Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma

Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells af...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 111; no. 6; pp. 1899 - 1909
Main Authors Deng, Chuangzhong, Xu, Yanyang, Fu, Jianchang, Zhu, Xiaojun, Chen, Hongmin, Xu, Huaiyuan, Wang, Gaoyuan, Song, Yijiang, Song, Guohui, Lu, Jinchang, Liu, Ranyi, Tang, Qinglian, Huang, Wenlin, Wang, Jin
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.06.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. Host anti–tumor immune response boosted by neoadjuvant chemotherapy. Following neoadjuvant chemotherapy, CD3+ T cells increased significantly and there was a trend of increased cytotoxic T cells. CD8+ T cells in both tumor center and stroma also increased remarkably. Importantly, activated CD8+ T cells, defined as Ki67 + CD8+ T cells, were more abundant in post–chemotherapy samples, and were negatively correlated with the proliferation ability of tumor cells.
AbstractList Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD-L1+ immune cells. Moreover, HLA-DR-CD33+ myeloid-derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune "hot" tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD-L1+ immune cells. Moreover, HLA-DR-CD33+ myeloid-derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune "hot" tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials. Host anti–tumor immune response boosted by neoadjuvant chemotherapy. Following neoadjuvant chemotherapy, CD3+ T cells increased significantly and there was a trend of increased cytotoxic T cells. CD8+ T cells in both tumor center and stroma also increased remarkably. Importantly, activated CD8+ T cells, defined as Ki67 + CD8+ T cells, were more abundant in post–chemotherapy samples, and were negatively correlated with the proliferation ability of tumor cells.
Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
Author Chen, Hongmin
Wang, Gaoyuan
Liu, Ranyi
Song, Guohui
Tang, Qinglian
Deng, Chuangzhong
Lu, Jinchang
Huang, Wenlin
Xu, Huaiyuan
Xu, Yanyang
Song, Yijiang
Wang, Jin
Zhu, Xiaojun
Fu, Jianchang
AuthorAffiliation 2 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center of Cancer Medicine Guangzhou China
3 Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou China
1 Department of Musculoskeletal Oncology Sun Yat‐sen University Cancer Center Guangzhou China
AuthorAffiliation_xml – name: 1 Department of Musculoskeletal Oncology Sun Yat‐sen University Cancer Center Guangzhou China
– name: 3 Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou China
– name: 2 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center of Cancer Medicine Guangzhou China
Author_xml – sequence: 1
  givenname: Chuangzhong
  orcidid: 0000-0001-7697-087X
  surname: Deng
  fullname: Deng, Chuangzhong
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 2
  givenname: Yanyang
  surname: Xu
  fullname: Xu, Yanyang
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 3
  givenname: Jianchang
  surname: Fu
  fullname: Fu, Jianchang
  organization: Sun Yat‐sen University Cancer Center
– sequence: 4
  givenname: Xiaojun
  surname: Zhu
  fullname: Zhu, Xiaojun
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 5
  givenname: Hongmin
  surname: Chen
  fullname: Chen, Hongmin
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 6
  givenname: Huaiyuan
  surname: Xu
  fullname: Xu, Huaiyuan
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 7
  givenname: Gaoyuan
  surname: Wang
  fullname: Wang, Gaoyuan
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 8
  givenname: Yijiang
  surname: Song
  fullname: Song, Yijiang
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 9
  givenname: Guohui
  surname: Song
  fullname: Song, Guohui
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 10
  givenname: Jinchang
  surname: Lu
  fullname: Lu, Jinchang
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 11
  givenname: Ranyi
  surname: Liu
  fullname: Liu, Ranyi
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 12
  givenname: Qinglian
  surname: Tang
  fullname: Tang, Qinglian
  email: tangql@sysucc.org.cn
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 13
  givenname: Wenlin
  surname: Huang
  fullname: Huang, Wenlin
  email: huangwl@sysucc.org.cn
  organization: Collaborative Innovation Center of Cancer Medicine
– sequence: 14
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  email: wangjinbs@sysucc.org.cn
  organization: Collaborative Innovation Center of Cancer Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32232912$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtPGzEUhS0EKq8u-APVSGzKYsCvxPYGCUUtrYSEBHRteZw7iaOxndozQfn3dUioWgTe2Lr-ztG59x6j_RADIHRG8CUp58qafEk4U3IPHRHGVS0wHu-_vEWtMKOH6DjnBcZszBX_hA4ZpYwqQo9Q8wDLFGfJeBdmVT-Hqh98TJXzfgixizNnK-9sihBWLsXgIfTVkDdwgGimi2FlSsXOwceiTma5rlyoYu4hZpNs9OYUHbSmy_B5d5-gX9-_PU1-1Hf3tz8nN3e15WMha9li0YoRJ9wyO2ZCkQYLglslVCM5gcaYKWkbPpJSWgyWCCwJM9LCiIlSZCfoeuu7HBoPU1uSJtPpZXLepLWOxun_f4Kb61lcaUEVI5gXg687gxR_D5B77V220HWmtDpkTZkcUUGxYgU9f4Mu4pBCaU9TTihXVAlaqC__Jvob5XX8BbjaAmXAOSdotXW96V3cBHSdJlhvFqzLgvXLgovi4o3i1fQ9duf-7DpYfwzqyc3jVvEHDmG2vg
CitedBy_id crossref_primary_10_1016_j_bbcan_2021_188606
crossref_primary_10_1080_14712598_2021_1981285
crossref_primary_10_3390_biomedicines13030664
crossref_primary_10_1016_j_labinv_2024_102122
crossref_primary_10_3389_fphar_2022_1031527
crossref_primary_10_3390_ijms25010568
crossref_primary_10_3389_fendo_2021_625226
crossref_primary_10_1021_acsnano_2c00192
crossref_primary_10_3390_cancers14092177
crossref_primary_10_1038_s41413_023_00246_z
crossref_primary_10_3389_fimmu_2021_623762
crossref_primary_10_1016_j_matbio_2023_07_003
crossref_primary_10_1016_j_bioadv_2024_214154
crossref_primary_10_3389_fonc_2022_967450
crossref_primary_10_1007_s00018_021_03966_9
crossref_primary_10_1007_s13402_021_00598_w
crossref_primary_10_3934_mbe_2021098
crossref_primary_10_1158_1078_0432_CCR_22_2470
crossref_primary_10_3390_cells14060403
crossref_primary_10_1002_cti2_1183
crossref_primary_10_1186_s12885_021_07852_2
crossref_primary_10_3389_fonc_2021_642144
crossref_primary_10_3389_fonc_2022_1054598
crossref_primary_10_3390_cells10071668
crossref_primary_10_2147_ITT_S485672
crossref_primary_10_1002_cam4_70206
crossref_primary_10_1155_2022_6568278
crossref_primary_10_1002_cam4_5718
crossref_primary_10_1007_s00011_023_01772_6
crossref_primary_10_1016_j_biomaterials_2024_122475
crossref_primary_10_1097_PPO_0000000000000603
crossref_primary_10_1007_s11864_024_01269_2
crossref_primary_10_3390_cancers13194890
crossref_primary_10_1016_j_critrevonc_2024_104575
crossref_primary_10_3389_fcell_2022_730132
crossref_primary_10_3389_fimmu_2022_907550
crossref_primary_10_3389_fcell_2021_630355
crossref_primary_10_3390_cancers15010272
crossref_primary_10_1111_cas_14543
crossref_primary_10_3389_fonc_2020_586580
crossref_primary_10_3389_fonc_2020_01198
crossref_primary_10_3390_biomedicines9081048
crossref_primary_10_1016_j_heliyon_2024_e34586
crossref_primary_10_1016_j_xcrm_2024_101877
crossref_primary_10_1186_s12885_020_07536_3
crossref_primary_10_3390_ijms241512520
crossref_primary_10_3389_fimmu_2023_1226445
crossref_primary_10_3389_fimmu_2022_974916
crossref_primary_10_1038_s41420_022_00923_8
crossref_primary_10_3389_fgene_2021_699385
crossref_primary_10_1016_j_canlet_2022_215887
crossref_primary_10_3389_fimmu_2022_871076
crossref_primary_10_1186_s13046_021_01893_y
crossref_primary_10_2147_JIR_S340477
crossref_primary_10_1002_cncr_34565
crossref_primary_10_3389_fcell_2021_780951
crossref_primary_10_1097_MD_0000000000036211
crossref_primary_10_1016_j_ejmg_2024_104941
crossref_primary_10_3389_fcell_2024_1394339
Cites_doi 10.4161/21624011.2014.954829
10.4161/2162402X.2014.990800
10.1038/nature14011
10.1158/2326-6066.CIR-13-0224
10.1038/nmeth.3337
10.1158/0008-5472.CAN-13-1545
10.1158/1078-0432.CCR-16-1433
10.1200/JCO.2008.14.0095
10.1182/blood-2005-04-1351
10.1007/s00247-010-1876-3
10.1200/JCO.2014.59.4895
10.1038/s41591-019-0432-4
10.1002/cncr.24121
10.1016/S1470-2045(17)30904-X
10.1016/j.immuni.2004.07.017
10.1016/j.immuni.2013.10.003
10.1158/2326-6066.CIR-16-0297
10.1186/s40880-017-0198-3
10.1038/srep30093
10.1038/s41591-018-0197-1
10.1016/j.immuni.2013.07.012
10.18632/oncotarget.22912
10.1038/cr.2017.34
10.1007/s00428-018-2499-6
10.1158/0008-5472.CAN-10-0283
10.1158/1078-0432.CCR-17-0895
10.1016/j.ejca.2008.10.026
10.1172/JCI67428
10.1016/j.ejca.2005.03.036
10.1158/2159-8290.CD-18-1314
10.1158/1078-0432.CCR-14-1298
10.1016/S1470-2045(17)30624-1
10.1038/s41591-018-0309-y
10.1007/s00262-016-1925-3
10.1038/s41591-018-0337-7
10.1158/0008-5472.CAN-18-2245
10.1038/s41568-019-0116-x
10.1016/j.ccell.2015.03.001
10.1038/s41573-018-0007-y
10.1016/j.it.2018.11.003
10.1080/2162402X.2019.1659093
10.1200/JCO.2008.16.2305
10.1038/s41571-019-0175-7
10.1016/j.drup.2019.07.004
10.1186/s40880-017-0233-4
10.1038/nature25480
10.1200/JCO.2011.38.4032
10.18632/oncotarget.13055
10.1080/2162402X.2016.1269047
10.1158/2159-8290.CD-16-0577
10.1084/jem.20050915
10.1158/1078-0432.CCR-10-2047
10.1038/s41591-018-0014-x
10.1093/annonc/mdr491
10.1016/j.cell.2017.09.028
10.1186/s13569-016-0053-3
10.1016/j.immuni.2013.06.014
10.1007/s00262-012-1388-0
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.14398
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate DENG et al
EISSN 1349-7006
EndPage 1909
ExternalDocumentID PMC7293104
32232912
10_1111_cas_14398
CAS14398
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81702665; 81872183; 81872268
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 19ykpy189
– fundername: National Natural Science Foundation of China
  grantid: 81872268
– fundername: National Natural Science Foundation of China
  grantid: 81872183
– fundername: National Natural Science Foundation of China
  grantid: 81702665
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 19ykpy189
– fundername: ;
  grantid: 81702665; 81872183; 81872268
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4678-8f07f75414c3c63791b0710f979b841ebaad1fb45888c0ec170813a8ce5375883
IEDL.DBID 7X7
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 18:26:04 EDT 2025
Fri Jul 11 04:46:10 EDT 2025
Wed Aug 13 08:00:51 EDT 2025
Wed Feb 19 02:30:22 EST 2025
Tue Jul 01 01:31:08 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Wed Jan 22 16:34:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords tumor-infiltrating immune cells
neoadjuvant chemotherapy
tumor-infiltrating lymphocytes
CIBERSORT
osteosarcoma
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4678-8f07f75414c3c63791b0710f979b841ebaad1fb45888c0ec170813a8ce5375883
Notes Chuangzhong Deng, Yanyang Xu, Jianchang Fu and Xiaojun Zhu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7697-087X
OpenAccessLink https://www.proquest.com/docview/2412492972?pq-origsite=%requestingapplication%
PMID 32232912
PQID 2412492972
PQPubID 4378882
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293104
proquest_miscellaneous_2385272093
proquest_journals_2412492972
pubmed_primary_32232912
crossref_citationtrail_10_1111_cas_14398
crossref_primary_10_1111_cas_14398
wiley_primary_10_1111_cas_14398_CAS14398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationTitleAlternate Cancer Sci
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2004; 21
2009; 45
2017; 5
2015; 12
2014; 515
2017; 8
2019; 9
2015; 4
1990; 2019
2017; 27
2013; 62
2017; 66
2015; 33
2017; 23
2013; 123
2005; 41
2019; 16
2017; 171
2019; 19
2019; 18
2011; 17
2009; 27
2009; 115
2012; 30
2018; 24
2014; 20
2018; 19
2016; 6
2016; 7
2015; 27
2013; 39
2019; 40
2014; 2
2017; 36
2005; 202
2019; 45
2018; 555
2019; 25
2020; 9
2008; 26
2011; 41
2017; 18
2010; 70
2014; 74
2018; 78
2012; 23
2006; 107
2019; 474
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Smeland S (e_1_2_8_34_1) 1990; 2019
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 23
  start-page: 1607
  year: 2012
  end-page: 1616
  article-title: Survival from high‐grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials
  publication-title: Ann Oncol
– volume: 19
  start-page: 40
  year: 2018
  end-page: 50
  article-title: Tumour‐infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy
  publication-title: Lancet Oncol
– volume: 25
  start-page: 920
  year: 2019
  end-page: 928
  article-title: Immune induction strategies in metastatic triple‐negative breast cancer to enhance the sensitivity to PD‐1 blockade: the TONIC trial
  publication-title: Nat Med
– volume: 78
  start-page: 5729
  year: 2018
  end-page: 5730
  article-title: Choosing the best chemotherapy agent to boost immune checkpoint inhibition activity
  publication-title: Can Res
– volume: 18
  start-page: 197
  year: 2019
  end-page: 218
  article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
  publication-title: Nat Rev Drug Discov
– volume: 36
  start-page: 29
  year: 2017
  article-title: Immune mediators in the tumor microenvironment of prostate cancer
  publication-title: Chin J Cancer
– volume: 27
  start-page: 557
  year: 2009
  end-page: 565
  article-title: Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients
  publication-title: J Clin Oncol
– volume: 12
  start-page: 453
  year: 2015
  end-page: 457
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat Methods
– volume: 25
  start-page: 312
  year: 2019
  end-page: 322
  article-title: Tumor‐educated B cells selectively promote breast cancer lymph node metastasis by HSPA4‐targeting IgG
  publication-title: Nat Med
– volume: 20
  start-page: 5384
  year: 2014
  end-page: 5391
  article-title: Cisplatin‐induced antitumor immunomodulation: a review of preclinical and clinical evidence
  publication-title: Clin Cancer Res
– volume: 25
  start-page: 477
  year: 2019
  end-page: 486
  article-title: Neoadjuvant anti–PD‐1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma
  publication-title: Nat Med
– volume: 36
  start-page: 67
  year: 2017
  article-title: Awakening immunity against cancer: a 2017 primer for clinicians
  publication-title: Chin J Cancer
– volume: 24
  start-page: 1649
  year: 2018
  end-page: 1654
  article-title: Neoadjuvant immune checkpoint blockade in high‐risk resectable melanoma
  publication-title: Nat Med
– volume: 9
  year: 2020
  article-title: Close proximity of immune and tumor cells underlies response to anti–PD‐1 based therapies in metastatic melanoma patients
  publication-title: Oncoimmunology
– volume: 107
  start-page: 159
  year: 2006
  end-page: 166
  article-title: Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion
  publication-title: Blood
– volume: 18
  start-page: 1493
  year: 2017
  end-page: 1501
  article-title: Pembrolizumab in advanced soft‐tissue sarcoma and bone sarcoma (SARC028): a multicentre, two‐cohort, single‐arm, open‐label, phase 2 trial
  publication-title: Lancet Oncol
– volume: 30
  start-page: 2046
  year: 2012
  end-page: 2054
  article-title: Ipilimumab in combination with paclitaxel and carboplatin as first‐line treatment in stage IIIB/IV non‐small‐cell lung cancer: results from a randomized, double‐blind, multicenter phase II study
  publication-title: J Clin Oncol
– volume: 202
  start-page: 1691
  year: 2005
  end-page: 1701
  article-title: Caspase‐dependent immunogenicity of doxorubicin‐induced tumor cell death
  publication-title: J Exp Med
– volume: 24
  start-page: 541
  year: 2018
  end-page: 550
  article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy
  publication-title: Nat Med
– volume: 2019
  start-page: 36
  year: 1990
  end-page: 50
  article-title: Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS‐1 (European and American Osteosarcoma Study) cohort
  publication-title: Eur J Cancer
– volume: 5
  start-page: 3
  year: 2017
  end-page: 8
  article-title: Myeloid‐derived suppressor cells
  publication-title: Cancer Immunol Res
– volume: 17
  start-page: 2110
  year: 2011
  end-page: 2119
  article-title: Tumor‐infiltrating macrophages are associated with metastasis suppression in high‐grade osteosarcoma: a rationale for treatment with macrophage activating agents
  publication-title: Clin Cancer Res
– volume: 39
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Oncology meets immunology: the cancer‐immunity cycle
  publication-title: Immunity
– volume: 16
  start-page: 356
  year: 2019
  end-page: 371
  article-title: Regulatory T cells in cancer immunosuppression – implications for anticancer therapy
  publication-title: Nature reviews Clinical oncology
– volume: 41
  start-page: 2079
  year: 2005
  end-page: 2085
  article-title: Grade of chemotherapy‐induced necrosis as a predictor of local and systemic control in 881 patients with non‐metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution
  publication-title: Eur J Cancer
– volume: 23
  start-page: 6771
  year: 2017
  end-page: 6780
  article-title: Low‐dose cyclophosphamide induces antitumor T‐cell responses, which associate with survival in metastatic colorectal cancer
  publication-title: Clin Cancer Res
– volume: 74
  start-page: 104
  year: 2014
  end-page: 118
  article-title: Doxorubicin eliminates myeloid‐derived suppressor cells and enhances the efficacy of adoptive T‐cell transfer in breast cancer
  publication-title: Can Res
– volume: 21
  start-page: 137
  year: 2004
  end-page: 148
  article-title: The immunobiology of cancer immunosurveillance and immunoediting
  publication-title: Immunity
– volume: 4
  year: 2015
  article-title: Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy
  publication-title: Oncoimmunology
– volume: 474
  start-page: 201
  year: 2019
  end-page: 207
  article-title: Evaluation of tumor‐infiltrating lymphocytes in osteosarcomas of the jaws: a multicenter study
  publication-title: Virchows Arch
– volume: 6
  start-page: 1382
  year: 2016
  end-page: 1399
  article-title: Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease
  publication-title: Cancer Discov
– volume: 66
  start-page: 119
  year: 2017
  end-page: 128
  article-title: Increased PD‐L1 and T‐cell infiltration in the presence of HLA class I expression in metastatic high‐grade osteosarcoma: a rationale for T‐cell‐based immunotherapy
  publication-title: Cancer Immunol Immunother
– volume: 8
  start-page: 111836
  year: 2017
  end-page: 111846
  article-title: Tumoral immune‐infiltrate (IF), PD‐L1 expression and role of CD8/TIA‐1 lymphocytes in localized osteosarcoma patients treated within protocol ISG‐OS1
  publication-title: Oncotarget
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
– volume: 27
  start-page: 450
  year: 2015
  end-page: 461
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
– volume: 39
  start-page: 782
  year: 2013
  end-page: 795
  article-title: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer
  publication-title: Immunity
– volume: 62
  start-page: 203
  year: 2013
  end-page: 216
  article-title: Chemoimmunotherapy: reengineering tumor immunity
  publication-title: Cancer Immunol Immunother
– volume: 19
  start-page: 133
  year: 2019
  end-page: 150
  article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy
  publication-title: Nat Rev Cancer
– volume: 171
  start-page: e916
  year: 2017
  article-title: Tumor and microenvironment evolution during Immunotherapy with Nivolumab
  publication-title: Cell
– volume: 9
  start-page: 492
  year: 2019
  end-page: 499
  article-title: Naive T‐cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers
  publication-title: Cancer Discov
– volume: 6
  start-page: 30093
  year: 2016
  article-title: Immune infiltration and PD‐L1 expression in the tumor microenvironment are prognostic in osteosarcoma
  publication-title: Sci Rep
– volume: 2
  start-page: 690
  year: 2014
  end-page: 698
  article-title: Programmed cell death ligand 1 expression in osteosarcoma
  publication-title: Cancer Immunol Res
– volume: 39
  start-page: 74
  year: 2013
  end-page: 88
  article-title: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance
  publication-title: Immunity
– volume: 27
  start-page: 461
  year: 2017
  end-page: 482
  article-title: Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer
  publication-title: Cell Res
– volume: 41
  start-page: 441
  year: 2011
  end-page: 450
  article-title: Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis
  publication-title: Pediatr Radiol
– volume: 7
  start-page: 78343
  year: 2016
  end-page: 78354
  article-title: Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma
  publication-title: Oncotarget
– volume: 115
  start-page: 1531
  year: 2009
  end-page: 1543
  article-title: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program
  publication-title: Cancer
– volume: 40
  start-page: 12
  year: 2019
  end-page: 21
  article-title: What, why, where, and when: bringing timing to immuno‐oncology
  publication-title: Trends Immunol
– volume: 70
  start-page: 4850
  year: 2010
  end-page: 4858
  article-title: Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low‐dose cyclophosphamide is explained by reduced intracellular ATP levels
  publication-title: Can Res
– volume: 515
  start-page: 563
  year: 2014
  end-page: 567
  article-title: Predictive correlates of response to the anti–PD‐L1 antibody MPDL3280A in cancer patients
  publication-title: Nature
– volume: 4
  year: 2015
  article-title: CD8(+)/FOXP3(+)‐ratio in osteosarcoma microenvironment separates survivors from non‐survivors: a multicenter validated retrospective study
  publication-title: OncoImmunology
– volume: 555
  start-page: 321
  year: 2018
  end-page: 327
  article-title: The landscape of genomic alterations across childhood cancers
  publication-title: Nature
– volume: 26
  start-page: 633
  year: 2008
  end-page: 638
  article-title: Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children's Oncology Group
  publication-title: J Clin Oncol
– volume: 45
  start-page: 13
  year: 2019
  end-page: 29
  article-title: Immune checkpoint inhibitor combinations: current efforts and important aspects for success
  publication-title: Drug Resist Updat
– volume: 23
  start-page: 925
  year: 2017
  end-page: 934
  article-title: Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor‐infiltrating lymphocyte response with distinct implications for immunotherapy
  publication-title: Clin Cancer Res
– volume: 123
  start-page: 2873
  year: 2013
  end-page: 2892
  article-title: CD4(+) follicular helper T cell infiltration predicts breast cancer survival
  publication-title: J Clin Investig
– volume: 33
  start-page: 3029
  year: 2015
  end-page: 3035
  article-title: Osteosarcoma: current treatment and a collaborative pathway to success
  publication-title: J Clin Oncol
– volume: 6
  year: 2016
  article-title: Tumor PD‐L1 expression is correlated with increased TILs and poor prognosis in penile squamous cell carcinoma
  publication-title: Oncoimmunology
– volume: 6
  start-page: 13
  year: 2016
  article-title: Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours
  publication-title: Clinical Sarcoma Res
– ident: e_1_2_8_10_1
  doi: 10.4161/21624011.2014.954829
– ident: e_1_2_8_37_1
  doi: 10.4161/2162402X.2014.990800
– ident: e_1_2_8_54_1
  doi: 10.1038/nature14011
– ident: e_1_2_8_18_1
  doi: 10.1158/2326-6066.CIR-13-0224
– ident: e_1_2_8_29_1
  doi: 10.1038/nmeth.3337
– ident: e_1_2_8_25_1
  doi: 10.1158/0008-5472.CAN-13-1545
– ident: e_1_2_8_27_1
  doi: 10.1158/1078-0432.CCR-16-1433
– ident: e_1_2_8_5_1
  doi: 10.1200/JCO.2008.14.0095
– ident: e_1_2_8_46_1
  doi: 10.1182/blood-2005-04-1351
– ident: e_1_2_8_31_1
  doi: 10.1007/s00247-010-1876-3
– ident: e_1_2_8_2_1
  doi: 10.1200/JCO.2014.59.4895
– ident: e_1_2_8_28_1
  doi: 10.1038/s41591-019-0432-4
– ident: e_1_2_8_3_1
  doi: 10.1002/cncr.24121
– ident: e_1_2_8_40_1
  doi: 10.1016/S1470-2045(17)30904-X
– ident: e_1_2_8_13_1
  doi: 10.1016/j.immuni.2004.07.017
– ident: e_1_2_8_48_1
  doi: 10.1016/j.immuni.2013.10.003
– ident: e_1_2_8_51_1
  doi: 10.1158/2326-6066.CIR-16-0297
– ident: e_1_2_8_36_1
  doi: 10.1186/s40880-017-0198-3
– ident: e_1_2_8_45_1
  doi: 10.1038/srep30093
– ident: e_1_2_8_56_1
  doi: 10.1038/s41591-018-0197-1
– ident: e_1_2_8_8_1
  doi: 10.1016/j.immuni.2013.07.012
– ident: e_1_2_8_16_1
  doi: 10.18632/oncotarget.22912
– ident: e_1_2_8_47_1
  doi: 10.1038/cr.2017.34
– ident: e_1_2_8_17_1
  doi: 10.1007/s00428-018-2499-6
– ident: e_1_2_8_24_1
  doi: 10.1158/0008-5472.CAN-10-0283
– ident: e_1_2_8_23_1
  doi: 10.1158/1078-0432.CCR-17-0895
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ejca.2008.10.026
– ident: e_1_2_8_49_1
  doi: 10.1172/JCI67428
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ejca.2005.03.036
– ident: e_1_2_8_52_1
  doi: 10.1158/2159-8290.CD-18-1314
– ident: e_1_2_8_22_1
  doi: 10.1158/1078-0432.CCR-14-1298
– ident: e_1_2_8_19_1
  doi: 10.1016/S1470-2045(17)30624-1
– ident: e_1_2_8_50_1
  doi: 10.1038/s41591-018-0309-y
– ident: e_1_2_8_35_1
  doi: 10.1007/s00262-016-1925-3
– ident: e_1_2_8_57_1
  doi: 10.1038/s41591-018-0337-7
– ident: e_1_2_8_59_1
  doi: 10.1158/0008-5472.CAN-18-2245
– ident: e_1_2_8_41_1
  doi: 10.1038/s41568-019-0116-x
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ccell.2015.03.001
– ident: e_1_2_8_15_1
  doi: 10.1038/s41573-018-0007-y
– ident: e_1_2_8_55_1
  doi: 10.1016/j.it.2018.11.003
– ident: e_1_2_8_33_1
  doi: 10.1080/2162402X.2019.1659093
– ident: e_1_2_8_6_1
  doi: 10.1200/JCO.2008.16.2305
– ident: e_1_2_8_11_1
  doi: 10.1038/s41571-019-0175-7
– ident: e_1_2_8_39_1
  doi: 10.1016/j.drup.2019.07.004
– ident: e_1_2_8_12_1
  doi: 10.1186/s40880-017-0233-4
– ident: e_1_2_8_53_1
  doi: 10.1038/nature25480
– ident: e_1_2_8_60_1
  doi: 10.1200/JCO.2011.38.4032
– ident: e_1_2_8_42_1
  doi: 10.18632/oncotarget.13055
– ident: e_1_2_8_32_1
  doi: 10.1080/2162402X.2016.1269047
– ident: e_1_2_8_58_1
  doi: 10.1158/2159-8290.CD-16-0577
– volume: 2019
  start-page: 36
  year: 1990
  ident: e_1_2_8_34_1
  article-title: Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS‐1 (European and American Osteosarcoma Study) cohort
  publication-title: Eur J Cancer
– ident: e_1_2_8_26_1
  doi: 10.1084/jem.20050915
– ident: e_1_2_8_43_1
  doi: 10.1158/1078-0432.CCR-10-2047
– ident: e_1_2_8_9_1
  doi: 10.1038/s41591-018-0014-x
– ident: e_1_2_8_44_1
  doi: 10.1093/annonc/mdr491
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cell.2017.09.028
– ident: e_1_2_8_38_1
  doi: 10.1186/s13569-016-0053-3
– ident: e_1_2_8_21_1
  doi: 10.1016/j.immuni.2013.06.014
– ident: e_1_2_8_20_1
  doi: 10.1007/s00262-012-1388-0
SSID ssj0036494
Score 2.5276918
Snippet Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells...
Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1899
SubjectTerms Antibodies
Apoptosis
Automation
Biopsy
Bone cancer
Cancer therapies
CD3 antigen
CD8 antigen
Chemotherapy
CIBERSORT
Clinical trials
Gene expression
Histocompatibility antigen HLA
Immune status
Immunohistochemistry
Immunotherapy
Lymphocytes
Lymphocytes T
Macrophages
Medical research
neoadjuvant chemotherapy
Original
Osteosarcoma
Patients
PD-L1 protein
Ribonucleic acid
RNA
Sarcoma
Studies
Tumors
tumor‐infiltrating immune cells
tumor‐infiltrating lymphocytes
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WHEovSV9Jtk2LGnrIxcG2ZEuip7A0hEJ6aBPIIWAsrZRs27VL1j60v74z8oPdpoHSm8EjZEsz0jfSzDcA75R23M9tgk6Od5FQJo90rMpIO0F0YpwnOSUnn3_Kzy7Fx6vsagLvh1yYjh9iPHAjywjrNRl4aVZrRk4lwXCz15ToS7FaBIg-j9RRPBe6K2grJPbO055ViKJ4xpabe9E9gHk_TnIdv4YN6HQHrodP7-JOvh23jTm2v_5gdfzPf3sC2z0wZSedJj2FiauewaPz_ur9ORiE6l0sF252DGEja9plfccWlGDSraBsSdF9a6lzjKLqb1jl6nL-tUXM3jDUkWWf9PWTLSpGOSb1Cq2tXpYv4PL0w8XsLOoLNEQW11cVKR9LL6mQuOU251InhhCL11IbJRJnynKeeEPJsMrGziYSAQgvlXUZRz9F8V3YqurK7QPLpPY8nitv8lRk3hvj0VOTQhiNkCX2UzgapqqwPXs5FdH4XgxeDI5ZEcZsCoej6I-OsuNvQgfDfBe91a6KNJTiTrVMp_B2fI32RpcoJQ5WizJcZXR3rfkU9jr1GHvBxZGnOsHWckNxRgHi8t58Uy1uA6c3-jgItAX-ZtCLhz-8mJ18CQ8v_130FTxO6ZggHB4dwFZz17rXiKUa8yYYzW9ssRyO
  priority: 102
  providerName: Wiley-Blackwell
Title Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14398
https://www.ncbi.nlm.nih.gov/pubmed/32232912
https://www.proquest.com/docview/2412492972
https://www.proquest.com/docview/2385272093
https://pubmed.ncbi.nlm.nih.gov/PMC7293104
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkJcEG8WysogDlwiEtuJ7RMqVasKqVVVqLS3KHZsWMQmpbt74N8z43hDVwUuUSQ7ij0zHn9jzwPgrTZehNYVaOQEn0ltq8zkusmMl5ROTIiiouDk07Pq5FJ-mpWzdOC2TG6VG50YFXXbOzojf89jmWRuFP9w9TOjqlF0u5pKaOzAHqUuI6lWs9HgEpU0Q1FbqXAEgqfMQuTJQwXFECoYvb0f3QKZt30lb2LYuAkdP4D7CT2yg4HdD-GO7x7B3dN0P_4YLOLpweEKdySG2I6t1ov-ms0pCmRQc2xBLng34tsYub5_ZZ3vm_b7GoH1iiEjFyky6xebd4wCQfolLol-0TyBy-OjL4cnWaqikDlUgjrTIVdBUbVvJ1wllCkswYpglLFaFt42TVsESxGr2uXeFQpRgmi086VAY0KLp7Db9Z1_DqxUJoi81cFWXJYhWBvQnFJSWoO4Ig8TeLehZe1SinGqdPGj3pgaSPY6kn0Cb8auV0Nejb912t8wpE5La1n_EYQJvB6bcVHQTUeDxFpjH6FLumA2YgLPBv6Nf0ENJrgp8Gu1xdmxAyXc3m7p5t9i4m00RBANS5xmlIF_D7w-PPgcX178fwYv4R4n-z2e6uzD7up67V8hyFnZKexweT6N8jyFvY9HZ-cX03hgQM8L_hv9JwDS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAgaBxCUisZ3YPiBUFaot7fZCK-0txI4Ni9ikdHeF-qf4jczkRVcFbr1FivPweDzzjecF8FIbL0LpEjRygo-ktllkYl1ExksqJyZEklFy8uQwGx_Lj9N0ugG_-lwYCqvsZWIjqMva0Rn5G960SeZG8XcnPyLqGkXe1b6FRssW-_7sJ5psi7d773F9X3G---FoZxx1XQUih0JBRzrEKijqfu2Ey4QyiSU1G4wyVsvE26Iok2Apg1O72LtEodYUhXY-FQiutcD3XoGrqHhjMvbUdDDwRCZN20RXKpyx4F0lI4ocogZmCE2MXtd_F0DtxdjM85i5UXq7t-Bmh1bZdstet2HDV3fg2qTzx98Fi_i9DfBCDcgQS7Llal6fshllnbRilc0p5O9cPh2jUPsvrPJ1UX5bIZBfMmSceZcJdsZmFaPEk3qBtK7nxT04vhT63ofNqq78Q2CpMkHEpQ424zINwdqA5puS0hrEMXEYweuelrnrSppTZ43veW_aINnzhuwjeDEMPWnrePxt0Fa_IHm3lRf5H8YbwfPhNm5C8qwUSKwVjhE6JYe2ESN40K7f8BWUmIKbBJ9Ways7DKAC3-t3qtnXptA3Gj7IZRKn2fDAv38839n-1Fw8-v8MnsH18dHkID_YO9x_DDc4nR00J0pbsLk8XfknCLCW9mnD1Qw-X_Y2-g3bvDdW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfCH6foK5GE18a2u62u_tgDAIXELkQlYS32m134YjXIncXw7_mX-dMuz25oL7x1qTbj52dnfnNzhfAa6Utd2URoZHjbCCUSQMdqjzQVlA5Mc6jlJKTD4fp3rH4eJKcLMGvLheGwio7mdgI6rIu6Ix8M27aJMdaxpvOh0Uc7QzeX_wIqIMUeVq7dhotixzYq59ovk3e7e_gWr-J48Hu1-29wHcYCAoUECpQLpROUifsghcplzoypHKdltooEVmT52XkDGVzqiK0RSRRg_JcFTbhCLQVx_fegWVJVlEPlj_sDo8-d3qAp0K3LXWFxPnz2Nc1ojgiameGQEWrRW14A-LejNS8jqAbFThYg1WPXdlWy2z3YMlW92Hl0HvnH4BBNN-Ge6E-ZIgs2XQ2ri_ZiHJQWiHLxhQAeC27jlHg_SmrbJ2X5zOE9VOGbDT2eWFXbFQxSkOpJ0jtepw_hONbofAj6FV1ZZ8AS6R2PCyVM2ksEueMcWjMSSGMRlQTuj687WiZFb7AOfXZ-J51hg6SPWvI3odX86EXbVWPvw3a6BYk8xt7kv1hwz68nN_GLUl-lhyJNcMxXCXk3ta8D4_b9Zt_BeUnj3WET8uFlZ0PoHLfi3eq0VlT9hvNIMTiAqfZ8MC_fzzb3vrSXDz9_wxewApuoezT_vBgHe7GdJDQHC9tQG96ObPPEG1NzXPP1gy-3fZO-g2kuTzx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprograming+the+tumor+immunologic+microenvironment+using+neoadjuvant+chemotherapy+in+osteosarcoma&rft.jtitle=Cancer+science&rft.au=Deng%2C+Chuangzhong&rft.au=Xu%2C+Yanyang&rft.au=Fu%2C+Jianchang&rft.au=Zhu%2C+Xiaojun&rft.date=2020-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=111&rft.issue=6&rft.spage=1899&rft.epage=1909&rft_id=info:doi/10.1111%2Fcas.14398&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon