym15234488
crossref_primary_10_3390_polym14132527
crossref_primary_10_3390_polym15092231
crossref_primary_10_1016_j_ijbiomac_2022_01_025
crossref_primary_10_1016_j_biortech_2024_132032
crossref_primary_10_1039_D4PY00623B
crossref_primary_10_1016_j_procbio_2024_07_033
crossref_primary_10_3390_polym15112481
crossref_primary_10_1007_s40710_023_00661_8
crossref_primary_10_1016_j_jtice_2024_105843
crossref_primary_10_1007_s13762_024_05936_7
crossref_primary_10_1016_j_jenvman_2023_117300
crossref_primary_10_1016_j_scitotenv_2021_149363
crossref_primary_10_1021_acs_iecr_3c02684
crossref_primary_10_3390_life12091347
crossref_primary_10_1007_s13762_024_05831_1
crossref_primary_10_1007_s12010_023_04683_8
crossref_primary_10_1016_j_biortech_2021_125263
crossref_primary_10_1016_j_envpol_2023_122102
crossref_primary_10_1016_j_bcab_2024_103281
crossref_primary_10_1002_btpr_3412
crossref_primary_10_1016_j_jenvman_2023_118033
crossref_primary_10_1016_j_biortech_2021_125616
crossref_primary_10_3390_pr9112039
crossref_primary_10_1111_1751_7915_13924
crossref_primary_10_1007_s13399_021_02208_z
crossref_primary_10_1007_s13399_021_02170_w
crossref_primary_10_1007_s12649_024_02536_x
crossref_primary_10_1016_j_chemosphere_2021_133310
crossref_primary_10_1016_j_scitotenv_2024_172599
crossref_primary_10_1016_j_jenvman_2023_119118
crossref_primary_10_1002_mame_202300100
crossref_primary_10_1016_j_cej_2023_145007
crossref_primary_10_1016_j_biortech_2023_129318
crossref_primary_10_1016_j_eti_2023_103311
crossref_primary_10_1186_s13068_024_02522_4
crossref_primary_10_1016_j_dyepig_2021_110017
crossref_primary_10_1016_j_biortech_2021_125314
crossref_primary_10_1016_j_biortech_2021_126008
crossref_primary_10_1016_j_cogsc_2022_100631
crossref_primary_10_1007_s13205_023_03633_9
crossref_primary_10_1016_j_fuel_2022_124532
crossref_primary_10_3390_bioengineering9020074
crossref_primary_10_1002_adsu_202400294
crossref_primary_10_1080_02648725_2023_2165222
crossref_primary_10_1093_femsyr_foab047
crossref_primary_10_1186_s12934_023_02059_5
crossref_primary_10_1016_j_jece_2022_108573
crossref_primary_10_1021_acssusresmgt_4c00075
crossref_primary_10_3390_ijms242417250
crossref_primary_10_1016_j_cjche_2023_05_018
crossref_primary_10_1016_j_chemosphere_2021_133102
crossref_primary_10_3390_fermentation8110605
crossref_primary_10_1007_s10924_023_02914_x
crossref_primary_10_1080_07388551_2024_2409112
crossref_primary_10_1016_j_fbp_2024_08_011
crossref_primary_10_3389_fbioe_2022_1023325
crossref_primary_10_1016_j_procbio_2023_05_013
crossref_primary_10_1016_j_biortech_2023_129445
crossref_primary_10_1007_s10924_022_02699_5
crossref_primary_10_1128_msystems_00572_24
crossref_primary_10_1016_j_envres_2024_118722
crossref_primary_10_3390_biomimetics8010035
crossref_primary_10_1007_s10924_022_02403_7
crossref_primary_10_1016_j_biortech_2023_129726
crossref_primary_10_1021_acssuschemeng_2c05356
crossref_primary_10_2139_ssrn_4122159
crossref_primary_10_1016_j_biortech_2022_127444
crossref_primary_10_1016_j_biortech_2022_127565
crossref_primary_10_1021_acssuschemeng_1c08631
crossref_primary_10_1007_s13399_023_05003_0
crossref_primary_10_3390_fermentation8100556
crossref_primary_10_1007_s13399_022_03550_6
crossref_primary_10_1186_s13068_023_02349_5
crossref_primary_10_1016_j_biortech_2023_128679
crossref_primary_10_1007_s11356_023_27410_6
crossref_primary_10_3390_polym14071396
crossref_primary_10_1016_j_jclepro_2024_143052
crossref_primary_10_1021_acssuschemeng_4c03754
crossref_primary_10_1016_j_bcab_2024_103419
crossref_primary_10_1080_09593330_2024_2317818
crossref_primary_10_1007_s10532_023_10068_9
crossref_primary_10_3390_encyclopedia4040126
crossref_primary_10_1007_s13399_023_04043_w
crossref_primary_10_3390_catal14040239
Cites_doi 10.1016/j.wasman.2019.07.021
10.1007/s10098-016-1286-9
10.1021/bm4010244
10.1016/j.jbiotec.2007.05.011
10.1007/s10924-012-0527-1
10.1016/j.bej.2014.10.018
10.1016/j.watres.2014.03.066
10.1016/j.ijbiomac.2017.09.054
10.1016/j.jbiotec.2014.10.022
10.1111/1462-2920.12047
10.1007/s00253-007-0857-4
10.1016/j.biortech.2019.122478
10.1016/j.jclepro.2015.08.009
10.1002/elsc.201300021
10.1016/j.biortech.2016.10.014
10.1016/j.biortech.2018.01.031
10.1111/j.1574-6968.1992.tb05838.x
10.1021/bp034010q
10.1016/j.nbt.2016.10.008
10.1016/j.eurpolymj.2017.11.007
10.1111/1462-2920.12760
10.1016/j.seppur.2012.09.036
10.1016/j.nbt.2016.07.013
10.3144/expresspolymlett.2014.82
10.1016/j.biortech.2012.08.036
10.1002/btpr.1624
10.1586/17434440.3.6.853
10.1016/j.jenvman.2017.09.083
10.1002/btpr.2346
10.1128/AEM.65.6.2762-2764.1999
10.1016/j.seppur.2016.07.043
10.5958/2230-7338.2017.00024.6
10.3144/expresspolymlett.2011.60
10.1016/j.jbiotec.2005.09.006
10.1016/j.biortech.2019.121790
10.1128/AEM.72.4.2322-2330.2006
10.1016/j.biortech.2019.03.037
10.2166/wst.2020.060
10.1038/srep24381
10.1016/j.biortech.2019.02.083
10.1007/978-1-4612-1072-6_7
10.1371/journal.pone.0078528
10.1039/C4GC01821D
10.1016/j.watres.2010.10.009
10.1002/bit.20085
10.1016/j.nbt.2016.05.007
10.1016/j.eurpolymj.2012.10.025
10.1089/ees.2011.0255
10.1021/bm049478b
10.1007/s00253-016-7669-3
10.1186/s13568-015-0096-5
10.1042/bj20031254
10.1002/mabi.200600112
10.2166/wst.1997.0008
10.1016/S0141-8130(99)00022-7
10.1016/j.biortech.2015.10.063
10.1007/978-3-642-03287-5_6
10.1016/j.nbt.2013.11.008
10.1111/1574-6968.12201
10.1016/j.watres.2019.115371
10.1016/j.bej.2007.11.029
10.1002/bit.1040
10.1186/2191-0855-2-59
10.1016/j.biortech.2019.121427
10.1016/j.watres.2018.04.017
10.1016/j.biortech.2015.03.025
10.1007/s00253-018-9483-6
10.1021/bm801431c
10.1186/1752-0509-2-59
10.1002/bit.20683
10.2166/wst.2018.502
10.1080/07388550500346359
10.2166/wst.2012.086
10.1016/j.nbt.2016.07.001
10.1016/j.bej.2019.107283
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2021.124985
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 33819906
10_1016_j_biortech_2021_124985
S0960852421003242
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-1633ba1affd00bfddf38c998d912e6673adc2dbd0ccc5a50fc3053b8b15835cd3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 12:26:59 EDT 2025
Fri Jul 11 04:45:57 EDT 2025
Mon Jul 21 05:34:29 EDT 2025
Tue Jul 01 03:18:52 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Fri Feb 23 02:45:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polyhydroxyalkanoate (PHA)
Resource recovery
Metabolic pathway
Biorefinery
Pretreatment
Industrial wastes
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-1633ba1affd00bfddf38c998d912e6673adc2dbd0ccc5a50fc3053b8b15835cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33819906
PQID 2509273571
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524218944
proquest_miscellaneous_2509273571
pubmed_primary_33819906
crossref_citationtrail_10_1016_j_biortech_2021_124985
crossref_primary_10_1016_j_biortech_2021_124985
elsevier_sciencedirect_doi_10_1016_j_biortech_2021_124985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
2021-Jul
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kourmentza, Plácido, Venetsaneas, Burniol-Figols, Varrone, Gavala, Reis (b0180) 2017; 4
Guventurk, A., Ozturk, D., Ozyildiz, G., Ayisigi, E., Guven, D., Zengin, G. E., et al., 2020. Determination of the potential of pickle wastewater as feedstock for biopolymer production. Water Sci. Technol. 81, 21-28.
Lee, Choi, Han, Song (b0220) 1999; 65
Koller, Niebelschütz, Braunegg (b0165) 2013; 13
Gumel, Annuar, Chisti (b0115) 2013; 21
Anis, Md Iqbal, Kumar, Amirul (b0020) 2013; 102
Dias, Oehmen, Serafim, Lemos, Reis, Oliveira (b0065) 2008; 2
Hejazi, Vasheghani-Farahani, Yamini (b0140) 2003; 19
Farghaly, Enitan, Kumari, Bux, Tawfik (b0085) 2017; 19
Tamis, Lužkov, Jiang, Loosdrecht, Kleerebezem (b0365) 2014; 192
Ren, de Roo, Ruth, Witholt, Zinn, Thö̈ny-Meyer (b0330) 2009; 10
Amulya, Reddy, Rohit, Mohan (b0010) 2016; 112
Ortelli, Costa, Torri, Samorì, Galletti, Vineis (b0300) 2019
Prieto, Escapa, Martínez, Dinjaski, Herencias, de la Peña, Tarazona, Revelles (b0315) 2016; 18
Silva, Campanari, Matteo, Valentino, Majone, Villano (b0355) 2017; 37
Williams, Martin, Horowitz, Peoples (b0410) 1999; 25
Andreeßen, Steinbüchel (b0015) 2019; 103
Chen, G.-Q., 2010. “Industrial Production of PHA,” in Plastics from Bacteria: Natural Functions and Applications Microbiology Monographs., ed. G. G.-Q. Chen (Berlin, Heidelberg: Springer), 121-132.
Guerra-Blanco, Cortes, Poznyak, Chairez, García-Peña (b0110) 2018; 98
Martínez, Jurkevitch, García, Prieto (b0250) 2013; 15
Valappil, Misra, Boccaccini, Roy (b0380) 2006; 3
Yang, Zhang, Liu, Zhang, Gong, Li, Wang, Song (b0415) 2013; 346
Kunasundari, Sudesh (b0200) 2011; 5
Kunasundari, Arza, Maurer, Murugaiyah, Kaur, Sudesh (b0210) 2017; 172
Kosseva, Rusbandi (b0170) 2018; 107
Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., et al., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci. Technol. 78, 2256-2269.
Valentino, Morgan-Sagastume, Campanari, Villano, Werker, Majone (b0385) 2017; 37
Gouveia, Freitas, Galinha, Carvalho, Duque, Reis (b0105) 2017; 37
Serafim, Lemos, Oliveira, Reis (b0350) 2004; 87
López-Abelairas, García-Torreiro, Lú-Chau, Lema, Steinbüchel (b0230) 2015; 93
Mannina, Presti, Montiel-Jarillo, Suárez-Ojeda (b0240) 2019; 282
Martínez, Herencias, Jurkevitch, Prieto (b0255) 2016; 6
Rodriguez-Perez, Serrano, Pantión, Alonso-Fariñas (b0335) 2018; 205
Gottschalk (b0100) 1986
Lemos, Serafim, Reis (b0225) 2006; 122
[Accessed May 10, 2020].
Van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J., 1997. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 35, 41-47.
Jiang, Mikova, Kleerebezem, van der Wielen, Cuellar (b0155) 2015; 5
Zheng, Yanful, Bassi (b0420) 2005; 25
Fernández-Dacosta, Posada, Kleerebezem, Cuellar, Ramirez (b0090) 2015; 185
Sun, Ramsay, Guay, Ramsay (b0360) 2007; 75
Djordjevic, S., n.d. About YPACK. YPACK. Available at
Moretto, Russo, Bolzonella, Pavan, Majone, Valentino (b0280) 2020; 170
Pérez-Rivero, López-Gómez, Roy (b0305) 2019; 150
Anterrieu, Quadri, Geurkink, Dinkla, Bengtsson, Arcos-Hernandez, Alexandersson, Morgan-Sagastume, Karlsson, Hjort, Karabegovic, Magnusson, Johansson, Christensson, Werker (b0025) 2014; 31
Mohammadi, Hassan, Phang, Shirai, Che Man, Ariffin, Amirul, Syairah (b0270) 2012; 29
Albuquerque, Eiroa, Torres, Nunes, Reis (b0005) 2007; 130
United Nations. (n.d.) About the Sustainable Development Goals.
Bugnicourt, Cinelli, Lazzeri, Alvarez (b0045) 2014; 8
[Accessed May 15, 2018].
Kumar, Thakur (b0195) 2017; 8
Samorì, Basaglia, Casella, Favaro, Galletti, Giorgini, Marchi, Mazzocchetti, Torri, Tagliavini (b0340) 2015; 17
Jiang, Hebly, Kleerebezem, Muyzer, van Loosdrecht (b0150) 2011; 45
Kumar, Ghosh, Khosla, Thakur (b0185) 2018; 255
Kunasundari, Murugaiyah, Kaur, Maurer, Sudesh, Appanna (b0205) 2013; 8
Frigon, Muyzer, van Loosdrecht, Raskin (b0095) 2006; 72
Wijeyekoon, Carere, West, Nath, Gapes (b0405) 2018; 140
Arcos-Hernández, Laycock, Donose, Pratt, Halley, Al-Luaibi, Werker, Lant (b0035) 2013; 49
Dias, Lemos, Serafim, Oliveira, Eiroa, Albuquerque, Ramos, Oliveira, Reis (b0060) 2006; 6
Kumar, Ponnusamy, Bhosale, Shobana, Yoon, Bhatia, Rajesh Banu, Kim (b0190) 2019; 287
Md. Din, Mohanadoss, Ujang, van Loosdrecht, Yunus, Chelliapan, Zambare, Olsson (b0265) 2012; 124
Rajesh Banu, Kavitha, Yukesh Kannah, Poornima Devi, Gunasekaran, Kim, Kumar (b0320) 2019; 290
Aramvash, Gholami-Banadkuki, Seyedkarimi (b0030) 2016; 32
Mannina, Presti, Montiel-Jarillo, Carrera, Suárez-Ojeda (b0245) 2020; 297
Rehm (b0325) 2003; 376
Neves, Müller (b0285) 2012; 28
Basset, Katsou, Frison, Malamis, Dosta, Fatone (b0040) 2016; 200
Oliveira, Silva, Carvalho, Reis (b0295) 2017; 37
Hajnal, Chen, Chen (b0130) 2016; 100
Tu, Zhang, Wang (b0370) 2019; 96
Dionisi, Majone, Vallini, Di Gregorio, Beccari (b0070) 2006; 93
Pratt, S., Werker, A., Morgan-Sagastume, F., and Lant, P., 2012. Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. 65, 243-246.
Kourmentza, Kornaros (b0175) 2016; 222
Volatile. (n.d.). The Project.
Dircks, Beun, van Loosdrecht, Heijnen, Henze (b0075) 2001; 73
Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., and Steinbüchel, A., 2013. PHA recovery from biomass. Biomacromol. 14, 2963-2972.
McInerney, M. J., Amos, D. A., Kealy, K. S., and Palmer, J. A., 1992. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol. Lett. 103, 195-205.
Koller, Bona, Braunegg, Hermann, Horvat, Kroutil, Martinz, Neto, Pereira, Varila (b0160) 2005; 6
Guo, Tao, Yang, Song, Geng, Li, Wang, Kong, Wang, Johnson (b0120) 2012; 7
Heinrich, Madkour, Al-Ghamdi, Shabbaj, Steinbüchel (b0135) 2012; 2
Saratale, Saratale, Cho, Kim, Ghodake, Kadam, Kumar, Bharagava, Banu, Shin (b0345) 2019; 282
[Accessed May 9, 2020].
Jacquel, Lo, Wei, Wu, Wang (b0145) 2008; 39
Moita, Freches, Lemos (b0275) 2014; 58
Kunasundari (10.1016/j.biortech.2021.124985_b0200) 2011; 5
Martínez (10.1016/j.biortech.2021.124985_b0250) 2013; 15
Hejazi (10.1016/j.biortech.2021.124985_b0140) 2003; 19
Heinrich (10.1016/j.biortech.2021.124985_b0135) 2012; 2
Dias (10.1016/j.biortech.2021.124985_b0060) 2006; 6
Zheng (10.1016/j.biortech.2021.124985_b0420) 2005; 25
Serafim (10.1016/j.biortech.2021.124985_b0350) 2004; 87
Bugnicourt (10.1016/j.biortech.2021.124985_b0045) 2014; 8
10.1016/j.biortech.2021.124985_b0235
Moita (10.1016/j.biortech.2021.124985_b0275) 2014; 58
Prieto (10.1016/j.biortech.2021.124985_b0315) 2016; 18
Kunasundari (10.1016/j.biortech.2021.124985_b0205) 2013; 8
10.1016/j.biortech.2021.124985_b0310
10.1016/j.biortech.2021.124985_b0395
Sun (10.1016/j.biortech.2021.124985_b0360) 2007; 75
10.1016/j.biortech.2021.124985_b0390
Fernández-Dacosta (10.1016/j.biortech.2021.124985_b0090) 2015; 185
Moretto (10.1016/j.biortech.2021.124985_b0280) 2020; 170
Tu (10.1016/j.biortech.2021.124985_b0370) 2019; 96
Dias (10.1016/j.biortech.2021.124985_b0065) 2008; 2
Yang (10.1016/j.biortech.2021.124985_b0415) 2013; 346
Ortelli (10.1016/j.biortech.2021.124985_b0300) 2019
Dircks (10.1016/j.biortech.2021.124985_b0075) 2001; 73
Gumel (10.1016/j.biortech.2021.124985_b0115) 2013; 21
Neves (10.1016/j.biortech.2021.124985_b0285) 2012; 28
Martínez (10.1016/j.biortech.2021.124985_b0255) 2016; 6
Ren (10.1016/j.biortech.2021.124985_b0330) 2009; 10
Lee (10.1016/j.biortech.2021.124985_b0220) 1999; 65
Saratale (10.1016/j.biortech.2021.124985_b0345) 2019; 282
Frigon (10.1016/j.biortech.2021.124985_b0095) 2006; 72
Arcos-Hernández (10.1016/j.biortech.2021.124985_b0035) 2013; 49
Guo (10.1016/j.biortech.2021.124985_b0120) 2012; 7
Kosseva (10.1016/j.biortech.2021.124985_b0170) 2018; 107
Valappil (10.1016/j.biortech.2021.124985_b0380) 2006; 3
Pérez-Rivero (10.1016/j.biortech.2021.124985_b0305) 2019; 150
10.1016/j.biortech.2021.124985_b0260
Dionisi (10.1016/j.biortech.2021.124985_b0070) 2006; 93
Rehm (10.1016/j.biortech.2021.124985_b0325) 2003; 376
Silva (10.1016/j.biortech.2021.124985_b0355) 2017; 37
Valentino (10.1016/j.biortech.2021.124985_b0385) 2017; 37
Anis (10.1016/j.biortech.2021.124985_b0020) 2013; 102
Kumar (10.1016/j.biortech.2021.124985_b0195) 2017; 8
Anterrieu (10.1016/j.biortech.2021.124985_b0025) 2014; 31
López-Abelairas (10.1016/j.biortech.2021.124985_b0230) 2015; 93
Gottschalk (10.1016/j.biortech.2021.124985_b0100) 1986
Kunasundari (10.1016/j.biortech.2021.124985_b0210) 2017; 172
Koller (10.1016/j.biortech.2021.124985_b0160) 2005; 6
Guerra-Blanco (10.1016/j.biortech.2021.124985_b0110) 2018; 98
Kourmentza (10.1016/j.biortech.2021.124985_b0175) 2016; 222
Md. Din (10.1016/j.biortech.2021.124985_b0265) 2012; 124
Samorì (10.1016/j.biortech.2021.124985_b0340) 2015; 17
Kumar (10.1016/j.biortech.2021.124985_b0190) 2019; 287
Oliveira (10.1016/j.biortech.2021.124985_b0295) 2017; 37
Jiang (10.1016/j.biortech.2021.124985_b0150) 2011; 45
10.1016/j.biortech.2021.124985_b0375
Wijeyekoon (10.1016/j.biortech.2021.124985_b0405) 2018; 140
Williams (10.1016/j.biortech.2021.124985_b0410) 1999; 25
10.1016/j.biortech.2021.124985_b0055
Mannina (10.1016/j.biortech.2021.124985_b0240) 2019; 282
Gouveia (10.1016/j.biortech.2021.124985_b0105) 2017; 37
Andreeßen (10.1016/j.biortech.2021.124985_b0015) 2019; 103
Aramvash (10.1016/j.biortech.2021.124985_b0030) 2016; 32
Hajnal (10.1016/j.biortech.2021.124985_b0130) 2016; 100
Albuquerque (10.1016/j.biortech.2021.124985_b0005) 2007; 130
Jiang (10.1016/j.biortech.2021.124985_b0155) 2015; 5
Rodriguez-Perez (10.1016/j.biortech.2021.124985_b0335) 2018; 205
Farghaly (10.1016/j.biortech.2021.124985_b0085) 2017; 19
Lemos (10.1016/j.biortech.2021.124985_b0225) 2006; 122
Kumar (10.1016/j.biortech.2021.124985_b0185) 2018; 255
Mannina (10.1016/j.biortech.2021.124985_b0245) 2020; 297
10.1016/j.biortech.2021.124985_b0125
10.1016/j.biortech.2021.124985_b0400
Basset (10.1016/j.biortech.2021.124985_b0040) 2016; 200
Tamis (10.1016/j.biortech.2021.124985_b0365) 2014; 192
Koller (10.1016/j.biortech.2021.124985_b0165) 2013; 13
Jacquel (10.1016/j.biortech.2021.124985_b0145) 2008; 39
Kourmentza (10.1016/j.biortech.2021.124985_b0180) 2017; 4
Mohammadi (10.1016/j.biortech.2021.124985_b0270) 2012; 29
10.1016/j.biortech.2021.124985_b0080
Amulya (10.1016/j.biortech.2021.124985_b0010) 2016; 112
Rajesh Banu (10.1016/j.biortech.2021.124985_b0320) 2019; 290
References_xml – volume: 172
  start-page: 1
  year: 2017
  end-page: 6
  ident: b0210
  article-title: Biological recovery and properties of poly(3-hydroxybutyrate) from
  publication-title: Sep. Purif. Technol.
– volume: 222
  start-page: 388
  year: 2016
  end-page: 398
  ident: b0175
  article-title: Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source
  publication-title: Bioresour. Technol.
– volume: 282
  start-page: 75
  year: 2019
  end-page: 80
  ident: b0345
  article-title: Pretreatment of kenaf
  publication-title: Bioresour. Technol.
– volume: 98
  start-page: 94
  year: 2018
  end-page: 104
  ident: b0110
  article-title: Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition
  publication-title: Eur. Polym. J.
– reference: Pratt, S., Werker, A., Morgan-Sagastume, F., and Lant, P., 2012. Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. 65, 243-246.
– volume: 10
  start-page: 916
  year: 2009
  end-page: 922
  ident: b0330
  article-title: Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation?
  publication-title: Biomacromol.
– volume: 25
  start-page: 111
  year: 1999
  end-page: 121
  ident: b0410
  article-title: PHA applications: addressing the price performance issue: I. Tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 96
  start-page: 149
  year: 2019
  end-page: 157
  ident: b0370
  article-title: Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields
  publication-title: Waste Manage.
– volume: 25
  start-page: 243
  year: 2005
  end-page: 250
  ident: b0420
  article-title: A review of plastic waste biodegradation
  publication-title: Crit. Rev. Biotechnol.
– volume: 7
  year: 2012
  ident: b0120
  article-title: Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers
  publication-title: PLoS One
– volume: 103
  start-page: 143
  year: 2019
  end-page: 157
  ident: b0015
  article-title: Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 37
  start-page: 108
  year: 2017
  end-page: 116
  ident: b0105
  article-title: Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: impact on performance and microbial population
  publication-title: New Biotechnol.
– volume: 93
  start-page: 250
  year: 2015
  end-page: 259
  ident: b0230
  article-title: Comparison of several methods for the separation of poly(3-hydroxybutyrate) from
  publication-title: Biochem. Eng. J.
– volume: 150
  start-page: 107283
  year: 2019
  ident: b0305
  article-title: A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments
  publication-title: Biochem. Eng. J.
– volume: 290
  year: 2019
  ident: b0320
  article-title: A review on biopolymer production via lignin valorization
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 853
  year: 2006
  end-page: 868
  ident: b0380
  article-title: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses
  publication-title: Expert Rev. Med. Devices
– reference: McInerney, M. J., Amos, D. A., Kealy, K. S., and Palmer, J. A., 1992. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol. Lett. 103, 195-205.
– reference: Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., and Steinbüchel, A., 2013. PHA recovery from biomass. Biomacromol. 14, 2963-2972.
– volume: 5
  start-page: 5
  year: 2015
  ident: b0155
  article-title: Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture
  publication-title: AMB Express
– volume: 31
  start-page: 308
  year: 2014
  end-page: 323
  ident: b0025
  article-title: Integration of biopolymer production with process water treatment at a sugar factory
  publication-title: New Biotechnol.
– volume: 107
  start-page: 762
  year: 2018
  end-page: 778
  ident: b0170
  article-title: Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing
  publication-title: Int. J. Biol. Macromol.
– volume: 297
  start-page: 122478
  year: 2020
  ident: b0245
  article-title: Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 791
  year: 2014
  end-page: 808
  ident: b0045
  article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging
  publication-title: eXPRESS Polym. Lett.
– reference: [Accessed May 15, 2018].
– volume: 192
  start-page: 161
  year: 2014
  end-page: 169
  ident: b0365
  article-title: Enrichment of
  publication-title: J. Biotechnol.
– reference: Chen, G.-Q., 2010. “Industrial Production of PHA,” in Plastics from Bacteria: Natural Functions and Applications Microbiology Monographs., ed. G. G.-Q. Chen (Berlin, Heidelberg: Springer), 121-132.
– volume: 37
  start-page: 9
  year: 2017
  end-page: 23
  ident: b0385
  article-title: Carbon recovery from wastewater through bioconversion into biodegradable polymers
  publication-title: New Biotechnol.
– reference: Van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J., 1997. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 35, 41-47.
– reference: [Accessed May 9, 2020].
– volume: 6
  start-page: 885
  year: 2006
  end-page: 906
  ident: b0060
  article-title: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product
  publication-title: Macromol. Biosci.
– start-page: 131
  year: 2019
  end-page: 148
  ident: b0300
  article-title: Innovative and sustainable production of biopolymers
  publication-title: Factories of the Future: The Italian Flagship Initiative
– reference: United Nations. (n.d.) About the Sustainable Development Goals.
– reference: Volatile. (n.d.). The Project.
– volume: 8
  start-page: 118
  year: 2017
  end-page: 129
  ident: b0195
  article-title: Bioplastics-classification, production and their potential food applications
  publication-title: J. Hill Agric.
– volume: 8
  start-page: e78528
  year: 2013
  ident: b0205
  article-title: Revisiting the single cell protein application of
  publication-title: PLoS One
– volume: 376
  start-page: 15
  year: 2003
  end-page: 33
  ident: b0325
  article-title: Polyester synthases: natural catalysts for plastics
  publication-title: Biochem. J.
– volume: 100
  start-page: 9103
  year: 2016
  end-page: 9110
  ident: b0130
  article-title: A novel cell autolysis system for cost-competitive downstream processing
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 282
  start-page: 361
  year: 2019
  end-page: 369
  ident: b0240
  article-title: Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 1575
  year: 2012
  end-page: 1580
  ident: b0285
  article-title: Use of enzymes in extraction of polyhydroxyalkanoates produced by
  publication-title: Biotechnol. Prog.
– volume: 2
  start-page: 59
  year: 2008
  ident: b0065
  article-title: Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures
  publication-title: BMC Syst. Biol.
– volume: 19
  start-page: 1519
  year: 2003
  end-page: 1523
  ident: b0140
  article-title: Supercritical fluid disruption of
  publication-title: Biotechnol. Prog.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0255
  article-title: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates
  publication-title: Sci. Rep.
– volume: 170
  start-page: 115371
  year: 2020
  ident: b0280
  article-title: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas
  publication-title: Water Res.
– volume: 6
  start-page: 561
  year: 2005
  end-page: 565
  ident: b0160
  article-title: Production of polyhydroxyalkanoates from agricultural waste and surplus materials
  publication-title: Biomacromol.
– volume: 73
  start-page: 85
  year: 2001
  end-page: 94
  ident: b0075
  article-title: Glycogen metabolism in aerobic mixed cultures
  publication-title: Biotechnol. Bioeng.
– volume: 65
  start-page: 2762
  year: 1999
  end-page: 2764
  ident: b0220
  article-title: Removal of edotoxin during Pprification of poly(3-hydroxybutyrate) from gram-negative bacteria
  publication-title: Appl. Environ. Microbiol.
– volume: 49
  start-page: 904
  year: 2013
  end-page: 913
  ident: b0035
  article-title: Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV)
  publication-title: Eur. Polym. J.
– volume: 205
  start-page: 215
  year: 2018
  end-page: 230
  ident: b0335
  article-title: Challenges of scaling-up PHA production from waste streams. A review
  publication-title: J. Environ. Manage.
– volume: 39
  start-page: 15
  year: 2008
  end-page: 27
  ident: b0145
  article-title: Isolation and purification of bacterial poly(3-hydroxyalkanoates)
  publication-title: Biochem. Eng. J.
– volume: 75
  start-page: 475
  year: 2007
  end-page: 485
  ident: b0360
  article-title: Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 93
  start-page: 76
  year: 2006
  end-page: 88
  ident: b0070
  article-title: Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor
  publication-title: Biotechnol. Bioeng.
– volume: 287
  start-page: 121427
  year: 2019
  ident: b0190
  article-title: A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 1480
  year: 2016
  end-page: 1486
  ident: b0030
  article-title: An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from
  publication-title: Biotechnol. Prog.
– volume: 45
  start-page: 1309
  year: 2011
  end-page: 1321
  ident: b0150
  article-title: Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production
  publication-title: Water Res.
– volume: 17
  start-page: 1047
  year: 2015
  end-page: 1056
  ident: b0340
  article-title: Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass
  publication-title: Green Chem.
– volume: 21
  start-page: 580
  year: 2013
  end-page: 605
  ident: b0115
  article-title: Recent advances in the production, recovery and applications of polyhydroxyalkanoates
  publication-title: J. Polym. Environ.
– volume: 255
  start-page: 111
  year: 2018
  end-page: 115
  ident: b0185
  article-title: Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge
  publication-title: Bioresour. Technol.
– volume: 87
  start-page: 145
  year: 2004
  end-page: 160
  ident: b0350
  article-title: Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions
  publication-title: Biotechnol. Bioeng.
– volume: 130
  start-page: 411
  year: 2007
  end-page: 421
  ident: b0005
  article-title: Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses
  publication-title: J. Biotechnol.
– volume: 13
  start-page: 549
  year: 2013
  end-page: 562
  ident: b0165
  article-title: Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass
  publication-title: Eng. Life Sci.
– volume: 72
  start-page: 2322
  year: 2006
  end-page: 2330
  ident: b0095
  article-title: rRNA and poly-β-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles
  publication-title: Appl. Environ. Microbiol.
– reference: Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., et al., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci. Technol. 78, 2256-2269.
– volume: 124
  start-page: 208
  year: 2012
  end-page: 216
  ident: b0265
  article-title: Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME)
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 69
  year: 2017
  end-page: 79
  ident: b0295
  article-title: Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities
  publication-title: New Biotechnol.
– reference: [Accessed May 10, 2020].
– volume: 58
  start-page: 9
  year: 2014
  end-page: 20
  ident: b0275
  article-title: Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures
  publication-title: Water Res.
– volume: 2
  start-page: 59
  year: 2012
  ident: b0135
  article-title: Large scale extraction of poly(3-hydroxybutyrate) from
  publication-title: AMB Express
– volume: 185
  start-page: 368
  year: 2015
  end-page: 377
  ident: b0090
  article-title: Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment
  publication-title: Bioresour. Technol.
– volume: 122
  start-page: 226
  year: 2006
  end-page: 238
  ident: b0225
  article-title: Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding
  publication-title: J. Biotechnol.
– volume: 18
  start-page: 341
  year: 2016
  end-page: 357
  ident: b0315
  article-title: A holistic view of polyhydroxyalkanoate metabolism in
  publication-title: Environ. Microbiol.
– volume: 37
  start-page: 90
  year: 2017
  end-page: 98
  ident: b0355
  article-title: Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures
  publication-title: New Biotechnol.
– volume: 102
  start-page: 111
  year: 2013
  end-page: 117
  ident: b0020
  article-title: Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from
  publication-title: Sep. Purif. Technol.
– volume: 346
  start-page: 56
  year: 2013
  end-page: 64
  ident: b0415
  article-title: Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate
  publication-title: FEMS Microbiol. Lett.
– volume: 15
  start-page: 1204
  year: 2013
  end-page: 1215
  ident: b0250
  article-title: Reward for
  publication-title: Environ. Microbiol.
– volume: 112
  start-page: 4618
  year: 2016
  end-page: 4627
  ident: b0010
  article-title: Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH
  publication-title: J. Clean. Prod.
– volume: 200
  start-page: 820
  year: 2016
  end-page: 829
  ident: b0040
  article-title: Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 935
  year: 2017
  end-page: 947
  ident: b0085
  article-title: Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria
  publication-title: Clean Technol. Environ. Policy
– reference: Djordjevic, S., n.d. About YPACK. YPACK. Available at:
– start-page: 178
  year: 1986
  end-page: 207
  ident: b0100
  article-title: Regulation of Bacterial Metabolism
  publication-title: Bacterial Metabolism Springer Series in Microbiology
– volume: 5
  start-page: 620
  year: 2011
  end-page: 634
  ident: b0200
  article-title: Isolation and recovery of microbial polyhydroxyalkanoates
  publication-title: Express Polym. Lett.
– volume: 140
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0405
  article-title: Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors
  publication-title: Water Res.
– volume: 4
  start-page: 55
  year: 2017
  ident: b0180
  article-title: Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production
  publication-title: Bioeng.
– volume: 29
  start-page: 783
  year: 2012
  end-page: 789
  ident: b0270
  article-title: Efficient Polyhydroxyalkanoate recovery from recombinant
  publication-title: Environ. Eng. Sci.
– reference: Guventurk, A., Ozturk, D., Ozyildiz, G., Ayisigi, E., Guven, D., Zengin, G. E., et al., 2020. Determination of the potential of pickle wastewater as feedstock for biopolymer production. Water Sci. Technol. 81, 21-28.
– volume: 96
  start-page: 149
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0370
  article-title: Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.07.021
– volume: 19
  start-page: 935
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0085
  article-title: Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1286-9
– ident: 10.1016/j.biortech.2021.124985_b0235
  doi: 10.1021/bm4010244
– volume: 130
  start-page: 411
  year: 2007
  ident: 10.1016/j.biortech.2021.124985_b0005
  article-title: Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2007.05.011
– volume: 21
  start-page: 580
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0115
  article-title: Recent advances in the production, recovery and applications of polyhydroxyalkanoates
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-012-0527-1
– volume: 93
  start-page: 250
  year: 2015
  ident: 10.1016/j.biortech.2021.124985_b0230
  article-title: Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2014.10.018
– volume: 58
  start-page: 9
  year: 2014
  ident: 10.1016/j.biortech.2021.124985_b0275
  article-title: Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.03.066
– volume: 107
  start-page: 762
  year: 2018
  ident: 10.1016/j.biortech.2021.124985_b0170
  article-title: Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.09.054
– volume: 192
  start-page: 161
  year: 2014
  ident: 10.1016/j.biortech.2021.124985_b0365
  article-title: Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.10.022
– volume: 15
  start-page: 1204
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0250
  article-title: Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12047
– volume: 75
  start-page: 475
  year: 2007
  ident: 10.1016/j.biortech.2021.124985_b0360
  article-title: Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-0857-4
– volume: 4
  start-page: 55
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0180
  article-title: Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production
  publication-title: Bioeng.
– volume: 297
  start-page: 122478
  year: 2020
  ident: 10.1016/j.biortech.2021.124985_b0245
  article-title: Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122478
– ident: 10.1016/j.biortech.2021.124985_b0395
– volume: 112
  start-page: 4618
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0010
  article-title: Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.08.009
– volume: 13
  start-page: 549
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0165
  article-title: Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201300021
– volume: 222
  start-page: 388
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0175
  article-title: Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.10.014
– start-page: 131
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0300
  article-title: Innovative and sustainable production of biopolymers
– volume: 7
  year: 2012
  ident: 10.1016/j.biortech.2021.124985_b0120
  article-title: Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers
  publication-title: PLoS One
– volume: 255
  start-page: 111
  year: 2018
  ident: 10.1016/j.biortech.2021.124985_b0185
  article-title: Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.01.031
– ident: 10.1016/j.biortech.2021.124985_b0260
  doi: 10.1111/j.1574-6968.1992.tb05838.x
– volume: 19
  start-page: 1519
  year: 2003
  ident: 10.1016/j.biortech.2021.124985_b0140
  article-title: Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp034010q
– volume: 37
  start-page: 69
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0295
  article-title: Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2016.10.008
– ident: 10.1016/j.biortech.2021.124985_b0080
– volume: 98
  start-page: 94
  year: 2018
  ident: 10.1016/j.biortech.2021.124985_b0110
  article-title: Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.11.007
– volume: 18
  start-page: 341
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0315
  article-title: A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12760
– volume: 102
  start-page: 111
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0020
  article-title: Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.09.036
– volume: 37
  start-page: 90
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0355
  article-title: Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2016.07.013
– volume: 8
  start-page: 791
  year: 2014
  ident: 10.1016/j.biortech.2021.124985_b0045
  article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging
  publication-title: eXPRESS Polym. Lett.
  doi: 10.3144/expresspolymlett.2014.82
– volume: 124
  start-page: 208
  year: 2012
  ident: 10.1016/j.biortech.2021.124985_b0265
  article-title: Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.08.036
– volume: 28
  start-page: 1575
  year: 2012
  ident: 10.1016/j.biortech.2021.124985_b0285
  article-title: Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1624
– volume: 3
  start-page: 853
  year: 2006
  ident: 10.1016/j.biortech.2021.124985_b0380
  article-title: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.3.6.853
– volume: 205
  start-page: 215
  year: 2018
  ident: 10.1016/j.biortech.2021.124985_b0335
  article-title: Challenges of scaling-up PHA production from waste streams. A review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.09.083
– volume: 32
  start-page: 1480
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0030
  article-title: An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2346
– volume: 65
  start-page: 2762
  year: 1999
  ident: 10.1016/j.biortech.2021.124985_b0220
  article-title: Removal of edotoxin during Pprification of poly(3-hydroxybutyrate) from gram-negative bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.6.2762-2764.1999
– volume: 172
  start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0210
  article-title: Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.07.043
– volume: 8
  start-page: 118
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0195
  article-title: Bioplastics-classification, production and their potential food applications
  publication-title: J. Hill Agric.
  doi: 10.5958/2230-7338.2017.00024.6
– volume: 5
  start-page: 620
  year: 2011
  ident: 10.1016/j.biortech.2021.124985_b0200
  article-title: Isolation and recovery of microbial polyhydroxyalkanoates
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2011.60
– volume: 122
  start-page: 226
  year: 2006
  ident: 10.1016/j.biortech.2021.124985_b0225
  article-title: Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2005.09.006
– volume: 290
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0320
  article-title: A review on biopolymer production via lignin valorization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121790
– volume: 72
  start-page: 2322
  year: 2006
  ident: 10.1016/j.biortech.2021.124985_b0095
  article-title: rRNA and poly-β-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.72.4.2322-2330.2006
– volume: 282
  start-page: 361
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0240
  article-title: Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.03.037
– ident: 10.1016/j.biortech.2021.124985_b0125
  doi: 10.2166/wst.2020.060
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0255
  article-title: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates
  publication-title: Sci. Rep.
  doi: 10.1038/srep24381
– volume: 282
  start-page: 75
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0345
  article-title: Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.02.083
– start-page: 178
  year: 1986
  ident: 10.1016/j.biortech.2021.124985_b0100
  article-title: Regulation of Bacterial Metabolism
  doi: 10.1007/978-1-4612-1072-6_7
– volume: 8
  start-page: e78528
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0205
  article-title: Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078528
– volume: 17
  start-page: 1047
  issue: 2
  year: 2015
  ident: 10.1016/j.biortech.2021.124985_b0340
  article-title: Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass
  publication-title: Green Chem.
  doi: 10.1039/C4GC01821D
– volume: 45
  start-page: 1309
  year: 2011
  ident: 10.1016/j.biortech.2021.124985_b0150
  article-title: Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.10.009
– volume: 87
  start-page: 145
  year: 2004
  ident: 10.1016/j.biortech.2021.124985_b0350
  article-title: Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20085
– volume: 37
  start-page: 9
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0385
  article-title: Carbon recovery from wastewater through bioconversion into biodegradable polymers
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2016.05.007
– volume: 49
  start-page: 904
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0035
  article-title: Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV)
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.10.025
– volume: 29
  start-page: 783
  year: 2012
  ident: 10.1016/j.biortech.2021.124985_b0270
  article-title: Efficient Polyhydroxyalkanoate recovery from recombinant Cupriavidus necator by using low concentration of NaOH
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2011.0255
– volume: 6
  start-page: 561
  year: 2005
  ident: 10.1016/j.biortech.2021.124985_b0160
  article-title: Production of polyhydroxyalkanoates from agricultural waste and surplus materials
  publication-title: Biomacromol.
  doi: 10.1021/bm049478b
– volume: 100
  start-page: 9103
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0130
  article-title: A novel cell autolysis system for cost-competitive downstream processing
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7669-3
– volume: 5
  start-page: 5
  year: 2015
  ident: 10.1016/j.biortech.2021.124985_b0155
  article-title: Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture
  publication-title: AMB Express
  doi: 10.1186/s13568-015-0096-5
– volume: 376
  start-page: 15
  year: 2003
  ident: 10.1016/j.biortech.2021.124985_b0325
  article-title: Polyester synthases: natural catalysts for plastics
  publication-title: Biochem. J.
  doi: 10.1042/bj20031254
– volume: 6
  start-page: 885
  issue: 11
  year: 2006
  ident: 10.1016/j.biortech.2021.124985_b0060
  article-title: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200600112
– ident: 10.1016/j.biortech.2021.124985_b0390
  doi: 10.2166/wst.1997.0008
– volume: 25
  start-page: 111
  year: 1999
  ident: 10.1016/j.biortech.2021.124985_b0410
  article-title: PHA applications: addressing the price performance issue: I. Tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(99)00022-7
– volume: 200
  start-page: 820
  year: 2016
  ident: 10.1016/j.biortech.2021.124985_b0040
  article-title: Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.10.063
– ident: 10.1016/j.biortech.2021.124985_b0055
  doi: 10.1007/978-3-642-03287-5_6
– volume: 31
  start-page: 308
  year: 2014
  ident: 10.1016/j.biortech.2021.124985_b0025
  article-title: Integration of biopolymer production with process water treatment at a sugar factory
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2013.11.008
– volume: 346
  start-page: 56
  year: 2013
  ident: 10.1016/j.biortech.2021.124985_b0415
  article-title: Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12201
– volume: 170
  start-page: 115371
  year: 2020
  ident: 10.1016/j.biortech.2021.124985_b0280
  article-title: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115371
– volume: 39
  start-page: 15
  year: 2008
  ident: 10.1016/j.biortech.2021.124985_b0145
  article-title: Isolation and purification of bacterial poly(3-hydroxyalkanoates)
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2007.11.029
– volume: 73
  start-page: 85
  year: 2001
  ident: 10.1016/j.biortech.2021.124985_b0075
  article-title: Glycogen metabolism in aerobic mixed cultures
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.1040
– volume: 2
  start-page: 59
  year: 2012
  ident: 10.1016/j.biortech.2021.124985_b0135
  article-title: Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite
  publication-title: AMB Express
  doi: 10.1186/2191-0855-2-59
– volume: 287
  start-page: 121427
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0190
  article-title: A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121427
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2021.124985_b0405
  article-title: Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.04.017
– volume: 185
  start-page: 368
  year: 2015
  ident: 10.1016/j.biortech.2021.124985_b0090
  article-title: Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.025
– volume: 103
  start-page: 143
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0015
  article-title: Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9483-6
– volume: 10
  start-page: 916
  issue: 4
  year: 2009
  ident: 10.1016/j.biortech.2021.124985_b0330
  article-title: Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation?
  publication-title: Biomacromol.
  doi: 10.1021/bm801431c
– volume: 2
  start-page: 59
  issue: 1
  year: 2008
  ident: 10.1016/j.biortech.2021.124985_b0065
  article-title: Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-2-59
– volume: 93
  start-page: 76
  year: 2006
  ident: 10.1016/j.biortech.2021.124985_b0070
  article-title: Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20683
– ident: 10.1016/j.biortech.2021.124985_b0375
– ident: 10.1016/j.biortech.2021.124985_b0400
  doi: 10.2166/wst.2018.502
– volume: 25
  start-page: 243
  year: 2005
  ident: 10.1016/j.biortech.2021.124985_b0420
  article-title: A review of plastic waste biodegradation
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550500346359
– ident: 10.1016/j.biortech.2021.124985_b0310
  doi: 10.2166/wst.2012.086
– volume: 37
  start-page: 108
  year: 2017
  ident: 10.1016/j.biortech.2021.124985_b0105
  article-title: Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: impact on performance and microbial population
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2016.07.001
– volume: 150
  start-page: 107283
  year: 2019
  ident: 10.1016/j.biortech.2021.124985_b0305
  article-title: A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.107283
SSID ssj0003172
Score 2.635504
SecondaryResourceType review_article
Snippet [Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA...
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124985
SubjectTerms Biofuels
biogas
biohydrogen
Biopolymers
Bioreactors
Biorefinery
biorefining
carbon
Industrial Waste
Industrial wastes
medical equipment
Metabolic pathway
Polyhydroxyalkanoate (PHA)
Polyhydroxyalkanoates
Pretreatment
Resource recovery
value added
Waste Water
wastewater
Title Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives
URI https://dx.doi.org/10.1016/j.biortech.2021.124985
https://www.ncbi.nlm.nih.gov/pubmed/33819906
https://www.proquest.com/docview/2509273571
https://www.proquest.com/docview/2524218944
Volume 331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QAcEJRXClSDxAEOTuzY69jcrIgqgKgqQaXeVvsEl2BHSVqUCwd-OTN-pEUCeuBkxdmVVp7xN99655sBeJEnjsKSMwHhowqSNHJB7lJ6ryZM3xPlRcxq5A9H6ewkeXcqTndg2mthOK2yw_4W0xu07u6Muqc5WpTl6COT70zwkSZ5Jl1YwZ5MOK1v-OMyzYPiY3OSQIMDHn1FJXw21CVntDaHEuNoyH2YuafynwPU3whoE4gO78KdjkFi0S7yHuy4ag9uF5-XXRUNtwc3p30bN_rnSsXB-_DzuJ5vvmwsJ6-o-VdV1cQ18eXxrHiFi7b4KxkKL0qFy-7DPvKemRx-gyxFwXLb6wO_K3IRZLWJ-rZ6jQW2OhisPW5Lw65QVRYXl5LO1QM4OXzzaToLujYMgSEUXQfE2GKtIuW9DUPtrfVxZmiXZvNo7LhrqLJmbLUNjTFCidAbwpBYZzoSRO-MjR_CblVX7jEgAWsjbdWZiRNPAOeJYTiv01QoQho9ANE_e2m6GuXcKmMu-2S0M9nbTLLNZGuzAYy28xZtlY5rZ-S9aeVv_iYplFw793nvC5KMyScsqnL1-UoSn8yJD4pJ9K8x7LJZniQDeNQ60nbNMe-f8zDd_4_VPYFb_KtNKX4Ku-vluXtGxGmtD5o34wBuFG_fz45-AY53Gjc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9FB6QFBe4blIHODgxo69rs3Niqhc2kaVaKXeVvssLqkdJSkoV345M35RJKAHTpbsXWm1M_vNt54XwNs0smiWrPYQH6UXxYH1Uhvjudoj-h5Jx0PKRj6exvlZ9Omcn2_ApMuFobDKFvsbTK_Run0zandzNC-K0Wci3wknlyZqJj7uwCZVp4oGsJkdHObTHpDRRNbOBBzv0YQbicKXu6qgoNbaLzEOdqkVM7VV_rON-hsHrW3R_n2415JIljXrfAAbttyB7exi0RbSsDuwNek6ueGXG0UHH8KPk2q2_rI2FL8iZ19lWSHdZO9O8uw9mzf1X1FW7Fsh2aL9t8_o2ow6v2aUjcKKvt0H-y5RSxglnMir5QeWsSYVhlWO9dVhl0yWhs1_ZXUuH8HZ_sfTSe61nRg8jUC68pC0hUoG0jnj-8oZ48JE40XNpMHYUuNQafTYKONrrbnkvtMII6FKVMCR4WkTPoZBWZX2KTDE1jq7VSU6jBxinEOSYZ2KYy4RbNQQeLf3Qrdlyqlbxkx08WiXopOZIJmJRmZDGPXz5k2hjltnpJ1oxW8qJ9Ca3Dr3TacLAoVJThZZ2up6KZBSpkgJ-V7wrzGktUkaRUN40ihSv-aQrtCpHz_7j9W9hq389PhIHB1MD5_DXfrSRBi_gMFqcW1fIo9aqVftOfkJIVcc6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyhydroxyalkanoate+%28PHA%29+production+via+resource+recovery+from+industrial+waste+streams%3A+A+review+of+techniques+and+perspectives&rft.jtitle=Bioresource+technology&rft.au=De+Donno+Novelli%2C+Laura&rft.au=Moreno+Sayavedra%2C+Sarah&rft.au=Rene%2C+Eldon+R&rft.date=2021-07-01&rft.issn=0960-8524&rft.volume=331+p.124985-&rft_id=info:doi/10.1016%2Fj.biortech.2021.124985&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon