Magnetic field-directed self-assembly of magnetic nanoparticles

This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing nove...

Full description

Saved in:
Bibliographic Details
Published inMRS bulletin Vol. 38; no. 11; pp. 915 - 920
Main Authors Tracy, Joseph B., Crawford, Thomas M.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.11.2013
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials.
AbstractList This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials.
Abstract [PUBLICATION ABSTRACT] This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials. [PUBLICATION ABSTRACT]
Abstract This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials.
Author Crawford, Thomas M.
Tracy, Joseph B.
Author_xml – sequence: 1
  givenname: Joseph B.
  surname: Tracy
  fullname: Tracy, Joseph B.
  email: jbtracy@ncsu.edu
  organization: North Carolina State University, USA; jbtracy@ncsu.edu
– sequence: 2
  givenname: Thomas M.
  surname: Crawford
  fullname: Crawford, Thomas M.
  email: crawford@physics.sc.edu
  organization: University of South Carolina, USA; crawford@physics.sc.edu
BookMark eNqF0MtKAzEUBuAgFazVnQ8w4MaFM-Y6SVYixRtU3Og6ZJIzZcpcajJd9O1NaQUR0U1OFt_5OfynaNIPPSB0QXBBhJA3XYgFxYQVlLEjNCWaqZxwKiZoipViuSw1P0GnMa4wJgJLMUW3L3bZw9i4rG6g9blvArgRfBahrXMbI3RVu82GOuu-YG_7YW1D-rYQz9BxbdsI54c5Q-8P92_zp3zx-vg8v1vkjpdyzImQRFFnq4pzz6nSvvJSMqE0FgR8KZxQSjvOiPV1hWsHXpSWY0ZKqagFNkNX-9x1GD42EEfTNdFB29oehk00hGvOuCJEJHr5g66GTejTdYZqKjlLL_tLES4o1yXXKqnrvXJhiDFAbdah6WzYGoLNrnOTOje7zk3KTDzf85hYv4TwLfR3XxzibVeFxi_hn4VPvoWSnA
CODEN MRSBEA
CitedBy_id crossref_primary_10_1063_1_4945761
crossref_primary_10_2118_201365_PA
crossref_primary_10_1039_C4FD00245H
crossref_primary_10_1088_1361_6528_aba3db
crossref_primary_10_1002_adfm_201504443
crossref_primary_10_1063_5_0190550
crossref_primary_10_1016_j_pmatsci_2018_03_003
crossref_primary_10_1063_1_4864113
crossref_primary_10_1002_wnan_1868
crossref_primary_10_1002_ppap_202400002
crossref_primary_10_1209_0295_5075_111_37002
crossref_primary_10_1063_1_4913818
crossref_primary_10_1002_nano_202000149
crossref_primary_10_1021_acsami_7b01209
crossref_primary_10_1080_00268976_2022_2067503
crossref_primary_10_3389_fnano_2022_887715
crossref_primary_10_1002_adfm_202003725
crossref_primary_10_1021_acs_jpcc_6b10776
crossref_primary_10_1002_admt_202000147
crossref_primary_10_1002_admt_202302243
crossref_primary_10_1021_acs_nanolett_6b02618
crossref_primary_10_1007_s10562_014_1442_y
crossref_primary_10_1063_1_5038726
crossref_primary_10_1039_C4NR02025A
crossref_primary_10_1063_1_4895591
crossref_primary_10_1016_j_jmmm_2015_10_112
crossref_primary_10_1021_acsnano_2c07910
crossref_primary_10_1063_1_4893699
crossref_primary_10_1002_adfm_201504749
crossref_primary_10_1063_1_5129919
crossref_primary_10_1016_j_bbamem_2024_184352
crossref_primary_10_1002_smll_201700897
crossref_primary_10_1039_D1SM01569A
crossref_primary_10_1016_j_jmmm_2018_03_075
crossref_primary_10_1021_acs_jpcb_1c03158
crossref_primary_10_1111_cpr_12234
crossref_primary_10_1021_acsami_5b01053
crossref_primary_10_1142_S0219519423400274
crossref_primary_10_1021_acs_jpcc_3c03755
crossref_primary_10_1002_adma_202203366
crossref_primary_10_1021_acsnano_0c08346
crossref_primary_10_1098_rsos_140271
crossref_primary_10_1088_0022_3727_49_43_433001
crossref_primary_10_3390_ma11010018
crossref_primary_10_1002_adfm_201504699
crossref_primary_10_1002_adfm_202400193
crossref_primary_10_1088_1361_6528_aceafc
crossref_primary_10_1039_C6NR06275J
crossref_primary_10_1021_acsami_2c05378
crossref_primary_10_1021_acsami_6b03091
crossref_primary_10_1002_smll_201603350
crossref_primary_10_1039_D0SM01088J
crossref_primary_10_1088_1361_6528_ad568d
crossref_primary_10_1063_5_0059285
crossref_primary_10_1126_sciadv_aaw2897
crossref_primary_10_1039_C5NR07410J
Cites_doi 10.1103/PhysRevLett.97.185702
10.1103/PhysRevE.80.051402
10.1021/ar200276t
10.1071/CH01119
10.5012/bkcs.2012.33.11.3735
10.1021/jp031148i
10.1038/ncomms1798
10.1063/1.1782154
10.1002/anie.200700197
10.1021/jp035665c
10.1103/PhysRev.38.1903
10.1021/la0352016
10.1021/nl803757u
10.1016/0304-8853(93)91034-5
10.1126/science.1070821
10.1016/j.jmmm.2003.11.006
10.1126/science.1096566
10.1063/1.2164531
10.1063/1.1453951
10.1039/b712513e
10.1364/OE.21.001066
10.1021/nn901597a
10.1088/0957-4484/23/18/185304
10.1002/ppsc.201300101
10.1109/TMAG.1983.1062795
10.1021/nn7001213
10.1021/cm010811h
10.1021/cr9001929
10.1109/TMAG.1984.1063234
10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J
10.1021/cr078258w
10.1038/nmat3090
10.1002/anie.200701992
10.1146/annurev.mi.36.100182.001245
10.1002/adma.200401880
10.1002/adma.200305603
10.1038/28998
10.1021/mz2001059
10.1021/ja0263285
10.1021/ja0609147
10.1039/B304972H
10.1109/TMAG.2004.836740
10.1039/b812115j
10.1021/nn900289n
10.1088/0957-4484/20/49/495301
10.1039/C2SM27420E
10.1021/ac7020739
10.1021/ja037642h
10.1038/nmat811
10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G
10.1103/PhysRevLett.72.2959
10.1039/C3NR32979H
10.1021/cm102319d
10.1109/TMAG.1983.1062681
10.1063/1.1543134
10.1002/adma.200800022
10.1021/nl301780x
10.1103/PhysRevLett.104.207203
10.1021/la9041343
10.1021/ma300500z
10.1016/0304-8853(93)90033-X
10.1002/adma.200401593
10.1016/j.jmmm.2009.02.085
10.1063/1.3556770
10.1002/smll.200900358
10.1038/nature07766
10.1039/c0jm03790g
10.1209/0295-5075/77/68004
10.1039/c2ra20489d
10.1063/1.1555908
10.1126/science.1210822
10.1038/nature04586
10.1016/j.mattod.2013.04.008
10.1021/ja908481z
10.1006/jssc.2001.9117
10.1103/PhysRevLett.74.2828
10.1109/TMAG.2006.879623
10.1016/j.jssc.2008.04.007
10.1073/pnas.0500409102
ContentType Journal Article
Copyright Copyright © Materials Research Society 2013
The Materials Research Society 2013
The Materials Research Society 2013.
Copyright_xml – notice: Copyright © Materials Research Society 2013
– notice: The Materials Research Society 2013
– notice: The Materials Research Society 2013.
DBID AAYXX
CITATION
7SR
7TA
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
S0W
7U5
L7M
DOI 10.1557/mrs.2013.233
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
https://resources.nclive.org/materials
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Materials Business File
METADEX
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Materials Research Database

ProQuest Materials Science Collection

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1938-1425
EndPage 920
ExternalDocumentID 3125558081
10_1557_mrs_2013_233
GroupedDBID -2P
-2V
-E.
.FH
0E1
0R~
123
2JN
4.4
406
5VS
74X
74Y
7~V
8FE
8FG
8UJ
AAAZR
AABES
AABWE
AACJH
AAEED
AAFGU
AAGFV
AAHNG
AAKTX
AARAB
AATID
AATNV
AAUKB
AAYFA
ABAKF
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKAS
ABKKG
ABMQK
ABMWE
ABMYL
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ABZUI
ACAOD
ACBEA
ACBEK
ACBMC
ACCHT
ACETC
ACGFS
ACHSB
ACIGE
ACIMK
ACIWK
ACQFJ
ACQPF
ACREK
ACTTH
ACUIJ
ACUYZ
ACVWB
ACWGA
ACWMK
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADGEJ
ADOCW
ADOVH
ADOVT
ADOXG
AEBAK
AEFTE
AEHGV
AEMSY
AEMTW
AENEX
AENGE
AESKC
AESTI
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFNRJ
AFQWF
AFUTZ
AGLWM
AGMZJ
AGOOT
AGQEE
AHQXX
AIGIU
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJDOV
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BMAJL
BQFHP
C0O
CBIIA
CCPQU
CCUQV
CFAFE
CFBFF
CGQII
CZ9
D1I
DC4
DOHLZ
DPUIP
EBS
EJD
FIGPU
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
KAFGG
KB.
KC.
KCGVB
KFECR
L98
LHUNA
LLZTM
M-V
M7~
M8.
NIKVX
NPVJJ
NQJWS
O9-
PDBOC
PYCCK
RAMDC
RCA
RNS
RR0
RSV
S0W
S6-
S6U
SAAAG
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TN5
UT1
WQ3
WXU
WXY
Z7R
Z7V
Z7X
Z7Y
Z81
Z83
Z88
ZDLDU
ZE2
ZJOSE
ZMEZD
ZMTXR
ZYDXJ
~V1
AACDK
AAJBT
AASML
AEFQL
AAEWM
AAYXX
ACDTI
AKYQF
CITATION
CTKSN
EBLON
ROL
SJYHP
7SR
7TA
8BQ
8FD
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7U5
L7M
ID FETCH-LOGICAL-c467t-157182cabb44d4289dbd773589051ed65c5889c431adfb0fced56a40316782ae3
IEDL.DBID 8FG
ISSN 0883-7694
IngestDate Fri Oct 25 06:43:22 EDT 2024
Thu Oct 10 22:04:35 EDT 2024
Tue Nov 05 15:49:43 EST 2024
Thu Sep 26 16:45:17 EDT 2024
Fri Apr 05 04:50:55 EDT 2024
Wed Mar 13 05:54:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nanoscale
self-assembly
magnetic properties
magnetic
colloid
nanostructure
particulate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-157182cabb44d4289dbd773589051ed65c5889c431adfb0fced56a40316782ae3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1452496498
PQPubID 626324
PageCount 6
ParticipantIDs proquest_miscellaneous_1494348115
proquest_journals_2927432923
proquest_journals_1452496498
crossref_primary_10_1557_mrs_2013_233
springer_journals_10_1557_mrs_2013_233
cambridge_journals_10_1557_mrs_2013_233
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
– name: Warrendale
PublicationTitle MRS bulletin
PublicationTitleAbbrev MRS Bulletin
PublicationTitleAlternate MRS Bull
PublicationYear 2013
Publisher Cambridge University Press
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Cambridge University Press
– name: Springer International Publishing
– name: Springer Nature B.V
References Elemans, Rowan, Nolte 2003; 13
Gerber, Takayasu, Friedlaender 1983; 19
Ge, Hu, Biasini, Beyermann, Yin 2007; 46
Krommenhoek, Tracy 2013; 30
Saville, Woodward, House, Tokarev, Hammers, Qi, Shaw, Saunders, Varsani, St. Pierre, Mefford 2013; 5
Keng, Bull, Shim, Nebesny, Armstrong, Sung, Char, Pyun 2011; 23
Erb, Krebs, Alsberg, Samanta, Rotello, Yellen 2009; 80
Lalatonne, Motte, Russier, Ngo, Bonville, Pileni 2004; 108
Tripp, Pusztay, Ribbe, Wei 2002; 124
Fang, He, Xu, Mao, Shen 2007; 77
Tang, Kotov 2005; 17
Yellen, Erb, Halverson, Hovorka, Friedman 2006; 42
Winfree, Liu, Wenzler, Seeman 1998; 394
Furlani 2006; 99
Park, Jun, Choi, Cheon 2007
Helseth, Fischer, Johansen 2004; 277
Klokkenburg, Erné, Meeldijk, Wiedenmann, Petukhov, Dullens, Philipse 2006; 97
Ye, Terry, Mefford, Rinaldi, Crawford 2013; 21
Wang, Chen, Sun, Wang, Sun, Yan 2010; 26
Erb, Libanori, Rothfuchs, Studart 2012; 335
Porthun, ten Berge, Lodder 1993; 123
Gerber 1984; 20
Thomas 1966; 37
Keng, Shim, Korth, Douglas, Pyun 2007; 1
Chang, Tan, Miao, Barbastathis 2009; 20
Bibette 1993; 122
Kim, Kim, Kim, Choi, Park, Kwon 2012; 33
Gilbert 2004; 40
He, Wang, Ge, Yin 2012; 45
Liu, Lawrence, Wu, Ivey, Flores, Javier, Bibette, Richard 1995; 74
Pileni 2001; 11
Lin, Zhou, Kumbhar, Wiemann, Fang, Carpenter, O’Connor 2001; 159
Sahoo, Cheon, Wang, Luo, Furlani, Prasad 2004; 108
Nakata, Hu, Uzun, Bakr, Stellacci 2008; 20
Kim, Chung, Choi, Lee, Kim, Kwon 2011; 10
Calderon, Stora, Mondain Monval, Poulin, Bibette 1994; 72
Khalil, Sagastegui, Li, Tahir, Socolar, Wiley, Yellen 2012; 3
Ghosh, Puri 2013; 9
Gopinadhan, Majewski, Beach, Osuji 2011; 1
Yellen, Hovorka, Friedman 2005; 102
Henderson, Shi, Cakmaktepe, Crawford 2012; 23
Xuan, Wu, Yin, Ge 2011; 21
Kim, Shim, Araci, Saavedra, Monti, Armstrong, Sahoo, Srivastava, Pyun 2010; 132
Krycka, Booth, Hogg, Ijiri, Borchers, Chen, Watson, Laver, Gentile, Dedon, Harris, Rhyne, Majetich 2010; 104
Love, Urbach, Prentiss, Whitesides 2003; 125
Faivre, Schüler 2008; 108
Yin, Rioux, Erdonmez, Hughes, Somorjai, Alivisatos 2004; 304
Yellen, Friedman 2003; 93
Rothemund 2006; 440
Lim, Tan, Lanni, Tilton, Majetich 2009; 321
Xu, Friedman, Humfeld, Majetich, Asher 2001; 13
Korth, Keng, Shim, Bowles, Tang, Kowalewski, Nebesny, Pyun 2006; 128
Xu, Friedman, Humfeld, Majetich, Asher 2001; 14
Yellen, Friedman, Feinerman 2002; 91
Yellen, Friedman 2004; 16
Yellen, Friedman 2004; 20
Ge, Hu, Yin 2007; 46
Hilgendorff, Tesche, Giersig 2001; 54
Fragouli, Buonsanti, Bertoni, Sangregorio, Innocenti, Falqui, Gatteschi, Cozzoli, Athanassiou, Cingolani 2010; 4
Motornov, Malynych, Pippalla, Zdyrko, Royter, Roiter, Kahabka, Tokarev, Tokarev, Zhulina, Kornev, Luzinov, Minko 2012; 12
Srivastava, Kotov 2009; 5
Yellen, Friedman, Feinerman 2003; 93
Raman, Bose, Olsen, Hatton 2012; 45
Whitesides, Grzybowski 2002; 295
Roskov, Atkinson, Bronstein, Spontak 2012; 2
Henderson, Crawford 2011; 109
Butter, Bomans, Frederik, Vroege, Philipse 2003; 2
Takayasu, Gerber, Friedlaender 1983; 19
Wang, He, Yin 2013; 16
Bitter 1931; 38
Krebs, Erb, Yellen, Samanta, Bajaj, Rotello, Alsberg 2009; 9
Erb, Son, Samanta, Rotello, Yellen 2009; 457
Vasquez, Henkes, Bauer, Schaak 2008; 181
Alphandéry, Ding, Ngo, Wang, Wu, Pileni 2009; 3
Gunnarsson, Roy, Felton, Pihl, Svedlindh, Berner, Lidbaum, Oscarsson 2005; 17
Lacharme, Vandevyver, Gijs 2008; 80
Blakemore 1982; 36
Bishop, Wilmer, Soh, Grzybowski 2009; 5
Gijs, Lacharme, Lehmann 2009; 110
ButterK.BomansP.H.H.FrederikP.M.VroegeG.J.PhilipseA.P.Nat. Mater.2003288
PileniM.-P.Adv. Funct. Mater.200111323
WangM.HeL.YinY.Mater. Today201316110
J.I. Park, Y.W. Jun, J.S. Choi, J. Cheon, Chem. Commun. 5001 (2007).
SavilleS.L.WoodwardR.C.HouseM.J.TokarevA.HammersJ.QiB.ShawJ.SaundersM.VarsaniR.R.St. PierreT.G.MeffordO.T.Nanoscale201352152
YeL.TerryB.MeffordO.T.RinaldiC.CrawfordT.M.Opt. Express2013211066
RamanV.BoseA.OlsenB.D.HattonT.A.Macromolecules2012459373
BibetteJ.J. Magn. Magn. Mater.199312237
LalatonneY.MotteL.RussierV.NgoA.T.BonvilleP.PileniM.P.J. Phys. Chem. B20041081848
KhalilK.S.SagasteguiA.LiY.TahirM.A.SocolarJ.E.S.WileyB.J.YellenB.B.Nat. Commun.20123794
YellenB.B.HovorkaO.FriedmanG.Proc. Natl. Acad. Sci. U.S.A.20051028860
GilbertT.L.IEEE Trans. Magn.2004403443
KimJ.ChungS.E.ChoiS.-E.LeeH.KimJ.KwonS.Nat. Mater.201110747
CullityB.D.Introduction to Magnetic Materials1972NYAddison-Wesley
BitterF.Phys. Rev.1931381903
WhitesidesG.M.GrzybowskiB.Science20022952418
SrivastavaS.KotovN.A.Soft Matter200951146
WangH.ChenQ.-W.SunY.-B.WangM.-S.SunL.-X.YanW.-S.Langmuir2010265957
TakayasuM.GerberR.FriedlaenderF.J.IEEE Trans. Magn.1983192112
PorthunS.ten BergeP.LodderJ.C.J. Magn. Magn. Mater.1993123199
RothemundP.W.K.Nature2006440297
KimL.N.KimE.G.KimJ.ChoiS.E.ParkW.KwonS.Bull. Korean Chem. Soc.2012333735
ReitzJ.R.MilfordF.J.ChristyR.W.Foundations of Electromagnetic Theory19803NYAddison-Wesley
LiuJ.LawrenceE.M.WuA.IveyM.L.FloresG.A.JavierK.BibetteJ.RichardJ.Phys. Rev. Lett.1995742828
SahooY.CheonM.WangS.LuoH.FurlaniE.P.PrasadP.N.J. Phys. Chem. B20041083380
KengP.Y.BullM.M.ShimI.-B.NebesnyK.G.ArmstrongN.R.SungY.CharK.PyunJ.Chem. Mater.2011231120
XuX.FriedmanG.HumfeldK.D.MajetichS.A.AsherS.A.Adv. Mater.2001131681
ChangC.-H.TanC.-W.MiaoJ.BarbastathisG.Nanotechnology200920495301
YellenB.B.FriedmanG.Langmuir2004202553
GunnarssonK.RoyP.E.FeltonS.PihlJ.SvedlindhP.BernerS.LidbaumH.OscarssonS.Adv. Mater.2005171730
GeJ.HuY.YinY.Angew. Chem. Int. Ed.2007467428
YinY.RiouxR.M.ErdonmezC.K.HughesS.SomorjaiG.A.AlivisatosA.P.Science2004304711
ElemansJ.A.A.W.RowanA.E.NolteR.J.M.J. Mater. Chem.2003132661
YellenB.B.FriedmanG.FeinermanA.J. Appl. Phys.2003937331
YellenB.B.FriedmanG.Adv. Mater.200416111
GijsM.A.M.LacharmeF.LehmannU.Chem. Rev.20091101518
HendersonJ.R.CrawfordT.M.J. Appl. Phys.201110907D329
RoskovK.E.AtkinsonJ.E.BronsteinL.M.SpontakR.J.RSC Adv.201224603
GerberR.TakayasuM.FriedlaenderF.J.IEEE Trans. Magn.1983192115
WinfreeE.LiuF.WenzlerL.A.SeemanN.C.Nature1998394539
ThomasJ.R.J. Appl. Phys.1966372914
KorthB.D.KengP.ShimI.BowlesS.E.TangC.KowalewskiT.NebesnyK.W.PyunJ.J. Am. Chem. Soc.20061286562
ErbR.M.LibanoriR.RothfuchsN.StudartA.R.Science2012335199
AlphandéryE.DingY.NgoA.T.WangZ.L.WuL.F.PileniM.P.ACS Nano200931539
TrippS.L.PusztayS.V.RibbeA.E.WeiA.J. Am. Chem. Soc.20021247914
XuX.FriedmanG.HumfeldK.D.MajetichS.A.AsherS.A.Chem. Mater.2001141249
NakataK.HuY.UzunO.BakrO.StellacciF.Adv. Mater.2008204294
HelsethL.E.FischerTh.M.JohansenT.H.J. Magn. Magn. Mater.2004277245
BishopK.J.M.WilmerC.E.SohS.GrzybowskiB.A.Small200951600
CalderonF.L.StoraT.Mondain MonvalO.PoulinP.BibetteJ.Phys. Rev. Lett.1994722959
GhoshS.PuriI.K.Soft Matter201392024
LinJ.ZhouW.KumbharA.WiemannJ.FangJ.CarpenterE.E.O’ConnorC.J.J. Solid State Chem.200115926
XuanR.WuQ.YinY.GeJ.J. Mater. Chem.2011213672
LoveJ.C.UrbachA.R.PrentissM.G.WhitesidesG.M.J. Am. Chem. Soc.200312512696
MotornovM.MalynychS.Z.PippallaD.S.ZdyrkoB.RoyterH.RoiterY.KahabkaM.TokarevA.TokarevI.ZhulinaE.KornevK.G.LuzinovI.MinkoS.Nano Lett.2012123814
GeJ.HuY.BiasiniM.BeyermannW.P.YinY.Angew. Chem. Int. Ed.2007464342
YellenB.B.FriedmanG.FeinermanA.J. Appl. Phys.2002918552
LimJ.TanD.X.LanniF.TiltonR.D.MajetichS.A.J. Magn. Magn. Mater.20093211557
FurlaniE.P.J. Appl. Phys.200699024912
KryckaK.L.BoothR.A.HoggC.R.IjiriY.BorchersJ.A.ChenW.C.WatsonS.M.LaverM.GentileT.R.DedonL.R.HarrisS.RhyneJ.J.MajetichS.A.Phys. Rev. Lett.2010104207203
WangS.X.TaratorinA.Magnetic Information Storage Technology1999San DiegoAcademic Press
KlokkenburgM.ErnéB.H.MeeldijkJ.D.WiedenmannA.PetukhovA.V.DullensR.P.A.PhilipseA.P.Phys. Rev. Lett.200697185702
ErbR.M.SonH.S.SamantaB.RotelloV.M.YellenB.B.Nature2009457999
GopinadhanM.MajewskiP.W.BeachE.S.OsujiC.O.ACS Macro Lett.20111184
YellenB.B.FriedmanG.J. Appl. Phys.2003938447
FangW.X.HeZ.-H.XuX.-Q.MaoZ.-Q.ShenH.Europhys. Lett.20077768004
VasquezY.HenkesA.E.BauerJ.C.SchaakR.E.J. Solid State Chem.20081811509
KimB.Y.ShimI.-B.AraciZ.O.SaavedraS.S.MontiO.L.A.ArmstrongN.R.SahooR.SrivastavaD.N.PyunJ.J. Am. Chem. Soc.20101323234
BlakemoreR.P.Annu. Rev. Microbiol.198236217
GerberR.IEEE Trans. Magn.1984201159
HeL.WangM.GeJ.YinY.Acc. Chem. Res.2012451431
YellenB.B.ErbR.M.HalversonD.S.HovorkaO.FriedmanG.IEEE Trans. Magn.2006423548
ErbR.M.KrebsM.D.AlsbergE.SamantaB.RotelloV.M.YellenB.B.Phys. Rev. E200980051402
KrebsM.D.ErbR.M.YellenB.B.SamantaB.BajajA.RotelloV.M.AlsbergE.Nano Lett.200991812
HendersonJ.ShiS.CakmaktepeS.CrawfordT.M.Nanotechnology201223185304
KrommenhoekP.J.TracyJ.B.Part. Part. Syst. Char.201330759
TangZ.KotovN.A.Adv. Mater.200517951
HilgendorffM.TescheB.GiersigM.Aust. J. Chem.200154497
LacharmeF.VandevyverC.GijsM.A.M.Anal. Chem.2008802905
KengP.Y.ShimI.KorthB.D.DouglasJ.F.PyunJ.ACS Nano20071279
FaivreD.SchülerD.Chem. Rev.20081084875
FragouliD.BuonsantiR.BertoniG.SangregorioC.InnocentiC.FalquiA.GatteschiD.CozzoliP.D.AthanassiouA.CingolaniR.ACS Nano201041873
Reitz (S0883769413002339_ref7) 1980
S0883769413002339_ref36
S0883769413002339_ref37
S0883769413002339_ref38
S0883769413002339_ref39
S0883769413002339_ref72
S0883769413002339_ref73
S0883769413002339_ref74
S0883769413002339_ref30
S0883769413002339_ref75
S0883769413002339_ref31
S0883769413002339_ref76
S0883769413002339_ref32
S0883769413002339_ref77
S0883769413002339_ref33
S0883769413002339_ref78
S0883769413002339_ref34
S0883769413002339_ref79
S0883769413002339_ref35
S0883769413002339_ref70
S0883769413002339_ref71
S0883769413002339_ref47
S0883769413002339_ref48
S0883769413002339_ref49
S0883769413002339_ref8
S0883769413002339_ref40
S0883769413002339_ref6
S0883769413002339_ref41
S0883769413002339_ref42
S0883769413002339_ref5
S0883769413002339_ref43
S0883769413002339_ref44
S0883769413002339_ref45
S0883769413002339_ref46
S0883769413002339_ref4
S0883769413002339_ref80
S0883769413002339_ref3
S0883769413002339_ref81
S0883769413002339_ref2
S0883769413002339_ref82
S0883769413002339_ref1
S0883769413002339_ref58
S0883769413002339_ref14
S0883769413002339_ref59
S0883769413002339_ref15
S0883769413002339_ref16
S0883769413002339_ref17
S0883769413002339_ref18
S0883769413002339_ref19
S0883769413002339_ref50
S0883769413002339_ref51
Cullity (S0883769413002339_ref9) 1972
S0883769413002339_ref52
S0883769413002339_ref53
S0883769413002339_ref54
S0883769413002339_ref55
S0883769413002339_ref11
S0883769413002339_ref56
S0883769413002339_ref12
S0883769413002339_ref57
S0883769413002339_ref13
S0883769413002339_ref69
S0883769413002339_ref25
S0883769413002339_ref26
Wang (S0883769413002339_ref10) 1999
S0883769413002339_ref27
S0883769413002339_ref28
S0883769413002339_ref29
S0883769413002339_ref61
S0883769413002339_ref62
S0883769413002339_ref63
S0883769413002339_ref64
S0883769413002339_ref20
S0883769413002339_ref65
S0883769413002339_ref21
S0883769413002339_ref66
S0883769413002339_ref22
S0883769413002339_ref67
S0883769413002339_ref23
S0883769413002339_ref68
S0883769413002339_ref24
S0883769413002339_ref60
References_xml – volume: 26
  start-page: 5957
  year: 2010
  publication-title: Langmuir
  contributor:
    fullname: Yan
– volume: 277
  start-page: 245
  year: 2004
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Johansen
– volume: 110
  start-page: 1518
  year: 2009
  publication-title: Chem. Rev.
  contributor:
    fullname: Lehmann
– volume: 132
  start-page: 3234
  year: 2010
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Pyun
– volume: 77
  start-page: 68004
  year: 2007
  publication-title: Europhys. Lett.
  contributor:
    fullname: Shen
– volume: 93
  start-page: 7331
  year: 2003
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Feinerman
– volume: 54
  start-page: 497
  year: 2001
  publication-title: Aust. J. Chem.
  contributor:
    fullname: Giersig
– volume: 13
  start-page: 2661
  year: 2003
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Nolte
– volume: 80
  start-page: 2905
  year: 2008
  publication-title: Anal. Chem.
  contributor:
    fullname: Gijs
– volume: 1
  start-page: 184
  year: 2011
  publication-title: ACS Macro Lett.
  contributor:
    fullname: Osuji
– volume: 128
  start-page: 6562
  year: 2006
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Pyun
– volume: 20
  start-page: 2553
  year: 2004
  publication-title: Langmuir
  contributor:
    fullname: Friedman
– volume: 37
  start-page: 2914
  year: 1966
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Thomas
– volume: 102
  start-page: 8860
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Friedman
– volume: 5
  start-page: 2152
  year: 2013
  publication-title: Nanoscale
  contributor:
    fullname: Mefford
– volume: 38
  start-page: 1903
  year: 1931
  publication-title: Phys. Rev.
  contributor:
    fullname: Bitter
– volume: 394
  start-page: 539
  year: 1998
  publication-title: Nature
  contributor:
    fullname: Seeman
– volume: 125
  start-page: 12696
  year: 2003
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Whitesides
– volume: 21
  start-page: 1066
  year: 2013
  publication-title: Opt. Express
  contributor:
    fullname: Crawford
– volume: 19
  start-page: 2112
  year: 1983
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Friedlaender
– volume: 457
  start-page: 999
  year: 2009
  publication-title: Nature
  contributor:
    fullname: Yellen
– volume: 33
  start-page: 3735
  year: 2012
  publication-title: Bull. Korean Chem. Soc.
  contributor:
    fullname: Kwon
– volume: 109
  start-page: 07D329
  year: 2011
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Crawford
– volume: 20
  start-page: 4294
  year: 2008
  publication-title: Adv. Mater.
  contributor:
    fullname: Stellacci
– volume: 13
  start-page: 1681
  year: 2001
  publication-title: Adv. Mater.
  contributor:
    fullname: Asher
– volume: 19
  start-page: 2115
  year: 1983
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Friedlaender
– volume: 2
  start-page: 4603
  year: 2012
  publication-title: RSC Adv.
  contributor:
    fullname: Spontak
– volume: 5
  start-page: 1146
  year: 2009
  publication-title: Soft Matter
  contributor:
    fullname: Kotov
– volume: 9
  start-page: 1812
  year: 2009
  publication-title: Nano Lett.
  contributor:
    fullname: Alsberg
– volume: 20
  start-page: 1159
  year: 1984
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Gerber
– volume: 14
  start-page: 1249
  year: 2001
  publication-title: Chem. Mater.
  contributor:
    fullname: Asher
– volume: 16
  start-page: 110
  year: 2013
  publication-title: Mater. Today
  contributor:
    fullname: Yin
– volume: 91
  start-page: 8552
  year: 2002
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Feinerman
– volume: 45
  start-page: 1431
  year: 2012
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Yin
– volume: 122
  start-page: 37
  year: 1993
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Bibette
– volume: 21
  start-page: 3672
  year: 2011
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Ge
– volume: 181
  start-page: 1509
  year: 2008
  publication-title: J. Solid State Chem.
  contributor:
    fullname: Schaak
– volume: 20
  start-page: 495301
  year: 2009
  publication-title: Nanotechnology
  contributor:
    fullname: Barbastathis
– volume: 99
  start-page: 024912
  year: 2006
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Furlani
– volume: 295
  start-page: 2418
  year: 2002
  publication-title: Science
  contributor:
    fullname: Grzybowski
– volume: 12
  start-page: 3814
  year: 2012
  publication-title: Nano Lett.
  contributor:
    fullname: Minko
– volume: 440
  start-page: 297
  year: 2006
  publication-title: Nature
  contributor:
    fullname: Rothemund
– volume: 104
  start-page: 207203
  year: 2010
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Majetich
– volume: 321
  start-page: 1557
  year: 2009
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Majetich
– volume: 335
  start-page: 199
  year: 2012
  publication-title: Science
  contributor:
    fullname: Studart
– volume: 93
  start-page: 8447
  year: 2003
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Friedman
– volume: 30
  start-page: 759
  year: 2013
  publication-title: Part. Part. Syst. Char.
  contributor:
    fullname: Tracy
– volume: 124
  start-page: 7914
  year: 2002
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Wei
– volume: 42
  start-page: 3548
  year: 2006
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Friedman
– volume: 46
  start-page: 7428
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Yin
– volume: 74
  start-page: 2828
  year: 1995
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Richard
– volume: 46
  start-page: 4342
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Yin
– start-page: 5001
  year: 2007
  publication-title: Chem. Commun.
  contributor:
    fullname: Cheon
– volume: 3
  start-page: 794
  year: 2012
  publication-title: Nat. Commun.
  contributor:
    fullname: Yellen
– volume: 1
  start-page: 279
  year: 2007
  publication-title: ACS Nano
  contributor:
    fullname: Pyun
– volume: 36
  start-page: 217
  year: 1982
  publication-title: Annu. Rev. Microbiol.
  contributor:
    fullname: Blakemore
– volume: 304
  start-page: 711
  year: 2004
  publication-title: Science
  contributor:
    fullname: Alivisatos
– volume: 3
  start-page: 1539
  year: 2009
  publication-title: ACS Nano
  contributor:
    fullname: Pileni
– volume: 4
  start-page: 1873
  year: 2010
  publication-title: ACS Nano
  contributor:
    fullname: Cingolani
– volume: 108
  start-page: 4875
  year: 2008
  publication-title: Chem. Rev.
  contributor:
    fullname: Schüler
– volume: 80
  start-page: 051402
  year: 2009
  publication-title: Phys. Rev. E
  contributor:
    fullname: Yellen
– volume: 5
  start-page: 1600
  year: 2009
  publication-title: Small
  contributor:
    fullname: Grzybowski
– volume: 17
  start-page: 951
  year: 2005
  publication-title: Adv. Mater.
  contributor:
    fullname: Kotov
– volume: 159
  start-page: 26
  year: 2001
  publication-title: J. Solid State Chem.
  contributor:
    fullname: O’Connor
– volume: 40
  start-page: 3443
  year: 2004
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Gilbert
– volume: 16
  start-page: 111
  year: 2004
  publication-title: Adv. Mater.
  contributor:
    fullname: Friedman
– volume: 97
  start-page: 185702
  year: 2006
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Philipse
– volume: 2
  start-page: 88
  year: 2003
  publication-title: Nat. Mater.
  contributor:
    fullname: Philipse
– volume: 108
  start-page: 3380
  year: 2004
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Prasad
– volume: 72
  start-page: 2959
  year: 1994
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Bibette
– volume: 123
  start-page: 199
  year: 1993
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Lodder
– volume: 9
  start-page: 2024
  year: 2013
  publication-title: Soft Matter
  contributor:
    fullname: Puri
– volume: 17
  start-page: 1730
  year: 2005
  publication-title: Adv. Mater.
  contributor:
    fullname: Oscarsson
– volume: 10
  start-page: 747
  year: 2011
  publication-title: Nat. Mater.
  contributor:
    fullname: Kwon
– volume: 23
  start-page: 185304
  year: 2012
  publication-title: Nanotechnology
  contributor:
    fullname: Crawford
– volume: 108
  start-page: 1848
  year: 2004
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Pileni
– volume: 11
  start-page: 323
  year: 2001
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Pileni
– volume: 23
  start-page: 1120
  year: 2011
  publication-title: Chem. Mater.
  contributor:
    fullname: Pyun
– volume: 45
  start-page: 9373
  year: 2012
  publication-title: Macromolecules
  contributor:
    fullname: Hatton
– ident: S0883769413002339_ref22
  doi: 10.1103/PhysRevLett.97.185702
– ident: S0883769413002339_ref75
  doi: 10.1103/PhysRevE.80.051402
– ident: S0883769413002339_ref50
  doi: 10.1021/ar200276t
– ident: S0883769413002339_ref32
  doi: 10.1071/CH01119
– ident: S0883769413002339_ref55
  doi: 10.5012/bkcs.2012.33.11.3735
– ident: S0883769413002339_ref34
  doi: 10.1021/jp031148i
– ident: S0883769413002339_ref77
  doi: 10.1038/ncomms1798
– ident: S0883769413002339_ref19
  doi: 10.1063/1.1782154
– ident: S0883769413002339_ref49
  doi: 10.1002/anie.200700197
– ident: S0883769413002339_ref29
  doi: 10.1021/jp035665c
– ident: S0883769413002339_ref81
  doi: 10.1103/PhysRev.38.1903
– ident: S0883769413002339_ref69
  doi: 10.1021/la0352016
– ident: S0883769413002339_ref76
  doi: 10.1021/nl803757u
– ident: S0883769413002339_ref51
  doi: 10.1016/0304-8853(93)91034-5
– ident: S0883769413002339_ref1
  doi: 10.1126/science.1070821
– ident: S0883769413002339_ref70
  doi: 10.1016/j.jmmm.2003.11.006
– ident: S0883769413002339_ref60
  doi: 10.1126/science.1096566
– ident: S0883769413002339_ref15
  doi: 10.1063/1.2164531
– ident: S0883769413002339_ref65
  doi: 10.1063/1.1453951
– ident: S0883769413002339_ref35
  doi: 10.1039/b712513e
– ident: S0883769413002339_ref80
  doi: 10.1364/OE.21.001066
– ident: S0883769413002339_ref39
  doi: 10.1021/nn901597a
– ident: S0883769413002339_ref79
  doi: 10.1088/0957-4484/23/18/185304
– volume-title: Foundations of Electromagnetic Theory
  year: 1980
  ident: S0883769413002339_ref7
  contributor:
    fullname: Reitz
– ident: S0883769413002339_ref43
  doi: 10.1002/ppsc.201300101
– ident: S0883769413002339_ref12
  doi: 10.1109/TMAG.1983.1062795
– ident: S0883769413002339_ref23
  doi: 10.1021/nn7001213
– ident: S0883769413002339_ref28
  doi: 10.1021/cm010811h
– ident: S0883769413002339_ref63
  doi: 10.1021/cr9001929
– volume-title: Magnetic Information Storage Technology
  year: 1999
  ident: S0883769413002339_ref10
  contributor:
    fullname: Wang
– ident: S0883769413002339_ref13
  doi: 10.1109/TMAG.1984.1063234
– ident: S0883769413002339_ref33
  doi: 10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J
– ident: S0883769413002339_ref24
  doi: 10.1021/cr078258w
– ident: S0883769413002339_ref54
  doi: 10.1038/nmat3090
– ident: S0883769413002339_ref30
  doi: 10.1002/anie.200701992
– ident: S0883769413002339_ref25
  doi: 10.1146/annurev.mi.36.100182.001245
– ident: S0883769413002339_ref71
  doi: 10.1002/adma.200401880
– ident: S0883769413002339_ref68
  doi: 10.1002/adma.200305603
– ident: S0883769413002339_ref3
  doi: 10.1038/28998
– ident: S0883769413002339_ref48
  doi: 10.1021/mz2001059
– ident: S0883769413002339_ref17
  doi: 10.1021/ja0263285
– ident: S0883769413002339_ref21
  doi: 10.1021/ja0609147
– ident: S0883769413002339_ref2
  doi: 10.1039/B304972H
– ident: S0883769413002339_ref6
  doi: 10.1109/TMAG.2004.836740
– ident: S0883769413002339_ref45
  doi: 10.1039/b812115j
– ident: S0883769413002339_ref37
  doi: 10.1021/nn900289n
– ident: S0883769413002339_ref64
  doi: 10.1088/0957-4484/20/49/495301
– ident: S0883769413002339_ref42
  doi: 10.1039/C2SM27420E
– ident: S0883769413002339_ref62
  doi: 10.1021/ac7020739
– ident: S0883769413002339_ref58
  doi: 10.1021/ja037642h
– ident: S0883769413002339_ref20
  doi: 10.1038/nmat811
– ident: S0883769413002339_ref27
  doi: 10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G
– ident: S0883769413002339_ref52
  doi: 10.1103/PhysRevLett.72.2959
– ident: S0883769413002339_ref61
  doi: 10.1039/C3NR32979H
– ident: S0883769413002339_ref56
  doi: 10.1021/cm102319d
– ident: S0883769413002339_ref14
  doi: 10.1109/TMAG.1983.1062681
– ident: S0883769413002339_ref67
  doi: 10.1063/1.1543134
– ident: S0883769413002339_ref38
  doi: 10.1002/adma.200800022
– ident: S0883769413002339_ref41
  doi: 10.1021/nl301780x
– ident: S0883769413002339_ref8
  doi: 10.1103/PhysRevLett.104.207203
– ident: S0883769413002339_ref18
  doi: 10.1021/la9041343
– ident: S0883769413002339_ref47
  doi: 10.1021/ma300500z
– ident: S0883769413002339_ref82
  doi: 10.1016/0304-8853(93)90033-X
– ident: S0883769413002339_ref46
  doi: 10.1002/adma.200401593
– ident: S0883769413002339_ref11
  doi: 10.1016/j.jmmm.2009.02.085
– ident: S0883769413002339_ref78
  doi: 10.1063/1.3556770
– ident: S0883769413002339_ref5
  doi: 10.1002/smll.200900358
– ident: S0883769413002339_ref74
  doi: 10.1038/nature07766
– ident: S0883769413002339_ref53
  doi: 10.1039/c0jm03790g
– ident: S0883769413002339_ref36
  doi: 10.1209/0295-5075/77/68004
– volume-title: Introduction to Magnetic Materials
  year: 1972
  ident: S0883769413002339_ref9
  contributor:
    fullname: Cullity
– ident: S0883769413002339_ref40
  doi: 10.1039/c2ra20489d
– ident: S0883769413002339_ref66
  doi: 10.1063/1.1555908
– ident: S0883769413002339_ref44
  doi: 10.1126/science.1210822
– ident: S0883769413002339_ref4
  doi: 10.1038/nature04586
– ident: S0883769413002339_ref26
  doi: 10.1016/j.mattod.2013.04.008
– ident: S0883769413002339_ref57
  doi: 10.1021/ja908481z
– ident: S0883769413002339_ref31
  doi: 10.1006/jssc.2001.9117
– ident: S0883769413002339_ref16
  doi: 10.1103/PhysRevLett.74.2828
– ident: S0883769413002339_ref73
  doi: 10.1109/TMAG.2006.879623
– ident: S0883769413002339_ref59
  doi: 10.1016/j.jssc.2008.04.007
– ident: S0883769413002339_ref72
  doi: 10.1073/pnas.0500409102
SSID ssj0015075
Score 2.3821568
Snippet This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance...
Abstract This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that...
Abstract [PUBLICATION ABSTRACT] This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along...
SourceID proquest
crossref
springer
cambridge
SourceType Aggregation Database
Publisher
StartPage 915
SubjectTerms Applied and Technical Physics
Biocompatibility
Characterization and Evaluation of Materials
Energy Materials
Field strength
Magnetic fields
Magnetic Nanoparticles
Materials Engineering
Materials Science
Microfluidics
Nanoparticles
Nanotechnology
Permanent magnets
Self-assembly
Title Magnetic field-directed self-assembly of magnetic nanoparticles
URI https://www.cambridge.org/core/product/identifier/S0883769413002339/type/journal_article
https://link.springer.com/article/10.1557/mrs.2013.233
https://www.proquest.com/docview/1452496498
https://www.proquest.com/docview/2927432923
https://search.proquest.com/docview/1494348115
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IuhBtCpWq6zg4xTt7ibZzamoWIvQImKhtyWv9aLb2sfBf-9kH_WBetlLsiF8k2Tmy0xmAE4El8ygKiIC-QShEvec8KUiXLdSzoREo9jdQ_b6vDug90M2LC_cpmVYZXUm5ge1GWl3R37pU4ZMgVMRt8dvxFWNct7VsoTGMqz4QRQ58hV37hZeBFYk2sWNFJKIC1oGvjOGdH_icnX74UXgSuZ-plX4rp4-bc4fbtJc-3Q2YaM0G72rQs5bsGSzOqx_SSZYh9U8mFNPt6Hdk8-Ze5zo5fFppFBb1nhT-5IStJbtq3p590ap91p1zGSG7LkMktuBQef26aZLykIJROM5NyM-Qw0TaKkUpQb5hDDKRFHIYpd8yxrONItjodFWkCZVrVRbw7ikLfcKPg6kDXehlo0yuweeb2WoUo5qLRVUciWpUbEMAt1Saagi1YDzBVZJudyniWMSiGqCqCYO1QRRbcBphWQyLjJn_NGvWcH8ZcCFtH9tDgSS6RC_-Pfxohk3hvN2yMyO5m4Il_ouRou3AWeV9P6f8v7_UzmANdezeInYhNpsMreHaJLM1FG-7o5g5fq2__D4AZXs3vk
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFH6CIgQMCAqIQoEgcUyGJrHdeEIIUQq0TCCxRb7C0qalx8C_5zlHCwhYsji2rOfjfZ_fBXAiuGQGVRERyCcIlXjmhC8V4bqRcCYkgmL3Dtl94u0X-vDKXosHt3HhVlneidlFbQbavZFf-pQhU-BURFfDd-KqRjnralFCYxGWaIi62kWKt-5mVgSWJ9rFgxSSJhe0cHxnDOn-yOXq9sOLwJXMnadV-K6e5pjzh5k00z6tDVgvYKN3na_zJizYtAprX5IJVmE5c-bU4y246sq31AUnepl_GsnVljXe2PYSgmjZ9lXvwxskXr_8MZUpsufCSW4bXlq3zzdtUhRKIBrvuQnxGWqYQEulKDXIJ4RRptkMWeSSb1nDmWZRJDRiBWkS1Ui0NYxL2nBR8FEgbbgDlXSQ2l3wfCtDlXBUa4mgkitJjYpkEOiGSkLVVDU4n8kqLrb7OHZMAqUao1RjJ9UYpVqD01KS8TDPnPHHf_VSzF8GnK32r82BQDId4hd7H8-a8WA4a4dM7WDqhnCp7yJEvDU4K1fv_ynv_T-VI1hpP3c7cef-6XEfVl2vPCqxDpXJaGoPEJ5M1GG2Bz8BFEXgQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsQwEB1xCAQF4hTLGSSOyrBJbG9cIQQsN6IAiS7ySQNZ2KPg7xknznIIaNI4tqzx2POeZzwDsC24ZAZNERHIJwiVuOdELBXhuuk4ExJBsb-HvLnl5w_08pE9hvinXgirrM_E8qA2He3vyA9iypApcCqyAxfCIu5O2oevb8RXkPKe1lBOYxTG0Spyr_NZ-2zoUWBV0l3cVClpcUFDEDxjSP27Pm93nO4nvnzuZ4qF76bqE3_-cJmWlqg9CzMBQkZH1ZrPwYgt5mH6S2LBeZgoAzt1bwEOb-RT4R8qRmWsGqlMmDVRzz47gsjZvqjn96jjopf6x0IWyKRDwNwiPLRP74_PSSiaQDSeeX0SM7Q2iZZKUWqQWwijTKuVsswn4rKGM82yTGjEDdI41XTaGsYlbfoX8VkibboEY0WnsMsQxVamynE0cU5QyZWkRmUySXRTuVS1VAP2hrLKg-r3cs8qUKo5SjX3Us1Rqg3YqSWZv1ZZNP74b60W85cBhyv_a3MikFin-MXeW8Nm3CTe8yEL2xn4IXwavAzRbwN269X7f8or_09lEyZR_fLri9urVZjynaoHimsw1u8O7Doilb7aKFXwA6UH5Hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+field-directed+self-assembly+of+magnetic+nanoparticles&rft.jtitle=MRS+bulletin&rft.au=Tracy%2C+Joseph+B.&rft.au=Crawford%2C+Thomas+M.&rft.date=2013-11-01&rft.pub=Cambridge+University+Press&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=38&rft.issue=11&rft.spage=915&rft.epage=920&rft_id=info:doi/10.1557%2Fmrs.2013.233&rft.externalDocID=10_1557_mrs_2013_233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon