Crystallization Kinetics of LaF3 Nanocrystals in an Oxyfluoride Glass

Nanocrystallization of LaF3 in a glass of composition 55SiO2–20Al2O3–15Na2O–10LaF3 (mol%) has been achieved by heat treatment above the glass transition temperature. A maximum crystal size of 14 nm has been attained, with the crystalline fraction and crystal size dependent on the time and temperatur...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 94; no. 8; pp. 2420 - 2428
Main Authors de Pablos-Martín, Araceli, Hémono, Nicolas, Mather, Glenn C., Bhattacharyya, Sommnath, Höche, Thomas, Bornhöft, Hansjörg, Deubener, Joachim, Muñoz, Francisco, Durán, Alicia, Pascual, Maria J.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocrystallization of LaF3 in a glass of composition 55SiO2–20Al2O3–15Na2O–10LaF3 (mol%) has been achieved by heat treatment above the glass transition temperature. A maximum crystal size of 14 nm has been attained, with the crystalline fraction and crystal size dependent on the time and temperature of thermal treatment. The effect of lanthanum fluoride crystallization is noticeable from the microstructural and compositional changes in the glass matrix, which have been studied using several techniques, including viscosity, dilatometry, X‐ray diffraction, and quantitative Rietveld refinement, transmission electron microscopy, and differential scanning calorimetry. The crystallization mechanism is shown to occur via regions of La‐ and Si‐phase separation in the glass, from which the fluoride crystals develop during heat treatment. The interface between the glass matrix and the crystals in the demixed ranges is enriched in network formers, mainly SiO2, creating a viscous barrier, which inhibits further crystal growth and limits the crystal size to the nanometric range.
AbstractList Nanocrystallization of LaF3 in a glass of composition 55SiO2-20Al2O3-15Na2O-10LaF3 (mol%) has been achieved by heat treatment above the glass transition temperature. A maximum crystal size of 14 nm has been attained, with the crystalline fraction and crystal size dependent on the time and temperature of thermal treatment. The effect of lanthanum fluoride crystallization is noticeable from the microstructural and compositional changes in the glass matrix, which have been studied using several techniques, including viscosity, dilatometry, X-ray diffraction, and quantitative Rietveld refinement, transmission electron microscopy, and differential scanning calorimetry. The crystallization mechanism is shown to occur via regions of La- and Si-phase separation in the glass, from which the fluoride crystals develop during heat treatment. The interface between the glass matrix and the crystals in the demixed ranges is enriched in network formers, mainly SiO2, creating a viscous barrier, which inhibits further crystal growth and limits the crystal size to the nanometric range.
Nanocrystallisation of LaF3 in 55SiO2-20Al2O3-15Na2O-10LaF3 (mol%) glass was achieved by heat treatment above the glass transition temperature. A maximum crystal size of 14 nm was attained, with the crystalline fraction and crystal size dependent on the time and temperature of the thermal treatment. The effect of lanthanum fluoride crystallisation was noticeable from the microstructural and compositional changes in the glass matrix, which were studied by viscosity, dilatometry, XRD, Rietveld refinement, TEM, and DSC. The crystallisation mechanism occurred via regions of La- and Si-phase separation in the glass, from which the fluoride crystals developed during heat treatment. The interface between the glass matrix and the crystals in the de-mixed range was enriched with network formers, mainly SiO2, creating a viscous barrier, which inhibited further crystal growth and limited the crystal size to the nanometric range.
Author Mather, Glenn C.
Muñoz, Francisco
Bhattacharyya, Sommnath
Deubener, Joachim
Durán, Alicia
Hémono, Nicolas
Bornhöft, Hansjörg
de Pablos-Martín, Araceli
Höche, Thomas
Pascual, Maria J.
Author_xml – sequence: 1
  givenname: Araceli
  surname: de Pablos-Martín
  fullname: de Pablos-Martín, Araceli
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
– sequence: 2
  givenname: Nicolas
  surname: Hémono
  fullname: Hémono, Nicolas
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
– sequence: 3
  givenname: Glenn C.
  surname: Mather
  fullname: Mather, Glenn C.
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
– sequence: 4
  givenname: Sommnath
  surname: Bhattacharyya
  fullname: Bhattacharyya, Sommnath
  organization: Leibniz-Institut für Oberfläcgenmodifizierung e.V., Permoserstraβe 15, Leipzig D-04318, Germany
– sequence: 5
  givenname: Thomas
  surname: Höche
  fullname: Höche, Thomas
  organization: Fraunhofer-Institute für Werkstoffmechanik, Walter- Hülse-Straβe 1, D-06120, Halle, Germany
– sequence: 6
  givenname: Hansjörg
  surname: Bornhöft
  fullname: Bornhöft, Hansjörg
  organization: Institut für Nichtmetallische Werkstoffe, TU-Clausthal, Clausthal-Zellerfeld D-38678, Germany
– sequence: 7
  givenname: Joachim
  surname: Deubener
  fullname: Deubener, Joachim
  organization: Institut für Nichtmetallische Werkstoffe, TU-Clausthal, Clausthal-Zellerfeld D-38678, Germany
– sequence: 8
  givenname: Francisco
  surname: Muñoz
  fullname: Muñoz, Francisco
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
– sequence: 9
  givenname: Alicia
  surname: Durán
  fullname: Durán, Alicia
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
– sequence: 10
  givenname: Maria J.
  surname: Pascual
  fullname: Pascual, Maria J.
  email: mpascual@icv.csic.es
  organization: Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Madrid 28049, Spain
BookMark eNqFkU9Lw0AQxRdRsK1-h73pJXH_b_YilNJW29KKVAQvyybZwNY0qdkUWz-9iZEedS4zw_x4A-_1wXlRFhYAiFGIm7rbhJhzHBCFRUgQxiFinMnwcAZ6p8M56CGESCAjgi5B3_tNs2IVsR4Yj6qjr02euy9Tu7KAc1fY2iUelhlcmAmFS1OUSQd56ApoCrg6HLN8X1YutXCaG--vwEXWnO31bx-Al8l4PXoIFqvp42i4CBImpAx4wlCcUBYpYkkWpWlKZCwSkqaGS4O4Ykmcct4ARkqRUqkYEipWUURxbGNMB-Cm091V5cfe-lpvnU9snpvClnuvFREUU8ZUQ97-SWIpCCZKYvo_KhpKMULb__cd-ulye9S7ym1NddQY6TYLvdGt5bq1XLdZ6J8s9EHPhqNxOzYCQSfgfG0PJwFTvWshqeT6dTnV8zWdzZ7e5vqZfgOWVY7v
CitedBy_id crossref_primary_10_1016_j_jallcom_2013_08_039
crossref_primary_10_1016_j_ceramint_2013_01_028
crossref_primary_10_1016_j_jeurceramsoc_2016_11_014
crossref_primary_10_1016_j_jnoncrysol_2013_07_021
crossref_primary_10_1016_j_jascer_2015_08_002
crossref_primary_10_1016_j_jeurceramsoc_2013_02_008
crossref_primary_10_1016_j_jnoncrysol_2011_08_028
crossref_primary_10_3390_fib7120105
crossref_primary_10_1021_acsanm_2c00205
crossref_primary_10_1016_j_jlumin_2013_02_039
crossref_primary_10_1007_s10853_013_7423_5
crossref_primary_10_1007_s10973_020_09564_4
crossref_primary_10_1016_j_jnoncrysol_2017_12_051
crossref_primary_10_1016_j_tca_2015_04_019
crossref_primary_10_1111_jace_15091
crossref_primary_10_1111_ijag_12177
crossref_primary_10_1016_j_jfluchem_2015_01_009
crossref_primary_10_1016_j_optmat_2012_07_022
crossref_primary_10_1063_1_4731732
crossref_primary_10_1016_j_jallcom_2014_09_194
crossref_primary_10_1039_C6RA28084F
crossref_primary_10_1002_adts_201900062
crossref_primary_10_1016_j_molstruc_2016_03_095
crossref_primary_10_3389_fmats_2016_00058
crossref_primary_10_1016_j_jeurceramsoc_2016_09_036
crossref_primary_10_1016_j_solidstatesciences_2014_02_009
crossref_primary_10_1016_j_mseb_2020_114598
crossref_primary_10_1016_j_pmatsci_2017_11_001
crossref_primary_10_1039_c3ce41345d
crossref_primary_10_1111_ijag_16322
crossref_primary_10_1111_ijag_16646
crossref_primary_10_1111_jace_12120
crossref_primary_10_1016_j_jssc_2020_121379
crossref_primary_10_1016_j_jeurceramsoc_2020_08_038
crossref_primary_10_3390_nano9040530
crossref_primary_10_1016_j_ceramint_2024_04_110
crossref_primary_10_1016_j_jnoncrysol_2015_08_017
crossref_primary_10_1016_j_jpcs_2014_10_023
crossref_primary_10_1016_j_jlumin_2017_05_063
crossref_primary_10_1111_jace_17299
crossref_primary_10_1016_j_jlumin_2012_11_017
crossref_primary_10_3390_ijms22030996
crossref_primary_10_1021_cg2016148
crossref_primary_10_1016_j_jeurceramsoc_2014_12_034
crossref_primary_10_1111_ijag_12033
crossref_primary_10_1016_j_jnoncrysol_2018_01_033
crossref_primary_10_1016_j_jeurceramsoc_2019_02_020
crossref_primary_10_1016_j_jnoncrysol_2018_01_031
crossref_primary_10_1016_j_optmat_2018_10_004
crossref_primary_10_1016_j_jlumin_2011_11_002
crossref_primary_10_1021_acs_jpcb_3c00651
crossref_primary_10_1016_j_jnoncrysol_2019_119486
crossref_primary_10_1021_acs_nanolett_5b02605
crossref_primary_10_1111_jace_12816
crossref_primary_10_1016_j_jre_2021_09_014
crossref_primary_10_1039_c3ce40731d
crossref_primary_10_1111_jace_17022
crossref_primary_10_1016_j_nocx_2023_100173
crossref_primary_10_1016_j_jeurceramsoc_2019_07_009
crossref_primary_10_1016_j_jeurceramsoc_2023_11_029
crossref_primary_10_1039_C8CE00897C
crossref_primary_10_1039_C6CE01845A
crossref_primary_10_1364_OME_462684
ContentType Journal Article
Copyright 2011 The American Ceramic Society
Copyright_xml – notice: 2011 The American Ceramic Society
DBID BSCLL
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1551-2916.2011.04547.x
DatabaseName Istex
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 2428
ExternalDocumentID JACE4547
ark_67375_WNG_KT3JJPZK_R
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PK8
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
WTY
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c4677-5c40bc34892e2f8ddd27b6c2dda57a0594cbd55348a776d3794069b98831beb13
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Aug 16 23:29:05 EDT 2024
Fri Aug 16 06:29:45 EDT 2024
Sat Aug 17 03:49:20 EDT 2024
Sat Aug 24 01:01:19 EDT 2024
Wed Jan 17 05:18:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4677-5c40bc34892e2f8ddd27b6c2dda57a0594cbd55348a776d3794069b98831beb13
Notes ark:/67375/WNG-KT3JJPZK-R
istex:F8A01D955D19CE93D56C15DF3E315B86A2FEE999
ArticleID:JACE4547
L. Pinckney—contributing editor
The authors acknowledge the financial support of Project INTERCONY, Contract No. NMP4‐CT‐2006‐033200, from Framework 6 of the European Union, the CSIC incorporation intramural project 2007 60I002, and the CiCyt project MAT 2010‐20459. A. De Pablos‐ Martín is grateful to CSIC for a JAE contract.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1671394231
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_926313449
proquest_miscellaneous_1762129713
proquest_miscellaneous_1671394231
wiley_primary_10_1111_j_1551_2916_2011_04547_x_JACE4547
istex_primary_ark_67375_WNG_KT3JJPZK_R
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2011
Publisher Blackwell Publishing Inc
Publisher_xml – name: Blackwell Publishing Inc
References M. J. Pascual, L. Pascual, and A. Durán, "Determination of Viscosity-Temperature Curve for Glasses, on the Basis of Fixed Viscosity Points Determined by Heating Microscopy," Phys. Chem. Glasses, 42 [1] 61-6 (2001).
S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, "Fluorescence Properties of Er3+ Ions in Glass Ceramics Containing LaF3 Nanocrystals," Opt. Mater., 19, 343-9 (2002).
X. Orlhac, C. Fillet, P. Deniard, A. M. Dulac, and R. Brec, "Determination of the Crystallized Fractions of a Largely Amorphous Multiphase Material by the Rietveld Method," J. Appl. Cryst., 34, 114-8 (2001).
S. Bhattacharyya, Th. Höche, K. Hahn, and P. A. van Aken, "Various Transmission Electron Microscopic Techniques to Characterize Phase Separation in Inorganic Glasses," J. Non-Cryst. Solids, 355, 393-6 (2009).
N. Böse, G. Klingenberg, and G. Meerlender, "Viscosity Measurements of Glass Melts- Certification of Reference Material," Glastech. Ber. Glass Sci. Technol., 74, 115-26 (2001).
J. Deubener and R. Brückner, "Influence of Nucleation and Crystallization on the Rheological Properties of Lithium Disilicate Meltsm," J. Non-Cryst. Solids, 209, 96-111 (1997).
A. de Pablos-Martín, G. C. Mather, F. Muñoz, S. Bhattacharyya, Th. Höche, J. R. Jinschek, T. Heil, A. Durán, and M. J. Pascual, "Design of Oxy-Fluoride Glass-Ceramics Containing NaLaF4 Nano-Crystals," J. Non-Cryst. Solids, 356 [52-54] 3071-9 (2010).
Y. Tian, X. Jiao, J. Zhang, N. Sui, D. R. Chen, and G. Y. Hong, "Molten Salt Synthesis of LaF3:Eu3+ Nanoplates with Tunable Size and their Luminescence Properties," J. Nanopart. Res., 12 [1] 161-8 (2010).
C. A. Angell, "Relaxation in Liquids, Polymers and Plastic Crystals-Strong/Fragile Patterns and Problems," J. Non-Cryst. Solids, 131-133, 13-31 (1991).
F. Goutaland, P. Jander, W. S. Brocklesby, and G. Dai, "Crystallisation Effects on Rare Earth Dopants in Oxyfluoride Glass Ceramics," Opt. Mater., 22, 383-90 (2003).
G. W. Brindley, "The Effect of Grain or Particle Size on X-ray Reflections from Mixed Powders or Alloys," Phil. Mag. Series, 7 [36] 347-69 (1945).
R. E. Youngman and M. J. Dejneka, "NMR Studies of Fluorine in Aluminosilicate-Lanthanum Fluoride Glasses and Glass-Ceramics," J. Am. Ceram. Soc., 85 [5] 1077-82 (2002).
P. A. Crozier, "Quantitative Elemental Mapping of Materials by Energy-Filtered Imaging," Ultramicroscopy, 58 [2] 157-74 (1995).
Ch. Bocker, S. Bhattacharyya, Th. Höche, and Ch. Rüssel, "Size Distribution of BaF2 Nanocrystallites in Transparent Glass Ceramics," Acta Mater., 57, 5956-63 (2009).
J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, "Viscosity, Relaxation and Elastic Properties of Photo-Thermo-Refractive Glasses," J. Non-Cryst. Solids, 355, 126-31 (2009).
M. J. Dejneka, "The Luminescence and Structure of Novel Transparent Oxyfluoride Glass-Ceramics," J. Non-Cryst. Solids, 239, 149-55 (1998).
D.C Tran, G. H. Jr. Sigel, and B. Bendow, "Heavy Metal Fluoride Glasses and Fibers: A Review," J. Lightwave Technol., 2 [5] 566-86 (1984).
W. L. Bragg, "Crystal Structure," Nature, 105, 646-8 (1920).
Ch. Rüssel, "Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses," Chem. Mater., 17, 5843-7 (2005).
Th. Höche, J. W. Gerlach, and T. Petsch, "Static-Charging Mitigation and Contamination Avoidance by Selective Carbon Coating of TEM Samples," Ultramicroscopy, 106, 981-5 (2006).
B. J. Ainslie, S. T. Davey, D. Szebesta, J. R. Williams, M. W. Moore, T. Whitley, and R. Wyatt, "A Review of Fluoride Fibres for Optical Amplification," J. Non-Cryst. Solids, 184, 225-8 (1995).
F. Auzel, D. Pecile, and D. Morin, "Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up-Conversion," J. Electrochem. Soc., 122, 101-7 (1975).
M. J. Pascual, A. Durán, and M. O. Prado, "A New Method for Determining Fixed Viscosity Points of Glasses," Phys. Chem. Glasses, 46 [5] 512-20 (2005).
G. Tammann and W. Hesse, "Temperature Dependence of Viscosity of Melted Supercooled Liquids," Anorg. Chem., 156, 245-7 (1926).
Th. Höche, "Crystallization in Glass-Elucidating a Realm of Diversity by Transmission Electron Microscopy," J. Mater. Sci., 45, 3683-96 (2010).
N. Hemono, G. Pierre, F. Muñoz, A. de Pablos-Martín, M. J. Pascual, and A. Durán, "Processing of Transparent Glass-Ceramics by Nanocrystallisation of LaF3," J. Eur. Ceram. Soc., 29 [14] 2915-20 (2009).
R. Müller, M. Eberstein, S. Reinsch, J. Deubener, A. Thiel, and W. A. Schiller, "Effect of Rigid Inclusions on Sintering of LTCC," Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 48, 259-66 (2007).
E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A Three-Color, Solid-State, Three-Dimensional Display," Science, 273, 1185-9 (1996).
A. Zalkin and D. H. Templeton, "Refinement of the Trigonal Crystal Structure of Lanthanum Trifluoride with Neutron Diffraction Data," Acta Cryst. B41, 91-93 (1985).
G. S. Fulcher, "Analysis of Recent Measurements of the Viscosity of Glasses," J Am. Ceram. Soc., 8, 339-55 (1925).
H. Vogel, "Temperature Dependence of Viscosity of Melts," Physik. Z., 22, 645-6 (1921).
J. Rodriguez-Carvajal, Phys. B, 192, 55-69 (1993).
F. Muñoz, A. De Pablos-Martín, N. Hémono, M. J. Pascual, A. Durán, L. Delevoye, and L. Montagne, "NMR Investigation of the Crystallization Mechanism of LaF3 and NaLaF4 Phases in Aluminosilicate Glasses," J. Non-Cryst. Solids, 357, 1463-8 (2011).
L. B. McCusker, R. B. von Dreele, D. E. Cox, D. Louër, and P. Scardi, "Rietveld Refinement Guidelines," J. Appl. Cryst., 32, 36-50 (1999).
S. Bhattacharyya, Ch. Bocker, T. Heil, J. R. Jinschek, Th. Höche, Ch. Rüssel, and H. Kohl, "Experimental Evidence of Self-Limited Growth of Nanocrystals in Glass," Nano Lett., 9, 2493-6 (2009).
I. W. Donald, "Crystallisation Kinetics of a Lithium Zinc Silicate Glass Studied by DTA and DSC," J. Non-Cryst. Solids, 120-6, 345-6 (2004).
M. Reben, I. Waclawska, C. Paluszkiewicz, and M. Środa, "Thermal and Structural Studies of Nanocrystallisation of Oxyfluoride Glasses," J. Therm. Anal. Cal., 88, 285-9 (2007).
S. Bhattacharyya, Th. Höche, N. Hemono, M. J. Pascual, and P.A van Aken, "Nanocrystallization in LaF3-Na2O-Al2O3-SiO2 Glass," J. Cryst. Growth, 311 [18] 4350-5 (2009).
M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, "Fluoride-Based Erbium-Doped Fiber Amplifier with Inherently Flat Gain Spectrum," IEEE Photon. Technol. Lett., 8 [7] 882-4 (1996).
I. Avramov and A. Milchev, "Effect of Disorder on Diffusion and Viscosity in Condensed Systems," J. Non-Cryst. Solids, 104, 253-60 (1988).
O. L. Krivanek, M. K. Kundmann, and K. Kimoto, "Spatial Resolution in EFTEM Elemental Maps," J. Micros., 180, 277-87 (1995).
Y. Wang and J. Ohwaki, "New Transparent Vitroceramics Codoped with Er3+ and Yb3+ for Efficient Frequency Upconversion," Appl. Phys. Lett., 63 [24] 3268-70 (1993).
H. Yinnon and D. R. Uhlmann, "Applications of Thermoanalytical Techniques to the Study of Crystallization Kinetics in Glass-Forming Liquids," J. Non-Cryst. Solids, 54 [3] 253-75 (1983).
W. Jäger and J. Mayer, "Energy-Filtered Transmission Electron-Microscopy of SimGen Superlattices and Si-Ge Heterostrucures," Ultramicroscopy, 59 [1-4] 33-45 (1995).
C. Bocker, F. Muñoz, A. Durán, and C. Rüssel, "Fluorine Sites in Glasses and Transparent Glass-Ceramics of the System Na2O/K2O/Al2O3/SiO2/BaF2," J. Solid State Chem., 184, 405-10 (2011).
J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, "Viscosity of Glass-Forming Liquids," Proc. Nat. Acad. Sci. USA, 106, 19780-4 (2009).
1920; 105
2010; 12
2011; 357
1945; 7
2002; 19
1995; 59
1995; 58
1993; 63
1921; 22
1998; 239
1983; 54
2009; 311
2009; 355
1985; 41
2009; 29
2001; 42
2005; 46
1988; 104
2010; 45
2009; 57
1925; 8
2002; 85
1926; 156
1984; 2
2010; 356
1991; 131–133
2004; 120–6
2009; 9
1999; 32
1975; 122
1993; 192
1996; 273
1997; 209
2011; 184
2001; 34
1995; 184
2007; 88
2005; 17
2006; 106
1996; 8
2001; 74
2003; 22
1995; 180
2007; 48
2009; 106
References_xml – volume: 59
  start-page: 33
  issue: [1–4]
  year: 1995
  end-page: 45
  article-title: Energy‐Filtered Transmission Electron‐Microscopy of Si Ge Superlattices and Si–Ge Heterostrucures
  publication-title: Ultramicroscopy
– volume: 104
  start-page: 253
  year: 1988
  end-page: 60
  article-title: Effect of Disorder on Diffusion and Viscosity in Condensed Systems
  publication-title: J. Non-Cryst. Solids
– volume: 54
  start-page: 253
  issue: [3]
  year: 1983
  end-page: 75
  article-title: Applications of Thermoanalytical Techniques to the Study of Crystallization Kinetics in Glass‐Forming Liquids
  publication-title: J. Non-Cryst. Solids
– volume: 106
  start-page: 19780
  year: 2009
  end-page: 4
  article-title: Viscosity of Glass‐Forming Liquids
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 273
  start-page: 1185
  year: 1996
  end-page: 9
  article-title: A Three‐Color, Solid‐State, Three‐Dimensional Display
  publication-title: Science
– volume: 88
  start-page: 285
  year: 2007
  end-page: 9
  article-title: Thermal and Structural Studies of Nanocrystallisation of Oxyfluoride Glasses
  publication-title: J. Therm. Anal. Cal.
– volume: 74
  start-page: 115
  year: 2001
  end-page: 26
  article-title: Viscosity Measurements of Glass Melts‐ Certification of Reference Material
  publication-title: Glastech. Ber. Glass Sci. Technol.
– volume: 184
  start-page: 405
  year: 2011
  end-page: 10
  article-title: Fluorine Sites in Glasses and Transparent Glass‐Ceramics of the System Na O/K O/Al O /SiO /BaF
  publication-title: J. Solid State Chem.
– volume: 311
  start-page: 4350
  issue: [18]
  year: 2009
  end-page: 5
  article-title: Nanocrystallization in LaF –Na O–Al O –SiO Glass
  publication-title: J. Cryst. Growth
– volume: 45
  start-page: 3683
  year: 2010
  end-page: 96
  article-title: Crystallization in Glass—Elucidating a Realm of Diversity by Transmission Electron Microscopy
  publication-title: J. Mater. Sci.
– volume: 12
  start-page: 161
  issue: [1]
  year: 2010
  end-page: 8
  article-title: Molten Salt Synthesis of LaF :Eu Nanoplates with Tunable Size and their Luminescence Properties
  publication-title: J. Nanopart. Res.
– volume: 22
  start-page: 383
  year: 2003
  end-page: 90
  article-title: Crystallisation Effects on Rare Earth Dopants in Oxyfluoride Glass Ceramics
  publication-title: Opt. Mater.
– volume: 8
  start-page: 339
  year: 1925
  end-page: 55
  article-title: Analysis of Recent Measurements of the Viscosity of Glasses
  publication-title: J Am. Ceram. Soc.
– volume: 7
  start-page: 347
  issue: [36]
  year: 1945
  end-page: 69
  article-title: The Effect of Grain or Particle Size on X‐ray Reflections from Mixed Powders or Alloys
  publication-title: Phil. Mag. Series
– volume: 2
  start-page: 566
  issue: [5]
  year: 1984
  end-page: 86
  article-title: Heavy Metal Fluoride Glasses and Fibers
  publication-title: A Review
– volume: 29
  start-page: 2915
  issue: [14]
  year: 2009
  end-page: 20
  article-title: Processing of Transparent Glass‐Ceramics by Nanocrystallisation of LaF
  publication-title: J. Eur. Ceram. Soc.
– volume: 122
  start-page: 101
  year: 1975
  end-page: 7
  article-title: Rare Earth Doped Vitroceramics
  publication-title: New, Efficient, Blue and Green Emitting Materials for Infrared Up-Conversion
– volume: 356
  start-page: 3071
  issue: [52–54]
  year: 2010
  end-page: 9
  article-title: Design of Oxy‐Fluoride Glass‐Ceramics Containing NaLaF Nano‐Crystals
  publication-title: J. Non-Cryst. Solids
– volume: 192
  start-page: 55
  year: 1993
  end-page: 69
  publication-title: Phys. B
– volume: 41
  start-page: 91
  year: 1985
  end-page: 93
  article-title: Refinement of the Trigonal Crystal Structure of Lanthanum Trifluoride with Neutron Diffraction Data
  publication-title: Acta Cryst.
– volume: 19
  start-page: 343
  year: 2002
  end-page: 9
  article-title: Fluorescence Properties of Er Ions in Glass Ceramics Containing LaF Nanocrystals
  publication-title: Opt. Mater.
– volume: 105
  start-page: 646
  year: 1920
  end-page: 8
  article-title: Crystal Structure
  publication-title: Nature
– volume: 57
  start-page: 5956
  year: 2009
  end-page: 63
  article-title: Size Distribution of BaF Nanocrystallites in Transparent Glass Ceramics
  publication-title: Acta Mater.
– volume: 209
  start-page: 96
  year: 1997
  end-page: 111
  article-title: Influence of Nucleation and Crystallization on the Rheological Properties of Lithium Disilicate Meltsm
  publication-title: J. Non-Cryst. Solids
– volume: 58
  start-page: 157
  issue: [2]
  year: 1995
  end-page: 74
  article-title: Quantitative Elemental Mapping of Materials by Energy‐Filtered Imaging
  publication-title: Ultramicroscopy
– volume: 48
  start-page: 259
  year: 2007
  end-page: 66
  article-title: Effect of Rigid Inclusions on Sintering of LTCC
  publication-title: Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B
– volume: 184
  start-page: 225
  year: 1995
  end-page: 8
  article-title: A Review of Fluoride Fibres for Optical Amplification
  publication-title: J. Non-Cryst. Solids
– volume: 46
  start-page: 512
  issue: [5]
  year: 2005
  end-page: 20
  article-title: A New Method for Determining Fixed Viscosity Points of Glasses
  publication-title: Phys. Chem. Glasses
– volume: 22
  start-page: 645
  year: 1921
  end-page: 6
  article-title: Temperature Dependence of Viscosity of Melts
  publication-title: Physik. Z.
– volume: 355
  start-page: 126
  year: 2009
  end-page: 31
  article-title: Viscosity, Relaxation and Elastic Properties of Photo‐Thermo‐Refractive Glasses
  publication-title: J. Non-Cryst. Solids
– volume: 131–133
  start-page: 13
  year: 1991
  end-page: 31
  article-title: Relaxation in Liquids, Polymers and Plastic Crystals—Strong/Fragile Patterns and Problems
  publication-title: J. Non-Cryst. Solids
– volume: 85
  start-page: 1077
  issue: [5]
  year: 2002
  end-page: 82
  article-title: NMR Studies of Fluorine in Aluminosilicate‐Lanthanum Fluoride Glasses and Glass‐Ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 34
  start-page: 114
  year: 2001
  end-page: 8
  article-title: Determination of the Crystallized Fractions of a Largely Amorphous Multiphase Material by the Rietveld Method
  publication-title: J. Appl. Cryst.
– volume: 120–6
  start-page: 345
  year: 2004
  end-page: 6
  article-title: Crystallisation Kinetics of a Lithium Zinc Silicate Glass Studied by DTA and DSC
  publication-title: J. Non-Cryst. Solids
– volume: 32
  start-page: 36
  year: 1999
  end-page: 50
  article-title: Rietveld Refinement Guidelines
  publication-title: J. Appl. Cryst.
– volume: 63
  start-page: 3268
  issue: [24]
  year: 1993
  end-page: 70
  article-title: New Transparent Vitroceramics Codoped with Er and Yb for Efficient Frequency Upconversion
  publication-title: Appl. Phys. Lett.
– volume: 156
  start-page: 245
  year: 1926
  end-page: 7
  article-title: Temperature Dependence of Viscosity of Melted Supercooled Liquids
  publication-title: Anorg. Chem.
– volume: 8
  start-page: 882
  issue: [7]
  year: 1996
  end-page: 4
  article-title: Fluoride‐Based Erbium‐Doped Fiber Amplifier with Inherently Flat Gain Spectrum
  publication-title: IEEE Photon. Technol. Lett.
– volume: 239
  start-page: 149
  year: 1998
  end-page: 55
  article-title: The Luminescence and Structure of Novel Transparent Oxyfluoride Glass‐Ceramics
  publication-title: J. Non-Cryst. Solids
– volume: 106
  start-page: 981
  year: 2006
  end-page: 5
  article-title: Static‐Charging Mitigation and Contamination Avoidance by Selective Carbon Coating of TEM Samples
  publication-title: Ultramicroscopy
– volume: 180
  start-page: 277
  year: 1995
  end-page: 87
  article-title: Spatial Resolution in EFTEM Elemental Maps
  publication-title: J. Micros.
– volume: 17
  start-page: 5843
  year: 2005
  end-page: 7
  article-title: Nanocrystallization of CaF from Na O/K O/CaO/CaF /Al O /SiO Glasses
  publication-title: Chem. Mater.
– volume: 357
  start-page: 1463
  year: 2011
  end-page: 8
  article-title: NMR Investigation of the Crystallization Mechanism of LaF and NaLaF Phases in Aluminosilicate Glasses
  publication-title: J. Non-Cryst. Solids
– volume: 9
  start-page: 2493
  year: 2009
  end-page: 6
  article-title: Experimental Evidence of Self‐Limited Growth of Nanocrystals in Glass
  publication-title: Nano Lett.
– volume: 355
  start-page: 393
  year: 2009
  end-page: 6
  article-title: Various Transmission Electron Microscopic Techniques to Characterize Phase Separation in Inorganic Glasses
  publication-title: J. Non-Cryst. Solids
– volume: 42
  start-page: 61
  issue: [1]
  year: 2001
  end-page: 6
  article-title: Determination of Viscosity‐Temperature Curve for Glasses, on the Basis of Fixed Viscosity Points Determined by Heating Microscopy
  publication-title: Phys. Chem. Glasses
SSID ssj0001984
Score 2.3486836
Snippet Nanocrystallization of LaF3 in a glass of composition 55SiO2–20Al2O3–15Na2O–10LaF3 (mol%) has been achieved by heat treatment above the glass transition...
Nanocrystallisation of LaF3 in 55SiO2-20Al2O3-15Na2O-10LaF3 (mol%) glass was achieved by heat treatment above the glass transition temperature. A maximum...
Nanocrystallization of LaF3 in a glass of composition 55SiO2-20Al2O3-15Na2O-10LaF3 (mol%) has been achieved by heat treatment above the glass transition...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2420
SubjectTerms Crystallization
Crystals
Enrichment
Glass
Heat treatment
Lanthanum fluorides
Nanocrystals
Networks
Title Crystallization Kinetics of LaF3 Nanocrystals in an Oxyfluoride Glass
URI https://api.istex.fr/ark:/67375/WNG-KT3JJPZK-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2011.04547.x
https://search.proquest.com/docview/1671394231
https://search.proquest.com/docview/1762129713
https://search.proquest.com/docview/926313449
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnuDAG5Hy0CIhbo6yD3u9xypKWiVQUNVCxWW1L0tRIhvFsZTy65mxnZIg4IC42dLYWvvbmfl2PfOZkLfece1Y1IkLaUhkUCxxLNOJ95orzyLLFTYnfzjPzq7k7Dq97uufsBem04e43XBDz2jjNTq4dfWhk0O2Tzjwm16JE7WphsgnUVcP-dHFTyUpWFvLHRNGibjDop7f3gjoKr7p7QH33GewbQqaPiDL3eC7ypPlsNm4of_-i67j_3m6h-R-z1TpSTe1HpE7sXxM7u3pF8LZ50XddDb1EzIZr2-Aa65WfWsnnYMlqkDTqqDv7VRQCOWV74xquiipLenH7U2xaqr1IkR6ikz-KbmaTi7HZ0n_l4bEQ5BVSerlyHkhc80jL_IQAlcu8zwEmyqLcjAe5kEKBlapLAgIAKNMO53ngjnIFOIZOSqrMj7H_nGdFZbz4GyUAmKLFzp6aYFE5EUUYkDetYiYb50Sh7HrJRamqdR8OT8180sxm336OjcXA_JmB5kBd8FvILaMVVMblsGqXAOHZH-xgQQBNAgMB4T-wUbzTDAhpR4Q1eJ4O6a9VRUgaBBBgwiaFkGzNbOT8QQPj__5yhfk7m5re8RekqPNuomvgBtt3Ot21v8ApwoAiQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcgAOvBHlaSTELVVtJ3F8XJV2S9staNWFFRfLr0jVVglqG6nLr2cmSZcWAQfELZEmkePxN_PZ8Xwm5K2zXFkWVGR94qPYSxZZlqrIOcWlY4FlEouTT2fp6DweXyQX7XFAWAvT6ENcL7ghMup4jQDHBelDlEO6jzgQnFaKE8WpukAobwL6E0Tp-7OfWlIwu453XBhF4g639fz2TUBYsa-3B-xzn8PWSWh4jyx3zW_2nlx2q43tuu-_KDv-p--7T-62ZJUeN6PrAbkRiofkzp6EIdx9Xqyrxmb9iAz6qyugm8tlW91JJ2CJQtC0zOnUDAWFaF66xmhNFwU1Bf24vcqXVbla-EBPkMw_JufDwbw_itqDGiIHPS2jxMU960ScKR54nnnvubSp496bRBpUhHEwFBIwMFKmXkAM6KXKqiwTzEKyEE_IUVEW4SmWkKs0N5x7a0IsILw4oYKLDfCILA9CdMi72iX6WyPGoc3qEvemyUR_mZ3oyVyMx5--TvRZh7zZ-UwDYvA3iClCWa01S2FiroBGsr_YQI4AJgSGHUL_YKN4KpiIY9UhsnbkdZv2JlbgQY0e1OhBXXtQb_X4uD_Ay2f__ORrcms0P53q6YfZ5Dm5vVvp7rEX5GizqsJLoEob-6qGwA_PpQSp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KAqU9NH1S97mF0puM96Fd7TE4dlI7dUNI2tDLsi-BsZGCbYHTX99ZSU7t0vZQepPgk1hpdma-Xc18Qui9s1RZElRifeoT7iVJLBEqcU5R6UggmYzNyZ8m4uSSj67Sq7b-KfbCNPoQtxtu0TPqeB0d_Nrnu04O2T6hwG9aJc6oTdUFPrnPBaNxIXZ0_lNKChbXfEOFo0bcblXPb-8EfDW-6vUO-dymsHUOGh6g2Wb0TenJrFutbNd9_0XY8f883kP0oKWq-LCZW4_QnVA8Rve3BAzh7Mt0WTWY5RM06C9ugGzO521vJx4DMspA4zLHp2bIMMTy0jWgJZ4W2BT48_omn1flYuoDPo5U_im6HA4u-idJ-5uGxEGUlUnqeM86xjNFA80z7z2VVjjqvUmliXowDiZCCgAjpfAMIkBPKKuyjBELqYI9Q3tFWYTnsYFcidxQ6q0JnEFwcUwFxw2wiCwPjHXQh9oi-rqR4tBmMYuVaTLVXyfHenzBRqOzb2N93kHvNibT4C_xI4gpQlktNRGwLFdAIslfMJAhgAcBsIPwHzCKCkYY56qDZG3H2zFtLavAgjpaUEcL6tqCeq1Hh_1BPHzxz1e-RXfPjob69ONk_BLd22xz98grtLdaVOE18KSVfVM7wA-tvANY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+Kinetics+of+LaF3+Nanocrystals+in+an+Oxyfluoride+Glass&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=de+Pablos-Martin%2C+Araceli&rft.au=Hemono%2C+Nicolas&rft.au=Mather%2C+Glenn+C&rft.au=Bhattacharyya%2C+Sommnath&rft.date=2011-08-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=94&rft.issue=8&rft.spage=2420&rft.epage=2428&rft_id=info:doi/10.1111%2Fj.1551-2916.2011.04547.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon