Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target?
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechan...
Saved in:
Published in | Cancer science Vol. 110; no. 7; pp. 2080 - 2089 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.07.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1347-9032 1349-7006 1349-7006 |
DOI | 10.1111/cas.14069 |
Cover
Loading…
Abstract | Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
Regulatory T cells suppress immune functions through various mechanisms such as cytotoxic T‐lymphocyte antigen‐4‐mediated suppression of antigen‐presenting cell function, consumption of interleukin‐2, production of immunosuppressive cytokines, and production of immune suppressive metabolites. |
---|---|
AbstractList | Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes. Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor α-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes. Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes. Regulatory T cells suppress immune functions through various mechanisms such as cytotoxic T‐lymphocyte antigen‐4‐mediated suppression of antigen‐presenting cell function, consumption of interleukin‐2, production of immunosuppressive cytokines, and production of immune suppressive metabolites. |
Author | Nishikawa, Hiroyoshi Ohue, Yoshihiro |
AuthorAffiliation | 2 Department of Immunology Nagoya University Graduate School of Medicine Nagoya Japan 1 Division of Cancer Immunology Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center Tokyo Japan |
AuthorAffiliation_xml | – name: 1 Division of Cancer Immunology Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center Tokyo Japan – name: 2 Department of Immunology Nagoya University Graduate School of Medicine Nagoya Japan |
Author_xml | – sequence: 1 givenname: Yoshihiro orcidid: 0000-0003-0171-8367 surname: Ohue fullname: Ohue, Yoshihiro organization: Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center – sequence: 2 givenname: Hiroyoshi orcidid: 0000-0001-6563-9807 surname: Nishikawa fullname: Nishikawa, Hiroyoshi email: hnishika@ncc.go.jp organization: Nagoya University Graduate School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31102428$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNU7Ide-Ack4E17MW2-Z-JFS1m0CgVF1-uQzZzZpswm22TGsv_eTHdbtKC5SeB9zptzznuI9kIMgNBbSk5pOWfO5lMqiNIv0AHlQlc1IWrv4V1XmnC2jw5zviWEK6HFK7TPKSVMsOYAffsOy7G3Q0wbPMfH8wTLE-yg7zP2ATsbHKQPeGYDnqSdsgBscYB7PNxAsmsYB-_wYNMShovX6GVn-wxvdvcR-vnp43z2ubr-evVldnldOaFqXcmOECuk1G3bceFK841ltVSyUUKymjBNJHSCcs0Y1VRKgE4K0dIFh1aphh-h863velysoHUQhmR7s05-ZdPGROvN30rwN2YZfxmliG4oLwbHO4MU70bIg1n5PM1nA8QxG8Y4KwuTYvrr_TP0No4plPEKJWnTUCp1od792dFTK4_LLsDJFnAp5pyge0IoMVOQpgRpHoIs7Nkz1vnBDj5Ow_j-fxX3vofNv63N7PLHtuI3_iirPw |
CitedBy_id | crossref_primary_10_1186_s12985_022_01842_x crossref_primary_10_3389_fonc_2022_851766 crossref_primary_10_1093_cei_uxad072 crossref_primary_10_3390_genes12111698 crossref_primary_10_3390_ijms25147743 crossref_primary_10_3390_antiox11081553 crossref_primary_10_1016_j_jtauto_2024_100264 crossref_primary_10_1002_cam4_4169 crossref_primary_10_1080_14712598_2022_2064711 crossref_primary_10_31083_j_fbl2908301 crossref_primary_10_2217_fon_2023_1068 crossref_primary_10_47183_mes_2023_032 crossref_primary_10_1016_j_phrs_2020_104659 crossref_primary_10_1021_acsami_2c12585 crossref_primary_10_1016_j_pccm_2022_11_001 crossref_primary_10_1016_j_celrep_2024_115014 crossref_primary_10_1172_JCI178079 crossref_primary_10_3390_ijms241713287 crossref_primary_10_3390_antiox10030422 crossref_primary_10_1142_S1793545823300070 crossref_primary_10_1007_s10989_021_10270_4 crossref_primary_10_1016_j_trim_2024_102044 crossref_primary_10_12677_ACM_2022_12101340 crossref_primary_10_3390_cancers14205018 crossref_primary_10_1002_hon_2993 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1186_s12943_020_01294_3 crossref_primary_10_1042_BSR20231331 crossref_primary_10_1080_14712598_2020_1813276 crossref_primary_10_3390_app14072930 crossref_primary_10_1016_j_jpha_2024_101154 crossref_primary_10_1080_19420862_2023_2220466 crossref_primary_10_3390_cancers13215542 crossref_primary_10_1016_j_bbcan_2025_189259 crossref_primary_10_1111_febs_16125 crossref_primary_10_1038_s41368_023_00249_w crossref_primary_10_1038_s41392_021_00658_5 crossref_primary_10_4236_ojbiphy_2024_141002 crossref_primary_10_1186_s12929_022_00893_0 crossref_primary_10_15789_1563_0625_TMT_1909 crossref_primary_10_3389_fonc_2023_1210245 crossref_primary_10_3389_fimmu_2021_624789 crossref_primary_10_1016_j_intimp_2024_113952 crossref_primary_10_3389_fimmu_2023_1275461 crossref_primary_10_3390_v14112317 crossref_primary_10_1042_CS20210469 crossref_primary_10_1080_1120009X_2020_1819069 crossref_primary_10_1089_cmb_2023_0278 crossref_primary_10_3389_fimmu_2020_01710 crossref_primary_10_3389_fimmu_2024_1342086 crossref_primary_10_1016_j_intimp_2021_108409 crossref_primary_10_3390_cancers13051037 crossref_primary_10_1038_s41392_024_01808_1 crossref_primary_10_3390_cancers13112638 crossref_primary_10_1111_cas_16443 crossref_primary_10_1007_s00432_022_04399_y crossref_primary_10_1007_s12072_021_10177_8 crossref_primary_10_1016_j_omto_2021_01_011 crossref_primary_10_1007_s00262_021_03019_x crossref_primary_10_1016_j_intimp_2024_111765 crossref_primary_10_54133_ajms_v7i2_1464 crossref_primary_10_1016_j_intimp_2024_112736 crossref_primary_10_3390_cancers16162865 crossref_primary_10_1016_j_intimp_2024_111769 crossref_primary_10_1093_bib_bbae410 crossref_primary_10_1038_s41523_022_00476_0 crossref_primary_10_2174_0113862073290831240229060932 crossref_primary_10_1016_j_intimp_2023_110093 crossref_primary_10_1016_j_molimm_2022_04_014 crossref_primary_10_3389_fimmu_2024_1344272 crossref_primary_10_1038_s41423_021_00796_4 crossref_primary_10_1080_13880209_2024_2349042 crossref_primary_10_3390_cancers13236132 crossref_primary_10_3390_microorganisms11051312 crossref_primary_10_1038_s41467_021_21518_4 crossref_primary_10_1186_s12920_023_01525_8 crossref_primary_10_3390_bioengineering9110655 crossref_primary_10_3389_fimmu_2023_1227126 crossref_primary_10_3389_fphar_2021_727275 crossref_primary_10_3389_fonc_2021_738323 crossref_primary_10_4103_tcmj_tcmj_162_20 crossref_primary_10_1016_j_cyto_2024_156834 crossref_primary_10_1007_s12094_021_02659_w crossref_primary_10_1016_j_semcancer_2022_06_009 crossref_primary_10_1080_25785826_2021_2018783 crossref_primary_10_1002_adfm_202403910 crossref_primary_10_1016_j_jff_2025_106696 crossref_primary_10_1007_s11912_022_01298_w crossref_primary_10_36401_JIPO_22_18 crossref_primary_10_3390_biomedicines9121932 crossref_primary_10_3892_br_2024_1754 crossref_primary_10_1080_16078454_2023_2219554 crossref_primary_10_1007_s10522_024_10152_4 crossref_primary_10_3390_cancers13184622 crossref_primary_10_3389_fimmu_2024_1383978 crossref_primary_10_1016_j_canlet_2024_217020 crossref_primary_10_3390_vaccines13040344 crossref_primary_10_1016_j_jddst_2023_105048 crossref_primary_10_1007_s12032_022_01693_0 crossref_primary_10_3390_ijms241512301 crossref_primary_10_1177_03936155231224798 crossref_primary_10_3390_cancers14092291 crossref_primary_10_1007_s11033_023_09082_0 crossref_primary_10_3390_ijms23169038 crossref_primary_10_3389_fonc_2022_1004700 crossref_primary_10_1155_2022_2039447 crossref_primary_10_1007_s00277_025_06237_w crossref_primary_10_2147_IJN_S363456 crossref_primary_10_3390_ijms22168530 crossref_primary_10_20517_cdr_2023_46 crossref_primary_10_1016_j_intimp_2023_111000 crossref_primary_10_1038_s41467_020_19774_x crossref_primary_10_3389_fphar_2022_1055841 crossref_primary_10_1186_s12885_024_12039_6 crossref_primary_10_3390_ijms22179414 crossref_primary_10_7554_eLife_87430 crossref_primary_10_1155_2023_5532617 crossref_primary_10_3389_fimmu_2021_686809 crossref_primary_10_3389_fimmu_2022_1016059 crossref_primary_10_1038_s41467_021_21573_x crossref_primary_10_3389_fonc_2022_995498 crossref_primary_10_1016_j_isci_2025_111843 crossref_primary_10_1186_s12894_022_01085_6 crossref_primary_10_3390_ijms22073490 crossref_primary_10_12677_acm_2024_1461847 crossref_primary_10_1080_13880209_2021_2018470 crossref_primary_10_1007_s40618_020_01443_x crossref_primary_10_1016_j_abb_2022_109470 crossref_primary_10_3390_cancers13081935 crossref_primary_10_1016_j_arr_2021_101541 crossref_primary_10_1126_sciimmunol_abf9393 crossref_primary_10_21931_BJ_2024_01_02_8 crossref_primary_10_3390_cancers15174265 crossref_primary_10_3389_fimmu_2022_873644 crossref_primary_10_1016_j_jim_2024_113715 crossref_primary_10_3389_fimmu_2023_1298891 crossref_primary_10_1016_j_genrep_2024_101913 crossref_primary_10_1016_j_ccell_2023_02_014 crossref_primary_10_1159_000510385 crossref_primary_10_3390_cancers12123850 crossref_primary_10_1016_j_slasd_2022_03_008 crossref_primary_10_1080_14737140_2024_2379914 crossref_primary_10_1002_adfm_202420004 crossref_primary_10_1021_acsptsci_4c00156 crossref_primary_10_3389_fphar_2023_1113378 crossref_primary_10_1016_j_prp_2024_155266 crossref_primary_10_1111_exd_14777 crossref_primary_10_3389_froh_2020_584705 crossref_primary_10_1016_j_trecan_2021_04_008 crossref_primary_10_1016_j_jdermsci_2020_09_002 crossref_primary_10_3390_ijms21186768 crossref_primary_10_1186_s12943_023_01928_2 crossref_primary_10_1007_s00262_022_03278_2 crossref_primary_10_1016_j_xcrm_2024_101626 crossref_primary_10_3389_fimmu_2022_807840 crossref_primary_10_1136_jclinpath_2021_207517 crossref_primary_10_1186_s13046_020_1539_7 crossref_primary_10_3390_biomedicines11010173 crossref_primary_10_1002_jcb_29904 crossref_primary_10_1186_s43046_022_00137_0 crossref_primary_10_1016_j_it_2023_06_001 crossref_primary_10_3389_fmed_2023_1244298 crossref_primary_10_3390_ijms23010144 crossref_primary_10_1080_08941939_2022_2090035 crossref_primary_10_1021_acsnano_4c05065 crossref_primary_10_3389_fimmu_2023_1274199 crossref_primary_10_3390_cancers13071743 crossref_primary_10_3389_fmolb_2021_760031 crossref_primary_10_1097_HM9_0000000000000135 crossref_primary_10_3389_fimmu_2022_1007285 crossref_primary_10_1002_cti2_1400 crossref_primary_10_1016_j_intimp_2024_113330 crossref_primary_10_1186_s13046_022_02559_z crossref_primary_10_3389_fonc_2022_840467 crossref_primary_10_1007_s12094_024_03793_x crossref_primary_10_1038_s41585_019_0226_y crossref_primary_10_1089_genbio_2023_0030 crossref_primary_10_1007_s12032_023_02053_2 crossref_primary_10_1038_s41598_025_93916_3 crossref_primary_10_1136_jcp_2023_208932 crossref_primary_10_3390_ijms222010983 crossref_primary_10_3389_fimmu_2023_1117545 crossref_primary_10_3390_cells13121057 crossref_primary_10_1093_jnci_djab128 crossref_primary_10_1016_j_intimp_2024_113445 crossref_primary_10_1172_JCI170505 crossref_primary_10_3390_biom14101307 crossref_primary_10_7554_eLife_87430_3 crossref_primary_10_1016_j_cytogfr_2023_07_007 crossref_primary_10_1016_j_biopha_2022_113861 crossref_primary_10_3389_fimmu_2021_643310 crossref_primary_10_1039_D1BM01127H crossref_primary_10_1007_s10555_021_09968_0 crossref_primary_10_1007_s00432_022_04418_y crossref_primary_10_1016_j_heliyon_2024_e28386 crossref_primary_10_3390_cancers13225625 crossref_primary_10_3390_cancers15205090 crossref_primary_10_1016_j_jddst_2024_106589 crossref_primary_10_3389_fimmu_2022_844931 crossref_primary_10_1016_j_jconrel_2024_09_014 crossref_primary_10_3389_fmolb_2021_759173 crossref_primary_10_1186_s12920_024_01825_7 crossref_primary_10_1016_j_heliyon_2023_e19147 crossref_primary_10_3390_cancers15061901 crossref_primary_10_15789_1563_0625_EOT_2299 crossref_primary_10_3390_biology12121531 crossref_primary_10_3390_pharmaceutics15030944 crossref_primary_10_1038_s41419_022_05057_4 crossref_primary_10_3390_cells12071047 crossref_primary_10_1038_s41598_024_67659_6 crossref_primary_10_2174_0929867326666191004164041 crossref_primary_10_3390_ijms22010190 crossref_primary_10_1016_j_bbamcr_2022_119266 crossref_primary_10_1186_s12967_023_04110_w crossref_primary_10_23868_202104013 crossref_primary_10_1371_journal_pone_0277155 crossref_primary_10_1016_j_nantod_2022_101641 crossref_primary_10_1136_lupus_2022_000693 crossref_primary_10_3389_fimmu_2024_1327565 crossref_primary_10_1111_febs_17044 crossref_primary_10_3390_cancers14194583 crossref_primary_10_1111_1759_7714_14689 crossref_primary_10_3390_vaccines10101764 crossref_primary_10_1038_s41401_024_01338_0 crossref_primary_10_1089_mab_2022_0002 crossref_primary_10_3390_ijms22189951 crossref_primary_10_1158_0008_5472_CAN_23_2455 crossref_primary_10_5227_skincancer_36_133 crossref_primary_10_1002_ijc_33873 crossref_primary_10_1007_s12672_023_00787_z crossref_primary_10_3390_ijms242115584 crossref_primary_10_62347_VZAW2270 crossref_primary_10_1016_j_cveq_2024_07_001 crossref_primary_10_1080_08830185_2024_2333275 crossref_primary_10_1111_jcmm_70146 crossref_primary_10_3390_cancers12061641 crossref_primary_10_1016_j_drudis_2023_103669 crossref_primary_10_2217_epi_2020_0186 crossref_primary_10_1016_j_jtcms_2023_10_001 crossref_primary_10_3390_cancers13020284 crossref_primary_10_3390_ijms21165647 crossref_primary_10_1210_endrev_bnad008 crossref_primary_10_3390_ijms241814114 crossref_primary_10_3390_vaccines11081330 crossref_primary_10_2174_1871520622666220523151409 crossref_primary_10_1039_D0NA00478B crossref_primary_10_3389_fonc_2022_1022688 crossref_primary_10_3390_biology13110860 crossref_primary_10_1016_j_jconrel_2023_01_051 crossref_primary_10_3389_fimmu_2023_1153724 crossref_primary_10_4103_ejh_ejh_38_24 crossref_primary_10_1042_BSR20221680 crossref_primary_10_1136_jitc_2021_003311 crossref_primary_10_2174_1386207325666220609120001 crossref_primary_10_14712_fb2024070030123 crossref_primary_10_3390_jpm14090925 crossref_primary_10_1136_jitc_2020_002068 crossref_primary_10_3389_fimmu_2022_734256 crossref_primary_10_4049_immunohorizons_2300060 crossref_primary_10_1111_exd_14721 crossref_primary_10_1371_journal_ppat_1008508 crossref_primary_10_3389_fcell_2024_1369597 crossref_primary_10_3389_fimmu_2022_1033642 crossref_primary_10_1016_j_addr_2021_05_001 crossref_primary_10_3389_fimmu_2023_1084901 crossref_primary_10_1002_cam4_70011 crossref_primary_10_3390_cells12192404 crossref_primary_10_1016_j_oraloncology_2023_106458 crossref_primary_10_1002_adma_202309655 crossref_primary_10_1155_2022_3258400 crossref_primary_10_1158_0008_5472_CAN_23_1463 crossref_primary_10_1093_immhor_vlae014 crossref_primary_10_4049_jimmunol_2300349 crossref_primary_10_1002_lci2_70005 crossref_primary_10_1080_2162402X_2024_2436227 crossref_primary_10_3389_fonc_2021_618187 crossref_primary_10_1007_s12672_022_00566_2 crossref_primary_10_3390_ijms25137171 crossref_primary_10_1016_j_pbiomolbio_2023_04_006 crossref_primary_10_3389_fonc_2021_559161 crossref_primary_10_1002_adhm_202405124 crossref_primary_10_3389_fimmu_2021_633205 crossref_primary_10_1111_jop_13508 crossref_primary_10_5306_wjco_v13_i9_729 crossref_primary_10_1007_s00005_021_00625_6 crossref_primary_10_1016_j_envres_2023_116751 crossref_primary_10_1016_j_rdc_2024_01_004 crossref_primary_10_1080_17425247_2021_1882992 crossref_primary_10_4251_wjgo_v13_i1_37 crossref_primary_10_3390_ijms241914928 crossref_primary_10_1080_2162402X_2022_2141007 crossref_primary_10_3389_fimmu_2024_1298087 crossref_primary_10_1007_s12672_024_01185_9 crossref_primary_10_1016_j_heliyon_2024_e24855 crossref_primary_10_1038_s41392_020_00449_4 crossref_primary_10_3389_fnut_2022_974896 crossref_primary_10_3389_fphar_2022_870848 crossref_primary_10_3389_fimmu_2021_697083 crossref_primary_10_3390_cancers14010260 crossref_primary_10_1002_bab_2275 crossref_primary_10_1002_cam4_5874 crossref_primary_10_1080_08941939_2023_2216756 crossref_primary_10_1016_j_immuni_2023_03_010 crossref_primary_10_3389_fonc_2021_640196 crossref_primary_10_1177_09636897211001314 crossref_primary_10_1016_j_jare_2023_10_009 crossref_primary_10_3390_biom10081087 crossref_primary_10_3390_cancers16193273 crossref_primary_10_3389_ebm_2024_10111 crossref_primary_10_3389_fgene_2021_609174 crossref_primary_10_1016_j_isci_2021_103570 crossref_primary_10_1038_s41378_023_00616_x crossref_primary_10_1007_s00262_020_02842_y crossref_primary_10_1016_j_jep_2021_114370 crossref_primary_10_3389_fimmu_2022_992762 crossref_primary_10_3389_fimmu_2023_1280741 crossref_primary_10_3389_fimmu_2023_1150588 crossref_primary_10_1186_s12943_024_02156_y crossref_primary_10_3390_biomedicines12091979 crossref_primary_10_3390_cancers12061600 crossref_primary_10_1016_j_biopha_2023_116059 crossref_primary_10_1177_03008916231189532 crossref_primary_10_1007_s11033_021_06154_x crossref_primary_10_1038_s41598_021_88156_0 crossref_primary_10_1038_s41467_021_21043_4 crossref_primary_10_1016_j_biopha_2021_112204 crossref_primary_10_2147_IJN_S453265 crossref_primary_10_1016_j_canlet_2023_216121 crossref_primary_10_1089_mab_2024_0002 crossref_primary_10_1007_s00262_021_02850_6 crossref_primary_10_1002_jha2_758 crossref_primary_10_1080_2162402X_2022_2120676 crossref_primary_10_1016_j_gendis_2021_07_002 crossref_primary_10_1002_jgm_3438 crossref_primary_10_1186_s13040_024_00404_x crossref_primary_10_1002_eji_201948470 crossref_primary_10_3390_cancers13040720 crossref_primary_10_1007_s12094_023_03126_4 crossref_primary_10_1016_j_celrep_2024_114724 crossref_primary_10_1084_jem_20240445 crossref_primary_10_1186_s12929_022_00866_3 crossref_primary_10_1002_cbf_70013 crossref_primary_10_1002_cam4_3631 crossref_primary_10_1016_j_bioactmat_2024_02_028 crossref_primary_10_3389_fonc_2021_739191 crossref_primary_10_3389_fimmu_2025_1519841 crossref_primary_10_1002_jmv_28857 crossref_primary_10_1002_cac2_12546 crossref_primary_10_1016_j_imbio_2023_152749 crossref_primary_10_1002_ijc_34539 crossref_primary_10_1016_j_biopha_2020_111028 crossref_primary_10_3389_fgene_2021_721419 crossref_primary_10_7759_cureus_43189 crossref_primary_10_1007_s12072_023_10537_6 crossref_primary_10_1039_D3CS00602F crossref_primary_10_1007_s40610_023_00157_2 crossref_primary_10_1016_j_biomaterials_2022_121510 crossref_primary_10_1007_s10238_024_01362_8 crossref_primary_10_1186_s12935_022_02815_4 crossref_primary_10_3389_fimmu_2022_844300 crossref_primary_10_1186_s12951_021_01163_1 crossref_primary_10_1186_s12916_021_02031_3 crossref_primary_10_3390_vaccines11121843 crossref_primary_10_1002_wsbm_1633 crossref_primary_10_1186_s12920_023_01674_w crossref_primary_10_3390_biomedicines9080935 crossref_primary_10_3892_ijo_2024_5639 crossref_primary_10_1016_j_ebiom_2023_104963 crossref_primary_10_1016_j_isci_2025_112204 crossref_primary_10_1016_j_canlet_2021_09_005 crossref_primary_10_3390_ijms231810906 crossref_primary_10_1002_ijc_34668 crossref_primary_10_1016_j_jconrel_2021_10_006 crossref_primary_10_1186_s12935_023_02943_5 crossref_primary_10_3389_fgene_2020_575776 crossref_primary_10_3390_ijms251910298 crossref_primary_10_1615_CritRevImmunol_2023047234 crossref_primary_10_1016_j_matt_2022_03_005 crossref_primary_10_1155_2021_3586589 crossref_primary_10_1016_j_ajt_2024_03_022 crossref_primary_10_1016_j_jconrel_2024_01_050 crossref_primary_10_1016_j_crimmu_2021_08_002 crossref_primary_10_3389_fonc_2022_1051282 crossref_primary_10_1053_j_gastro_2021_09_059 crossref_primary_10_1016_j_lfs_2019_116688 crossref_primary_10_1136_jitc_2022_005798 crossref_primary_10_1016_j_semcancer_2022_01_006 crossref_primary_10_3390_cancers12092652 crossref_primary_10_32604_oncologie_2022_024035 crossref_primary_10_3389_fonc_2022_1018333 crossref_primary_10_1007_s00011_023_01833_w crossref_primary_10_1038_s41598_023_29260_1 crossref_primary_10_1080_1061186X_2024_2418344 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_1002_ctm2_221 crossref_primary_10_1016_j_heliyon_2024_e29548 crossref_primary_10_1016_j_lfs_2021_119132 crossref_primary_10_1186_s12967_024_05731_5 crossref_primary_10_3389_fimmu_2022_999084 crossref_primary_10_3390_ijms22169030 crossref_primary_10_1182_bloodadvances_2022008327 crossref_primary_10_1007_s00432_021_03838_6 crossref_primary_10_3390_jpm12040534 crossref_primary_10_1016_j_mam_2020_100936 crossref_primary_10_1016_j_cytogfr_2021_02_003 crossref_primary_10_1016_j_heliyon_2022_e10450 crossref_primary_10_3390_ijms241814403 crossref_primary_10_3389_fmed_2022_966458 crossref_primary_10_1007_s13167_022_00305_1 crossref_primary_10_1016_j_apsb_2023_03_004 crossref_primary_10_3390_molecules25071508 crossref_primary_10_1016_j_medj_2024_11_002 crossref_primary_10_3390_cells11121946 crossref_primary_10_1038_s42003_020_01391_5 crossref_primary_10_3390_ijms23168849 crossref_primary_10_3390_cancers15245847 crossref_primary_10_1007_s00432_023_05244_6 crossref_primary_10_2478_sjecr_2022_0023 crossref_primary_10_3389_fonc_2022_944494 crossref_primary_10_1186_s12935_024_03335_z crossref_primary_10_1002_iid3_723 crossref_primary_10_1080_19420862_2024_2381891 crossref_primary_10_1111_imr_13122 crossref_primary_10_3389_fmolb_2022_966843 crossref_primary_10_3390_cancers12071960 crossref_primary_10_3390_ijms22158281 crossref_primary_10_3390_ijms23116215 crossref_primary_10_3390_cancers13235904 crossref_primary_10_3390_cancers14030490 crossref_primary_10_3390_ijms24098075 crossref_primary_10_1038_s41467_022_34877_3 crossref_primary_10_3390_ijms23137030 crossref_primary_10_3390_pharmaceutics15092214 crossref_primary_10_1016_j_ijpharm_2022_122249 crossref_primary_10_3390_nu15214494 crossref_primary_10_1002_cac2_12587 crossref_primary_10_17816_uroved623621 crossref_primary_10_3389_fimmu_2024_1431211 crossref_primary_10_1002_iid3_1351 crossref_primary_10_1007_s00262_022_03196_3 crossref_primary_10_3390_ncrna7010004 crossref_primary_10_1016_j_ebiom_2022_104010 crossref_primary_10_1155_2022_8636527 crossref_primary_10_1016_j_bioorg_2023_106837 crossref_primary_10_3390_ijms25137346 crossref_primary_10_3390_diagnostics12061360 crossref_primary_10_1016_j_intimp_2023_109840 crossref_primary_10_3389_fonc_2022_982744 crossref_primary_10_3390_ijms241411695 crossref_primary_10_1016_j_csbj_2021_12_020 crossref_primary_10_1186_s40001_023_01411_0 crossref_primary_10_1016_j_heliyon_2023_e22429 crossref_primary_10_1080_21645515_2022_2035117 crossref_primary_10_1186_s12906_024_04671_3 crossref_primary_10_1186_s12964_024_01711_w crossref_primary_10_3389_fimmu_2022_1046790 crossref_primary_10_3389_fimmu_2024_1370800 crossref_primary_10_1038_s41423_023_01036_7 crossref_primary_10_1016_j_toxicon_2024_107747 crossref_primary_10_3389_fsurg_2022_878648 crossref_primary_10_3390_app13095643 crossref_primary_10_3389_fimmu_2023_1139268 crossref_primary_10_1134_S0006297923110159 crossref_primary_10_18632_aging_204380 crossref_primary_10_1038_s41467_023_38578_3 crossref_primary_10_3390_biom12121847 crossref_primary_10_62347_EUKS9325 crossref_primary_10_1016_j_omtn_2021_05_005 crossref_primary_10_3389_fimmu_2021_613492 crossref_primary_10_1186_s12964_023_01070_y crossref_primary_10_1093_biolre_ioaf004 crossref_primary_10_3390_ijms25052868 crossref_primary_10_3389_fimmu_2022_864497 crossref_primary_10_3390_ijms20174320 crossref_primary_10_3390_ijms222111378 crossref_primary_10_1016_j_phrs_2020_105087 crossref_primary_10_3389_fgene_2022_948920 crossref_primary_10_1186_s12967_023_04686_3 crossref_primary_10_3892_mmr_2023_12935 crossref_primary_10_1002_wrna_1822 crossref_primary_10_1097_PPO_0000000000000603 crossref_primary_10_3389_fonc_2021_722331 crossref_primary_10_1007_s12013_023_01192_7 crossref_primary_10_2478_rjim_2023_0025 crossref_primary_10_3389_fimmu_2022_981479 crossref_primary_10_15212_bioi_2022_0022 crossref_primary_10_3389_fimmu_2024_1334828 crossref_primary_10_1039_D2BM00650B crossref_primary_10_1007_s12032_022_01881_y crossref_primary_10_1111_jop_13130 crossref_primary_10_3390_cancers16010081 crossref_primary_10_23946_2500_0764_2024_9_3_86_97 crossref_primary_10_1186_s12964_020_00599_6 crossref_primary_10_3389_fonc_2021_745209 crossref_primary_10_1016_j_jconrel_2021_03_039 crossref_primary_10_1038_s41389_022_00398_3 crossref_primary_10_1186_s13000_022_01274_9 crossref_primary_10_1186_s13058_022_01590_4 crossref_primary_10_1016_j_slasd_2021_12_001 crossref_primary_10_1055_a_2330_3696 crossref_primary_10_3389_fimmu_2022_926550 crossref_primary_10_3390_ijms24044002 crossref_primary_10_12998_wjcc_v11_i29_7075 crossref_primary_10_1038_s41598_022_09373_9 crossref_primary_10_1007_s00011_020_01339_9 crossref_primary_10_1016_j_ejphar_2023_175721 crossref_primary_10_1002_jcb_30458 crossref_primary_10_1089_mab_2021_0005 crossref_primary_10_1016_S2468_1253_22_00235_7 crossref_primary_10_3390_cancers14112711 crossref_primary_10_1016_j_nano_2021_102415 crossref_primary_10_3389_fnagi_2023_1273855 crossref_primary_10_1093_lifemedi_lnad019 crossref_primary_10_1016_j_bbcan_2020_188486 crossref_primary_10_3390_ijms21176178 crossref_primary_10_1016_j_biopha_2019_109570 crossref_primary_10_3389_fonc_2021_804418 crossref_primary_10_1002_prm2_12087 crossref_primary_10_3390_cells13110964 crossref_primary_10_1007_s10238_023_01227_6 crossref_primary_10_3389_fimmu_2023_1101769 crossref_primary_10_1155_2022_3655595 crossref_primary_10_3389_fonc_2023_1166860 crossref_primary_10_3389_fonc_2022_949332 crossref_primary_10_1016_j_biopha_2023_115513 crossref_primary_10_1111_imcb_12423 crossref_primary_10_1615_CritRevOncog_2022047088 crossref_primary_10_3389_fimmu_2021_609762 crossref_primary_10_3389_fimmu_2022_844142 crossref_primary_10_1055_a_1458_5646 crossref_primary_10_1016_j_addr_2023_115110 crossref_primary_10_1080_14728222_2022_2170779 crossref_primary_10_3389_fgene_2022_832046 crossref_primary_10_15252_emmm_202114291 crossref_primary_10_1016_j_jep_2024_117883 crossref_primary_10_1186_s12890_023_02707_x crossref_primary_10_1002_adfm_202312092 crossref_primary_10_1038_s12276_023_01080_3 crossref_primary_10_3390_vaccines12010007 crossref_primary_10_3390_pharmaceutics12111099 crossref_primary_10_70099_BJ_2024_01_02_8 crossref_primary_10_3389_fnut_2023_1113739 crossref_primary_10_1007_s12672_024_01253_0 crossref_primary_10_1016_j_intimp_2021_107627 crossref_primary_10_1126_sciadv_aax3160 crossref_primary_10_1002_btm2_10362 crossref_primary_10_1080_14686996_2021_1944782 crossref_primary_10_3892_ijo_2021_5288 crossref_primary_10_1080_21645515_2021_2024416 crossref_primary_10_1111_cas_16015 crossref_primary_10_1186_s12943_025_02255_4 crossref_primary_10_1038_s41585_022_00617_x crossref_primary_10_3389_fimmu_2023_1155377 crossref_primary_10_1590_1678_7757_2022_0308 crossref_primary_10_3389_fimmu_2024_1287459 crossref_primary_10_1016_j_cobme_2021_100360 crossref_primary_10_1038_s41417_023_00691_2 crossref_primary_10_3390_ijms21145017 crossref_primary_10_3389_fimmu_2024_1369726 crossref_primary_10_3389_fimmu_2022_915094 crossref_primary_10_3389_fimmu_2023_1285540 crossref_primary_10_1093_carcin_bgac063 crossref_primary_10_3390_cancers14030511 crossref_primary_10_1002_eji_202350448 crossref_primary_10_1007_s12094_022_03055_8 crossref_primary_10_1016_j_ejcb_2025_151482 crossref_primary_10_1016_j_labinv_2024_102147 crossref_primary_10_1186_s13046_023_02729_7 crossref_primary_10_3390_molecules26051343 crossref_primary_10_1002_jbt_70180 crossref_primary_10_1007_s00421_023_05251_y crossref_primary_10_1200_PO_23_00051 crossref_primary_10_1007_s11864_022_01027_2 crossref_primary_10_1186_s12967_023_04193_5 crossref_primary_10_2147_JIR_S249384 crossref_primary_10_1038_s41598_022_09458_5 crossref_primary_10_1016_j_cpt_2022_11_001 crossref_primary_10_1002_ijc_35360 crossref_primary_10_3389_fimmu_2024_1325946 crossref_primary_10_3390_ijms25137444 crossref_primary_10_1016_j_tranon_2021_101261 crossref_primary_10_3390_cancers13061353 crossref_primary_10_1158_1940_6207_CAPR_20_0607 crossref_primary_10_1038_s41416_024_02656_0 crossref_primary_10_3390_cells10040808 crossref_primary_10_1016_j_jcvp_2024_100189 crossref_primary_10_1038_s41467_023_36089_9 crossref_primary_10_3389_fmed_2023_1147782 crossref_primary_10_1177_15347354211061720 crossref_primary_10_1016_j_it_2023_11_005 crossref_primary_10_3390_ijms241613005 crossref_primary_10_3390_biomedicines11102608 crossref_primary_10_3892_etm_2023_11999 crossref_primary_10_1111_cas_15186 crossref_primary_10_3390_biomedicines11061517 crossref_primary_10_1096_fj_202400839R crossref_primary_10_1155_2021_8816055 crossref_primary_10_1007_s13402_024_01030_9 crossref_primary_10_3390_vaccines11020394 crossref_primary_10_3389_fonc_2022_1008714 crossref_primary_10_3390_cancers13194902 crossref_primary_10_1166_jbn_2022_3347 crossref_primary_10_2174_1568009621666210825101456 crossref_primary_10_3390_pharmaceutics15020336 crossref_primary_10_1002_ijc_34281 crossref_primary_10_26508_lsa_202101316 crossref_primary_10_1186_s12951_024_02855_0 crossref_primary_10_3390_life12010130 crossref_primary_10_1016_j_intimp_2024_112724 crossref_primary_10_1080_08830185_2024_2401352 crossref_primary_10_1136_jitc_2023_006822 crossref_primary_10_7759_cureus_31154 crossref_primary_10_1515_nanoph_2021_0171 crossref_primary_10_1016_j_phymed_2022_154369 crossref_primary_10_1080_25785826_2021_1975228 crossref_primary_10_1111_1754_9485_13399 crossref_primary_10_1002_path_6338 crossref_primary_10_3390_biomedicines11092361 crossref_primary_10_1093_carcin_bgad055 crossref_primary_10_1093_jnen_nlae108 crossref_primary_10_1002_advs_202003572 crossref_primary_10_3390_genes15040493 crossref_primary_10_1200_JCO_24_00908 crossref_primary_10_3390_ijms23126664 crossref_primary_10_3390_cancers14174192 crossref_primary_10_3390_cancers13194835 crossref_primary_10_3390_cells10092333 crossref_primary_10_1177_15330338231218163 crossref_primary_10_1186_s43556_021_00038_z crossref_primary_10_3389_fonc_2022_947183 crossref_primary_10_1016_j_bbcan_2025_189291 crossref_primary_10_1016_j_phymed_2023_154898 crossref_primary_10_3390_cancers15102729 crossref_primary_10_1016_j_semcancer_2020_12_001 crossref_primary_10_1186_s12876_024_03346_0 crossref_primary_10_3390_cancers14225488 crossref_primary_10_1016_j_isci_2020_101623 crossref_primary_10_1016_j_actbio_2023_03_004 crossref_primary_10_1016_j_nut_2022_111829 crossref_primary_10_1186_s12894_023_01175_z crossref_primary_10_55694_jamer_1391740 crossref_primary_10_2147_OTT_S333029 crossref_primary_10_1186_s12885_023_10740_6 crossref_primary_10_3390_cancers14174086 crossref_primary_10_1080_14737159_2023_2296668 crossref_primary_10_1186_s12951_025_03322_0 crossref_primary_10_3389_fimmu_2023_1206504 crossref_primary_10_3390_cancers15215124 crossref_primary_10_1002_eji_202048992 crossref_primary_10_3389_fimmu_2024_1520570 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1016_j_nantod_2023_102042 crossref_primary_10_3390_jcm10173789 crossref_primary_10_1182_bloodadvances_2020003774 crossref_primary_10_1007_s10528_023_10345_5 crossref_primary_10_3389_fgene_2022_882794 crossref_primary_10_3389_fmolb_2021_673042 crossref_primary_10_1016_j_jare_2021_05_010 crossref_primary_10_3324_haematol_2023_283758 crossref_primary_10_3389_fimmu_2022_840923 crossref_primary_10_3389_fimmu_2022_835690 crossref_primary_10_3390_cells13110941 crossref_primary_10_31857_S0320972523110167 crossref_primary_10_3389_fimmu_2020_01915 crossref_primary_10_3390_ijms21218363 crossref_primary_10_3390_cells13201680 crossref_primary_10_1016_j_mbs_2024_109187 crossref_primary_10_1038_s41571_020_0413_z crossref_primary_10_3389_fimmu_2021_641883 crossref_primary_10_3389_fimmu_2023_1294459 crossref_primary_10_3389_fimmu_2021_816658 crossref_primary_10_1002_eji_202048869 crossref_primary_10_1038_s41590_024_01755_7 crossref_primary_10_1136_jitc_2024_010150 crossref_primary_10_3389_fimmu_2020_585819 crossref_primary_10_1186_s12885_024_12851_0 crossref_primary_10_3390_cancers15102858 crossref_primary_10_1038_s41419_024_06493_0 crossref_primary_10_1016_j_celrep_2022_110986 crossref_primary_10_1021_acs_biochem_4c00121 crossref_primary_10_1016_j_jvir_2023_01_032 crossref_primary_10_1038_s41598_020_74808_0 crossref_primary_10_1002_biof_1776 crossref_primary_10_1016_j_bbadis_2022_166591 crossref_primary_10_3389_fonc_2022_1070243 crossref_primary_10_3390_molecules26041113 crossref_primary_10_1002_cbin_11806 crossref_primary_10_1124_pharmrev_123_000901 crossref_primary_10_3390_cancers14143383 crossref_primary_10_1007_s11060_024_04689_0 crossref_primary_10_1038_s41598_024_70916_3 crossref_primary_10_1007_s00262_021_02946_z crossref_primary_10_1002_advs_202308734 crossref_primary_10_3389_fimmu_2023_1292166 crossref_primary_10_3390_cells10112935 crossref_primary_10_1136_jitc_2024_010041 crossref_primary_10_1002_wrna_1676 crossref_primary_10_1186_s40364_024_00630_9 crossref_primary_10_1093_discim_kyae006 crossref_primary_10_1016_j_bulcan_2020_04_018 crossref_primary_10_1038_s41598_021_85810_5 crossref_primary_10_1016_j_heliyon_2023_e17216 crossref_primary_10_3390_cells10092245 crossref_primary_10_1186_s12967_025_06070_9 |
Cites_doi | 10.1053/j.seminoncol.2010.09.013 10.1084/jem.159.5.1295 10.3389/fimmu.2018.02374 10.1371/journal.pone.0002705 10.1016/j.immuni.2016.10.032 10.1016/j.immuni.2007.08.014 10.4049/jimmunol.179.5.2774 10.1126/science.1202947 10.1126/scitranslmed.3003330 10.1038/s41591-019-0420-8 10.1016/j.immuni.2009.03.019 10.1126/science.1203486 10.1056/NEJMe1205943 10.1158/0008-5472.CAN-12-2325 10.1038/83713 10.1097/JTO.0000000000000364 10.1172/JCI66375 10.4049/jimmunol.181.10.6923 10.1158/0008-5472.CAN-07-5839 10.1038/nrc3245 10.1073/pnas.73.9.3278 10.1038/nature12331 10.4049/jimmunol.177.10.6598 10.1084/jem.20130573 10.1158/2326-6066.CIR-16-0297 10.1038/ni759 10.4049/jimmunol.177.1.593 10.1073/pnas.1608873113 10.1073/pnas.1316796110 10.1016/j.ccell.2018.03.012 10.1084/jem.20030152 10.4049/jimmunol.0903879 10.1038/nm934 10.1073/pnas.1822001116 10.1016/S2352-3026(15)00196-9 10.1073/pnas.1508224112 10.1002/eji.200324181 10.1038/nri3108 10.1016/j.immuni.2004.08.010 10.1126/science.166.3906.753 10.1126/science.aaa1292 10.3389/fimmu.2013.00190 10.1097/01.TP.0000158023.21233.DE 10.1158/1078-0432.CCR-15-0357 10.1038/nature06306 10.1038/83784 10.1016/j.cmet.2016.12.018 10.1016/j.trecan.2016.11.008 10.1073/pnas.0800928105 10.1038/ni1289 10.1126/sciimmunol.aao4310 10.1053/j.seminoncol.2005.12.017 10.1158/2326-6066.CIR-13-0013 10.1126/science.1145697 10.1093/intimm/10.12.1969 10.1126/science.7520605 10.1084/jem.20060772 10.1038/nature16486 10.1038/35051100 10.1073/pnas.1834479100 10.1073/pnas.192461099 10.1084/jem.20130579 10.1084/jem.20041982 10.1016/S0092-8674(00)80856-9 10.1002/ijc.30475 10.1038/ni.f.213 10.4049/jimmunol.163.10.5211 10.1186/s40425-018-0403-1 10.1038/ni.3076 10.1038/nature13444 10.1002/j.1460-2075.1992.tb05481.x 10.1038/nri1457 10.1038/nm.4086 10.1038/ni.3077 10.1038/s41467-017-00314-z 10.1038/ni.3868 10.1038/nature10169 10.1038/nrclinonc.2016.217 10.1073/pnas.1621280114 10.1038/ni.3365 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.14069 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | OHUE and NISHIKAWA |
EISSN | 1349-7006 |
EndPage | 2089 |
ExternalDocumentID | PMC6609813 31102428 10_1111_cas_14069 CAS14069 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4679-5f00a4559ddf34c4068a2756586452702905ef41392219155eef544d1b3ed6683 |
IEDL.DBID | BENPR |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 17:42:37 EDT 2025 Sun Aug 24 04:06:18 EDT 2025 Wed Aug 13 10:51:23 EDT 2025 Mon Jul 21 05:40:53 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Tue Jul 01 01:31:06 EDT 2025 Wed Jan 22 16:41:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | immune suppression tumor tolerance Treg immune checkpoint |
Language | English |
License | Attribution-NonCommercial 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4679-5f00a4559ddf34c4068a2756586452702905ef41392219155eef544d1b3ed6683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6563-9807 0000-0003-0171-8367 |
OpenAccessLink | https://www.proquest.com/docview/2251881159?pq-origsite=%requestingapplication% |
PMID | 31102428 |
PQID | 2251881159 |
PQPubID | 4378882 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609813 proquest_miscellaneous_2232036548 proquest_journals_2251881159 pubmed_primary_31102428 crossref_primary_10_1111_cas_14069 crossref_citationtrail_10_1111_cas_14069 wiley_primary_10_1111_cas_14069_CAS14069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 5 2004; 21 2017; 8 2013; 4 2013; 1 2017; 3 2012; 366 2006; 33 2002; 99 2008; 9 2004; 4 2011; 11 1999; 163 2008; 105 2010; 184 2008; 3 1992; 11 2012; 12 2017; 114 2011; 475 2003; 198 2006; 177 1969; 166 2018; 6 2018; 9 1976; 73 2007; 179 1994; 265 1999; 59 2004; 34 1984; 159 2007; 450 2003; 9 2019; 25 2016; 113 2019; 116 2008; 68 2013; 110 2006; 203 2018; 33 1998; 10 2016; 45 2005; 79 2014; 124 2007; 27 2015; 2 2019; 4 2010; 37 2015; 16 2017; 25 2013; 500 2015; 10 2016; 529 2006; 7 2002; 3 2001; 409 2001; 27 2016; 17 2011; 332 2014; 510 2011; 331 2008; 181 2009; 30 2007; 317 2017; 14 2005; 201 2013; 73 2015; 112 2015; 21 2013; 210 1996; 40 2017; 140 2017; 18 2000; 101 2012; 4 2003; 100 2014; 346 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Onizuka S (e_1_2_8_11_1) 1999; 59 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Shimizu J (e_1_2_8_10_1) 1999; 163 e_1_2_8_31_1 e_1_2_8_56_1 Roubin R (e_1_2_8_72_1) 1996; 40 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 27 start-page: 635 year: 2007 end-page: 646 article-title: Granzyme B and perforin are important for regulatory T cell‐mediated suppression of tumor clearance publication-title: Immunity – volume: 166 start-page: 753 year: 1969 end-page: 755 article-title: Thymus and reproduction: sex‐linked dysgenesia of the gonad after neonatal thymectomy in mice publication-title: Science – volume: 198 start-page: 1875 year: 2003 end-page: 1886 article-title: Conversion of peripheral CD4+CD25‐ naive T cells to CD4+CD25+ regulatory T cells by TGF‐beta induction of transcription factor Foxp3 publication-title: J Exp Med – volume: 34 start-page: 336 year: 2004 end-page: 344 article-title: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative publication-title: Eur J Immunol – volume: 99 start-page: 12293 year: 2002 end-page: 12297 article-title: Involvement of PD‐L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD‐L1 blockade publication-title: Proc Natl Acad Sci USA – volume: 163 start-page: 5211 year: 1999 end-page: 5218 article-title: Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity publication-title: J Immunol – volume: 4 year: 2019 article-title: Tumor‐infiltrating human CD4(+) regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity publication-title: Sci Immunol – volume: 21 start-page: 503 year: 2004 end-page: 513 article-title: Role of LAG‐3 in regulatory T cells publication-title: Immunity – volume: 177 start-page: 6598 year: 2006 end-page: 6602 article-title: Cutting edge: the phosphoinositide 3‐kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells publication-title: J Immunol – volume: 529 start-page: 532 year: 2016 end-page: 536 article-title: Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity publication-title: Nature – volume: 177 start-page: 593 year: 2006 end-page: 603 article-title: Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR30 publication-title: J Immunol – volume: 203 start-page: 1701 year: 2006 end-page: 1711 article-title: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells publication-title: J Exp Med – volume: 101 start-page: 455 year: 2000 end-page: 458 article-title: Regulatory T cells: key controllers of immunologic self‐tolerance publication-title: Cell – volume: 9 start-page: 1269 year: 2003 end-page: 1274 article-title: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3‐dioxygenase publication-title: Nat Med – volume: 1 start-page: 32 year: 2013 end-page: 42 article-title: Anti‐CTLA‐4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells publication-title: Cancer Immunol Res – volume: 10 start-page: 1969 year: 1998 end-page: 1980 article-title: Immunologic self‐tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state publication-title: Int Immunol – volume: 21 start-page: 4327 year: 2015 end-page: 4336 article-title: Phase Ia study of FoxP3+ CD4 treg depletion by infusion of a humanized anti‐CCR49 antibody, KW‐0761, in cancer patients publication-title: Clin Cancer Res – volume: 181 start-page: 6923 year: 2008 end-page: 6933 article-title: CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells publication-title: J Immunol – volume: 105 start-page: 7797 year: 2008 end-page: 7802 article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 422 year: 2017 article-title: Identification of HSP90 inhibitors as a novel class of senolytics publication-title: Nat Commun – volume: 33 start-page: S11 year: 2006 end-page: S16 article-title: Clinical experience with denileukin diftitox (ONTAK) publication-title: Semin Oncol – volume: 100 start-page: 10902 year: 2003 end-page: 10906 article-title: CD4+CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 5948 year: 2008 end-page: 5954 article-title: Regulatory T cell‐resistant CD8+ T cells induced by glucocorticoid‐induced tumor necrosis factor receptor signaling publication-title: Can Res – volume: 22 start-page: 679 year: 2016 end-page: 684 article-title: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers publication-title: Nat Med – volume: 4 start-page: 134ra62 year: 2012 article-title: CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients publication-title: Sci Transl Med – volume: 366 start-page: 2517 year: 2012 end-page: 2519 article-title: Tumor immunotherapy directed at PD‐1 publication-title: N Engl J Med – volume: 33 start-page: 547 year: 2018 end-page: 562 article-title: T cell dysfunction in cancer publication-title: Cancer Cell – volume: 18 start-page: 1332 year: 2017 end-page: 1341 article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD‐L1‐blockade resistance in tumor publication-title: Nat Immunol – volume: 30 start-page: 899 year: 2009 end-page: 911 article-title: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor publication-title: Immunity – volume: 140 start-page: 686 year: 2017 end-page: 695 article-title: ICOS(+) Foxp3(+) TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori publication-title: Int J Cancer – volume: 475 start-page: 226 year: 2011 end-page: 230 article-title: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells publication-title: Nature – volume: 5 start-page: 3 year: 2017 end-page: 8 article-title: Myeloid‐derived suppressor cells publication-title: Cancer Immunol Res – volume: 450 start-page: 566 year: 2007 end-page: 569 article-title: The inhibitory cytokine IL‐35 contributes to regulatory T‐cell function publication-title: Nature – volume: 409 start-page: 97 year: 2001 end-page: 101 article-title: ICOS co‐stimulatory receptor is essential for T‐cell activation and function publication-title: Nature – volume: 73 start-page: 3278 year: 1976 end-page: 3282 article-title: Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells publication-title: Proc Natl Acad Sci USA – volume: 500 start-page: 232 year: 2013 end-page: 236 article-title: Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota publication-title: Nature – volume: 124 start-page: 2425 year: 2014 end-page: 2440 article-title: Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction publication-title: J Clin Investig – volume: 11 start-page: 852 year: 2011 end-page: 863 article-title: The emerging role of CTLA4 as a cell‐extrinsic regulator of T cell responses publication-title: Nat Rev Immunol – volume: 332 start-page: 600 year: 2011 end-page: 603 article-title: Trans‐endocytosis of CD80 and CD86: a molecular basis for the cell‐extrinsic function of CTLA‐4 publication-title: Science – volume: 4 start-page: 762 year: 2004 end-page: 774 article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism publication-title: Nat Rev Immunol – volume: 510 start-page: 407 year: 2014 end-page: 411 article-title: Inactivation of PI(3)K p110delta breaks regulatory T‐cell‐mediated immune tolerance to cancer publication-title: Nature – volume: 79 start-page: 904 year: 2005 end-page: 913 article-title: Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen publication-title: Transplantation – volume: 16 start-page: 188 year: 2015 end-page: 196 article-title: Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability publication-title: Nat Immunol – volume: 116 start-page: 9999 year: 2019 end-page: 10008 article-title: PD‐1(+) regulatory T cells amplified by PD‐1 blockade promote hyperprogression of cancer publication-title: Proc Natl Acad Sci USA – volume: 265 start-page: 1237 year: 1994 end-page: 1240 article-title: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis publication-title: Science – volume: 114 start-page: 6086 year: 2017 end-page: 6091 article-title: CCR29(+)FOXp3(+) Treg cells as master drivers of immune regulation publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 20 year: 2001 end-page: 21 article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome (IPEX) is caused by mutations of FOXP3 publication-title: Nat Genet – volume: 4 start-page: 190 year: 2013 article-title: Natural and induced T regulatory cells in cancer publication-title: Front Immunol – volume: 331 start-page: 1565 year: 2011 end-page: 1570 article-title: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion publication-title: Science – volume: 59 start-page: 3128 year: 1999 end-page: 3133 article-title: Tumor rejection by in vivo administration of anti‐CD25 (interleukin‐2 receptor alpha) monoclonal antibody publication-title: Can Res – volume: 11 start-page: 3887 year: 1992 end-page: 3895 article-title: Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death publication-title: EMBO J – volume: 317 start-page: 256 year: 2007 end-page: 260 article-title: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid publication-title: Science – volume: 25 start-page: 759 year: 2019 end-page: 766 article-title: Rational design of anti-GITR-based combination immunotherapy publication-title: Nat. Med – volume: 3 start-page: 56 year: 2017 end-page: 71 article-title: Targeting TGF‐beta signaling in cancer publication-title: Trends Cancer – volume: 16 start-page: 178 year: 2015 end-page: 187 article-title: Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses publication-title: Nat Immunol – volume: 17 start-page: 277 year: 2016 end-page: 285 article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis publication-title: Nat Immunol – volume: 3 start-page: e2705 year: 2008 article-title: Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression publication-title: PLoS ONE – volume: 201 start-page: 723 year: 2005 end-page: 735 article-title: Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)‐2 and induction of autoimmune disease by IL‐2 neutralization publication-title: J Exp Med – volume: 37 start-page: 524 year: 2010 end-page: 532 article-title: Signaling through OX40 enhances antitumor immunity publication-title: Semin Oncol – volume: 210 start-page: 1685 year: 2013 end-page: 1693 article-title: Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor‐targeting antibodies publication-title: J Exp Med – volume: 179 start-page: 2774 year: 2007 end-page: 2786 article-title: CXCR31 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system publication-title: J Immunol – volume: 9 start-page: 2374 year: 2018 article-title: Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression publication-title: Front Immunol – volume: 9 start-page: 970 year: 2008 end-page: 980 article-title: Orchestrating the orchestrators: chemokines in control of T cell traffic publication-title: Nat Immunol – volume: 40 start-page: 545 year: 1996 end-page: 555 article-title: Structure and developmental expression of mouse Garp, a gene encoding a new leucine‐rich repeat‐containing protein publication-title: Int J Dev Biol – volume: 25 start-page: 1282 year: 2017 end-page: 1293 article-title: Foxp3 reprograms T cell metabolism to function in low‐glucose, high‐lactate environments publication-title: Cell Metab – volume: 7 start-page: 83 year: 2006 end-page: 92 article-title: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice publication-title: Nat Immunol – volume: 12 start-page: 298 year: 2012 end-page: 306 article-title: The immune contexture in human tumours: impact on clinical outcome publication-title: Nat Rev Cancer – volume: 210 start-page: 1695 year: 2013 end-page: 1710 article-title: Fc‐dependent depletion of tumor‐infiltrating regulatory T cells co‐defines the efficacy of anti‐CTLA‐4 therapy against melanoma publication-title: J Exp Med – volume: 45 start-page: 1122 year: 2016 end-page: 1134 article-title: Regulatory T cells exhibit distinct features in human breast cancer publication-title: Immunity – volume: 113 start-page: 8490 year: 2016 end-page: 8495 article-title: Nonoverlapping roles of PD‐1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model publication-title: Proc Natl Acad Sci USA – volume: 184 start-page: 6545 year: 2010 end-page: 6551 article-title: LAG‐3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites publication-title: J Immunol – volume: 110 start-page: 17945 year: 2013 end-page: 17950 article-title: Anti‐CCR1 mAb selectively depletes effector‐type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: e528 year: 2015 end-page: e535 article-title: Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial publication-title: Lancet Haematol – volume: 3 start-page: 135 year: 2002 end-page: 142 article-title: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self‐tolerance publication-title: Nat Immunol – volume: 14 start-page: 399 year: 2017 end-page: 416 article-title: Tumour‐associated macrophages as treatment targets in oncology publication-title: Nat Rev Clin Oncol – volume: 6 start-page: 106 year: 2018 article-title: Targeting VEGFR2 with Ramucirumab strongly impacts effector/activated regulatory T cells and CD8(+) T cells in the tumor microenvironment publication-title: J Immunother Cancer – volume: 346 start-page: 1536 year: 2014 end-page: 1540 article-title: Detection of self‐reactive CD8(+) T cells with an anergic phenotype in healthy individuals publication-title: Science – volume: 27 start-page: 68 year: 2001 end-page: 73 article-title: Disruption of a new forkhead/winged‐helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse publication-title: Nat Genet – volume: 10 start-page: 74 year: 2015 end-page: 83 article-title: Increase in activated Treg in TIL in lung cancer and in vitro depletion of Treg by ADCC using an antihuman CCR28 mAb (KM2760) publication-title: J Thorac Oncol – volume: 159 start-page: 1295 year: 1984 end-page: 1311 article-title: Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly‐1+ 2‐ suppressor T cells down‐regulate the generation of Ly‐1‐2+ effector T cells publication-title: J Exp Med – volume: 112 start-page: 7225 year: 2015 end-page: 7230 article-title: Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans publication-title: Proc Natl Acad Sci USA – volume: 73 start-page: 539 year: 2013 end-page: 549 article-title: VEGFA‐VEGFR pathway blockade inhibits tumor‐induced regulatory T‐cell proliferation in colorectal cancer publication-title: Can Res – ident: e_1_2_8_60_1 doi: 10.1053/j.seminoncol.2010.09.013 – ident: e_1_2_8_8_1 doi: 10.1084/jem.159.5.1295 – ident: e_1_2_8_69_1 doi: 10.3389/fimmu.2018.02374 – ident: e_1_2_8_73_1 doi: 10.1371/journal.pone.0002705 – ident: e_1_2_8_65_1 doi: 10.1016/j.immuni.2016.10.032 – ident: e_1_2_8_43_1 doi: 10.1016/j.immuni.2007.08.014 – ident: e_1_2_8_32_1 doi: 10.4049/jimmunol.179.5.2774 – ident: e_1_2_8_39_1 doi: 10.1126/science.1202947 – ident: e_1_2_8_55_1 doi: 10.1126/scitranslmed.3003330 – ident: e_1_2_8_62_1 doi: 10.1038/s41591-019-0420-8 – ident: e_1_2_8_20_1 doi: 10.1016/j.immuni.2009.03.019 – ident: e_1_2_8_26_1 doi: 10.1126/science.1203486 – ident: e_1_2_8_56_1 doi: 10.1056/NEJMe1205943 – ident: e_1_2_8_83_1 doi: 10.1158/0008-5472.CAN-12-2325 – ident: e_1_2_8_13_1 doi: 10.1038/83713 – ident: e_1_2_8_29_1 doi: 10.1097/JTO.0000000000000364 – ident: e_1_2_8_22_1 doi: 10.1172/JCI66375 – ident: e_1_2_8_74_1 doi: 10.4049/jimmunol.181.10.6923 – ident: e_1_2_8_61_1 doi: 10.1158/0008-5472.CAN-07-5839 – ident: e_1_2_8_25_1 doi: 10.1038/nrc3245 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.73.9.3278 – ident: e_1_2_8_18_1 doi: 10.1038/nature12331 – ident: e_1_2_8_77_1 doi: 10.4049/jimmunol.177.10.6598 – ident: e_1_2_8_57_1 doi: 10.1084/jem.20130573 – ident: e_1_2_8_4_1 doi: 10.1158/2326-6066.CIR-16-0297 – ident: e_1_2_8_14_1 doi: 10.1038/ni759 – ident: e_1_2_8_31_1 doi: 10.4049/jimmunol.177.1.593 – ident: e_1_2_8_70_1 doi: 10.1073/pnas.1608873113 – ident: e_1_2_8_64_1 doi: 10.1073/pnas.1316796110 – ident: e_1_2_8_68_1 doi: 10.1016/j.ccell.2018.03.012 – ident: e_1_2_8_16_1 doi: 10.1084/jem.20030152 – ident: e_1_2_8_44_1 doi: 10.4049/jimmunol.0903879 – ident: e_1_2_8_47_1 doi: 10.1038/nm934 – volume: 59 start-page: 3128 year: 1999 ident: e_1_2_8_11_1 article-title: Tumor rejection by in vivo administration of anti‐CD25 (interleukin‐2 receptor alpha) monoclonal antibody publication-title: Can Res – ident: e_1_2_8_46_1 doi: 10.1073/pnas.1822001116 – ident: e_1_2_8_75_1 doi: 10.1016/S2352-3026(15)00196-9 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1508224112 – ident: e_1_2_8_66_1 doi: 10.1002/eji.200324181 – ident: e_1_2_8_37_1 doi: 10.1038/nri3108 – ident: e_1_2_8_45_1 doi: 10.1016/j.immuni.2004.08.010 – ident: e_1_2_8_9_1 doi: 10.1126/science.166.3906.753 – ident: e_1_2_8_38_1 doi: 10.1126/science.aaa1292 – ident: e_1_2_8_15_1 doi: 10.3389/fimmu.2013.00190 – ident: e_1_2_8_67_1 doi: 10.1097/01.TP.0000158023.21233.DE – ident: e_1_2_8_50_1 doi: 10.1158/1078-0432.CCR-15-0357 – ident: e_1_2_8_42_1 doi: 10.1038/nature06306 – ident: e_1_2_8_12_1 doi: 10.1038/83784 – ident: e_1_2_8_51_1 doi: 10.1016/j.cmet.2016.12.018 – ident: e_1_2_8_71_1 doi: 10.1016/j.trecan.2016.11.008 – ident: e_1_2_8_52_1 doi: 10.1073/pnas.0800928105 – ident: e_1_2_8_21_1 doi: 10.1038/ni1289 – ident: e_1_2_8_23_1 doi: 10.1126/sciimmunol.aao4310 – volume: 40 start-page: 545 year: 1996 ident: e_1_2_8_72_1 article-title: Structure and developmental expression of mouse Garp, a gene encoding a new leucine‐rich repeat‐containing protein publication-title: Int J Dev Biol – ident: e_1_2_8_54_1 doi: 10.1053/j.seminoncol.2005.12.017 – ident: e_1_2_8_58_1 doi: 10.1158/2326-6066.CIR-13-0013 – ident: e_1_2_8_17_1 doi: 10.1126/science.1145697 – ident: e_1_2_8_41_1 doi: 10.1093/intimm/10.12.1969 – ident: e_1_2_8_34_1 doi: 10.1126/science.7520605 – ident: e_1_2_8_19_1 doi: 10.1084/jem.20060772 – ident: e_1_2_8_80_1 doi: 10.1038/nature16486 – ident: e_1_2_8_35_1 doi: 10.1038/35051100 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.1834479100 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.192461099 – ident: e_1_2_8_59_1 doi: 10.1084/jem.20130579 – ident: e_1_2_8_40_1 doi: 10.1084/jem.20041982 – ident: e_1_2_8_3_1 doi: 10.1016/S0092-8674(00)80856-9 – ident: e_1_2_8_36_1 doi: 10.1002/ijc.30475 – ident: e_1_2_8_28_1 doi: 10.1038/ni.f.213 – volume: 163 start-page: 5211 year: 1999 ident: e_1_2_8_10_1 article-title: Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity publication-title: J Immunol doi: 10.4049/jimmunol.163.10.5211 – ident: e_1_2_8_24_1 doi: 10.1186/s40425-018-0403-1 – ident: e_1_2_8_78_1 doi: 10.1038/ni.3076 – ident: e_1_2_8_76_1 doi: 10.1038/nature13444 – ident: e_1_2_8_6_1 doi: 10.1002/j.1460-2075.1992.tb05481.x – ident: e_1_2_8_48_1 doi: 10.1038/nri1457 – ident: e_1_2_8_27_1 doi: 10.1038/nm.4086 – ident: e_1_2_8_79_1 doi: 10.1038/ni.3077 – ident: e_1_2_8_82_1 doi: 10.1038/s41467-017-00314-z – ident: e_1_2_8_49_1 doi: 10.1038/ni.3868 – ident: e_1_2_8_63_1 doi: 10.1038/nature10169 – ident: e_1_2_8_5_1 doi: 10.1038/nrclinonc.2016.217 – ident: e_1_2_8_30_1 doi: 10.1073/pnas.1621280114 – ident: e_1_2_8_81_1 doi: 10.1038/ni.3365 |
SSID | ssj0036494 |
Score | 2.6990345 |
SecondaryResourceType | review_article |
Snippet | Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg... Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self- and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2080 |
SubjectTerms | Adenosine Animals Antigens Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antineoplastic Agents, Immunological - pharmacology Antineoplastic Agents, Immunological - therapeutic use Antitumor activity Autoantigens Autoimmune diseases Autoimmunity Cancer Cancer immunotherapy CCL17 protein CCR8 protein CD25 antigen CD80 antigen CD86 antigen Chemokine receptors Chemokines CTLA-4 Antigen - metabolism CXCR3 protein Cytokines Cytokines - metabolism Cytotoxicity Dendritic cells Effector cells Homeostasis Humans Immune checkpoint immune suppression Immunoregulation Immunotherapy Immunotherapy - methods Interleukin-2 - metabolism Interleukin-2 Receptor alpha Subunit - metabolism Lymphocytes Lymphocytes T Metabolism Metabolites Metastases Mice Neoplasms - drug therapy Neoplasms - immunology Patients Precision medicine Protein Kinase Inhibitors - pharmacology Protein Kinase Inhibitors - therapeutic use Review Small Molecule Libraries - pharmacology Small Molecule Libraries - therapeutic use T-Lymphocytes, Regulatory - drug effects T-Lymphocytes, Regulatory - immunology Therapeutic applications tolerance Treg tumor Tumor necrosis factor-TNF Vascular endothelial growth factor |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qBfEivq1WWcVDPQSy2c1mowcpxVIEpWgL3kIeu1qQVNL24L93Ji9aquAtMBOSndmd_WYf3xBynQAKV4L5luOGEkm1uRWphFnM6MR1hDE8ztk-n-VgLB7f3LcGuavuwhT8EPWCG46MPF7jAA-j2dIgx5JgDO9tbpBNvFqL5QscMazCMJfCLyraCs_ybe6UtEJ4jKd-dXUyWkOY6wcllwFsPgP1d8lOCR1pt_D1HmnodJ9sPZWb4wdk-FLUlZ9m33REO6NMv99QXJif0UlKY3Rvdkt7YUpRVEoiTUMK0JouXcSixfHw-0My7j-MegOrLJhgxRDvfMs1th0KyBGSxHARQwtViPTursLtS892fNvVBqYt34FABUhCa-MKkbCI60RKxY9IM52m-oTQSGkWgwUToyHlMl7oAZKKbR4pDikVky3SqSwXxCWbOBa1-AyqrAKMHORGbpGrWvWroND4TaldmT8oR9EsgFjDlALMCuLLWgz9Hy0Upnq6QB2Oe6mQeLXIceGt-iscsA1AEJB4K36sFZBbe1WSTj5yjm0pbV8xDs3MPf73jwe97mv-cPp_1TOyDbjLL079tklzni30OWCbeXSR9-EflOnwyw priority: 102 providerName: Wiley-Blackwell |
Title | Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14069 https://www.ncbi.nlm.nih.gov/pubmed/31102428 https://www.proquest.com/docview/2251881159 https://www.proquest.com/docview/2232036548 https://pubmed.ncbi.nlm.nih.gov/PMC6609813 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NIqG9IPbBVugqb9oDPETEsZPYvFRQgdCkoaorUt-iJLYZEkqhhQf-e-4Sp1Dx8RJFOkuJ7-zz7z58B_DbIApXkusgivOEimqLoFCGB9xZE0fSOVHW1T7Pk7ML-WcaT73DbeHTKludWCtqMyvJR36A644rhfhFD25uA-oaRdFV30JjDdZRBau4A-vHJ-ejcauLRSJ109ZWpoEOReRrC1EuD7UU43Tvc_VEegEzX2ZLPkex9TF0ugWbHj-yo0bgn-CDrT7Dxl8fIf8Co3HTXH42f2ATtjeZ28t9Rt75BbuqWEkynh-yYV4xInlKYVnOEF-zZ7exWJMjPvgKF6cnk-FZ4LsmBCUqPR3ELgxziYaCMU7IEmeocqrxHiuKYaZhpMPYOjy7dITaCuGEtS6W0vBCWJMkSmxDp5pV9juwQlleIgeNs2h3uTRPEU6VoSiUQLuKJ13YazmXlb6kOHW2uM5a0wKZnNVM7sKv5dCbpo7Ga4N6Lfszv5UW2ZPgu_BzScZNQBzKKzu7pzGCAqpofXXhWyOt5VcEAhzEIUhJV-S4HEAFtlcp1dX_utB2koRacYHTrCX-9o9nw6N_9cvO-zPYhY8IuHST7tuDzt383v5AUHNX9GEtkiN8ptO071dxv3YQ0HMcPQK2APXS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8ckIgvxg-E01NXowk-NHS723bXxFzOE3IIXAjcJbyVtrurJKaHdxDDP8XfyEw_Ti6ob7w1mU0_ZufjN53ZGYD3BlG4klx7QZhG1FRbeJky3OPOmjCQzom87PY5jAZj-e0kPGnBdXMWhsoqG5tYGmozyekf-RbKHVcK8Yvunv_yaGoUZVebERqVWOzZq98Yss0-737F_f0QBDvbo_7Aq6cKeDkaBe2FzvdTiUDaGCdkjg5NpdQDPVSU44v9QPuhdWjbdYDajO7WWhdKaXgmrIkiJfC-S7CCMEOjFq182R4eHjW2X0RSV2N0ZexpXwR1LyOqHaIRZpzOmS56wDuw9m515m3UXLq9ncfwqMarrFcJ2BNo2eIpPDioM_LP4PCoGmY_mV6xEdscTe33j4yyATN2VrCcZGr6ifXTghGppmSWpQzxPLt1-otVNendNRjfCz-fw3IxKewGsExZniMHjbMY57k4jRG-5b7IlMA4jkdt2Gw4l-R1C3OapPEzaUIZZHJSMrkN7-ZLz6u-HX9b1GnYn9SqO0v-CFob3s7JqHTEobSwk0taIyiBi9FeG9ar3Zo_RSCgQtyDlHhhH-cLqKH3IqU4-1E29o4iXysu8DPLHf_3iyf93nF58eL_X_AGVgejg_1kf3e49xIeItjTValxB5Yvppf2FQKqi-x1LcUMTu9bcW4A_VorpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEJ_gkRBfCArqKepiMMGHhm532-6aGIIHFxC9XPBIeKttdxdJTA_uIIav5qdzpt2eXFDfeGsy2z87O7Pzm87sDMCmQRSuJNdBFOcJFdUWQaEMD7izJo6kc6Ksq30OkoMT-ek0Pl2AX-1ZGEqrbPfEeqM245L-kW-j3HGlEL_obefTIoZ7_Z2Ly4A6SFGktW2n0YjIkb35ie7b9MPhHq712yjq7496B4HvMBCUuEHoIHZhmEsE1cY4IUs0biqneuixonhfGkY6jK3DfV5HqNloeq11sZSGF8KaJFECn_sAFlO6sQOLH_cHw-PWDohE6qalrkwDHYrI1zWiPCJqZ8bpzOm8NbwDce9mat5G0LUJ7K_AsseubLcRtkewYKvHsPTFR-dXYXjcNLYfT27YiG2NJvbsHaPIwJSdV6wk-Zq8Z728YkTylMKynCG2Z7dOgrEmP31nDU7uhZ9PoFONK_sMWKEsL5GDxln0-VyapwjlylAUSqBPx5MubLWcy0pfzpy6avzIWrcGmZzVTO7Cm9nQi6aGx98Grbfsz7waT7M_QteFjRkZFZA4lFd2fE1jBAVz0fPrwtNmtWZvEQiuEAMhJZ1bx9kAKu49T6nOv9dFvpMk1IoLnGa94v_-8Ky3-7W-eP7_GbyGJVSY7PPh4OgFPETcp5us43XoXE2u7UvEVlfFKy_EDL7dt978BhXVL9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+T+%28Treg%29+cells+in+cancer%3A+Can+Treg+cells+be+a+new+therapeutic+target%3F&rft.jtitle=Cancer+science&rft.au=Ohue%2C+Yoshihiro&rft.au=Nishikawa%2C+Hiroyoshi&rft.date=2019-07-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=110&rft.issue=7&rft.spage=2080&rft_id=info:doi/10.1111%2Fcas.14069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |