Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma
Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells af...
Saved in:
Published in | Cancer science Vol. 111; no. 6; pp. 1899 - 1909 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.06.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
Host anti–tumor immune response boosted by neoadjuvant chemotherapy. Following neoadjuvant chemotherapy, CD3+ T cells increased significantly and there was a trend of increased cytotoxic T cells. CD8+ T cells in both tumor center and stroma also increased remarkably. Importantly, activated CD8+ T cells, defined as Ki67 + CD8+ T cells, were more abundant in post–chemotherapy samples, and were negatively correlated with the proliferation ability of tumor cells. |
---|---|
AbstractList | Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD-L1+ immune cells. Moreover, HLA-DR-CD33+ myeloid-derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune "hot" tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD-L1+ immune cells. Moreover, HLA-DR-CD33+ myeloid-derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune "hot" tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. Host anti–tumor immune response boosted by neoadjuvant chemotherapy. Following neoadjuvant chemotherapy, CD3+ T cells increased significantly and there was a trend of increased cytotoxic T cells. CD8+ T cells in both tumor center and stroma also increased remarkably. Importantly, activated CD8+ T cells, defined as Ki67 + CD8+ T cells, were more abundant in post–chemotherapy samples, and were negatively correlated with the proliferation ability of tumor cells. Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. |
Author | Chen, Hongmin Wang, Gaoyuan Liu, Ranyi Song, Guohui Tang, Qinglian Deng, Chuangzhong Lu, Jinchang Huang, Wenlin Xu, Huaiyuan Xu, Yanyang Song, Yijiang Wang, Jin Zhu, Xiaojun Fu, Jianchang |
AuthorAffiliation | 2 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center of Cancer Medicine Guangzhou China 3 Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou China 1 Department of Musculoskeletal Oncology Sun Yat‐sen University Cancer Center Guangzhou China |
AuthorAffiliation_xml | – name: 1 Department of Musculoskeletal Oncology Sun Yat‐sen University Cancer Center Guangzhou China – name: 3 Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou China – name: 2 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center of Cancer Medicine Guangzhou China |
Author_xml | – sequence: 1 givenname: Chuangzhong orcidid: 0000-0001-7697-087X surname: Deng fullname: Deng, Chuangzhong organization: Collaborative Innovation Center of Cancer Medicine – sequence: 2 givenname: Yanyang surname: Xu fullname: Xu, Yanyang organization: Collaborative Innovation Center of Cancer Medicine – sequence: 3 givenname: Jianchang surname: Fu fullname: Fu, Jianchang organization: Sun Yat‐sen University Cancer Center – sequence: 4 givenname: Xiaojun surname: Zhu fullname: Zhu, Xiaojun organization: Collaborative Innovation Center of Cancer Medicine – sequence: 5 givenname: Hongmin surname: Chen fullname: Chen, Hongmin organization: Collaborative Innovation Center of Cancer Medicine – sequence: 6 givenname: Huaiyuan surname: Xu fullname: Xu, Huaiyuan organization: Collaborative Innovation Center of Cancer Medicine – sequence: 7 givenname: Gaoyuan surname: Wang fullname: Wang, Gaoyuan organization: Collaborative Innovation Center of Cancer Medicine – sequence: 8 givenname: Yijiang surname: Song fullname: Song, Yijiang organization: Collaborative Innovation Center of Cancer Medicine – sequence: 9 givenname: Guohui surname: Song fullname: Song, Guohui organization: Collaborative Innovation Center of Cancer Medicine – sequence: 10 givenname: Jinchang surname: Lu fullname: Lu, Jinchang organization: Collaborative Innovation Center of Cancer Medicine – sequence: 11 givenname: Ranyi surname: Liu fullname: Liu, Ranyi organization: Collaborative Innovation Center of Cancer Medicine – sequence: 12 givenname: Qinglian surname: Tang fullname: Tang, Qinglian email: tangql@sysucc.org.cn organization: Collaborative Innovation Center of Cancer Medicine – sequence: 13 givenname: Wenlin surname: Huang fullname: Huang, Wenlin email: huangwl@sysucc.org.cn organization: Collaborative Innovation Center of Cancer Medicine – sequence: 14 givenname: Jin surname: Wang fullname: Wang, Jin email: wangjinbs@sysucc.org.cn organization: Collaborative Innovation Center of Cancer Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32232912$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtPGzEUhS0EKq8u-APVSGzKYsCvxPYGCUUtrYSEBHRteZw7iaOxndozQfn3dUioWgTe2Lr-ztG59x6j_RADIHRG8CUp58qafEk4U3IPHRHGVS0wHu-_vEWtMKOH6DjnBcZszBX_hA4ZpYwqQo9Q8wDLFGfJeBdmVT-Hqh98TJXzfgixizNnK-9sihBWLsXgIfTVkDdwgGimi2FlSsXOwceiTma5rlyoYu4hZpNs9OYUHbSmy_B5d5-gX9-_PU1-1Hf3tz8nN3e15WMha9li0YoRJ9wyO2ZCkQYLglslVCM5gcaYKWkbPpJSWgyWCCwJM9LCiIlSZCfoeuu7HBoPU1uSJtPpZXLepLWOxun_f4Kb61lcaUEVI5gXg687gxR_D5B77V220HWmtDpkTZkcUUGxYgU9f4Mu4pBCaU9TTihXVAlaqC__Jvob5XX8BbjaAmXAOSdotXW96V3cBHSdJlhvFqzLgvXLgovi4o3i1fQ9duf-7DpYfwzqyc3jVvEHDmG2vg |
CitedBy_id | crossref_primary_10_1016_j_bbcan_2021_188606 crossref_primary_10_1080_14712598_2021_1981285 crossref_primary_10_3390_biomedicines13030664 crossref_primary_10_1016_j_labinv_2024_102122 crossref_primary_10_3389_fphar_2022_1031527 crossref_primary_10_3390_ijms25010568 crossref_primary_10_3389_fendo_2021_625226 crossref_primary_10_1021_acsnano_2c00192 crossref_primary_10_3390_cancers14092177 crossref_primary_10_1038_s41413_023_00246_z crossref_primary_10_3389_fimmu_2021_623762 crossref_primary_10_1016_j_matbio_2023_07_003 crossref_primary_10_1016_j_bioadv_2024_214154 crossref_primary_10_3389_fonc_2022_967450 crossref_primary_10_1007_s00018_021_03966_9 crossref_primary_10_1007_s13402_021_00598_w crossref_primary_10_3934_mbe_2021098 crossref_primary_10_1158_1078_0432_CCR_22_2470 crossref_primary_10_3390_cells14060403 crossref_primary_10_1002_cti2_1183 crossref_primary_10_1186_s12885_021_07852_2 crossref_primary_10_3389_fonc_2021_642144 crossref_primary_10_3389_fonc_2022_1054598 crossref_primary_10_3390_cells10071668 crossref_primary_10_2147_ITT_S485672 crossref_primary_10_1002_cam4_70206 crossref_primary_10_1155_2022_6568278 crossref_primary_10_1002_cam4_5718 crossref_primary_10_1007_s00011_023_01772_6 crossref_primary_10_1016_j_biomaterials_2024_122475 crossref_primary_10_1097_PPO_0000000000000603 crossref_primary_10_1007_s11864_024_01269_2 crossref_primary_10_3390_cancers13194890 crossref_primary_10_1016_j_critrevonc_2024_104575 crossref_primary_10_3389_fcell_2022_730132 crossref_primary_10_3389_fimmu_2022_907550 crossref_primary_10_3389_fcell_2021_630355 crossref_primary_10_3390_cancers15010272 crossref_primary_10_1111_cas_14543 crossref_primary_10_3389_fonc_2020_586580 crossref_primary_10_3389_fonc_2020_01198 crossref_primary_10_3390_biomedicines9081048 crossref_primary_10_1016_j_heliyon_2024_e34586 crossref_primary_10_1016_j_xcrm_2024_101877 crossref_primary_10_1186_s12885_020_07536_3 crossref_primary_10_3390_ijms241512520 crossref_primary_10_3389_fimmu_2023_1226445 crossref_primary_10_3389_fimmu_2022_974916 crossref_primary_10_1038_s41420_022_00923_8 crossref_primary_10_3389_fgene_2021_699385 crossref_primary_10_1016_j_canlet_2022_215887 crossref_primary_10_3389_fimmu_2022_871076 crossref_primary_10_1186_s13046_021_01893_y crossref_primary_10_2147_JIR_S340477 crossref_primary_10_1002_cncr_34565 crossref_primary_10_3389_fcell_2021_780951 crossref_primary_10_1097_MD_0000000000036211 crossref_primary_10_1016_j_ejmg_2024_104941 crossref_primary_10_3389_fcell_2024_1394339 |
Cites_doi | 10.4161/21624011.2014.954829 10.4161/2162402X.2014.990800 10.1038/nature14011 10.1158/2326-6066.CIR-13-0224 10.1038/nmeth.3337 10.1158/0008-5472.CAN-13-1545 10.1158/1078-0432.CCR-16-1433 10.1200/JCO.2008.14.0095 10.1182/blood-2005-04-1351 10.1007/s00247-010-1876-3 10.1200/JCO.2014.59.4895 10.1038/s41591-019-0432-4 10.1002/cncr.24121 10.1016/S1470-2045(17)30904-X 10.1016/j.immuni.2004.07.017 10.1016/j.immuni.2013.10.003 10.1158/2326-6066.CIR-16-0297 10.1186/s40880-017-0198-3 10.1038/srep30093 10.1038/s41591-018-0197-1 10.1016/j.immuni.2013.07.012 10.18632/oncotarget.22912 10.1038/cr.2017.34 10.1007/s00428-018-2499-6 10.1158/0008-5472.CAN-10-0283 10.1158/1078-0432.CCR-17-0895 10.1016/j.ejca.2008.10.026 10.1172/JCI67428 10.1016/j.ejca.2005.03.036 10.1158/2159-8290.CD-18-1314 10.1158/1078-0432.CCR-14-1298 10.1016/S1470-2045(17)30624-1 10.1038/s41591-018-0309-y 10.1007/s00262-016-1925-3 10.1038/s41591-018-0337-7 10.1158/0008-5472.CAN-18-2245 10.1038/s41568-019-0116-x 10.1016/j.ccell.2015.03.001 10.1038/s41573-018-0007-y 10.1016/j.it.2018.11.003 10.1080/2162402X.2019.1659093 10.1200/JCO.2008.16.2305 10.1038/s41571-019-0175-7 10.1016/j.drup.2019.07.004 10.1186/s40880-017-0233-4 10.1038/nature25480 10.1200/JCO.2011.38.4032 10.18632/oncotarget.13055 10.1080/2162402X.2016.1269047 10.1158/2159-8290.CD-16-0577 10.1084/jem.20050915 10.1158/1078-0432.CCR-10-2047 10.1038/s41591-018-0014-x 10.1093/annonc/mdr491 10.1016/j.cell.2017.09.028 10.1186/s13569-016-0053-3 10.1016/j.immuni.2013.06.014 10.1007/s00262-012-1388-0 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.14398 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | DENG et al |
EISSN | 1349-7006 |
EndPage | 1909 |
ExternalDocumentID | PMC7293104 32232912 10_1111_cas_14398 CAS14398 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81702665; 81872183; 81872268 – fundername: Fundamental Research Funds for the Central Universities funderid: 19ykpy189 – fundername: National Natural Science Foundation of China grantid: 81872268 – fundername: National Natural Science Foundation of China grantid: 81872183 – fundername: National Natural Science Foundation of China grantid: 81702665 – fundername: Fundamental Research Funds for the Central Universities grantid: 19ykpy189 – fundername: ; grantid: 81702665; 81872183; 81872268 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4678-8f07f75414c3c63791b0710f979b841ebaad1fb45888c0ec170813a8ce5375883 |
IEDL.DBID | 7X7 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 18:26:04 EDT 2025 Fri Jul 11 04:46:10 EDT 2025 Wed Aug 13 08:00:51 EDT 2025 Wed Feb 19 02:30:22 EST 2025 Tue Jul 01 01:31:08 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Wed Jan 22 16:34:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | tumor-infiltrating immune cells neoadjuvant chemotherapy tumor-infiltrating lymphocytes CIBERSORT osteosarcoma |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4678-8f07f75414c3c63791b0710f979b841ebaad1fb45888c0ec170813a8ce5375883 |
Notes | Chuangzhong Deng, Yanyang Xu, Jianchang Fu and Xiaojun Zhu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7697-087X |
OpenAccessLink | https://www.proquest.com/docview/2412492972?pq-origsite=%requestingapplication% |
PMID | 32232912 |
PQID | 2412492972 |
PQPubID | 4378882 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293104 proquest_miscellaneous_2385272093 proquest_journals_2412492972 pubmed_primary_32232912 crossref_citationtrail_10_1111_cas_14398 crossref_primary_10_1111_cas_14398 wiley_primary_10_1111_cas_14398_CAS14398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2004; 21 2009; 45 2017; 5 2015; 12 2014; 515 2017; 8 2019; 9 2015; 4 1990; 2019 2017; 27 2013; 62 2017; 66 2015; 33 2017; 23 2013; 123 2005; 41 2019; 16 2017; 171 2019; 19 2019; 18 2011; 17 2009; 27 2009; 115 2012; 30 2018; 24 2014; 20 2018; 19 2016; 6 2016; 7 2015; 27 2013; 39 2019; 40 2014; 2 2017; 36 2005; 202 2019; 45 2018; 555 2019; 25 2020; 9 2008; 26 2011; 41 2017; 18 2010; 70 2014; 74 2018; 78 2012; 23 2006; 107 2019; 474 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Smeland S (e_1_2_8_34_1) 1990; 2019 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 23 start-page: 1607 year: 2012 end-page: 1616 article-title: Survival from high‐grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials publication-title: Ann Oncol – volume: 19 start-page: 40 year: 2018 end-page: 50 article-title: Tumour‐infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy publication-title: Lancet Oncol – volume: 25 start-page: 920 year: 2019 end-page: 928 article-title: Immune induction strategies in metastatic triple‐negative breast cancer to enhance the sensitivity to PD‐1 blockade: the TONIC trial publication-title: Nat Med – volume: 78 start-page: 5729 year: 2018 end-page: 5730 article-title: Choosing the best chemotherapy agent to boost immune checkpoint inhibition activity publication-title: Can Res – volume: 18 start-page: 197 year: 2019 end-page: 218 article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies publication-title: Nat Rev Drug Discov – volume: 36 start-page: 29 year: 2017 article-title: Immune mediators in the tumor microenvironment of prostate cancer publication-title: Chin J Cancer – volume: 27 start-page: 557 year: 2009 end-page: 565 article-title: Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients publication-title: J Clin Oncol – volume: 12 start-page: 453 year: 2015 end-page: 457 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat Methods – volume: 25 start-page: 312 year: 2019 end-page: 322 article-title: Tumor‐educated B cells selectively promote breast cancer lymph node metastasis by HSPA4‐targeting IgG publication-title: Nat Med – volume: 20 start-page: 5384 year: 2014 end-page: 5391 article-title: Cisplatin‐induced antitumor immunomodulation: a review of preclinical and clinical evidence publication-title: Clin Cancer Res – volume: 25 start-page: 477 year: 2019 end-page: 486 article-title: Neoadjuvant anti–PD‐1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma publication-title: Nat Med – volume: 36 start-page: 67 year: 2017 article-title: Awakening immunity against cancer: a 2017 primer for clinicians publication-title: Chin J Cancer – volume: 24 start-page: 1649 year: 2018 end-page: 1654 article-title: Neoadjuvant immune checkpoint blockade in high‐risk resectable melanoma publication-title: Nat Med – volume: 9 year: 2020 article-title: Close proximity of immune and tumor cells underlies response to anti–PD‐1 based therapies in metastatic melanoma patients publication-title: Oncoimmunology – volume: 107 start-page: 159 year: 2006 end-page: 166 article-title: Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion publication-title: Blood – volume: 18 start-page: 1493 year: 2017 end-page: 1501 article-title: Pembrolizumab in advanced soft‐tissue sarcoma and bone sarcoma (SARC028): a multicentre, two‐cohort, single‐arm, open‐label, phase 2 trial publication-title: Lancet Oncol – volume: 30 start-page: 2046 year: 2012 end-page: 2054 article-title: Ipilimumab in combination with paclitaxel and carboplatin as first‐line treatment in stage IIIB/IV non‐small‐cell lung cancer: results from a randomized, double‐blind, multicenter phase II study publication-title: J Clin Oncol – volume: 202 start-page: 1691 year: 2005 end-page: 1701 article-title: Caspase‐dependent immunogenicity of doxorubicin‐induced tumor cell death publication-title: J Exp Med – volume: 24 start-page: 541 year: 2018 end-page: 550 article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy publication-title: Nat Med – volume: 2019 start-page: 36 year: 1990 end-page: 50 article-title: Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS‐1 (European and American Osteosarcoma Study) cohort publication-title: Eur J Cancer – volume: 5 start-page: 3 year: 2017 end-page: 8 article-title: Myeloid‐derived suppressor cells publication-title: Cancer Immunol Res – volume: 17 start-page: 2110 year: 2011 end-page: 2119 article-title: Tumor‐infiltrating macrophages are associated with metastasis suppression in high‐grade osteosarcoma: a rationale for treatment with macrophage activating agents publication-title: Clin Cancer Res – volume: 39 start-page: 1 year: 2013 end-page: 10 article-title: Oncology meets immunology: the cancer‐immunity cycle publication-title: Immunity – volume: 16 start-page: 356 year: 2019 end-page: 371 article-title: Regulatory T cells in cancer immunosuppression – implications for anticancer therapy publication-title: Nature reviews Clinical oncology – volume: 41 start-page: 2079 year: 2005 end-page: 2085 article-title: Grade of chemotherapy‐induced necrosis as a predictor of local and systemic control in 881 patients with non‐metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution publication-title: Eur J Cancer – volume: 23 start-page: 6771 year: 2017 end-page: 6780 article-title: Low‐dose cyclophosphamide induces antitumor T‐cell responses, which associate with survival in metastatic colorectal cancer publication-title: Clin Cancer Res – volume: 74 start-page: 104 year: 2014 end-page: 118 article-title: Doxorubicin eliminates myeloid‐derived suppressor cells and enhances the efficacy of adoptive T‐cell transfer in breast cancer publication-title: Can Res – volume: 21 start-page: 137 year: 2004 end-page: 148 article-title: The immunobiology of cancer immunosurveillance and immunoediting publication-title: Immunity – volume: 4 year: 2015 article-title: Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy publication-title: Oncoimmunology – volume: 474 start-page: 201 year: 2019 end-page: 207 article-title: Evaluation of tumor‐infiltrating lymphocytes in osteosarcomas of the jaws: a multicenter study publication-title: Virchows Arch – volume: 6 start-page: 1382 year: 2016 end-page: 1399 article-title: Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease publication-title: Cancer Discov – volume: 66 start-page: 119 year: 2017 end-page: 128 article-title: Increased PD‐L1 and T‐cell infiltration in the presence of HLA class I expression in metastatic high‐grade osteosarcoma: a rationale for T‐cell‐based immunotherapy publication-title: Cancer Immunol Immunother – volume: 8 start-page: 111836 year: 2017 end-page: 111846 article-title: Tumoral immune‐infiltrate (IF), PD‐L1 expression and role of CD8/TIA‐1 lymphocytes in localized osteosarcoma patients treated within protocol ISG‐OS1 publication-title: Oncotarget – volume: 45 start-page: 228 year: 2009 end-page: 247 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur J Cancer – volume: 27 start-page: 450 year: 2015 end-page: 461 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell – volume: 39 start-page: 782 year: 2013 end-page: 795 article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer publication-title: Immunity – volume: 62 start-page: 203 year: 2013 end-page: 216 article-title: Chemoimmunotherapy: reengineering tumor immunity publication-title: Cancer Immunol Immunother – volume: 19 start-page: 133 year: 2019 end-page: 150 article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy publication-title: Nat Rev Cancer – volume: 171 start-page: e916 year: 2017 article-title: Tumor and microenvironment evolution during Immunotherapy with Nivolumab publication-title: Cell – volume: 9 start-page: 492 year: 2019 end-page: 499 article-title: Naive T‐cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers publication-title: Cancer Discov – volume: 6 start-page: 30093 year: 2016 article-title: Immune infiltration and PD‐L1 expression in the tumor microenvironment are prognostic in osteosarcoma publication-title: Sci Rep – volume: 2 start-page: 690 year: 2014 end-page: 698 article-title: Programmed cell death ligand 1 expression in osteosarcoma publication-title: Cancer Immunol Res – volume: 39 start-page: 74 year: 2013 end-page: 88 article-title: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance publication-title: Immunity – volume: 27 start-page: 461 year: 2017 end-page: 482 article-title: Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer publication-title: Cell Res – volume: 41 start-page: 441 year: 2011 end-page: 450 article-title: Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis publication-title: Pediatr Radiol – volume: 7 start-page: 78343 year: 2016 end-page: 78354 article-title: Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma publication-title: Oncotarget – volume: 115 start-page: 1531 year: 2009 end-page: 1543 article-title: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program publication-title: Cancer – volume: 40 start-page: 12 year: 2019 end-page: 21 article-title: What, why, where, and when: bringing timing to immuno‐oncology publication-title: Trends Immunol – volume: 70 start-page: 4850 year: 2010 end-page: 4858 article-title: Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low‐dose cyclophosphamide is explained by reduced intracellular ATP levels publication-title: Can Res – volume: 515 start-page: 563 year: 2014 end-page: 567 article-title: Predictive correlates of response to the anti–PD‐L1 antibody MPDL3280A in cancer patients publication-title: Nature – volume: 4 year: 2015 article-title: CD8(+)/FOXP3(+)‐ratio in osteosarcoma microenvironment separates survivors from non‐survivors: a multicenter validated retrospective study publication-title: OncoImmunology – volume: 555 start-page: 321 year: 2018 end-page: 327 article-title: The landscape of genomic alterations across childhood cancers publication-title: Nature – volume: 26 start-page: 633 year: 2008 end-page: 638 article-title: Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children's Oncology Group publication-title: J Clin Oncol – volume: 45 start-page: 13 year: 2019 end-page: 29 article-title: Immune checkpoint inhibitor combinations: current efforts and important aspects for success publication-title: Drug Resist Updat – volume: 23 start-page: 925 year: 2017 end-page: 934 article-title: Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor‐infiltrating lymphocyte response with distinct implications for immunotherapy publication-title: Clin Cancer Res – volume: 123 start-page: 2873 year: 2013 end-page: 2892 article-title: CD4(+) follicular helper T cell infiltration predicts breast cancer survival publication-title: J Clin Investig – volume: 33 start-page: 3029 year: 2015 end-page: 3035 article-title: Osteosarcoma: current treatment and a collaborative pathway to success publication-title: J Clin Oncol – volume: 6 year: 2016 article-title: Tumor PD‐L1 expression is correlated with increased TILs and poor prognosis in penile squamous cell carcinoma publication-title: Oncoimmunology – volume: 6 start-page: 13 year: 2016 article-title: Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours publication-title: Clinical Sarcoma Res – ident: e_1_2_8_10_1 doi: 10.4161/21624011.2014.954829 – ident: e_1_2_8_37_1 doi: 10.4161/2162402X.2014.990800 – ident: e_1_2_8_54_1 doi: 10.1038/nature14011 – ident: e_1_2_8_18_1 doi: 10.1158/2326-6066.CIR-13-0224 – ident: e_1_2_8_29_1 doi: 10.1038/nmeth.3337 – ident: e_1_2_8_25_1 doi: 10.1158/0008-5472.CAN-13-1545 – ident: e_1_2_8_27_1 doi: 10.1158/1078-0432.CCR-16-1433 – ident: e_1_2_8_5_1 doi: 10.1200/JCO.2008.14.0095 – ident: e_1_2_8_46_1 doi: 10.1182/blood-2005-04-1351 – ident: e_1_2_8_31_1 doi: 10.1007/s00247-010-1876-3 – ident: e_1_2_8_2_1 doi: 10.1200/JCO.2014.59.4895 – ident: e_1_2_8_28_1 doi: 10.1038/s41591-019-0432-4 – ident: e_1_2_8_3_1 doi: 10.1002/cncr.24121 – ident: e_1_2_8_40_1 doi: 10.1016/S1470-2045(17)30904-X – ident: e_1_2_8_13_1 doi: 10.1016/j.immuni.2004.07.017 – ident: e_1_2_8_48_1 doi: 10.1016/j.immuni.2013.10.003 – ident: e_1_2_8_51_1 doi: 10.1158/2326-6066.CIR-16-0297 – ident: e_1_2_8_36_1 doi: 10.1186/s40880-017-0198-3 – ident: e_1_2_8_45_1 doi: 10.1038/srep30093 – ident: e_1_2_8_56_1 doi: 10.1038/s41591-018-0197-1 – ident: e_1_2_8_8_1 doi: 10.1016/j.immuni.2013.07.012 – ident: e_1_2_8_16_1 doi: 10.18632/oncotarget.22912 – ident: e_1_2_8_47_1 doi: 10.1038/cr.2017.34 – ident: e_1_2_8_17_1 doi: 10.1007/s00428-018-2499-6 – ident: e_1_2_8_24_1 doi: 10.1158/0008-5472.CAN-10-0283 – ident: e_1_2_8_23_1 doi: 10.1158/1078-0432.CCR-17-0895 – ident: e_1_2_8_30_1 doi: 10.1016/j.ejca.2008.10.026 – ident: e_1_2_8_49_1 doi: 10.1172/JCI67428 – ident: e_1_2_8_4_1 doi: 10.1016/j.ejca.2005.03.036 – ident: e_1_2_8_52_1 doi: 10.1158/2159-8290.CD-18-1314 – ident: e_1_2_8_22_1 doi: 10.1158/1078-0432.CCR-14-1298 – ident: e_1_2_8_19_1 doi: 10.1016/S1470-2045(17)30624-1 – ident: e_1_2_8_50_1 doi: 10.1038/s41591-018-0309-y – ident: e_1_2_8_35_1 doi: 10.1007/s00262-016-1925-3 – ident: e_1_2_8_57_1 doi: 10.1038/s41591-018-0337-7 – ident: e_1_2_8_59_1 doi: 10.1158/0008-5472.CAN-18-2245 – ident: e_1_2_8_41_1 doi: 10.1038/s41568-019-0116-x – ident: e_1_2_8_7_1 doi: 10.1016/j.ccell.2015.03.001 – ident: e_1_2_8_15_1 doi: 10.1038/s41573-018-0007-y – ident: e_1_2_8_55_1 doi: 10.1016/j.it.2018.11.003 – ident: e_1_2_8_33_1 doi: 10.1080/2162402X.2019.1659093 – ident: e_1_2_8_6_1 doi: 10.1200/JCO.2008.16.2305 – ident: e_1_2_8_11_1 doi: 10.1038/s41571-019-0175-7 – ident: e_1_2_8_39_1 doi: 10.1016/j.drup.2019.07.004 – ident: e_1_2_8_12_1 doi: 10.1186/s40880-017-0233-4 – ident: e_1_2_8_53_1 doi: 10.1038/nature25480 – ident: e_1_2_8_60_1 doi: 10.1200/JCO.2011.38.4032 – ident: e_1_2_8_42_1 doi: 10.18632/oncotarget.13055 – ident: e_1_2_8_32_1 doi: 10.1080/2162402X.2016.1269047 – ident: e_1_2_8_58_1 doi: 10.1158/2159-8290.CD-16-0577 – volume: 2019 start-page: 36 year: 1990 ident: e_1_2_8_34_1 article-title: Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS‐1 (European and American Osteosarcoma Study) cohort publication-title: Eur J Cancer – ident: e_1_2_8_26_1 doi: 10.1084/jem.20050915 – ident: e_1_2_8_43_1 doi: 10.1158/1078-0432.CCR-10-2047 – ident: e_1_2_8_9_1 doi: 10.1038/s41591-018-0014-x – ident: e_1_2_8_44_1 doi: 10.1093/annonc/mdr491 – ident: e_1_2_8_14_1 doi: 10.1016/j.cell.2017.09.028 – ident: e_1_2_8_38_1 doi: 10.1186/s13569-016-0053-3 – ident: e_1_2_8_21_1 doi: 10.1016/j.immuni.2013.06.014 – ident: e_1_2_8_20_1 doi: 10.1007/s00262-012-1388-0 |
SSID | ssj0036494 |
Score | 2.5276918 |
Snippet | Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells... Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1899 |
SubjectTerms | Antibodies Apoptosis Automation Biopsy Bone cancer Cancer therapies CD3 antigen CD8 antigen Chemotherapy CIBERSORT Clinical trials Gene expression Histocompatibility antigen HLA Immune status Immunohistochemistry Immunotherapy Lymphocytes Lymphocytes T Macrophages Medical research neoadjuvant chemotherapy Original Osteosarcoma Patients PD-L1 protein Ribonucleic acid RNA Sarcoma Studies Tumors tumor‐infiltrating immune cells tumor‐infiltrating lymphocytes |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WHEovSV9Jtk2LGnrIxcG2ZEuip7A0hEJ6aBPIIWAsrZRs27VL1j60v74z8oPdpoHSm8EjZEsz0jfSzDcA75R23M9tgk6Od5FQJo90rMpIO0F0YpwnOSUnn3_Kzy7Fx6vsagLvh1yYjh9iPHAjywjrNRl4aVZrRk4lwXCz15ToS7FaBIg-j9RRPBe6K2grJPbO055ViKJ4xpabe9E9gHk_TnIdv4YN6HQHrodP7-JOvh23jTm2v_5gdfzPf3sC2z0wZSedJj2FiauewaPz_ur9ORiE6l0sF252DGEja9plfccWlGDSraBsSdF9a6lzjKLqb1jl6nL-tUXM3jDUkWWf9PWTLSpGOSb1Cq2tXpYv4PL0w8XsLOoLNEQW11cVKR9LL6mQuOU251InhhCL11IbJRJnynKeeEPJsMrGziYSAQgvlXUZRz9F8V3YqurK7QPLpPY8nitv8lRk3hvj0VOTQhiNkCX2UzgapqqwPXs5FdH4XgxeDI5ZEcZsCoej6I-OsuNvQgfDfBe91a6KNJTiTrVMp_B2fI32RpcoJQ5WizJcZXR3rfkU9jr1GHvBxZGnOsHWckNxRgHi8t58Uy1uA6c3-jgItAX-ZtCLhz-8mJ18CQ8v_130FTxO6ZggHB4dwFZz17rXiKUa8yYYzW9ssRyO priority: 102 providerName: Wiley-Blackwell |
Title | Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14398 https://www.ncbi.nlm.nih.gov/pubmed/32232912 https://www.proquest.com/docview/2412492972 https://www.proquest.com/docview/2385272093 https://pubmed.ncbi.nlm.nih.gov/PMC7293104 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkJcEG8WysogDlwiEtuJ7RMqVasKqVVVqLS3KHZsWMQmpbt74N8z43hDVwUuUSQ7ij0zHn9jzwPgrTZehNYVaOQEn0ltq8zkusmMl5ROTIiiouDk07Pq5FJ-mpWzdOC2TG6VG50YFXXbOzojf89jmWRuFP9w9TOjqlF0u5pKaOzAHqUuI6lWs9HgEpU0Q1FbqXAEgqfMQuTJQwXFECoYvb0f3QKZt30lb2LYuAkdP4D7CT2yg4HdD-GO7x7B3dN0P_4YLOLpweEKdySG2I6t1ov-ms0pCmRQc2xBLng34tsYub5_ZZ3vm_b7GoH1iiEjFyky6xebd4wCQfolLol-0TyBy-OjL4cnWaqikDlUgjrTIVdBUbVvJ1wllCkswYpglLFaFt42TVsESxGr2uXeFQpRgmi086VAY0KLp7Db9Z1_DqxUJoi81cFWXJYhWBvQnFJSWoO4Ig8TeLehZe1SinGqdPGj3pgaSPY6kn0Cb8auV0Nejb912t8wpE5La1n_EYQJvB6bcVHQTUeDxFpjH6FLumA2YgLPBv6Nf0ENJrgp8Gu1xdmxAyXc3m7p5t9i4m00RBANS5xmlIF_D7w-PPgcX178fwYv4R4n-z2e6uzD7up67V8hyFnZKexweT6N8jyFvY9HZ-cX03hgQM8L_hv9JwDS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAgaBxCUisZ3YPiBUFaot7fZCK-0txI4Ni9ikdHeF-qf4jczkRVcFbr1FivPweDzzjecF8FIbL0LpEjRygo-ktllkYl1ExksqJyZEklFy8uQwGx_Lj9N0ugG_-lwYCqvsZWIjqMva0Rn5G960SeZG8XcnPyLqGkXe1b6FRssW-_7sJ5psi7d773F9X3G---FoZxx1XQUih0JBRzrEKijqfu2Ey4QyiSU1G4wyVsvE26Iok2Apg1O72LtEodYUhXY-FQiutcD3XoGrqHhjMvbUdDDwRCZN20RXKpyx4F0lI4ocogZmCE2MXtd_F0DtxdjM85i5UXq7t-Bmh1bZdstet2HDV3fg2qTzx98Fi_i9DfBCDcgQS7Llal6fshllnbRilc0p5O9cPh2jUPsvrPJ1UX5bIZBfMmSceZcJdsZmFaPEk3qBtK7nxT04vhT63ofNqq78Q2CpMkHEpQ424zINwdqA5puS0hrEMXEYweuelrnrSppTZ43veW_aINnzhuwjeDEMPWnrePxt0Fa_IHm3lRf5H8YbwfPhNm5C8qwUSKwVjhE6JYe2ESN40K7f8BWUmIKbBJ9Ways7DKAC3-t3qtnXptA3Gj7IZRKn2fDAv38839n-1Fw8-v8MnsH18dHkID_YO9x_DDc4nR00J0pbsLk8XfknCLCW9mnD1Qw-X_Y2-g3bvDdW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfCH6foK5GE18a2u62u_tgDAIXELkQlYS32m134YjXIncXw7_mX-dMuz25oL7x1qTbj52dnfnNzhfAa6Utd2URoZHjbCCUSQMdqjzQVlA5Mc6jlJKTD4fp3rH4eJKcLMGvLheGwio7mdgI6rIu6Ix8M27aJMdaxpvOh0Uc7QzeX_wIqIMUeVq7dhotixzYq59ovk3e7e_gWr-J48Hu1-29wHcYCAoUECpQLpROUifsghcplzoypHKdltooEVmT52XkDGVzqiK0RSRRg_JcFTbhCLQVx_fegWVJVlEPlj_sDo8-d3qAp0K3LXWFxPnz2Nc1ojgiameGQEWrRW14A-LejNS8jqAbFThYg1WPXdlWy2z3YMlW92Hl0HvnH4BBNN-Ge6E-ZIgs2XQ2ri_ZiHJQWiHLxhQAeC27jlHg_SmrbJ2X5zOE9VOGbDT2eWFXbFQxSkOpJ0jtepw_hONbofAj6FV1ZZ8AS6R2PCyVM2ksEueMcWjMSSGMRlQTuj687WiZFb7AOfXZ-J51hg6SPWvI3odX86EXbVWPvw3a6BYk8xt7kv1hwz68nN_GLUl-lhyJNcMxXCXk3ta8D4_b9Zt_BeUnj3WET8uFlZ0PoHLfi3eq0VlT9hvNIMTiAqfZ8MC_fzzb3vrSXDz9_wxewApuoezT_vBgHe7GdJDQHC9tQG96ObPPEG1NzXPP1gy-3fZO-g2kuTzx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprograming+the+tumor+immunologic+microenvironment+using+neoadjuvant+chemotherapy+in+osteosarcoma&rft.jtitle=Cancer+science&rft.au=Deng%2C+Chuangzhong&rft.au=Xu%2C+Yanyang&rft.au=Fu%2C+Jianchang&rft.au=Zhu%2C+Xiaojun&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=111&rft.issue=6&rft.spage=1899&rft.epage=1909&rft_id=info:doi/10.1111%2Fcas.14398&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |