Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives
[Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have b...
Saved in:
Published in | Bioresource technology Vol. 331; p. 124985 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2021.124985 |
Cover
Loading…
Abstract | [Display omitted]
•Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have been reported in pilot-scale studies.•Research on process optimization and downstream processing should be intensified.
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas. |
---|---|
AbstractList | The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas. The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas. [Display omitted] •Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA recovery are discussed.•Optimal process/environmental conditions would maximize the cellular PHA content.•PHA yields from 7.6 to 76 wt% have been reported in pilot-scale studies.•Research on process optimization and downstream processing should be intensified. The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas. The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas. |
ArticleNumber | 124985 |
Author | Rene, Eldon R. De Donno Novelli, Laura Moreno Sayavedra, Sarah |
Author_xml | – sequence: 1 givenname: Laura surname: De Donno Novelli fullname: De Donno Novelli, Laura – sequence: 2 givenname: Sarah surname: Moreno Sayavedra fullname: Moreno Sayavedra, Sarah – sequence: 3 givenname: Eldon R. surname: Rene fullname: Rene, Eldon R. email: e.raj@un-ihe.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33819906$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtvFDEUhS0URDaBvxC5DMUsfszLiIJVFAhSJFIkteWxrxUvM_Ziz2yYll8ejzbb0ITKtvSd43vPOUMnPnhA6IKSNSW0_rRddy7EEfTjmhFG15SVoq3eoBVtG14w0dQnaEVETYq2YuUpOktpSwjhtGHv0CnnLRWC1Cv09y708-NsYvgzq_6X8kGNgC_vbjYf8S4GM-nRBY_3TuEIKUxRQ77osIc4YxvDgJ03UxqjUz1-UimL8wPUkD7jTSb3Dp5wsHiZ1LvfEySsvME7iGkH2XsP6T16a1Wf4MPLeY4evl3fX90Utz-__7ja3Ba6rJuxoDXnnaLKWkNIZ42xvNVCtEZQBnXdcGU0M50hWutKVcRqTiretR2tWl5pw8_R5cE377UMMsrBJQ19rzyEKUmWg2K0FWX5HygRrOFVQzN68YJO3QBG7qIbVJzlMeIMfDkAOoaUIlip3aiWVMeoXC8pkUujciuPjcqlUXloNMvrf-THH14Vfj0IIWeaa4gyaQdeg3G5wFGa4F6zeAaDvcIO |
CitedBy_id | crossref_primary_10_1007_s11783_024_1914_2 crossref_primary_10_3390_ma15031181 crossref_primary_10_3390_polym13193302 crossref_primary_10_1016_j_jece_2024_114755 crossref_primary_10_1016_j_jwpe_2023_103740 crossref_primary_10_1016_j_procbio_2024_12_018 crossref_primary_10_3390_polym15234488 crossref_primary_10_3390_polym14132527 crossref_primary_10_3390_polym15092231 crossref_primary_10_1016_j_ijbiomac_2022_01_025 crossref_primary_10_1016_j_biortech_2024_132032 crossref_primary_10_1039_D4PY00623B crossref_primary_10_1016_j_procbio_2024_07_033 crossref_primary_10_3390_polym15112481 crossref_primary_10_1007_s40710_023_00661_8 crossref_primary_10_1016_j_jtice_2024_105843 crossref_primary_10_1007_s13762_024_05936_7 crossref_primary_10_1016_j_jenvman_2023_117300 crossref_primary_10_1016_j_scitotenv_2021_149363 crossref_primary_10_1021_acs_iecr_3c02684 crossref_primary_10_3390_life12091347 crossref_primary_10_1007_s13762_024_05831_1 crossref_primary_10_1007_s12010_023_04683_8 crossref_primary_10_1016_j_biortech_2021_125263 crossref_primary_10_1016_j_envpol_2023_122102 crossref_primary_10_1016_j_bcab_2024_103281 crossref_primary_10_1002_btpr_3412 crossref_primary_10_1016_j_jenvman_2023_118033 crossref_primary_10_1016_j_biortech_2021_125616 crossref_primary_10_3390_pr9112039 crossref_primary_10_1111_1751_7915_13924 crossref_primary_10_1007_s13399_021_02208_z crossref_primary_10_1007_s13399_021_02170_w crossref_primary_10_1007_s12649_024_02536_x crossref_primary_10_1016_j_chemosphere_2021_133310 crossref_primary_10_1016_j_scitotenv_2024_172599 crossref_primary_10_1016_j_jenvman_2023_119118 crossref_primary_10_1002_mame_202300100 crossref_primary_10_1016_j_cej_2023_145007 crossref_primary_10_1016_j_biortech_2023_129318 crossref_primary_10_1016_j_eti_2023_103311 crossref_primary_10_1186_s13068_024_02522_4 crossref_primary_10_1016_j_dyepig_2021_110017 crossref_primary_10_1016_j_biortech_2021_125314 crossref_primary_10_1016_j_biortech_2021_126008 crossref_primary_10_1016_j_cogsc_2022_100631 crossref_primary_10_1007_s13205_023_03633_9 crossref_primary_10_1016_j_fuel_2022_124532 crossref_primary_10_3390_bioengineering9020074 crossref_primary_10_1002_adsu_202400294 crossref_primary_10_1080_02648725_2023_2165222 crossref_primary_10_1093_femsyr_foab047 crossref_primary_10_1186_s12934_023_02059_5 crossref_primary_10_1016_j_jece_2022_108573 crossref_primary_10_1021_acssusresmgt_4c00075 crossref_primary_10_3390_ijms242417250 crossref_primary_10_1016_j_cjche_2023_05_018 crossref_primary_10_1016_j_chemosphere_2021_133102 crossref_primary_10_3390_fermentation8110605 crossref_primary_10_1007_s10924_023_02914_x crossref_primary_10_1080_07388551_2024_2409112 crossref_primary_10_1016_j_fbp_2024_08_011 crossref_primary_10_3389_fbioe_2022_1023325 crossref_primary_10_1016_j_procbio_2023_05_013 crossref_primary_10_1016_j_biortech_2023_129445 crossref_primary_10_1007_s10924_022_02699_5 crossref_primary_10_1128_msystems_00572_24 crossref_primary_10_1016_j_envres_2024_118722 crossref_primary_10_3390_biomimetics8010035 crossref_primary_10_1007_s10924_022_02403_7 crossref_primary_10_1016_j_biortech_2023_129726 crossref_primary_10_1021_acssuschemeng_2c05356 crossref_primary_10_2139_ssrn_4122159 crossref_primary_10_1016_j_biortech_2022_127444 crossref_primary_10_1016_j_biortech_2022_127565 crossref_primary_10_1021_acssuschemeng_1c08631 crossref_primary_10_1007_s13399_023_05003_0 crossref_primary_10_3390_fermentation8100556 crossref_primary_10_1007_s13399_022_03550_6 crossref_primary_10_1186_s13068_023_02349_5 crossref_primary_10_1016_j_biortech_2023_128679 crossref_primary_10_1007_s11356_023_27410_6 crossref_primary_10_3390_polym14071396 crossref_primary_10_1016_j_jclepro_2024_143052 crossref_primary_10_1021_acssuschemeng_4c03754 crossref_primary_10_1016_j_bcab_2024_103419 crossref_primary_10_1080_09593330_2024_2317818 crossref_primary_10_1007_s10532_023_10068_9 crossref_primary_10_3390_encyclopedia4040126 crossref_primary_10_1007_s13399_023_04043_w crossref_primary_10_3390_catal14040239 |
Cites_doi | 10.1016/j.wasman.2019.07.021 10.1007/s10098-016-1286-9 10.1021/bm4010244 10.1016/j.jbiotec.2007.05.011 10.1007/s10924-012-0527-1 10.1016/j.bej.2014.10.018 10.1016/j.watres.2014.03.066 10.1016/j.ijbiomac.2017.09.054 10.1016/j.jbiotec.2014.10.022 10.1111/1462-2920.12047 10.1007/s00253-007-0857-4 10.1016/j.biortech.2019.122478 10.1016/j.jclepro.2015.08.009 10.1002/elsc.201300021 10.1016/j.biortech.2016.10.014 10.1016/j.biortech.2018.01.031 10.1111/j.1574-6968.1992.tb05838.x 10.1021/bp034010q 10.1016/j.nbt.2016.10.008 10.1016/j.eurpolymj.2017.11.007 10.1111/1462-2920.12760 10.1016/j.seppur.2012.09.036 10.1016/j.nbt.2016.07.013 10.3144/expresspolymlett.2014.82 10.1016/j.biortech.2012.08.036 10.1002/btpr.1624 10.1586/17434440.3.6.853 10.1016/j.jenvman.2017.09.083 10.1002/btpr.2346 10.1128/AEM.65.6.2762-2764.1999 10.1016/j.seppur.2016.07.043 10.5958/2230-7338.2017.00024.6 10.3144/expresspolymlett.2011.60 10.1016/j.jbiotec.2005.09.006 10.1016/j.biortech.2019.121790 10.1128/AEM.72.4.2322-2330.2006 10.1016/j.biortech.2019.03.037 10.2166/wst.2020.060 10.1038/srep24381 10.1016/j.biortech.2019.02.083 10.1007/978-1-4612-1072-6_7 10.1371/journal.pone.0078528 10.1039/C4GC01821D 10.1016/j.watres.2010.10.009 10.1002/bit.20085 10.1016/j.nbt.2016.05.007 10.1016/j.eurpolymj.2012.10.025 10.1089/ees.2011.0255 10.1021/bm049478b 10.1007/s00253-016-7669-3 10.1186/s13568-015-0096-5 10.1042/bj20031254 10.1002/mabi.200600112 10.2166/wst.1997.0008 10.1016/S0141-8130(99)00022-7 10.1016/j.biortech.2015.10.063 10.1007/978-3-642-03287-5_6 10.1016/j.nbt.2013.11.008 10.1111/1574-6968.12201 10.1016/j.watres.2019.115371 10.1016/j.bej.2007.11.029 10.1002/bit.1040 10.1186/2191-0855-2-59 10.1016/j.biortech.2019.121427 10.1016/j.watres.2018.04.017 10.1016/j.biortech.2015.03.025 10.1007/s00253-018-9483-6 10.1021/bm801431c 10.1186/1752-0509-2-59 10.1002/bit.20683 10.2166/wst.2018.502 10.1080/07388550500346359 10.2166/wst.2012.086 10.1016/j.nbt.2016.07.001 10.1016/j.bej.2019.107283 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2021.124985 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 33819906 10_1016_j_biortech_2021_124985 S0960852421003242 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-1633ba1affd00bfddf38c998d912e6673adc2dbd0ccc5a50fc3053b8b15835cd3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 12:26:59 EDT 2025 Fri Jul 11 04:45:57 EDT 2025 Mon Jul 21 05:34:29 EDT 2025 Tue Jul 01 03:18:52 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Fri Feb 23 02:45:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyhydroxyalkanoate (PHA) Resource recovery Metabolic pathway Biorefinery Pretreatment Industrial wastes |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-1633ba1affd00bfddf38c998d912e6673adc2dbd0ccc5a50fc3053b8b15835cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33819906 |
PQID | 2509273571 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524218944 proquest_miscellaneous_2509273571 pubmed_primary_33819906 crossref_citationtrail_10_1016_j_biortech_2021_124985 crossref_primary_10_1016_j_biortech_2021_124985 elsevier_sciencedirect_doi_10_1016_j_biortech_2021_124985 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 2021-Jul 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kourmentza, Plácido, Venetsaneas, Burniol-Figols, Varrone, Gavala, Reis (b0180) 2017; 4 Guventurk, A., Ozturk, D., Ozyildiz, G., Ayisigi, E., Guven, D., Zengin, G. E., et al., 2020. Determination of the potential of pickle wastewater as feedstock for biopolymer production. Water Sci. Technol. 81, 21-28. Lee, Choi, Han, Song (b0220) 1999; 65 Koller, Niebelschütz, Braunegg (b0165) 2013; 13 Gumel, Annuar, Chisti (b0115) 2013; 21 Anis, Md Iqbal, Kumar, Amirul (b0020) 2013; 102 Dias, Oehmen, Serafim, Lemos, Reis, Oliveira (b0065) 2008; 2 Hejazi, Vasheghani-Farahani, Yamini (b0140) 2003; 19 Farghaly, Enitan, Kumari, Bux, Tawfik (b0085) 2017; 19 Tamis, Lužkov, Jiang, Loosdrecht, Kleerebezem (b0365) 2014; 192 Ren, de Roo, Ruth, Witholt, Zinn, Thö̈ny-Meyer (b0330) 2009; 10 Amulya, Reddy, Rohit, Mohan (b0010) 2016; 112 Ortelli, Costa, Torri, Samorì, Galletti, Vineis (b0300) 2019 Prieto, Escapa, Martínez, Dinjaski, Herencias, de la Peña, Tarazona, Revelles (b0315) 2016; 18 Silva, Campanari, Matteo, Valentino, Majone, Villano (b0355) 2017; 37 Williams, Martin, Horowitz, Peoples (b0410) 1999; 25 Andreeßen, Steinbüchel (b0015) 2019; 103 Chen, G.-Q., 2010. “Industrial Production of PHA,” in Plastics from Bacteria: Natural Functions and Applications Microbiology Monographs., ed. G. G.-Q. Chen (Berlin, Heidelberg: Springer), 121-132. Guerra-Blanco, Cortes, Poznyak, Chairez, García-Peña (b0110) 2018; 98 Martínez, Jurkevitch, García, Prieto (b0250) 2013; 15 Valappil, Misra, Boccaccini, Roy (b0380) 2006; 3 Yang, Zhang, Liu, Zhang, Gong, Li, Wang, Song (b0415) 2013; 346 Kunasundari, Sudesh (b0200) 2011; 5 Kunasundari, Arza, Maurer, Murugaiyah, Kaur, Sudesh (b0210) 2017; 172 Kosseva, Rusbandi (b0170) 2018; 107 Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., et al., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci. Technol. 78, 2256-2269. Valentino, Morgan-Sagastume, Campanari, Villano, Werker, Majone (b0385) 2017; 37 Gouveia, Freitas, Galinha, Carvalho, Duque, Reis (b0105) 2017; 37 Serafim, Lemos, Oliveira, Reis (b0350) 2004; 87 López-Abelairas, García-Torreiro, Lú-Chau, Lema, Steinbüchel (b0230) 2015; 93 Mannina, Presti, Montiel-Jarillo, Suárez-Ojeda (b0240) 2019; 282 Martínez, Herencias, Jurkevitch, Prieto (b0255) 2016; 6 Rodriguez-Perez, Serrano, Pantión, Alonso-Fariñas (b0335) 2018; 205 Gottschalk (b0100) 1986 Lemos, Serafim, Reis (b0225) 2006; 122 [Accessed May 10, 2020]. Van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J., 1997. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 35, 41-47. Jiang, Mikova, Kleerebezem, van der Wielen, Cuellar (b0155) 2015; 5 Zheng, Yanful, Bassi (b0420) 2005; 25 Fernández-Dacosta, Posada, Kleerebezem, Cuellar, Ramirez (b0090) 2015; 185 Sun, Ramsay, Guay, Ramsay (b0360) 2007; 75 Djordjevic, S., n.d. About YPACK. YPACK. Available at Moretto, Russo, Bolzonella, Pavan, Majone, Valentino (b0280) 2020; 170 Pérez-Rivero, López-Gómez, Roy (b0305) 2019; 150 Anterrieu, Quadri, Geurkink, Dinkla, Bengtsson, Arcos-Hernandez, Alexandersson, Morgan-Sagastume, Karlsson, Hjort, Karabegovic, Magnusson, Johansson, Christensson, Werker (b0025) 2014; 31 Mohammadi, Hassan, Phang, Shirai, Che Man, Ariffin, Amirul, Syairah (b0270) 2012; 29 Albuquerque, Eiroa, Torres, Nunes, Reis (b0005) 2007; 130 United Nations. (n.d.) About the Sustainable Development Goals. Bugnicourt, Cinelli, Lazzeri, Alvarez (b0045) 2014; 8 [Accessed May 15, 2018]. Kumar, Thakur (b0195) 2017; 8 Samorì, Basaglia, Casella, Favaro, Galletti, Giorgini, Marchi, Mazzocchetti, Torri, Tagliavini (b0340) 2015; 17 Jiang, Hebly, Kleerebezem, Muyzer, van Loosdrecht (b0150) 2011; 45 Kumar, Ghosh, Khosla, Thakur (b0185) 2018; 255 Kunasundari, Murugaiyah, Kaur, Maurer, Sudesh, Appanna (b0205) 2013; 8 Frigon, Muyzer, van Loosdrecht, Raskin (b0095) 2006; 72 Wijeyekoon, Carere, West, Nath, Gapes (b0405) 2018; 140 Arcos-Hernández, Laycock, Donose, Pratt, Halley, Al-Luaibi, Werker, Lant (b0035) 2013; 49 Dias, Lemos, Serafim, Oliveira, Eiroa, Albuquerque, Ramos, Oliveira, Reis (b0060) 2006; 6 Kumar, Ponnusamy, Bhosale, Shobana, Yoon, Bhatia, Rajesh Banu, Kim (b0190) 2019; 287 Md. Din, Mohanadoss, Ujang, van Loosdrecht, Yunus, Chelliapan, Zambare, Olsson (b0265) 2012; 124 Rajesh Banu, Kavitha, Yukesh Kannah, Poornima Devi, Gunasekaran, Kim, Kumar (b0320) 2019; 290 Aramvash, Gholami-Banadkuki, Seyedkarimi (b0030) 2016; 32 Mannina, Presti, Montiel-Jarillo, Carrera, Suárez-Ojeda (b0245) 2020; 297 Rehm (b0325) 2003; 376 Neves, Müller (b0285) 2012; 28 Basset, Katsou, Frison, Malamis, Dosta, Fatone (b0040) 2016; 200 Oliveira, Silva, Carvalho, Reis (b0295) 2017; 37 Hajnal, Chen, Chen (b0130) 2016; 100 Tu, Zhang, Wang (b0370) 2019; 96 Dionisi, Majone, Vallini, Di Gregorio, Beccari (b0070) 2006; 93 Pratt, S., Werker, A., Morgan-Sagastume, F., and Lant, P., 2012. Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. 65, 243-246. Kourmentza, Kornaros (b0175) 2016; 222 Volatile. (n.d.). The Project. Dircks, Beun, van Loosdrecht, Heijnen, Henze (b0075) 2001; 73 Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., and Steinbüchel, A., 2013. PHA recovery from biomass. Biomacromol. 14, 2963-2972. McInerney, M. J., Amos, D. A., Kealy, K. S., and Palmer, J. A., 1992. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol. Lett. 103, 195-205. Koller, Bona, Braunegg, Hermann, Horvat, Kroutil, Martinz, Neto, Pereira, Varila (b0160) 2005; 6 Guo, Tao, Yang, Song, Geng, Li, Wang, Kong, Wang, Johnson (b0120) 2012; 7 Heinrich, Madkour, Al-Ghamdi, Shabbaj, Steinbüchel (b0135) 2012; 2 Saratale, Saratale, Cho, Kim, Ghodake, Kadam, Kumar, Bharagava, Banu, Shin (b0345) 2019; 282 [Accessed May 9, 2020]. Jacquel, Lo, Wei, Wu, Wang (b0145) 2008; 39 Moita, Freches, Lemos (b0275) 2014; 58 Kunasundari (10.1016/j.biortech.2021.124985_b0200) 2011; 5 Martínez (10.1016/j.biortech.2021.124985_b0250) 2013; 15 Hejazi (10.1016/j.biortech.2021.124985_b0140) 2003; 19 Heinrich (10.1016/j.biortech.2021.124985_b0135) 2012; 2 Dias (10.1016/j.biortech.2021.124985_b0060) 2006; 6 Zheng (10.1016/j.biortech.2021.124985_b0420) 2005; 25 Serafim (10.1016/j.biortech.2021.124985_b0350) 2004; 87 Bugnicourt (10.1016/j.biortech.2021.124985_b0045) 2014; 8 10.1016/j.biortech.2021.124985_b0235 Moita (10.1016/j.biortech.2021.124985_b0275) 2014; 58 Prieto (10.1016/j.biortech.2021.124985_b0315) 2016; 18 Kunasundari (10.1016/j.biortech.2021.124985_b0205) 2013; 8 10.1016/j.biortech.2021.124985_b0310 10.1016/j.biortech.2021.124985_b0395 Sun (10.1016/j.biortech.2021.124985_b0360) 2007; 75 10.1016/j.biortech.2021.124985_b0390 Fernández-Dacosta (10.1016/j.biortech.2021.124985_b0090) 2015; 185 Moretto (10.1016/j.biortech.2021.124985_b0280) 2020; 170 Tu (10.1016/j.biortech.2021.124985_b0370) 2019; 96 Dias (10.1016/j.biortech.2021.124985_b0065) 2008; 2 Yang (10.1016/j.biortech.2021.124985_b0415) 2013; 346 Ortelli (10.1016/j.biortech.2021.124985_b0300) 2019 Dircks (10.1016/j.biortech.2021.124985_b0075) 2001; 73 Gumel (10.1016/j.biortech.2021.124985_b0115) 2013; 21 Neves (10.1016/j.biortech.2021.124985_b0285) 2012; 28 Martínez (10.1016/j.biortech.2021.124985_b0255) 2016; 6 Ren (10.1016/j.biortech.2021.124985_b0330) 2009; 10 Lee (10.1016/j.biortech.2021.124985_b0220) 1999; 65 Saratale (10.1016/j.biortech.2021.124985_b0345) 2019; 282 Frigon (10.1016/j.biortech.2021.124985_b0095) 2006; 72 Arcos-Hernández (10.1016/j.biortech.2021.124985_b0035) 2013; 49 Guo (10.1016/j.biortech.2021.124985_b0120) 2012; 7 Kosseva (10.1016/j.biortech.2021.124985_b0170) 2018; 107 Valappil (10.1016/j.biortech.2021.124985_b0380) 2006; 3 Pérez-Rivero (10.1016/j.biortech.2021.124985_b0305) 2019; 150 10.1016/j.biortech.2021.124985_b0260 Dionisi (10.1016/j.biortech.2021.124985_b0070) 2006; 93 Rehm (10.1016/j.biortech.2021.124985_b0325) 2003; 376 Silva (10.1016/j.biortech.2021.124985_b0355) 2017; 37 Valentino (10.1016/j.biortech.2021.124985_b0385) 2017; 37 Anis (10.1016/j.biortech.2021.124985_b0020) 2013; 102 Kumar (10.1016/j.biortech.2021.124985_b0195) 2017; 8 Anterrieu (10.1016/j.biortech.2021.124985_b0025) 2014; 31 López-Abelairas (10.1016/j.biortech.2021.124985_b0230) 2015; 93 Gottschalk (10.1016/j.biortech.2021.124985_b0100) 1986 Kunasundari (10.1016/j.biortech.2021.124985_b0210) 2017; 172 Koller (10.1016/j.biortech.2021.124985_b0160) 2005; 6 Guerra-Blanco (10.1016/j.biortech.2021.124985_b0110) 2018; 98 Kourmentza (10.1016/j.biortech.2021.124985_b0175) 2016; 222 Md. Din (10.1016/j.biortech.2021.124985_b0265) 2012; 124 Samorì (10.1016/j.biortech.2021.124985_b0340) 2015; 17 Kumar (10.1016/j.biortech.2021.124985_b0190) 2019; 287 Oliveira (10.1016/j.biortech.2021.124985_b0295) 2017; 37 Jiang (10.1016/j.biortech.2021.124985_b0150) 2011; 45 10.1016/j.biortech.2021.124985_b0375 Wijeyekoon (10.1016/j.biortech.2021.124985_b0405) 2018; 140 Williams (10.1016/j.biortech.2021.124985_b0410) 1999; 25 10.1016/j.biortech.2021.124985_b0055 Mannina (10.1016/j.biortech.2021.124985_b0240) 2019; 282 Gouveia (10.1016/j.biortech.2021.124985_b0105) 2017; 37 Andreeßen (10.1016/j.biortech.2021.124985_b0015) 2019; 103 Aramvash (10.1016/j.biortech.2021.124985_b0030) 2016; 32 Hajnal (10.1016/j.biortech.2021.124985_b0130) 2016; 100 Albuquerque (10.1016/j.biortech.2021.124985_b0005) 2007; 130 Jiang (10.1016/j.biortech.2021.124985_b0155) 2015; 5 Rodriguez-Perez (10.1016/j.biortech.2021.124985_b0335) 2018; 205 Farghaly (10.1016/j.biortech.2021.124985_b0085) 2017; 19 Lemos (10.1016/j.biortech.2021.124985_b0225) 2006; 122 Kumar (10.1016/j.biortech.2021.124985_b0185) 2018; 255 Mannina (10.1016/j.biortech.2021.124985_b0245) 2020; 297 10.1016/j.biortech.2021.124985_b0125 10.1016/j.biortech.2021.124985_b0400 Basset (10.1016/j.biortech.2021.124985_b0040) 2016; 200 Tamis (10.1016/j.biortech.2021.124985_b0365) 2014; 192 Koller (10.1016/j.biortech.2021.124985_b0165) 2013; 13 Jacquel (10.1016/j.biortech.2021.124985_b0145) 2008; 39 Kourmentza (10.1016/j.biortech.2021.124985_b0180) 2017; 4 Mohammadi (10.1016/j.biortech.2021.124985_b0270) 2012; 29 10.1016/j.biortech.2021.124985_b0080 Amulya (10.1016/j.biortech.2021.124985_b0010) 2016; 112 Rajesh Banu (10.1016/j.biortech.2021.124985_b0320) 2019; 290 |
References_xml | – volume: 172 start-page: 1 year: 2017 end-page: 6 ident: b0210 article-title: Biological recovery and properties of poly(3-hydroxybutyrate) from publication-title: Sep. Purif. Technol. – volume: 222 start-page: 388 year: 2016 end-page: 398 ident: b0175 article-title: Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source publication-title: Bioresour. Technol. – volume: 282 start-page: 75 year: 2019 end-page: 80 ident: b0345 article-title: Pretreatment of kenaf publication-title: Bioresour. Technol. – volume: 98 start-page: 94 year: 2018 end-page: 104 ident: b0110 article-title: Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition publication-title: Eur. Polym. J. – reference: Pratt, S., Werker, A., Morgan-Sagastume, F., and Lant, P., 2012. Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. 65, 243-246. – volume: 10 start-page: 916 year: 2009 end-page: 922 ident: b0330 article-title: Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? publication-title: Biomacromol. – volume: 25 start-page: 111 year: 1999 end-page: 121 ident: b0410 article-title: PHA applications: addressing the price performance issue: I. Tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 96 start-page: 149 year: 2019 end-page: 157 ident: b0370 article-title: Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields publication-title: Waste Manage. – volume: 25 start-page: 243 year: 2005 end-page: 250 ident: b0420 article-title: A review of plastic waste biodegradation publication-title: Crit. Rev. Biotechnol. – volume: 7 year: 2012 ident: b0120 article-title: Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers publication-title: PLoS One – volume: 103 start-page: 143 year: 2019 end-page: 157 ident: b0015 article-title: Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives publication-title: Appl. Microbiol. Biotechnol. – volume: 37 start-page: 108 year: 2017 end-page: 116 ident: b0105 article-title: Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: impact on performance and microbial population publication-title: New Biotechnol. – volume: 93 start-page: 250 year: 2015 end-page: 259 ident: b0230 article-title: Comparison of several methods for the separation of poly(3-hydroxybutyrate) from publication-title: Biochem. Eng. J. – volume: 150 start-page: 107283 year: 2019 ident: b0305 article-title: A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments publication-title: Biochem. Eng. J. – volume: 290 year: 2019 ident: b0320 article-title: A review on biopolymer production via lignin valorization publication-title: Bioresour. Technol. – volume: 3 start-page: 853 year: 2006 end-page: 868 ident: b0380 article-title: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses publication-title: Expert Rev. Med. Devices – reference: McInerney, M. J., Amos, D. A., Kealy, K. S., and Palmer, J. A., 1992. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol. Lett. 103, 195-205. – reference: Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., and Steinbüchel, A., 2013. PHA recovery from biomass. Biomacromol. 14, 2963-2972. – volume: 5 start-page: 5 year: 2015 ident: b0155 article-title: Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture publication-title: AMB Express – volume: 31 start-page: 308 year: 2014 end-page: 323 ident: b0025 article-title: Integration of biopolymer production with process water treatment at a sugar factory publication-title: New Biotechnol. – volume: 107 start-page: 762 year: 2018 end-page: 778 ident: b0170 article-title: Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing publication-title: Int. J. Biol. Macromol. – volume: 297 start-page: 122478 year: 2020 ident: b0245 article-title: Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review publication-title: Bioresour. Technol. – volume: 8 start-page: 791 year: 2014 end-page: 808 ident: b0045 article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging publication-title: eXPRESS Polym. Lett. – reference: [Accessed May 15, 2018]. – volume: 192 start-page: 161 year: 2014 end-page: 169 ident: b0365 article-title: Enrichment of publication-title: J. Biotechnol. – reference: Chen, G.-Q., 2010. “Industrial Production of PHA,” in Plastics from Bacteria: Natural Functions and Applications Microbiology Monographs., ed. G. G.-Q. Chen (Berlin, Heidelberg: Springer), 121-132. – volume: 37 start-page: 9 year: 2017 end-page: 23 ident: b0385 article-title: Carbon recovery from wastewater through bioconversion into biodegradable polymers publication-title: New Biotechnol. – reference: Van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J., 1997. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 35, 41-47. – reference: [Accessed May 9, 2020]. – volume: 6 start-page: 885 year: 2006 end-page: 906 ident: b0060 article-title: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product publication-title: Macromol. Biosci. – start-page: 131 year: 2019 end-page: 148 ident: b0300 article-title: Innovative and sustainable production of biopolymers publication-title: Factories of the Future: The Italian Flagship Initiative – reference: United Nations. (n.d.) About the Sustainable Development Goals. – reference: Volatile. (n.d.). The Project. – volume: 8 start-page: 118 year: 2017 end-page: 129 ident: b0195 article-title: Bioplastics-classification, production and their potential food applications publication-title: J. Hill Agric. – volume: 8 start-page: e78528 year: 2013 ident: b0205 article-title: Revisiting the single cell protein application of publication-title: PLoS One – volume: 376 start-page: 15 year: 2003 end-page: 33 ident: b0325 article-title: Polyester synthases: natural catalysts for plastics publication-title: Biochem. J. – volume: 100 start-page: 9103 year: 2016 end-page: 9110 ident: b0130 article-title: A novel cell autolysis system for cost-competitive downstream processing publication-title: Appl. Microbiol. Biotechnol. – volume: 282 start-page: 361 year: 2019 end-page: 369 ident: b0240 article-title: Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures publication-title: Bioresour. Technol. – volume: 28 start-page: 1575 year: 2012 end-page: 1580 ident: b0285 article-title: Use of enzymes in extraction of polyhydroxyalkanoates produced by publication-title: Biotechnol. Prog. – volume: 2 start-page: 59 year: 2008 ident: b0065 article-title: Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures publication-title: BMC Syst. Biol. – volume: 19 start-page: 1519 year: 2003 end-page: 1523 ident: b0140 article-title: Supercritical fluid disruption of publication-title: Biotechnol. Prog. – volume: 6 start-page: 1 year: 2016 end-page: 12 ident: b0255 article-title: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates publication-title: Sci. Rep. – volume: 170 start-page: 115371 year: 2020 ident: b0280 article-title: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas publication-title: Water Res. – volume: 6 start-page: 561 year: 2005 end-page: 565 ident: b0160 article-title: Production of polyhydroxyalkanoates from agricultural waste and surplus materials publication-title: Biomacromol. – volume: 73 start-page: 85 year: 2001 end-page: 94 ident: b0075 article-title: Glycogen metabolism in aerobic mixed cultures publication-title: Biotechnol. Bioeng. – volume: 65 start-page: 2762 year: 1999 end-page: 2764 ident: b0220 article-title: Removal of edotoxin during Pprification of poly(3-hydroxybutyrate) from gram-negative bacteria publication-title: Appl. Environ. Microbiol. – volume: 49 start-page: 904 year: 2013 end-page: 913 ident: b0035 article-title: Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV) publication-title: Eur. Polym. J. – volume: 205 start-page: 215 year: 2018 end-page: 230 ident: b0335 article-title: Challenges of scaling-up PHA production from waste streams. A review publication-title: J. Environ. Manage. – volume: 39 start-page: 15 year: 2008 end-page: 27 ident: b0145 article-title: Isolation and purification of bacterial poly(3-hydroxyalkanoates) publication-title: Biochem. Eng. J. – volume: 75 start-page: 475 year: 2007 end-page: 485 ident: b0360 article-title: Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates publication-title: Appl. Microbiol. Biotechnol. – volume: 93 start-page: 76 year: 2006 end-page: 88 ident: b0070 article-title: Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor publication-title: Biotechnol. Bioeng. – volume: 287 start-page: 121427 year: 2019 ident: b0190 article-title: A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production publication-title: Bioresour. Technol. – volume: 32 start-page: 1480 year: 2016 end-page: 1486 ident: b0030 article-title: An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from publication-title: Biotechnol. Prog. – volume: 45 start-page: 1309 year: 2011 end-page: 1321 ident: b0150 article-title: Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production publication-title: Water Res. – volume: 17 start-page: 1047 year: 2015 end-page: 1056 ident: b0340 article-title: Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass publication-title: Green Chem. – volume: 21 start-page: 580 year: 2013 end-page: 605 ident: b0115 article-title: Recent advances in the production, recovery and applications of polyhydroxyalkanoates publication-title: J. Polym. Environ. – volume: 255 start-page: 111 year: 2018 end-page: 115 ident: b0185 article-title: Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge publication-title: Bioresour. Technol. – volume: 87 start-page: 145 year: 2004 end-page: 160 ident: b0350 article-title: Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions publication-title: Biotechnol. Bioeng. – volume: 130 start-page: 411 year: 2007 end-page: 421 ident: b0005 article-title: Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses publication-title: J. Biotechnol. – volume: 13 start-page: 549 year: 2013 end-page: 562 ident: b0165 article-title: Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass publication-title: Eng. Life Sci. – volume: 72 start-page: 2322 year: 2006 end-page: 2330 ident: b0095 article-title: rRNA and poly-β-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles publication-title: Appl. Environ. Microbiol. – reference: Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., et al., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci. Technol. 78, 2256-2269. – volume: 124 start-page: 208 year: 2012 end-page: 216 ident: b0265 article-title: Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME) publication-title: Bioresour. Technol. – volume: 37 start-page: 69 year: 2017 end-page: 79 ident: b0295 article-title: Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities publication-title: New Biotechnol. – reference: [Accessed May 10, 2020]. – volume: 58 start-page: 9 year: 2014 end-page: 20 ident: b0275 article-title: Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures publication-title: Water Res. – volume: 2 start-page: 59 year: 2012 ident: b0135 article-title: Large scale extraction of poly(3-hydroxybutyrate) from publication-title: AMB Express – volume: 185 start-page: 368 year: 2015 end-page: 377 ident: b0090 article-title: Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment publication-title: Bioresour. Technol. – volume: 122 start-page: 226 year: 2006 end-page: 238 ident: b0225 article-title: Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding publication-title: J. Biotechnol. – volume: 18 start-page: 341 year: 2016 end-page: 357 ident: b0315 article-title: A holistic view of polyhydroxyalkanoate metabolism in publication-title: Environ. Microbiol. – volume: 37 start-page: 90 year: 2017 end-page: 98 ident: b0355 article-title: Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures publication-title: New Biotechnol. – volume: 102 start-page: 111 year: 2013 end-page: 117 ident: b0020 article-title: Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from publication-title: Sep. Purif. Technol. – volume: 346 start-page: 56 year: 2013 end-page: 64 ident: b0415 article-title: Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate publication-title: FEMS Microbiol. Lett. – volume: 15 start-page: 1204 year: 2013 end-page: 1215 ident: b0250 article-title: Reward for publication-title: Environ. Microbiol. – volume: 112 start-page: 4618 year: 2016 end-page: 4627 ident: b0010 article-title: Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH publication-title: J. Clean. Prod. – volume: 200 start-page: 820 year: 2016 end-page: 829 ident: b0040 article-title: Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line publication-title: Bioresour. Technol. – volume: 19 start-page: 935 year: 2017 end-page: 947 ident: b0085 article-title: Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria publication-title: Clean Technol. Environ. Policy – reference: Djordjevic, S., n.d. About YPACK. YPACK. Available at: – start-page: 178 year: 1986 end-page: 207 ident: b0100 article-title: Regulation of Bacterial Metabolism publication-title: Bacterial Metabolism Springer Series in Microbiology – volume: 5 start-page: 620 year: 2011 end-page: 634 ident: b0200 article-title: Isolation and recovery of microbial polyhydroxyalkanoates publication-title: Express Polym. Lett. – volume: 140 start-page: 1 year: 2018 end-page: 11 ident: b0405 article-title: Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors publication-title: Water Res. – volume: 4 start-page: 55 year: 2017 ident: b0180 article-title: Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production publication-title: Bioeng. – volume: 29 start-page: 783 year: 2012 end-page: 789 ident: b0270 article-title: Efficient Polyhydroxyalkanoate recovery from recombinant publication-title: Environ. Eng. Sci. – reference: Guventurk, A., Ozturk, D., Ozyildiz, G., Ayisigi, E., Guven, D., Zengin, G. E., et al., 2020. Determination of the potential of pickle wastewater as feedstock for biopolymer production. Water Sci. Technol. 81, 21-28. – volume: 96 start-page: 149 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0370 article-title: Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.07.021 – volume: 19 start-page: 935 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0085 article-title: Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-016-1286-9 – ident: 10.1016/j.biortech.2021.124985_b0235 doi: 10.1021/bm4010244 – volume: 130 start-page: 411 year: 2007 ident: 10.1016/j.biortech.2021.124985_b0005 article-title: Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2007.05.011 – volume: 21 start-page: 580 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0115 article-title: Recent advances in the production, recovery and applications of polyhydroxyalkanoates publication-title: J. Polym. Environ. doi: 10.1007/s10924-012-0527-1 – volume: 93 start-page: 250 year: 2015 ident: 10.1016/j.biortech.2021.124985_b0230 article-title: Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2014.10.018 – volume: 58 start-page: 9 year: 2014 ident: 10.1016/j.biortech.2021.124985_b0275 article-title: Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures publication-title: Water Res. doi: 10.1016/j.watres.2014.03.066 – volume: 107 start-page: 762 year: 2018 ident: 10.1016/j.biortech.2021.124985_b0170 article-title: Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.09.054 – volume: 192 start-page: 161 year: 2014 ident: 10.1016/j.biortech.2021.124985_b0365 article-title: Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.10.022 – volume: 15 start-page: 1204 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0250 article-title: Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12047 – volume: 75 start-page: 475 year: 2007 ident: 10.1016/j.biortech.2021.124985_b0360 article-title: Fermentation process development for the production of medium-chain-length poly-3-hyroxyalkanoates publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-0857-4 – volume: 4 start-page: 55 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0180 article-title: Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production publication-title: Bioeng. – volume: 297 start-page: 122478 year: 2020 ident: 10.1016/j.biortech.2021.124985_b0245 article-title: Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122478 – ident: 10.1016/j.biortech.2021.124985_b0395 – volume: 112 start-page: 4618 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0010 article-title: Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.08.009 – volume: 13 start-page: 549 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0165 article-title: Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass publication-title: Eng. Life Sci. doi: 10.1002/elsc.201300021 – volume: 222 start-page: 388 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0175 article-title: Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.10.014 – start-page: 131 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0300 article-title: Innovative and sustainable production of biopolymers – volume: 7 year: 2012 ident: 10.1016/j.biortech.2021.124985_b0120 article-title: Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers publication-title: PLoS One – volume: 255 start-page: 111 year: 2018 ident: 10.1016/j.biortech.2021.124985_b0185 article-title: Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.031 – ident: 10.1016/j.biortech.2021.124985_b0260 doi: 10.1111/j.1574-6968.1992.tb05838.x – volume: 19 start-page: 1519 year: 2003 ident: 10.1016/j.biortech.2021.124985_b0140 article-title: Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery publication-title: Biotechnol. Prog. doi: 10.1021/bp034010q – volume: 37 start-page: 69 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0295 article-title: Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: feast and famine regime and uncoupled carbon and nitrogen availabilities publication-title: New Biotechnol. doi: 10.1016/j.nbt.2016.10.008 – ident: 10.1016/j.biortech.2021.124985_b0080 – volume: 98 start-page: 94 year: 2018 ident: 10.1016/j.biortech.2021.124985_b0110 article-title: Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.11.007 – volume: 18 start-page: 341 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0315 article-title: A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12760 – volume: 102 start-page: 111 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0020 article-title: Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.09.036 – volume: 37 start-page: 90 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0355 article-title: Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures publication-title: New Biotechnol. doi: 10.1016/j.nbt.2016.07.013 – volume: 8 start-page: 791 year: 2014 ident: 10.1016/j.biortech.2021.124985_b0045 article-title: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging publication-title: eXPRESS Polym. Lett. doi: 10.3144/expresspolymlett.2014.82 – volume: 124 start-page: 208 year: 2012 ident: 10.1016/j.biortech.2021.124985_b0265 article-title: Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.036 – volume: 28 start-page: 1575 year: 2012 ident: 10.1016/j.biortech.2021.124985_b0285 article-title: Use of enzymes in extraction of polyhydroxyalkanoates produced by Cupriavidus necator publication-title: Biotechnol. Prog. doi: 10.1002/btpr.1624 – volume: 3 start-page: 853 year: 2006 ident: 10.1016/j.biortech.2021.124985_b0380 article-title: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.3.6.853 – volume: 205 start-page: 215 year: 2018 ident: 10.1016/j.biortech.2021.124985_b0335 article-title: Challenges of scaling-up PHA production from waste streams. A review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.09.083 – volume: 32 start-page: 1480 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0030 article-title: An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator publication-title: Biotechnol. Prog. doi: 10.1002/btpr.2346 – volume: 65 start-page: 2762 year: 1999 ident: 10.1016/j.biortech.2021.124985_b0220 article-title: Removal of edotoxin during Pprification of poly(3-hydroxybutyrate) from gram-negative bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.6.2762-2764.1999 – volume: 172 start-page: 1 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0210 article-title: Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.07.043 – volume: 8 start-page: 118 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0195 article-title: Bioplastics-classification, production and their potential food applications publication-title: J. Hill Agric. doi: 10.5958/2230-7338.2017.00024.6 – volume: 5 start-page: 620 year: 2011 ident: 10.1016/j.biortech.2021.124985_b0200 article-title: Isolation and recovery of microbial polyhydroxyalkanoates publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2011.60 – volume: 122 start-page: 226 year: 2006 ident: 10.1016/j.biortech.2021.124985_b0225 article-title: Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2005.09.006 – volume: 290 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0320 article-title: A review on biopolymer production via lignin valorization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121790 – volume: 72 start-page: 2322 year: 2006 ident: 10.1016/j.biortech.2021.124985_b0095 article-title: rRNA and poly-β-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.4.2322-2330.2006 – volume: 282 start-page: 361 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0240 article-title: Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.037 – ident: 10.1016/j.biortech.2021.124985_b0125 doi: 10.2166/wst.2020.060 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0255 article-title: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates publication-title: Sci. Rep. doi: 10.1038/srep24381 – volume: 282 start-page: 75 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0345 article-title: Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.02.083 – start-page: 178 year: 1986 ident: 10.1016/j.biortech.2021.124985_b0100 article-title: Regulation of Bacterial Metabolism doi: 10.1007/978-1-4612-1072-6_7 – volume: 8 start-page: e78528 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0205 article-title: Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously publication-title: PLoS One doi: 10.1371/journal.pone.0078528 – volume: 17 start-page: 1047 issue: 2 year: 2015 ident: 10.1016/j.biortech.2021.124985_b0340 article-title: Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass publication-title: Green Chem. doi: 10.1039/C4GC01821D – volume: 45 start-page: 1309 year: 2011 ident: 10.1016/j.biortech.2021.124985_b0150 article-title: Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production publication-title: Water Res. doi: 10.1016/j.watres.2010.10.009 – volume: 87 start-page: 145 year: 2004 ident: 10.1016/j.biortech.2021.124985_b0350 article-title: Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20085 – volume: 37 start-page: 9 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0385 article-title: Carbon recovery from wastewater through bioconversion into biodegradable polymers publication-title: New Biotechnol. doi: 10.1016/j.nbt.2016.05.007 – volume: 49 start-page: 904 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0035 article-title: Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV) publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.10.025 – volume: 29 start-page: 783 year: 2012 ident: 10.1016/j.biortech.2021.124985_b0270 article-title: Efficient Polyhydroxyalkanoate recovery from recombinant Cupriavidus necator by using low concentration of NaOH publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2011.0255 – volume: 6 start-page: 561 year: 2005 ident: 10.1016/j.biortech.2021.124985_b0160 article-title: Production of polyhydroxyalkanoates from agricultural waste and surplus materials publication-title: Biomacromol. doi: 10.1021/bm049478b – volume: 100 start-page: 9103 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0130 article-title: A novel cell autolysis system for cost-competitive downstream processing publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7669-3 – volume: 5 start-page: 5 year: 2015 ident: 10.1016/j.biortech.2021.124985_b0155 article-title: Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture publication-title: AMB Express doi: 10.1186/s13568-015-0096-5 – volume: 376 start-page: 15 year: 2003 ident: 10.1016/j.biortech.2021.124985_b0325 article-title: Polyester synthases: natural catalysts for plastics publication-title: Biochem. J. doi: 10.1042/bj20031254 – volume: 6 start-page: 885 issue: 11 year: 2006 ident: 10.1016/j.biortech.2021.124985_b0060 article-title: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product publication-title: Macromol. Biosci. doi: 10.1002/mabi.200600112 – ident: 10.1016/j.biortech.2021.124985_b0390 doi: 10.2166/wst.1997.0008 – volume: 25 start-page: 111 year: 1999 ident: 10.1016/j.biortech.2021.124985_b0410 article-title: PHA applications: addressing the price performance issue: I. Tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/S0141-8130(99)00022-7 – volume: 200 start-page: 820 year: 2016 ident: 10.1016/j.biortech.2021.124985_b0040 article-title: Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.063 – ident: 10.1016/j.biortech.2021.124985_b0055 doi: 10.1007/978-3-642-03287-5_6 – volume: 31 start-page: 308 year: 2014 ident: 10.1016/j.biortech.2021.124985_b0025 article-title: Integration of biopolymer production with process water treatment at a sugar factory publication-title: New Biotechnol. doi: 10.1016/j.nbt.2013.11.008 – volume: 346 start-page: 56 year: 2013 ident: 10.1016/j.biortech.2021.124985_b0415 article-title: Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12201 – volume: 170 start-page: 115371 year: 2020 ident: 10.1016/j.biortech.2021.124985_b0280 article-title: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas publication-title: Water Res. doi: 10.1016/j.watres.2019.115371 – volume: 39 start-page: 15 year: 2008 ident: 10.1016/j.biortech.2021.124985_b0145 article-title: Isolation and purification of bacterial poly(3-hydroxyalkanoates) publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2007.11.029 – volume: 73 start-page: 85 year: 2001 ident: 10.1016/j.biortech.2021.124985_b0075 article-title: Glycogen metabolism in aerobic mixed cultures publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.1040 – volume: 2 start-page: 59 year: 2012 ident: 10.1016/j.biortech.2021.124985_b0135 article-title: Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite publication-title: AMB Express doi: 10.1186/2191-0855-2-59 – volume: 287 start-page: 121427 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0190 article-title: A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121427 – volume: 140 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2021.124985_b0405 article-title: Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors publication-title: Water Res. doi: 10.1016/j.watres.2018.04.017 – volume: 185 start-page: 368 year: 2015 ident: 10.1016/j.biortech.2021.124985_b0090 article-title: Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.025 – volume: 103 start-page: 143 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0015 article-title: Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9483-6 – volume: 10 start-page: 916 issue: 4 year: 2009 ident: 10.1016/j.biortech.2021.124985_b0330 article-title: Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? publication-title: Biomacromol. doi: 10.1021/bm801431c – volume: 2 start-page: 59 issue: 1 year: 2008 ident: 10.1016/j.biortech.2021.124985_b0065 article-title: Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-2-59 – volume: 93 start-page: 76 year: 2006 ident: 10.1016/j.biortech.2021.124985_b0070 article-title: Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20683 – ident: 10.1016/j.biortech.2021.124985_b0375 – ident: 10.1016/j.biortech.2021.124985_b0400 doi: 10.2166/wst.2018.502 – volume: 25 start-page: 243 year: 2005 ident: 10.1016/j.biortech.2021.124985_b0420 article-title: A review of plastic waste biodegradation publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550500346359 – ident: 10.1016/j.biortech.2021.124985_b0310 doi: 10.2166/wst.2012.086 – volume: 37 start-page: 108 year: 2017 ident: 10.1016/j.biortech.2021.124985_b0105 article-title: Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: impact on performance and microbial population publication-title: New Biotechnol. doi: 10.1016/j.nbt.2016.07.001 – volume: 150 start-page: 107283 year: 2019 ident: 10.1016/j.biortech.2021.124985_b0305 article-title: A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.107283 |
SSID | ssj0003172 |
Score | 2.635504 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Polyhydroxyalkanoate (PHA) production from industrial waste streams was reviewed.•Different enrichment and accumulation techniques for PHA... The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124985 |
SubjectTerms | Biofuels biogas biohydrogen Biopolymers Bioreactors Biorefinery biorefining carbon Industrial Waste Industrial wastes medical equipment Metabolic pathway Polyhydroxyalkanoate (PHA) Polyhydroxyalkanoates Pretreatment Resource recovery value added Waste Water wastewater |
Title | Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives |
URI | https://dx.doi.org/10.1016/j.biortech.2021.124985 https://www.ncbi.nlm.nih.gov/pubmed/33819906 https://www.proquest.com/docview/2509273571 https://www.proquest.com/docview/2524218944 |
Volume | 331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QAcEJRXClSDxAEOTuzY69jcrIgqgKgqQaXeVvsEl2BHSVqUCwd-OTN-pEUCeuBkxdmVVp7xN99655sBeJEnjsKSMwHhowqSNHJB7lJ6ryZM3xPlRcxq5A9H6ewkeXcqTndg2mthOK2yw_4W0xu07u6Muqc5WpTl6COT70zwkSZ5Jl1YwZ5MOK1v-OMyzYPiY3OSQIMDHn1FJXw21CVntDaHEuNoyH2YuafynwPU3whoE4gO78KdjkFi0S7yHuy4ag9uF5-XXRUNtwc3p30bN_rnSsXB-_DzuJ5vvmwsJ6-o-VdV1cQ18eXxrHiFi7b4KxkKL0qFy-7DPvKemRx-gyxFwXLb6wO_K3IRZLWJ-rZ6jQW2OhisPW5Lw65QVRYXl5LO1QM4OXzzaToLujYMgSEUXQfE2GKtIuW9DUPtrfVxZmiXZvNo7LhrqLJmbLUNjTFCidAbwpBYZzoSRO-MjR_CblVX7jEgAWsjbdWZiRNPAOeJYTiv01QoQho9ANE_e2m6GuXcKmMu-2S0M9nbTLLNZGuzAYy28xZtlY5rZ-S9aeVv_iYplFw793nvC5KMyScsqnL1-UoSn8yJD4pJ9K8x7LJZniQDeNQ60nbNMe-f8zDd_4_VPYFb_KtNKX4Ku-vluXtGxGmtD5o34wBuFG_fz45-AY53Gjc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9FB6QFBe4blIHODgxo69rs3Niqhc2kaVaKXeVvssLqkdJSkoV345M35RJKAHTpbsXWm1M_vNt54XwNs0smiWrPYQH6UXxYH1Uhvjudoj-h5Jx0PKRj6exvlZ9Omcn2_ApMuFobDKFvsbTK_Run0zandzNC-K0Wci3wknlyZqJj7uwCZVp4oGsJkdHObTHpDRRNbOBBzv0YQbicKXu6qgoNbaLzEOdqkVM7VV_rON-hsHrW3R_n2415JIljXrfAAbttyB7exi0RbSsDuwNek6ueGXG0UHH8KPk2q2_rI2FL8iZ19lWSHdZO9O8uw9mzf1X1FW7Fsh2aL9t8_o2ow6v2aUjcKKvt0H-y5RSxglnMir5QeWsSYVhlWO9dVhl0yWhs1_ZXUuH8HZ_sfTSe61nRg8jUC68pC0hUoG0jnj-8oZ48JE40XNpMHYUuNQafTYKONrrbnkvtMII6FKVMCR4WkTPoZBWZX2KTDE1jq7VSU6jBxinEOSYZ2KYy4RbNQQeLf3Qrdlyqlbxkx08WiXopOZIJmJRmZDGPXz5k2hjltnpJ1oxW8qJ9Ca3Dr3TacLAoVJThZZ2up6KZBSpkgJ-V7wrzGktUkaRUN40ihSv-aQrtCpHz_7j9W9hq389PhIHB1MD5_DXfrSRBi_gMFqcW1fIo9aqVftOfkJIVcc6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyhydroxyalkanoate+%28PHA%29+production+via+resource+recovery+from+industrial+waste+streams%3A+A+review+of+techniques+and+perspectives&rft.jtitle=Bioresource+technology&rft.au=De+Donno+Novelli%2C+Laura&rft.au=Moreno+Sayavedra%2C+Sarah&rft.au=Rene%2C+Eldon+R&rft.date=2021-07-01&rft.issn=0960-8524&rft.volume=331+p.124985-&rft_id=info:doi/10.1016%2Fj.biortech.2021.124985&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |