Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target?

Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechan...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 110; no. 7; pp. 2080 - 2089
Main Authors Ohue, Yoshihiro, Nishikawa, Hiroyoshi
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.07.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1347-9032
1349-7006
1349-7006
DOI10.1111/cas.14069

Cover

Loading…
Abstract Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes. Regulatory T cells suppress immune functions through various mechanisms such as cytotoxic T‐lymphocyte antigen‐4‐mediated suppression of antigen‐presenting cell function, consumption of interleukin‐2, production of immunosuppressive cytokines, and production of immune suppressive metabolites.
AbstractList Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes. Regulatory T cells suppress immune functions through various mechanisms such as cytotoxic T‐lymphocyte antigen‐4‐mediated suppression of antigen‐presenting cell function, consumption of interleukin‐2, production of immunosuppressive cytokines, and production of immune suppressive metabolites.
Author Nishikawa, Hiroyoshi
Ohue, Yoshihiro
AuthorAffiliation 2 Department of Immunology Nagoya University Graduate School of Medicine Nagoya Japan
1 Division of Cancer Immunology Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center Tokyo Japan
AuthorAffiliation_xml – name: 1 Division of Cancer Immunology Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center Tokyo Japan
– name: 2 Department of Immunology Nagoya University Graduate School of Medicine Nagoya Japan
Author_xml – sequence: 1
  givenname: Yoshihiro
  orcidid: 0000-0003-0171-8367
  surname: Ohue
  fullname: Ohue, Yoshihiro
  organization: Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center
– sequence: 2
  givenname: Hiroyoshi
  orcidid: 0000-0001-6563-9807
  surname: Nishikawa
  fullname: Nishikawa, Hiroyoshi
  email: hnishika@ncc.go.jp
  organization: Nagoya University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31102428$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7Ide-Ack4E17MW2-Z-JFS1m0CgVF1-uQzZzZpswm22TGsv_eTHdbtKC5SeB9zptzznuI9kIMgNBbSk5pOWfO5lMqiNIv0AHlQlc1IWrv4V1XmnC2jw5zviWEK6HFK7TPKSVMsOYAffsOy7G3Q0wbPMfH8wTLE-yg7zP2ATsbHKQPeGYDnqSdsgBscYB7PNxAsmsYB-_wYNMShovX6GVn-wxvdvcR-vnp43z2ubr-evVldnldOaFqXcmOECuk1G3bceFK841ltVSyUUKymjBNJHSCcs0Y1VRKgE4K0dIFh1aphh-h863velysoHUQhmR7s05-ZdPGROvN30rwN2YZfxmliG4oLwbHO4MU70bIg1n5PM1nA8QxG8Y4KwuTYvrr_TP0No4plPEKJWnTUCp1od792dFTK4_LLsDJFnAp5pyge0IoMVOQpgRpHoIs7Nkz1vnBDj5Ow_j-fxX3vofNv63N7PLHtuI3_iirPw
CitedBy_id crossref_primary_10_1186_s12985_022_01842_x
crossref_primary_10_3389_fonc_2022_851766
crossref_primary_10_1093_cei_uxad072
crossref_primary_10_3390_genes12111698
crossref_primary_10_3390_ijms25147743
crossref_primary_10_3390_antiox11081553
crossref_primary_10_1016_j_jtauto_2024_100264
crossref_primary_10_1002_cam4_4169
crossref_primary_10_1080_14712598_2022_2064711
crossref_primary_10_31083_j_fbl2908301
crossref_primary_10_2217_fon_2023_1068
crossref_primary_10_47183_mes_2023_032
crossref_primary_10_1016_j_phrs_2020_104659
crossref_primary_10_1021_acsami_2c12585
crossref_primary_10_1016_j_pccm_2022_11_001
crossref_primary_10_1016_j_celrep_2024_115014
crossref_primary_10_1172_JCI178079
crossref_primary_10_3390_ijms241713287
crossref_primary_10_3390_antiox10030422
crossref_primary_10_1142_S1793545823300070
crossref_primary_10_1007_s10989_021_10270_4
crossref_primary_10_1016_j_trim_2024_102044
crossref_primary_10_12677_ACM_2022_12101340
crossref_primary_10_3390_cancers14205018
crossref_primary_10_1002_hon_2993
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1186_s12943_020_01294_3
crossref_primary_10_1042_BSR20231331
crossref_primary_10_1080_14712598_2020_1813276
crossref_primary_10_3390_app14072930
crossref_primary_10_1016_j_jpha_2024_101154
crossref_primary_10_1080_19420862_2023_2220466
crossref_primary_10_3390_cancers13215542
crossref_primary_10_1016_j_bbcan_2025_189259
crossref_primary_10_1111_febs_16125
crossref_primary_10_1038_s41368_023_00249_w
crossref_primary_10_1038_s41392_021_00658_5
crossref_primary_10_4236_ojbiphy_2024_141002
crossref_primary_10_1186_s12929_022_00893_0
crossref_primary_10_15789_1563_0625_TMT_1909
crossref_primary_10_3389_fonc_2023_1210245
crossref_primary_10_3389_fimmu_2021_624789
crossref_primary_10_1016_j_intimp_2024_113952
crossref_primary_10_3389_fimmu_2023_1275461
crossref_primary_10_3390_v14112317
crossref_primary_10_1042_CS20210469
crossref_primary_10_1080_1120009X_2020_1819069
crossref_primary_10_1089_cmb_2023_0278
crossref_primary_10_3389_fimmu_2020_01710
crossref_primary_10_3389_fimmu_2024_1342086
crossref_primary_10_1016_j_intimp_2021_108409
crossref_primary_10_3390_cancers13051037
crossref_primary_10_1038_s41392_024_01808_1
crossref_primary_10_3390_cancers13112638
crossref_primary_10_1111_cas_16443
crossref_primary_10_1007_s00432_022_04399_y
crossref_primary_10_1007_s12072_021_10177_8
crossref_primary_10_1016_j_omto_2021_01_011
crossref_primary_10_1007_s00262_021_03019_x
crossref_primary_10_1016_j_intimp_2024_111765
crossref_primary_10_54133_ajms_v7i2_1464
crossref_primary_10_1016_j_intimp_2024_112736
crossref_primary_10_3390_cancers16162865
crossref_primary_10_1016_j_intimp_2024_111769
crossref_primary_10_1093_bib_bbae410
crossref_primary_10_1038_s41523_022_00476_0
crossref_primary_10_2174_0113862073290831240229060932
crossref_primary_10_1016_j_intimp_2023_110093
crossref_primary_10_1016_j_molimm_2022_04_014
crossref_primary_10_3389_fimmu_2024_1344272
crossref_primary_10_1038_s41423_021_00796_4
crossref_primary_10_1080_13880209_2024_2349042
crossref_primary_10_3390_cancers13236132
crossref_primary_10_3390_microorganisms11051312
crossref_primary_10_1038_s41467_021_21518_4
crossref_primary_10_1186_s12920_023_01525_8
crossref_primary_10_3390_bioengineering9110655
crossref_primary_10_3389_fimmu_2023_1227126
crossref_primary_10_3389_fphar_2021_727275
crossref_primary_10_3389_fonc_2021_738323
crossref_primary_10_4103_tcmj_tcmj_162_20
crossref_primary_10_1016_j_cyto_2024_156834
crossref_primary_10_1007_s12094_021_02659_w
crossref_primary_10_1016_j_semcancer_2022_06_009
crossref_primary_10_1080_25785826_2021_2018783
crossref_primary_10_1002_adfm_202403910
crossref_primary_10_1016_j_jff_2025_106696
crossref_primary_10_1007_s11912_022_01298_w
crossref_primary_10_36401_JIPO_22_18
crossref_primary_10_3390_biomedicines9121932
crossref_primary_10_3892_br_2024_1754
crossref_primary_10_1080_16078454_2023_2219554
crossref_primary_10_1007_s10522_024_10152_4
crossref_primary_10_3390_cancers13184622
crossref_primary_10_3389_fimmu_2024_1383978
crossref_primary_10_1016_j_canlet_2024_217020
crossref_primary_10_3390_vaccines13040344
crossref_primary_10_1016_j_jddst_2023_105048
crossref_primary_10_1007_s12032_022_01693_0
crossref_primary_10_3390_ijms241512301
crossref_primary_10_1177_03936155231224798
crossref_primary_10_3390_cancers14092291
crossref_primary_10_1007_s11033_023_09082_0
crossref_primary_10_3390_ijms23169038
crossref_primary_10_3389_fonc_2022_1004700
crossref_primary_10_1155_2022_2039447
crossref_primary_10_1007_s00277_025_06237_w
crossref_primary_10_2147_IJN_S363456
crossref_primary_10_3390_ijms22168530
crossref_primary_10_20517_cdr_2023_46
crossref_primary_10_1016_j_intimp_2023_111000
crossref_primary_10_1038_s41467_020_19774_x
crossref_primary_10_3389_fphar_2022_1055841
crossref_primary_10_1186_s12885_024_12039_6
crossref_primary_10_3390_ijms22179414
crossref_primary_10_7554_eLife_87430
crossref_primary_10_1155_2023_5532617
crossref_primary_10_3389_fimmu_2021_686809
crossref_primary_10_3389_fimmu_2022_1016059
crossref_primary_10_1038_s41467_021_21573_x
crossref_primary_10_3389_fonc_2022_995498
crossref_primary_10_1016_j_isci_2025_111843
crossref_primary_10_1186_s12894_022_01085_6
crossref_primary_10_3390_ijms22073490
crossref_primary_10_12677_acm_2024_1461847
crossref_primary_10_1080_13880209_2021_2018470
crossref_primary_10_1007_s40618_020_01443_x
crossref_primary_10_1016_j_abb_2022_109470
crossref_primary_10_3390_cancers13081935
crossref_primary_10_1016_j_arr_2021_101541
crossref_primary_10_1126_sciimmunol_abf9393
crossref_primary_10_21931_BJ_2024_01_02_8
crossref_primary_10_3390_cancers15174265
crossref_primary_10_3389_fimmu_2022_873644
crossref_primary_10_1016_j_jim_2024_113715
crossref_primary_10_3389_fimmu_2023_1298891
crossref_primary_10_1016_j_genrep_2024_101913
crossref_primary_10_1016_j_ccell_2023_02_014
crossref_primary_10_1159_000510385
crossref_primary_10_3390_cancers12123850
crossref_primary_10_1016_j_slasd_2022_03_008
crossref_primary_10_1080_14737140_2024_2379914
crossref_primary_10_1002_adfm_202420004
crossref_primary_10_1021_acsptsci_4c00156
crossref_primary_10_3389_fphar_2023_1113378
crossref_primary_10_1016_j_prp_2024_155266
crossref_primary_10_1111_exd_14777
crossref_primary_10_3389_froh_2020_584705
crossref_primary_10_1016_j_trecan_2021_04_008
crossref_primary_10_1016_j_jdermsci_2020_09_002
crossref_primary_10_3390_ijms21186768
crossref_primary_10_1186_s12943_023_01928_2
crossref_primary_10_1007_s00262_022_03278_2
crossref_primary_10_1016_j_xcrm_2024_101626
crossref_primary_10_3389_fimmu_2022_807840
crossref_primary_10_1136_jclinpath_2021_207517
crossref_primary_10_1186_s13046_020_1539_7
crossref_primary_10_3390_biomedicines11010173
crossref_primary_10_1002_jcb_29904
crossref_primary_10_1186_s43046_022_00137_0
crossref_primary_10_1016_j_it_2023_06_001
crossref_primary_10_3389_fmed_2023_1244298
crossref_primary_10_3390_ijms23010144
crossref_primary_10_1080_08941939_2022_2090035
crossref_primary_10_1021_acsnano_4c05065
crossref_primary_10_3389_fimmu_2023_1274199
crossref_primary_10_3390_cancers13071743
crossref_primary_10_3389_fmolb_2021_760031
crossref_primary_10_1097_HM9_0000000000000135
crossref_primary_10_3389_fimmu_2022_1007285
crossref_primary_10_1002_cti2_1400
crossref_primary_10_1016_j_intimp_2024_113330
crossref_primary_10_1186_s13046_022_02559_z
crossref_primary_10_3389_fonc_2022_840467
crossref_primary_10_1007_s12094_024_03793_x
crossref_primary_10_1038_s41585_019_0226_y
crossref_primary_10_1089_genbio_2023_0030
crossref_primary_10_1007_s12032_023_02053_2
crossref_primary_10_1038_s41598_025_93916_3
crossref_primary_10_1136_jcp_2023_208932
crossref_primary_10_3390_ijms222010983
crossref_primary_10_3389_fimmu_2023_1117545
crossref_primary_10_3390_cells13121057
crossref_primary_10_1093_jnci_djab128
crossref_primary_10_1016_j_intimp_2024_113445
crossref_primary_10_1172_JCI170505
crossref_primary_10_3390_biom14101307
crossref_primary_10_7554_eLife_87430_3
crossref_primary_10_1016_j_cytogfr_2023_07_007
crossref_primary_10_1016_j_biopha_2022_113861
crossref_primary_10_3389_fimmu_2021_643310
crossref_primary_10_1039_D1BM01127H
crossref_primary_10_1007_s10555_021_09968_0
crossref_primary_10_1007_s00432_022_04418_y
crossref_primary_10_1016_j_heliyon_2024_e28386
crossref_primary_10_3390_cancers13225625
crossref_primary_10_3390_cancers15205090
crossref_primary_10_1016_j_jddst_2024_106589
crossref_primary_10_3389_fimmu_2022_844931
crossref_primary_10_1016_j_jconrel_2024_09_014
crossref_primary_10_3389_fmolb_2021_759173
crossref_primary_10_1186_s12920_024_01825_7
crossref_primary_10_1016_j_heliyon_2023_e19147
crossref_primary_10_3390_cancers15061901
crossref_primary_10_15789_1563_0625_EOT_2299
crossref_primary_10_3390_biology12121531
crossref_primary_10_3390_pharmaceutics15030944
crossref_primary_10_1038_s41419_022_05057_4
crossref_primary_10_3390_cells12071047
crossref_primary_10_1038_s41598_024_67659_6
crossref_primary_10_2174_0929867326666191004164041
crossref_primary_10_3390_ijms22010190
crossref_primary_10_1016_j_bbamcr_2022_119266
crossref_primary_10_1186_s12967_023_04110_w
crossref_primary_10_23868_202104013
crossref_primary_10_1371_journal_pone_0277155
crossref_primary_10_1016_j_nantod_2022_101641
crossref_primary_10_1136_lupus_2022_000693
crossref_primary_10_3389_fimmu_2024_1327565
crossref_primary_10_1111_febs_17044
crossref_primary_10_3390_cancers14194583
crossref_primary_10_1111_1759_7714_14689
crossref_primary_10_3390_vaccines10101764
crossref_primary_10_1038_s41401_024_01338_0
crossref_primary_10_1089_mab_2022_0002
crossref_primary_10_3390_ijms22189951
crossref_primary_10_1158_0008_5472_CAN_23_2455
crossref_primary_10_5227_skincancer_36_133
crossref_primary_10_1002_ijc_33873
crossref_primary_10_1007_s12672_023_00787_z
crossref_primary_10_3390_ijms242115584
crossref_primary_10_62347_VZAW2270
crossref_primary_10_1016_j_cveq_2024_07_001
crossref_primary_10_1080_08830185_2024_2333275
crossref_primary_10_1111_jcmm_70146
crossref_primary_10_3390_cancers12061641
crossref_primary_10_1016_j_drudis_2023_103669
crossref_primary_10_2217_epi_2020_0186
crossref_primary_10_1016_j_jtcms_2023_10_001
crossref_primary_10_3390_cancers13020284
crossref_primary_10_3390_ijms21165647
crossref_primary_10_1210_endrev_bnad008
crossref_primary_10_3390_ijms241814114
crossref_primary_10_3390_vaccines11081330
crossref_primary_10_2174_1871520622666220523151409
crossref_primary_10_1039_D0NA00478B
crossref_primary_10_3389_fonc_2022_1022688
crossref_primary_10_3390_biology13110860
crossref_primary_10_1016_j_jconrel_2023_01_051
crossref_primary_10_3389_fimmu_2023_1153724
crossref_primary_10_4103_ejh_ejh_38_24
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1136_jitc_2021_003311
crossref_primary_10_2174_1386207325666220609120001
crossref_primary_10_14712_fb2024070030123
crossref_primary_10_3390_jpm14090925
crossref_primary_10_1136_jitc_2020_002068
crossref_primary_10_3389_fimmu_2022_734256
crossref_primary_10_4049_immunohorizons_2300060
crossref_primary_10_1111_exd_14721
crossref_primary_10_1371_journal_ppat_1008508
crossref_primary_10_3389_fcell_2024_1369597
crossref_primary_10_3389_fimmu_2022_1033642
crossref_primary_10_1016_j_addr_2021_05_001
crossref_primary_10_3389_fimmu_2023_1084901
crossref_primary_10_1002_cam4_70011
crossref_primary_10_3390_cells12192404
crossref_primary_10_1016_j_oraloncology_2023_106458
crossref_primary_10_1002_adma_202309655
crossref_primary_10_1155_2022_3258400
crossref_primary_10_1158_0008_5472_CAN_23_1463
crossref_primary_10_1093_immhor_vlae014
crossref_primary_10_4049_jimmunol_2300349
crossref_primary_10_1002_lci2_70005
crossref_primary_10_1080_2162402X_2024_2436227
crossref_primary_10_3389_fonc_2021_618187
crossref_primary_10_1007_s12672_022_00566_2
crossref_primary_10_3390_ijms25137171
crossref_primary_10_1016_j_pbiomolbio_2023_04_006
crossref_primary_10_3389_fonc_2021_559161
crossref_primary_10_1002_adhm_202405124
crossref_primary_10_3389_fimmu_2021_633205
crossref_primary_10_1111_jop_13508
crossref_primary_10_5306_wjco_v13_i9_729
crossref_primary_10_1007_s00005_021_00625_6
crossref_primary_10_1016_j_envres_2023_116751
crossref_primary_10_1016_j_rdc_2024_01_004
crossref_primary_10_1080_17425247_2021_1882992
crossref_primary_10_4251_wjgo_v13_i1_37
crossref_primary_10_3390_ijms241914928
crossref_primary_10_1080_2162402X_2022_2141007
crossref_primary_10_3389_fimmu_2024_1298087
crossref_primary_10_1007_s12672_024_01185_9
crossref_primary_10_1016_j_heliyon_2024_e24855
crossref_primary_10_1038_s41392_020_00449_4
crossref_primary_10_3389_fnut_2022_974896
crossref_primary_10_3389_fphar_2022_870848
crossref_primary_10_3389_fimmu_2021_697083
crossref_primary_10_3390_cancers14010260
crossref_primary_10_1002_bab_2275
crossref_primary_10_1002_cam4_5874
crossref_primary_10_1080_08941939_2023_2216756
crossref_primary_10_1016_j_immuni_2023_03_010
crossref_primary_10_3389_fonc_2021_640196
crossref_primary_10_1177_09636897211001314
crossref_primary_10_1016_j_jare_2023_10_009
crossref_primary_10_3390_biom10081087
crossref_primary_10_3390_cancers16193273
crossref_primary_10_3389_ebm_2024_10111
crossref_primary_10_3389_fgene_2021_609174
crossref_primary_10_1016_j_isci_2021_103570
crossref_primary_10_1038_s41378_023_00616_x
crossref_primary_10_1007_s00262_020_02842_y
crossref_primary_10_1016_j_jep_2021_114370
crossref_primary_10_3389_fimmu_2022_992762
crossref_primary_10_3389_fimmu_2023_1280741
crossref_primary_10_3389_fimmu_2023_1150588
crossref_primary_10_1186_s12943_024_02156_y
crossref_primary_10_3390_biomedicines12091979
crossref_primary_10_3390_cancers12061600
crossref_primary_10_1016_j_biopha_2023_116059
crossref_primary_10_1177_03008916231189532
crossref_primary_10_1007_s11033_021_06154_x
crossref_primary_10_1038_s41598_021_88156_0
crossref_primary_10_1038_s41467_021_21043_4
crossref_primary_10_1016_j_biopha_2021_112204
crossref_primary_10_2147_IJN_S453265
crossref_primary_10_1016_j_canlet_2023_216121
crossref_primary_10_1089_mab_2024_0002
crossref_primary_10_1007_s00262_021_02850_6
crossref_primary_10_1002_jha2_758
crossref_primary_10_1080_2162402X_2022_2120676
crossref_primary_10_1016_j_gendis_2021_07_002
crossref_primary_10_1002_jgm_3438
crossref_primary_10_1186_s13040_024_00404_x
crossref_primary_10_1002_eji_201948470
crossref_primary_10_3390_cancers13040720
crossref_primary_10_1007_s12094_023_03126_4
crossref_primary_10_1016_j_celrep_2024_114724
crossref_primary_10_1084_jem_20240445
crossref_primary_10_1186_s12929_022_00866_3
crossref_primary_10_1002_cbf_70013
crossref_primary_10_1002_cam4_3631
crossref_primary_10_1016_j_bioactmat_2024_02_028
crossref_primary_10_3389_fonc_2021_739191
crossref_primary_10_3389_fimmu_2025_1519841
crossref_primary_10_1002_jmv_28857
crossref_primary_10_1002_cac2_12546
crossref_primary_10_1016_j_imbio_2023_152749
crossref_primary_10_1002_ijc_34539
crossref_primary_10_1016_j_biopha_2020_111028
crossref_primary_10_3389_fgene_2021_721419
crossref_primary_10_7759_cureus_43189
crossref_primary_10_1007_s12072_023_10537_6
crossref_primary_10_1039_D3CS00602F
crossref_primary_10_1007_s40610_023_00157_2
crossref_primary_10_1016_j_biomaterials_2022_121510
crossref_primary_10_1007_s10238_024_01362_8
crossref_primary_10_1186_s12935_022_02815_4
crossref_primary_10_3389_fimmu_2022_844300
crossref_primary_10_1186_s12951_021_01163_1
crossref_primary_10_1186_s12916_021_02031_3
crossref_primary_10_3390_vaccines11121843
crossref_primary_10_1002_wsbm_1633
crossref_primary_10_1186_s12920_023_01674_w
crossref_primary_10_3390_biomedicines9080935
crossref_primary_10_3892_ijo_2024_5639
crossref_primary_10_1016_j_ebiom_2023_104963
crossref_primary_10_1016_j_isci_2025_112204
crossref_primary_10_1016_j_canlet_2021_09_005
crossref_primary_10_3390_ijms231810906
crossref_primary_10_1002_ijc_34668
crossref_primary_10_1016_j_jconrel_2021_10_006
crossref_primary_10_1186_s12935_023_02943_5
crossref_primary_10_3389_fgene_2020_575776
crossref_primary_10_3390_ijms251910298
crossref_primary_10_1615_CritRevImmunol_2023047234
crossref_primary_10_1016_j_matt_2022_03_005
crossref_primary_10_1155_2021_3586589
crossref_primary_10_1016_j_ajt_2024_03_022
crossref_primary_10_1016_j_jconrel_2024_01_050
crossref_primary_10_1016_j_crimmu_2021_08_002
crossref_primary_10_3389_fonc_2022_1051282
crossref_primary_10_1053_j_gastro_2021_09_059
crossref_primary_10_1016_j_lfs_2019_116688
crossref_primary_10_1136_jitc_2022_005798
crossref_primary_10_1016_j_semcancer_2022_01_006
crossref_primary_10_3390_cancers12092652
crossref_primary_10_32604_oncologie_2022_024035
crossref_primary_10_3389_fonc_2022_1018333
crossref_primary_10_1007_s00011_023_01833_w
crossref_primary_10_1038_s41598_023_29260_1
crossref_primary_10_1080_1061186X_2024_2418344
crossref_primary_10_1186_s12943_024_02183_9
crossref_primary_10_1002_ctm2_221
crossref_primary_10_1016_j_heliyon_2024_e29548
crossref_primary_10_1016_j_lfs_2021_119132
crossref_primary_10_1186_s12967_024_05731_5
crossref_primary_10_3389_fimmu_2022_999084
crossref_primary_10_3390_ijms22169030
crossref_primary_10_1182_bloodadvances_2022008327
crossref_primary_10_1007_s00432_021_03838_6
crossref_primary_10_3390_jpm12040534
crossref_primary_10_1016_j_mam_2020_100936
crossref_primary_10_1016_j_cytogfr_2021_02_003
crossref_primary_10_1016_j_heliyon_2022_e10450
crossref_primary_10_3390_ijms241814403
crossref_primary_10_3389_fmed_2022_966458
crossref_primary_10_1007_s13167_022_00305_1
crossref_primary_10_1016_j_apsb_2023_03_004
crossref_primary_10_3390_molecules25071508
crossref_primary_10_1016_j_medj_2024_11_002
crossref_primary_10_3390_cells11121946
crossref_primary_10_1038_s42003_020_01391_5
crossref_primary_10_3390_ijms23168849
crossref_primary_10_3390_cancers15245847
crossref_primary_10_1007_s00432_023_05244_6
crossref_primary_10_2478_sjecr_2022_0023
crossref_primary_10_3389_fonc_2022_944494
crossref_primary_10_1186_s12935_024_03335_z
crossref_primary_10_1002_iid3_723
crossref_primary_10_1080_19420862_2024_2381891
crossref_primary_10_1111_imr_13122
crossref_primary_10_3389_fmolb_2022_966843
crossref_primary_10_3390_cancers12071960
crossref_primary_10_3390_ijms22158281
crossref_primary_10_3390_ijms23116215
crossref_primary_10_3390_cancers13235904
crossref_primary_10_3390_cancers14030490
crossref_primary_10_3390_ijms24098075
crossref_primary_10_1038_s41467_022_34877_3
crossref_primary_10_3390_ijms23137030
crossref_primary_10_3390_pharmaceutics15092214
crossref_primary_10_1016_j_ijpharm_2022_122249
crossref_primary_10_3390_nu15214494
crossref_primary_10_1002_cac2_12587
crossref_primary_10_17816_uroved623621
crossref_primary_10_3389_fimmu_2024_1431211
crossref_primary_10_1002_iid3_1351
crossref_primary_10_1007_s00262_022_03196_3
crossref_primary_10_3390_ncrna7010004
crossref_primary_10_1016_j_ebiom_2022_104010
crossref_primary_10_1155_2022_8636527
crossref_primary_10_1016_j_bioorg_2023_106837
crossref_primary_10_3390_ijms25137346
crossref_primary_10_3390_diagnostics12061360
crossref_primary_10_1016_j_intimp_2023_109840
crossref_primary_10_3389_fonc_2022_982744
crossref_primary_10_3390_ijms241411695
crossref_primary_10_1016_j_csbj_2021_12_020
crossref_primary_10_1186_s40001_023_01411_0
crossref_primary_10_1016_j_heliyon_2023_e22429
crossref_primary_10_1080_21645515_2022_2035117
crossref_primary_10_1186_s12906_024_04671_3
crossref_primary_10_1186_s12964_024_01711_w
crossref_primary_10_3389_fimmu_2022_1046790
crossref_primary_10_3389_fimmu_2024_1370800
crossref_primary_10_1038_s41423_023_01036_7
crossref_primary_10_1016_j_toxicon_2024_107747
crossref_primary_10_3389_fsurg_2022_878648
crossref_primary_10_3390_app13095643
crossref_primary_10_3389_fimmu_2023_1139268
crossref_primary_10_1134_S0006297923110159
crossref_primary_10_18632_aging_204380
crossref_primary_10_1038_s41467_023_38578_3
crossref_primary_10_3390_biom12121847
crossref_primary_10_62347_EUKS9325
crossref_primary_10_1016_j_omtn_2021_05_005
crossref_primary_10_3389_fimmu_2021_613492
crossref_primary_10_1186_s12964_023_01070_y
crossref_primary_10_1093_biolre_ioaf004
crossref_primary_10_3390_ijms25052868
crossref_primary_10_3389_fimmu_2022_864497
crossref_primary_10_3390_ijms20174320
crossref_primary_10_3390_ijms222111378
crossref_primary_10_1016_j_phrs_2020_105087
crossref_primary_10_3389_fgene_2022_948920
crossref_primary_10_1186_s12967_023_04686_3
crossref_primary_10_3892_mmr_2023_12935
crossref_primary_10_1002_wrna_1822
crossref_primary_10_1097_PPO_0000000000000603
crossref_primary_10_3389_fonc_2021_722331
crossref_primary_10_1007_s12013_023_01192_7
crossref_primary_10_2478_rjim_2023_0025
crossref_primary_10_3389_fimmu_2022_981479
crossref_primary_10_15212_bioi_2022_0022
crossref_primary_10_3389_fimmu_2024_1334828
crossref_primary_10_1039_D2BM00650B
crossref_primary_10_1007_s12032_022_01881_y
crossref_primary_10_1111_jop_13130
crossref_primary_10_3390_cancers16010081
crossref_primary_10_23946_2500_0764_2024_9_3_86_97
crossref_primary_10_1186_s12964_020_00599_6
crossref_primary_10_3389_fonc_2021_745209
crossref_primary_10_1016_j_jconrel_2021_03_039
crossref_primary_10_1038_s41389_022_00398_3
crossref_primary_10_1186_s13000_022_01274_9
crossref_primary_10_1186_s13058_022_01590_4
crossref_primary_10_1016_j_slasd_2021_12_001
crossref_primary_10_1055_a_2330_3696
crossref_primary_10_3389_fimmu_2022_926550
crossref_primary_10_3390_ijms24044002
crossref_primary_10_12998_wjcc_v11_i29_7075
crossref_primary_10_1038_s41598_022_09373_9
crossref_primary_10_1007_s00011_020_01339_9
crossref_primary_10_1016_j_ejphar_2023_175721
crossref_primary_10_1002_jcb_30458
crossref_primary_10_1089_mab_2021_0005
crossref_primary_10_1016_S2468_1253_22_00235_7
crossref_primary_10_3390_cancers14112711
crossref_primary_10_1016_j_nano_2021_102415
crossref_primary_10_3389_fnagi_2023_1273855
crossref_primary_10_1093_lifemedi_lnad019
crossref_primary_10_1016_j_bbcan_2020_188486
crossref_primary_10_3390_ijms21176178
crossref_primary_10_1016_j_biopha_2019_109570
crossref_primary_10_3389_fonc_2021_804418
crossref_primary_10_1002_prm2_12087
crossref_primary_10_3390_cells13110964
crossref_primary_10_1007_s10238_023_01227_6
crossref_primary_10_3389_fimmu_2023_1101769
crossref_primary_10_1155_2022_3655595
crossref_primary_10_3389_fonc_2023_1166860
crossref_primary_10_3389_fonc_2022_949332
crossref_primary_10_1016_j_biopha_2023_115513
crossref_primary_10_1111_imcb_12423
crossref_primary_10_1615_CritRevOncog_2022047088
crossref_primary_10_3389_fimmu_2021_609762
crossref_primary_10_3389_fimmu_2022_844142
crossref_primary_10_1055_a_1458_5646
crossref_primary_10_1016_j_addr_2023_115110
crossref_primary_10_1080_14728222_2022_2170779
crossref_primary_10_3389_fgene_2022_832046
crossref_primary_10_15252_emmm_202114291
crossref_primary_10_1016_j_jep_2024_117883
crossref_primary_10_1186_s12890_023_02707_x
crossref_primary_10_1002_adfm_202312092
crossref_primary_10_1038_s12276_023_01080_3
crossref_primary_10_3390_vaccines12010007
crossref_primary_10_3390_pharmaceutics12111099
crossref_primary_10_70099_BJ_2024_01_02_8
crossref_primary_10_3389_fnut_2023_1113739
crossref_primary_10_1007_s12672_024_01253_0
crossref_primary_10_1016_j_intimp_2021_107627
crossref_primary_10_1126_sciadv_aax3160
crossref_primary_10_1002_btm2_10362
crossref_primary_10_1080_14686996_2021_1944782
crossref_primary_10_3892_ijo_2021_5288
crossref_primary_10_1080_21645515_2021_2024416
crossref_primary_10_1111_cas_16015
crossref_primary_10_1186_s12943_025_02255_4
crossref_primary_10_1038_s41585_022_00617_x
crossref_primary_10_3389_fimmu_2023_1155377
crossref_primary_10_1590_1678_7757_2022_0308
crossref_primary_10_3389_fimmu_2024_1287459
crossref_primary_10_1016_j_cobme_2021_100360
crossref_primary_10_1038_s41417_023_00691_2
crossref_primary_10_3390_ijms21145017
crossref_primary_10_3389_fimmu_2024_1369726
crossref_primary_10_3389_fimmu_2022_915094
crossref_primary_10_3389_fimmu_2023_1285540
crossref_primary_10_1093_carcin_bgac063
crossref_primary_10_3390_cancers14030511
crossref_primary_10_1002_eji_202350448
crossref_primary_10_1007_s12094_022_03055_8
crossref_primary_10_1016_j_ejcb_2025_151482
crossref_primary_10_1016_j_labinv_2024_102147
crossref_primary_10_1186_s13046_023_02729_7
crossref_primary_10_3390_molecules26051343
crossref_primary_10_1002_jbt_70180
crossref_primary_10_1007_s00421_023_05251_y
crossref_primary_10_1200_PO_23_00051
crossref_primary_10_1007_s11864_022_01027_2
crossref_primary_10_1186_s12967_023_04193_5
crossref_primary_10_2147_JIR_S249384
crossref_primary_10_1038_s41598_022_09458_5
crossref_primary_10_1016_j_cpt_2022_11_001
crossref_primary_10_1002_ijc_35360
crossref_primary_10_3389_fimmu_2024_1325946
crossref_primary_10_3390_ijms25137444
crossref_primary_10_1016_j_tranon_2021_101261
crossref_primary_10_3390_cancers13061353
crossref_primary_10_1158_1940_6207_CAPR_20_0607
crossref_primary_10_1038_s41416_024_02656_0
crossref_primary_10_3390_cells10040808
crossref_primary_10_1016_j_jcvp_2024_100189
crossref_primary_10_1038_s41467_023_36089_9
crossref_primary_10_3389_fmed_2023_1147782
crossref_primary_10_1177_15347354211061720
crossref_primary_10_1016_j_it_2023_11_005
crossref_primary_10_3390_ijms241613005
crossref_primary_10_3390_biomedicines11102608
crossref_primary_10_3892_etm_2023_11999
crossref_primary_10_1111_cas_15186
crossref_primary_10_3390_biomedicines11061517
crossref_primary_10_1096_fj_202400839R
crossref_primary_10_1155_2021_8816055
crossref_primary_10_1007_s13402_024_01030_9
crossref_primary_10_3390_vaccines11020394
crossref_primary_10_3389_fonc_2022_1008714
crossref_primary_10_3390_cancers13194902
crossref_primary_10_1166_jbn_2022_3347
crossref_primary_10_2174_1568009621666210825101456
crossref_primary_10_3390_pharmaceutics15020336
crossref_primary_10_1002_ijc_34281
crossref_primary_10_26508_lsa_202101316
crossref_primary_10_1186_s12951_024_02855_0
crossref_primary_10_3390_life12010130
crossref_primary_10_1016_j_intimp_2024_112724
crossref_primary_10_1080_08830185_2024_2401352
crossref_primary_10_1136_jitc_2023_006822
crossref_primary_10_7759_cureus_31154
crossref_primary_10_1515_nanoph_2021_0171
crossref_primary_10_1016_j_phymed_2022_154369
crossref_primary_10_1080_25785826_2021_1975228
crossref_primary_10_1111_1754_9485_13399
crossref_primary_10_1002_path_6338
crossref_primary_10_3390_biomedicines11092361
crossref_primary_10_1093_carcin_bgad055
crossref_primary_10_1093_jnen_nlae108
crossref_primary_10_1002_advs_202003572
crossref_primary_10_3390_genes15040493
crossref_primary_10_1200_JCO_24_00908
crossref_primary_10_3390_ijms23126664
crossref_primary_10_3390_cancers14174192
crossref_primary_10_3390_cancers13194835
crossref_primary_10_3390_cells10092333
crossref_primary_10_1177_15330338231218163
crossref_primary_10_1186_s43556_021_00038_z
crossref_primary_10_3389_fonc_2022_947183
crossref_primary_10_1016_j_bbcan_2025_189291
crossref_primary_10_1016_j_phymed_2023_154898
crossref_primary_10_3390_cancers15102729
crossref_primary_10_1016_j_semcancer_2020_12_001
crossref_primary_10_1186_s12876_024_03346_0
crossref_primary_10_3390_cancers14225488
crossref_primary_10_1016_j_isci_2020_101623
crossref_primary_10_1016_j_actbio_2023_03_004
crossref_primary_10_1016_j_nut_2022_111829
crossref_primary_10_1186_s12894_023_01175_z
crossref_primary_10_55694_jamer_1391740
crossref_primary_10_2147_OTT_S333029
crossref_primary_10_1186_s12885_023_10740_6
crossref_primary_10_3390_cancers14174086
crossref_primary_10_1080_14737159_2023_2296668
crossref_primary_10_1186_s12951_025_03322_0
crossref_primary_10_3389_fimmu_2023_1206504
crossref_primary_10_3390_cancers15215124
crossref_primary_10_1002_eji_202048992
crossref_primary_10_3389_fimmu_2024_1520570
crossref_primary_10_3389_fimmu_2023_1172931
crossref_primary_10_1016_j_nantod_2023_102042
crossref_primary_10_3390_jcm10173789
crossref_primary_10_1182_bloodadvances_2020003774
crossref_primary_10_1007_s10528_023_10345_5
crossref_primary_10_3389_fgene_2022_882794
crossref_primary_10_3389_fmolb_2021_673042
crossref_primary_10_1016_j_jare_2021_05_010
crossref_primary_10_3324_haematol_2023_283758
crossref_primary_10_3389_fimmu_2022_840923
crossref_primary_10_3389_fimmu_2022_835690
crossref_primary_10_3390_cells13110941
crossref_primary_10_31857_S0320972523110167
crossref_primary_10_3389_fimmu_2020_01915
crossref_primary_10_3390_ijms21218363
crossref_primary_10_3390_cells13201680
crossref_primary_10_1016_j_mbs_2024_109187
crossref_primary_10_1038_s41571_020_0413_z
crossref_primary_10_3389_fimmu_2021_641883
crossref_primary_10_3389_fimmu_2023_1294459
crossref_primary_10_3389_fimmu_2021_816658
crossref_primary_10_1002_eji_202048869
crossref_primary_10_1038_s41590_024_01755_7
crossref_primary_10_1136_jitc_2024_010150
crossref_primary_10_3389_fimmu_2020_585819
crossref_primary_10_1186_s12885_024_12851_0
crossref_primary_10_3390_cancers15102858
crossref_primary_10_1038_s41419_024_06493_0
crossref_primary_10_1016_j_celrep_2022_110986
crossref_primary_10_1021_acs_biochem_4c00121
crossref_primary_10_1016_j_jvir_2023_01_032
crossref_primary_10_1038_s41598_020_74808_0
crossref_primary_10_1002_biof_1776
crossref_primary_10_1016_j_bbadis_2022_166591
crossref_primary_10_3389_fonc_2022_1070243
crossref_primary_10_3390_molecules26041113
crossref_primary_10_1002_cbin_11806
crossref_primary_10_1124_pharmrev_123_000901
crossref_primary_10_3390_cancers14143383
crossref_primary_10_1007_s11060_024_04689_0
crossref_primary_10_1038_s41598_024_70916_3
crossref_primary_10_1007_s00262_021_02946_z
crossref_primary_10_1002_advs_202308734
crossref_primary_10_3389_fimmu_2023_1292166
crossref_primary_10_3390_cells10112935
crossref_primary_10_1136_jitc_2024_010041
crossref_primary_10_1002_wrna_1676
crossref_primary_10_1186_s40364_024_00630_9
crossref_primary_10_1093_discim_kyae006
crossref_primary_10_1016_j_bulcan_2020_04_018
crossref_primary_10_1038_s41598_021_85810_5
crossref_primary_10_1016_j_heliyon_2023_e17216
crossref_primary_10_3390_cells10092245
crossref_primary_10_1186_s12967_025_06070_9
Cites_doi 10.1053/j.seminoncol.2010.09.013
10.1084/jem.159.5.1295
10.3389/fimmu.2018.02374
10.1371/journal.pone.0002705
10.1016/j.immuni.2016.10.032
10.1016/j.immuni.2007.08.014
10.4049/jimmunol.179.5.2774
10.1126/science.1202947
10.1126/scitranslmed.3003330
10.1038/s41591-019-0420-8
10.1016/j.immuni.2009.03.019
10.1126/science.1203486
10.1056/NEJMe1205943
10.1158/0008-5472.CAN-12-2325
10.1038/83713
10.1097/JTO.0000000000000364
10.1172/JCI66375
10.4049/jimmunol.181.10.6923
10.1158/0008-5472.CAN-07-5839
10.1038/nrc3245
10.1073/pnas.73.9.3278
10.1038/nature12331
10.4049/jimmunol.177.10.6598
10.1084/jem.20130573
10.1158/2326-6066.CIR-16-0297
10.1038/ni759
10.4049/jimmunol.177.1.593
10.1073/pnas.1608873113
10.1073/pnas.1316796110
10.1016/j.ccell.2018.03.012
10.1084/jem.20030152
10.4049/jimmunol.0903879
10.1038/nm934
10.1073/pnas.1822001116
10.1016/S2352-3026(15)00196-9
10.1073/pnas.1508224112
10.1002/eji.200324181
10.1038/nri3108
10.1016/j.immuni.2004.08.010
10.1126/science.166.3906.753
10.1126/science.aaa1292
10.3389/fimmu.2013.00190
10.1097/01.TP.0000158023.21233.DE
10.1158/1078-0432.CCR-15-0357
10.1038/nature06306
10.1038/83784
10.1016/j.cmet.2016.12.018
10.1016/j.trecan.2016.11.008
10.1073/pnas.0800928105
10.1038/ni1289
10.1126/sciimmunol.aao4310
10.1053/j.seminoncol.2005.12.017
10.1158/2326-6066.CIR-13-0013
10.1126/science.1145697
10.1093/intimm/10.12.1969
10.1126/science.7520605
10.1084/jem.20060772
10.1038/nature16486
10.1038/35051100
10.1073/pnas.1834479100
10.1073/pnas.192461099
10.1084/jem.20130579
10.1084/jem.20041982
10.1016/S0092-8674(00)80856-9
10.1002/ijc.30475
10.1038/ni.f.213
10.4049/jimmunol.163.10.5211
10.1186/s40425-018-0403-1
10.1038/ni.3076
10.1038/nature13444
10.1002/j.1460-2075.1992.tb05481.x
10.1038/nri1457
10.1038/nm.4086
10.1038/ni.3077
10.1038/s41467-017-00314-z
10.1038/ni.3868
10.1038/nature10169
10.1038/nrclinonc.2016.217
10.1073/pnas.1621280114
10.1038/ni.3365
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.14069
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate OHUE and NISHIKAWA
EISSN 1349-7006
EndPage 2089
ExternalDocumentID PMC6609813
31102428
10_1111_cas_14069
CAS14069
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4679-5f00a4559ddf34c4068a2756586452702905ef41392219155eef544d1b3ed6683
IEDL.DBID BENPR
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 17:42:37 EDT 2025
Sun Aug 24 04:06:18 EDT 2025
Wed Aug 13 10:51:23 EDT 2025
Mon Jul 21 05:40:53 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Tue Jul 01 01:31:06 EDT 2025
Wed Jan 22 16:41:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords immune suppression
tumor
tolerance
Treg
immune checkpoint
Language English
License Attribution-NonCommercial
2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4679-5f00a4559ddf34c4068a2756586452702905ef41392219155eef544d1b3ed6683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6563-9807
0000-0003-0171-8367
OpenAccessLink https://www.proquest.com/docview/2251881159?pq-origsite=%requestingapplication%
PMID 31102428
PQID 2251881159
PQPubID 4378882
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609813
proquest_miscellaneous_2232036548
proquest_journals_2251881159
pubmed_primary_31102428
crossref_primary_10_1111_cas_14069
crossref_citationtrail_10_1111_cas_14069
wiley_primary_10_1111_cas_14069_CAS14069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationTitleAlternate Cancer Sci
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2017; 5
2004; 21
2017; 8
2013; 4
2013; 1
2017; 3
2012; 366
2006; 33
2002; 99
2008; 9
2004; 4
2011; 11
1999; 163
2008; 105
2010; 184
2008; 3
1992; 11
2012; 12
2017; 114
2011; 475
2003; 198
2006; 177
1969; 166
2018; 6
2018; 9
1976; 73
2007; 179
1994; 265
1999; 59
2004; 34
1984; 159
2007; 450
2003; 9
2019; 25
2016; 113
2019; 116
2008; 68
2013; 110
2006; 203
2018; 33
1998; 10
2016; 45
2005; 79
2014; 124
2007; 27
2015; 2
2019; 4
2010; 37
2015; 16
2017; 25
2013; 500
2015; 10
2016; 529
2006; 7
2002; 3
2001; 409
2001; 27
2016; 17
2011; 332
2014; 510
2011; 331
2008; 181
2009; 30
2007; 317
2017; 14
2005; 201
2013; 73
2015; 112
2015; 21
2013; 210
1996; 40
2017; 140
2017; 18
2000; 101
2012; 4
2003; 100
2014; 346
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Onizuka S (e_1_2_8_11_1) 1999; 59
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Shimizu J (e_1_2_8_10_1) 1999; 163
e_1_2_8_31_1
e_1_2_8_56_1
Roubin R (e_1_2_8_72_1) 1996; 40
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 27
  start-page: 635
  year: 2007
  end-page: 646
  article-title: Granzyme B and perforin are important for regulatory T cell‐mediated suppression of tumor clearance
  publication-title: Immunity
– volume: 166
  start-page: 753
  year: 1969
  end-page: 755
  article-title: Thymus and reproduction: sex‐linked dysgenesia of the gonad after neonatal thymectomy in mice
  publication-title: Science
– volume: 198
  start-page: 1875
  year: 2003
  end-page: 1886
  article-title: Conversion of peripheral CD4+CD25‐ naive T cells to CD4+CD25+ regulatory T cells by TGF‐beta induction of transcription factor Foxp3
  publication-title: J Exp Med
– volume: 34
  start-page: 336
  year: 2004
  end-page: 344
  article-title: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative
  publication-title: Eur J Immunol
– volume: 99
  start-page: 12293
  year: 2002
  end-page: 12297
  article-title: Involvement of PD‐L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD‐L1 blockade
  publication-title: Proc Natl Acad Sci USA
– volume: 163
  start-page: 5211
  year: 1999
  end-page: 5218
  article-title: Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity
  publication-title: J Immunol
– volume: 4
  year: 2019
  article-title: Tumor‐infiltrating human CD4(+) regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity
  publication-title: Sci Immunol
– volume: 21
  start-page: 503
  year: 2004
  end-page: 513
  article-title: Role of LAG‐3 in regulatory T cells
  publication-title: Immunity
– volume: 177
  start-page: 6598
  year: 2006
  end-page: 6602
  article-title: Cutting edge: the phosphoinositide 3‐kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells
  publication-title: J Immunol
– volume: 529
  start-page: 532
  year: 2016
  end-page: 536
  article-title: Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity
  publication-title: Nature
– volume: 177
  start-page: 593
  year: 2006
  end-page: 603
  article-title: Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR30
  publication-title: J Immunol
– volume: 203
  start-page: 1701
  year: 2006
  end-page: 1711
  article-title: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells
  publication-title: J Exp Med
– volume: 101
  start-page: 455
  year: 2000
  end-page: 458
  article-title: Regulatory T cells: key controllers of immunologic self‐tolerance
  publication-title: Cell
– volume: 9
  start-page: 1269
  year: 2003
  end-page: 1274
  article-title: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3‐dioxygenase
  publication-title: Nat Med
– volume: 1
  start-page: 32
  year: 2013
  end-page: 42
  article-title: Anti‐CTLA‐4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells
  publication-title: Cancer Immunol Res
– volume: 10
  start-page: 1969
  year: 1998
  end-page: 1980
  article-title: Immunologic self‐tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state
  publication-title: Int Immunol
– volume: 21
  start-page: 4327
  year: 2015
  end-page: 4336
  article-title: Phase Ia study of FoxP3+ CD4 treg depletion by infusion of a humanized anti‐CCR49 antibody, KW‐0761, in cancer patients
  publication-title: Clin Cancer Res
– volume: 181
  start-page: 6923
  year: 2008
  end-page: 6933
  article-title: CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells
  publication-title: J Immunol
– volume: 105
  start-page: 7797
  year: 2008
  end-page: 7802
  article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 422
  year: 2017
  article-title: Identification of HSP90 inhibitors as a novel class of senolytics
  publication-title: Nat Commun
– volume: 33
  start-page: S11
  year: 2006
  end-page: S16
  article-title: Clinical experience with denileukin diftitox (ONTAK)
  publication-title: Semin Oncol
– volume: 100
  start-page: 10902
  year: 2003
  end-page: 10906
  article-title: CD4+CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 5948
  year: 2008
  end-page: 5954
  article-title: Regulatory T cell‐resistant CD8+ T cells induced by glucocorticoid‐induced tumor necrosis factor receptor signaling
  publication-title: Can Res
– volume: 22
  start-page: 679
  year: 2016
  end-page: 684
  article-title: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers
  publication-title: Nat Med
– volume: 4
  start-page: 134ra62
  year: 2012
  article-title: CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients
  publication-title: Sci Transl Med
– volume: 366
  start-page: 2517
  year: 2012
  end-page: 2519
  article-title: Tumor immunotherapy directed at PD‐1
  publication-title: N Engl J Med
– volume: 33
  start-page: 547
  year: 2018
  end-page: 562
  article-title: T cell dysfunction in cancer
  publication-title: Cancer Cell
– volume: 18
  start-page: 1332
  year: 2017
  end-page: 1341
  article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD‐L1‐blockade resistance in tumor
  publication-title: Nat Immunol
– volume: 30
  start-page: 899
  year: 2009
  end-page: 911
  article-title: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor
  publication-title: Immunity
– volume: 140
  start-page: 686
  year: 2017
  end-page: 695
  article-title: ICOS(+) Foxp3(+) TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori
  publication-title: Int J Cancer
– volume: 475
  start-page: 226
  year: 2011
  end-page: 230
  article-title: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
  publication-title: Nature
– volume: 5
  start-page: 3
  year: 2017
  end-page: 8
  article-title: Myeloid‐derived suppressor cells
  publication-title: Cancer Immunol Res
– volume: 450
  start-page: 566
  year: 2007
  end-page: 569
  article-title: The inhibitory cytokine IL‐35 contributes to regulatory T‐cell function
  publication-title: Nature
– volume: 409
  start-page: 97
  year: 2001
  end-page: 101
  article-title: ICOS co‐stimulatory receptor is essential for T‐cell activation and function
  publication-title: Nature
– volume: 73
  start-page: 3278
  year: 1976
  end-page: 3282
  article-title: Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells
  publication-title: Proc Natl Acad Sci USA
– volume: 500
  start-page: 232
  year: 2013
  end-page: 236
  article-title: Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
  publication-title: Nature
– volume: 124
  start-page: 2425
  year: 2014
  end-page: 2440
  article-title: Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction
  publication-title: J Clin Investig
– volume: 11
  start-page: 852
  year: 2011
  end-page: 863
  article-title: The emerging role of CTLA4 as a cell‐extrinsic regulator of T cell responses
  publication-title: Nat Rev Immunol
– volume: 332
  start-page: 600
  year: 2011
  end-page: 603
  article-title: Trans‐endocytosis of CD80 and CD86: a molecular basis for the cell‐extrinsic function of CTLA‐4
  publication-title: Science
– volume: 4
  start-page: 762
  year: 2004
  end-page: 774
  article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism
  publication-title: Nat Rev Immunol
– volume: 510
  start-page: 407
  year: 2014
  end-page: 411
  article-title: Inactivation of PI(3)K p110delta breaks regulatory T‐cell‐mediated immune tolerance to cancer
  publication-title: Nature
– volume: 79
  start-page: 904
  year: 2005
  end-page: 913
  article-title: Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen
  publication-title: Transplantation
– volume: 16
  start-page: 188
  year: 2015
  end-page: 196
  article-title: Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability
  publication-title: Nat Immunol
– volume: 116
  start-page: 9999
  year: 2019
  end-page: 10008
  article-title: PD‐1(+) regulatory T cells amplified by PD‐1 blockade promote hyperprogression of cancer
  publication-title: Proc Natl Acad Sci USA
– volume: 265
  start-page: 1237
  year: 1994
  end-page: 1240
  article-title: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis
  publication-title: Science
– volume: 114
  start-page: 6086
  year: 2017
  end-page: 6091
  article-title: CCR29(+)FOXp3(+) Treg cells as master drivers of immune regulation
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 20
  year: 2001
  end-page: 21
  article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome (IPEX) is caused by mutations of FOXP3
  publication-title: Nat Genet
– volume: 4
  start-page: 190
  year: 2013
  article-title: Natural and induced T regulatory cells in cancer
  publication-title: Front Immunol
– volume: 331
  start-page: 1565
  year: 2011
  end-page: 1570
  article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion
  publication-title: Science
– volume: 59
  start-page: 3128
  year: 1999
  end-page: 3133
  article-title: Tumor rejection by in vivo administration of anti‐CD25 (interleukin‐2 receptor alpha) monoclonal antibody
  publication-title: Can Res
– volume: 11
  start-page: 3887
  year: 1992
  end-page: 3895
  article-title: Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death
  publication-title: EMBO J
– volume: 317
  start-page: 256
  year: 2007
  end-page: 260
  article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid
  publication-title: Science
– volume: 25
  start-page: 759
  year: 2019
  end-page: 766
  article-title: Rational design of anti-GITR-based combination immunotherapy
  publication-title: Nat. Med
– volume: 3
  start-page: 56
  year: 2017
  end-page: 71
  article-title: Targeting TGF‐beta signaling in cancer
  publication-title: Trends Cancer
– volume: 16
  start-page: 178
  year: 2015
  end-page: 187
  article-title: Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses
  publication-title: Nat Immunol
– volume: 17
  start-page: 277
  year: 2016
  end-page: 285
  article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
  publication-title: Nat Immunol
– volume: 3
  start-page: e2705
  year: 2008
  article-title: Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression
  publication-title: PLoS ONE
– volume: 201
  start-page: 723
  year: 2005
  end-page: 735
  article-title: Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)‐2 and induction of autoimmune disease by IL‐2 neutralization
  publication-title: J Exp Med
– volume: 37
  start-page: 524
  year: 2010
  end-page: 532
  article-title: Signaling through OX40 enhances antitumor immunity
  publication-title: Semin Oncol
– volume: 210
  start-page: 1685
  year: 2013
  end-page: 1693
  article-title: Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor‐targeting antibodies
  publication-title: J Exp Med
– volume: 179
  start-page: 2774
  year: 2007
  end-page: 2786
  article-title: CXCR31 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system
  publication-title: J Immunol
– volume: 9
  start-page: 2374
  year: 2018
  article-title: Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression
  publication-title: Front Immunol
– volume: 9
  start-page: 970
  year: 2008
  end-page: 980
  article-title: Orchestrating the orchestrators: chemokines in control of T cell traffic
  publication-title: Nat Immunol
– volume: 40
  start-page: 545
  year: 1996
  end-page: 555
  article-title: Structure and developmental expression of mouse Garp, a gene encoding a new leucine‐rich repeat‐containing protein
  publication-title: Int J Dev Biol
– volume: 25
  start-page: 1282
  year: 2017
  end-page: 1293
  article-title: Foxp3 reprograms T cell metabolism to function in low‐glucose, high‐lactate environments
  publication-title: Cell Metab
– volume: 7
  start-page: 83
  year: 2006
  end-page: 92
  article-title: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice
  publication-title: Nat Immunol
– volume: 12
  start-page: 298
  year: 2012
  end-page: 306
  article-title: The immune contexture in human tumours: impact on clinical outcome
  publication-title: Nat Rev Cancer
– volume: 210
  start-page: 1695
  year: 2013
  end-page: 1710
  article-title: Fc‐dependent depletion of tumor‐infiltrating regulatory T cells co‐defines the efficacy of anti‐CTLA‐4 therapy against melanoma
  publication-title: J Exp Med
– volume: 45
  start-page: 1122
  year: 2016
  end-page: 1134
  article-title: Regulatory T cells exhibit distinct features in human breast cancer
  publication-title: Immunity
– volume: 113
  start-page: 8490
  year: 2016
  end-page: 8495
  article-title: Nonoverlapping roles of PD‐1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model
  publication-title: Proc Natl Acad Sci USA
– volume: 184
  start-page: 6545
  year: 2010
  end-page: 6551
  article-title: LAG‐3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites
  publication-title: J Immunol
– volume: 110
  start-page: 17945
  year: 2013
  end-page: 17950
  article-title: Anti‐CCR1 mAb selectively depletes effector‐type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: e528
  year: 2015
  end-page: e535
  article-title: Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial
  publication-title: Lancet Haematol
– volume: 3
  start-page: 135
  year: 2002
  end-page: 142
  article-title: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self‐tolerance
  publication-title: Nat Immunol
– volume: 14
  start-page: 399
  year: 2017
  end-page: 416
  article-title: Tumour‐associated macrophages as treatment targets in oncology
  publication-title: Nat Rev Clin Oncol
– volume: 6
  start-page: 106
  year: 2018
  article-title: Targeting VEGFR2 with Ramucirumab strongly impacts effector/activated regulatory T cells and CD8(+) T cells in the tumor microenvironment
  publication-title: J Immunother Cancer
– volume: 346
  start-page: 1536
  year: 2014
  end-page: 1540
  article-title: Detection of self‐reactive CD8(+) T cells with an anergic phenotype in healthy individuals
  publication-title: Science
– volume: 27
  start-page: 68
  year: 2001
  end-page: 73
  article-title: Disruption of a new forkhead/winged‐helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
  publication-title: Nat Genet
– volume: 10
  start-page: 74
  year: 2015
  end-page: 83
  article-title: Increase in activated Treg in TIL in lung cancer and in vitro depletion of Treg by ADCC using an antihuman CCR28 mAb (KM2760)
  publication-title: J Thorac Oncol
– volume: 159
  start-page: 1295
  year: 1984
  end-page: 1311
  article-title: Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly‐1+ 2‐ suppressor T cells down‐regulate the generation of Ly‐1‐2+ effector T cells
  publication-title: J Exp Med
– volume: 112
  start-page: 7225
  year: 2015
  end-page: 7230
  article-title: Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 73
  start-page: 539
  year: 2013
  end-page: 549
  article-title: VEGFA‐VEGFR pathway blockade inhibits tumor‐induced regulatory T‐cell proliferation in colorectal cancer
  publication-title: Can Res
– ident: e_1_2_8_60_1
  doi: 10.1053/j.seminoncol.2010.09.013
– ident: e_1_2_8_8_1
  doi: 10.1084/jem.159.5.1295
– ident: e_1_2_8_69_1
  doi: 10.3389/fimmu.2018.02374
– ident: e_1_2_8_73_1
  doi: 10.1371/journal.pone.0002705
– ident: e_1_2_8_65_1
  doi: 10.1016/j.immuni.2016.10.032
– ident: e_1_2_8_43_1
  doi: 10.1016/j.immuni.2007.08.014
– ident: e_1_2_8_32_1
  doi: 10.4049/jimmunol.179.5.2774
– ident: e_1_2_8_39_1
  doi: 10.1126/science.1202947
– ident: e_1_2_8_55_1
  doi: 10.1126/scitranslmed.3003330
– ident: e_1_2_8_62_1
  doi: 10.1038/s41591-019-0420-8
– ident: e_1_2_8_20_1
  doi: 10.1016/j.immuni.2009.03.019
– ident: e_1_2_8_26_1
  doi: 10.1126/science.1203486
– ident: e_1_2_8_56_1
  doi: 10.1056/NEJMe1205943
– ident: e_1_2_8_83_1
  doi: 10.1158/0008-5472.CAN-12-2325
– ident: e_1_2_8_13_1
  doi: 10.1038/83713
– ident: e_1_2_8_29_1
  doi: 10.1097/JTO.0000000000000364
– ident: e_1_2_8_22_1
  doi: 10.1172/JCI66375
– ident: e_1_2_8_74_1
  doi: 10.4049/jimmunol.181.10.6923
– ident: e_1_2_8_61_1
  doi: 10.1158/0008-5472.CAN-07-5839
– ident: e_1_2_8_25_1
  doi: 10.1038/nrc3245
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.73.9.3278
– ident: e_1_2_8_18_1
  doi: 10.1038/nature12331
– ident: e_1_2_8_77_1
  doi: 10.4049/jimmunol.177.10.6598
– ident: e_1_2_8_57_1
  doi: 10.1084/jem.20130573
– ident: e_1_2_8_4_1
  doi: 10.1158/2326-6066.CIR-16-0297
– ident: e_1_2_8_14_1
  doi: 10.1038/ni759
– ident: e_1_2_8_31_1
  doi: 10.4049/jimmunol.177.1.593
– ident: e_1_2_8_70_1
  doi: 10.1073/pnas.1608873113
– ident: e_1_2_8_64_1
  doi: 10.1073/pnas.1316796110
– ident: e_1_2_8_68_1
  doi: 10.1016/j.ccell.2018.03.012
– ident: e_1_2_8_16_1
  doi: 10.1084/jem.20030152
– ident: e_1_2_8_44_1
  doi: 10.4049/jimmunol.0903879
– ident: e_1_2_8_47_1
  doi: 10.1038/nm934
– volume: 59
  start-page: 3128
  year: 1999
  ident: e_1_2_8_11_1
  article-title: Tumor rejection by in vivo administration of anti‐CD25 (interleukin‐2 receptor alpha) monoclonal antibody
  publication-title: Can Res
– ident: e_1_2_8_46_1
  doi: 10.1073/pnas.1822001116
– ident: e_1_2_8_75_1
  doi: 10.1016/S2352-3026(15)00196-9
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.1508224112
– ident: e_1_2_8_66_1
  doi: 10.1002/eji.200324181
– ident: e_1_2_8_37_1
  doi: 10.1038/nri3108
– ident: e_1_2_8_45_1
  doi: 10.1016/j.immuni.2004.08.010
– ident: e_1_2_8_9_1
  doi: 10.1126/science.166.3906.753
– ident: e_1_2_8_38_1
  doi: 10.1126/science.aaa1292
– ident: e_1_2_8_15_1
  doi: 10.3389/fimmu.2013.00190
– ident: e_1_2_8_67_1
  doi: 10.1097/01.TP.0000158023.21233.DE
– ident: e_1_2_8_50_1
  doi: 10.1158/1078-0432.CCR-15-0357
– ident: e_1_2_8_42_1
  doi: 10.1038/nature06306
– ident: e_1_2_8_12_1
  doi: 10.1038/83784
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cmet.2016.12.018
– ident: e_1_2_8_71_1
  doi: 10.1016/j.trecan.2016.11.008
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.0800928105
– ident: e_1_2_8_21_1
  doi: 10.1038/ni1289
– ident: e_1_2_8_23_1
  doi: 10.1126/sciimmunol.aao4310
– volume: 40
  start-page: 545
  year: 1996
  ident: e_1_2_8_72_1
  article-title: Structure and developmental expression of mouse Garp, a gene encoding a new leucine‐rich repeat‐containing protein
  publication-title: Int J Dev Biol
– ident: e_1_2_8_54_1
  doi: 10.1053/j.seminoncol.2005.12.017
– ident: e_1_2_8_58_1
  doi: 10.1158/2326-6066.CIR-13-0013
– ident: e_1_2_8_17_1
  doi: 10.1126/science.1145697
– ident: e_1_2_8_41_1
  doi: 10.1093/intimm/10.12.1969
– ident: e_1_2_8_34_1
  doi: 10.1126/science.7520605
– ident: e_1_2_8_19_1
  doi: 10.1084/jem.20060772
– ident: e_1_2_8_80_1
  doi: 10.1038/nature16486
– ident: e_1_2_8_35_1
  doi: 10.1038/35051100
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.1834479100
– ident: e_1_2_8_7_1
  doi: 10.1073/pnas.192461099
– ident: e_1_2_8_59_1
  doi: 10.1084/jem.20130579
– ident: e_1_2_8_40_1
  doi: 10.1084/jem.20041982
– ident: e_1_2_8_3_1
  doi: 10.1016/S0092-8674(00)80856-9
– ident: e_1_2_8_36_1
  doi: 10.1002/ijc.30475
– ident: e_1_2_8_28_1
  doi: 10.1038/ni.f.213
– volume: 163
  start-page: 5211
  year: 1999
  ident: e_1_2_8_10_1
  article-title: Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.10.5211
– ident: e_1_2_8_24_1
  doi: 10.1186/s40425-018-0403-1
– ident: e_1_2_8_78_1
  doi: 10.1038/ni.3076
– ident: e_1_2_8_76_1
  doi: 10.1038/nature13444
– ident: e_1_2_8_6_1
  doi: 10.1002/j.1460-2075.1992.tb05481.x
– ident: e_1_2_8_48_1
  doi: 10.1038/nri1457
– ident: e_1_2_8_27_1
  doi: 10.1038/nm.4086
– ident: e_1_2_8_79_1
  doi: 10.1038/ni.3077
– ident: e_1_2_8_82_1
  doi: 10.1038/s41467-017-00314-z
– ident: e_1_2_8_49_1
  doi: 10.1038/ni.3868
– ident: e_1_2_8_63_1
  doi: 10.1038/nature10169
– ident: e_1_2_8_5_1
  doi: 10.1038/nrclinonc.2016.217
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.1621280114
– ident: e_1_2_8_81_1
  doi: 10.1038/ni.3365
SSID ssj0036494
Score 2.6990345
SecondaryResourceType review_article
Snippet Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg...
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2080
SubjectTerms Adenosine
Animals
Antigens
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Antineoplastic Agents, Immunological - pharmacology
Antineoplastic Agents, Immunological - therapeutic use
Antitumor activity
Autoantigens
Autoimmune diseases
Autoimmunity
Cancer
Cancer immunotherapy
CCL17 protein
CCR8 protein
CD25 antigen
CD80 antigen
CD86 antigen
Chemokine receptors
Chemokines
CTLA-4 Antigen - metabolism
CXCR3 protein
Cytokines
Cytokines - metabolism
Cytotoxicity
Dendritic cells
Effector cells
Homeostasis
Humans
Immune checkpoint
immune suppression
Immunoregulation
Immunotherapy
Immunotherapy - methods
Interleukin-2 - metabolism
Interleukin-2 Receptor alpha Subunit - metabolism
Lymphocytes
Lymphocytes T
Metabolism
Metabolites
Metastases
Mice
Neoplasms - drug therapy
Neoplasms - immunology
Patients
Precision medicine
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Review
Small Molecule Libraries - pharmacology
Small Molecule Libraries - therapeutic use
T-Lymphocytes, Regulatory - drug effects
T-Lymphocytes, Regulatory - immunology
Therapeutic applications
tolerance
Treg
tumor
Tumor necrosis factor-TNF
Vascular endothelial growth factor
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qBfEivq1WWcVDPQSy2c1mowcpxVIEpWgL3kIeu1qQVNL24L93Ji9aquAtMBOSndmd_WYf3xBynQAKV4L5luOGEkm1uRWphFnM6MR1hDE8ztk-n-VgLB7f3LcGuavuwhT8EPWCG46MPF7jAA-j2dIgx5JgDO9tbpBNvFqL5QscMazCMJfCLyraCs_ybe6UtEJ4jKd-dXUyWkOY6wcllwFsPgP1d8lOCR1pt_D1HmnodJ9sPZWb4wdk-FLUlZ9m33REO6NMv99QXJif0UlKY3Rvdkt7YUpRVEoiTUMK0JouXcSixfHw-0My7j-MegOrLJhgxRDvfMs1th0KyBGSxHARQwtViPTursLtS892fNvVBqYt34FABUhCa-MKkbCI60RKxY9IM52m-oTQSGkWgwUToyHlMl7oAZKKbR4pDikVky3SqSwXxCWbOBa1-AyqrAKMHORGbpGrWvWroND4TaldmT8oR9EsgFjDlALMCuLLWgz9Hy0Upnq6QB2Oe6mQeLXIceGt-iscsA1AEJB4K36sFZBbe1WSTj5yjm0pbV8xDs3MPf73jwe97mv-cPp_1TOyDbjLL079tklzni30OWCbeXSR9-EflOnwyw
  priority: 102
  providerName: Wiley-Blackwell
Title Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14069
https://www.ncbi.nlm.nih.gov/pubmed/31102428
https://www.proquest.com/docview/2251881159
https://www.proquest.com/docview/2232036548
https://pubmed.ncbi.nlm.nih.gov/PMC6609813
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NIqG9IPbBVugqb9oDPETEsZPYvFRQgdCkoaorUt-iJLYZEkqhhQf-e-4Sp1Dx8RJFOkuJ7-zz7z58B_DbIApXkusgivOEimqLoFCGB9xZE0fSOVHW1T7Pk7ML-WcaT73DbeHTKludWCtqMyvJR36A644rhfhFD25uA-oaRdFV30JjDdZRBau4A-vHJ-ejcauLRSJ109ZWpoEOReRrC1EuD7UU43Tvc_VEegEzX2ZLPkex9TF0ugWbHj-yo0bgn-CDrT7Dxl8fIf8Co3HTXH42f2ATtjeZ28t9Rt75BbuqWEkynh-yYV4xInlKYVnOEF-zZ7exWJMjPvgKF6cnk-FZ4LsmBCUqPR3ELgxziYaCMU7IEmeocqrxHiuKYaZhpMPYOjy7dITaCuGEtS6W0vBCWJMkSmxDp5pV9juwQlleIgeNs2h3uTRPEU6VoSiUQLuKJ13YazmXlb6kOHW2uM5a0wKZnNVM7sKv5dCbpo7Ga4N6Lfszv5UW2ZPgu_BzScZNQBzKKzu7pzGCAqpofXXhWyOt5VcEAhzEIUhJV-S4HEAFtlcp1dX_utB2koRacYHTrCX-9o9nw6N_9cvO-zPYhY8IuHST7tuDzt383v5AUHNX9GEtkiN8ptO071dxv3YQ0HMcPQK2APXS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8ckIgvxg-E01NXowk-NHS723bXxFzOE3IIXAjcJbyVtrurJKaHdxDDP8XfyEw_Ti6ob7w1mU0_ZufjN53ZGYD3BlG4klx7QZhG1FRbeJky3OPOmjCQzom87PY5jAZj-e0kPGnBdXMWhsoqG5tYGmozyekf-RbKHVcK8Yvunv_yaGoUZVebERqVWOzZq98Yss0-737F_f0QBDvbo_7Aq6cKeDkaBe2FzvdTiUDaGCdkjg5NpdQDPVSU44v9QPuhdWjbdYDajO7WWhdKaXgmrIkiJfC-S7CCMEOjFq182R4eHjW2X0RSV2N0ZexpXwR1LyOqHaIRZpzOmS56wDuw9m515m3UXLq9ncfwqMarrFcJ2BNo2eIpPDioM_LP4PCoGmY_mV6xEdscTe33j4yyATN2VrCcZGr6ifXTghGppmSWpQzxPLt1-otVNendNRjfCz-fw3IxKewGsExZniMHjbMY57k4jRG-5b7IlMA4jkdt2Gw4l-R1C3OapPEzaUIZZHJSMrkN7-ZLz6u-HX9b1GnYn9SqO0v-CFob3s7JqHTEobSwk0taIyiBi9FeG9ar3Zo_RSCgQtyDlHhhH-cLqKH3IqU4-1E29o4iXysu8DPLHf_3iyf93nF58eL_X_AGVgejg_1kf3e49xIeItjTValxB5Yvppf2FQKqi-x1LcUMTu9bcW4A_VorpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEJ_gkRBfCArqKepiMMGHhm532-6aGIIHFxC9XPBIeKttdxdJTA_uIIav5qdzpt2eXFDfeGsy2z87O7Pzm87sDMCmQRSuJNdBFOcJFdUWQaEMD7izJo6kc6Ksq30OkoMT-ek0Pl2AX-1ZGEqrbPfEeqM245L-kW-j3HGlEL_obefTIoZ7_Z2Ly4A6SFGktW2n0YjIkb35ie7b9MPhHq712yjq7496B4HvMBCUuEHoIHZhmEsE1cY4IUs0biqneuixonhfGkY6jK3DfV5HqNloeq11sZSGF8KaJFECn_sAFlO6sQOLH_cHw-PWDohE6qalrkwDHYrI1zWiPCJqZ8bpzOm8NbwDce9mat5G0LUJ7K_AsseubLcRtkewYKvHsPTFR-dXYXjcNLYfT27YiG2NJvbsHaPIwJSdV6wk-Zq8Z728YkTylMKynCG2Z7dOgrEmP31nDU7uhZ9PoFONK_sMWKEsL5GDxln0-VyapwjlylAUSqBPx5MubLWcy0pfzpy6avzIWrcGmZzVTO7Cm9nQi6aGx98Grbfsz7waT7M_QteFjRkZFZA4lFd2fE1jBAVz0fPrwtNmtWZvEQiuEAMhJZ1bx9kAKu49T6nOv9dFvpMk1IoLnGa94v_-8Ky3-7W-eP7_GbyGJVSY7PPh4OgFPETcp5us43XoXE2u7UvEVlfFKy_EDL7dt978BhXVL9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+T+%28Treg%29+cells+in+cancer%3A+Can+Treg+cells+be+a+new+therapeutic+target%3F&rft.jtitle=Cancer+science&rft.au=Ohue%2C+Yoshihiro&rft.au=Nishikawa%2C+Hiroyoshi&rft.date=2019-07-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=110&rft.issue=7&rft.spage=2080&rft_id=info:doi/10.1111%2Fcas.14069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon