Bone healing and graft resorption of autograft, anorganic bovine bone and β-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs

Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methods: Three standardized bone defects were prepared...

Full description

Saved in:
Bibliographic Details
Published inClinical oral implants research Vol. 17; no. 3; pp. 237 - 243
Main Authors Jensen, Simon Storgård, Broggini, Nina, Hjørting-Hansen, Erik, Schenk, Robert, Buser, Daniel
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methods: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic β‐tricalcium phosphate (β‐TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. Results: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P∼0.0005) and β‐TCP (P∼0.002). After 4 weeks, there was no significant difference between β‐TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P∼0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P∼0.003) and β‐TCP (P∼0.00004) than with ABB. No difference could be demonstrated between β‐TCP and autograft. β‐TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. Conclusion: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
AbstractList The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P approximately 0.0005) and beta-TCP (P approximately 0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P approximately 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P approximately 0.003) and beta-TCP (P approximately 0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
ObjectiveThe purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methodsThree standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. ResultsAt 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P~0.0005) and beta-TCP (P~0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P~0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P~0.003) and beta-TCP (P~0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. ConclusionBoth bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methods: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic β‐tricalcium phosphate (β‐TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. Results: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P∼0.0005) and β‐TCP (P∼0.002). After 4 weeks, there was no significant difference between β‐TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P∼0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P∼0.003) and β‐TCP (P∼0.00004) than with ABB. No difference could be demonstrated between β‐TCP and autograft. β‐TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. Conclusion: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methods: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta -tricalcium phosphate ( beta -TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. Results: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P similar to 0.0005) and beta -TCP (P similar to 0.002). After 4 weeks, there was no significant difference between beta -TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P similar to 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P similar to 0.003) and beta -TCP (P similar to 0.00004) than with ABB. No difference could be demonstrated between beta -TCP and autograft. beta -TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. Conclusion: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
OBJECTIVEThe purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control.MATERIALS AND METHODSThree standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis.RESULTSAt 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P approximately 0.0005) and beta-TCP (P approximately 0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P approximately 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P approximately 0.003) and beta-TCP (P approximately 0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable.CONCLUSIONBoth bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Abstract Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. Materials and methods: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic β‐tricalcium phosphate (β‐TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. Results: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB ( P ∼0.0005) and β‐TCP ( P ∼0.002). After 4 weeks, there was no significant difference between β‐TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft ( P ∼0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft ( P ∼0.003) and β‐TCP ( P ∼0.00004) than with ABB. No difference could be demonstrated between β‐TCP and autograft. β‐TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. Conclusion: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Author Hjørting-Hansen, Erik
Broggini, Nina
Schenk, Robert
Jensen, Simon Storgård
Buser, Daniel
Author_xml – sequence: 1
  givenname: Simon Storgård
  surname: Jensen
  fullname: Jensen, Simon Storgård
  organization: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Bern, Switzerland
– sequence: 2
  givenname: Nina
  surname: Broggini
  fullname: Broggini, Nina
  organization: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Bern, Switzerland
– sequence: 3
  givenname: Erik
  surname: Hjørting-Hansen
  fullname: Hjørting-Hansen, Erik
  organization: Departments of Oral and Maxillofacial Surgery, University Hospital (Rigshospitalet), and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
– sequence: 4
  givenname: Robert
  surname: Schenk
  fullname: Schenk, Robert
  organization: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Bern, Switzerland
– sequence: 5
  givenname: Daniel
  surname: Buser
  fullname: Buser, Daniel
  organization: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16672017$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAYRi1URKeFV0BesSLhdxLbkwWLMoKCNAIJAWVnOb5MPCRxiBM680Zd8yA8E87MqCyLN76d81nyd4HOOt8ZhDCBlMTxapsSBpAABZJmADQFklGe7h6hxf3FGVpACTThhJFzdBHCFgBYuSyfoHPCGM-A8AW6exOTcW1k47oNlp3Gm0HaEQ8m-KEfne-wt1hOoz-cv4yIHzaycwpX_peLbjUHzOKf38k4OCUb5aYW97UPfS1Hk-IrXLsw-sZvojWTh20b82vfmtnBYZz0HrsOj7XBbWRc1ZgwP926zvVuE56ix1Y2wTw7zZfo67u3X1bvk_Wn6w-rq3WiCsZ5QirGqTY52CJjuZFGL63misoCiNJFacvKVqWWlc01I4oSbazKKAGirQZV5ZfoxTG3H_zPyYRRtC4o0zSyM34KgvEyL-gyfxDMc2AcaPYgSMp8CQUjEVweQTX4EAZjRT-4Vg57QUDMvYutmOsVc71i7l0cehe7qD4_vTFVrdH_xFPREXh9BG5dY_b_HSxW68_zKvrJ0Y_Vmd29L4cf8UdyTsXNx2tx841-L2BVilX-F8mz0dI
CitedBy_id crossref_primary_10_5005_jp_journals_10024_3634
crossref_primary_10_1016_j_jcms_2011_07_023
crossref_primary_10_1186_s40902_018_0142_8
crossref_primary_10_1016_j_archoralbio_2012_06_013
crossref_primary_10_1002_jbm_b_33319
crossref_primary_10_1186_s12967_017_1369_3
crossref_primary_10_1016_j_aanat_2014_04_003
crossref_primary_10_1111_j_1600_0501_2011_02315_x
crossref_primary_10_1177_0885328218804926
crossref_primary_10_1563_aaid_joi_D_22_Editorial_4803
crossref_primary_10_1902_jop_2010_100408
crossref_primary_10_1089_ten_tea_2010_0516
crossref_primary_10_1155_2016_5406736
crossref_primary_10_1111_clr_13452
crossref_primary_10_1111_clr_12002
crossref_primary_10_3390_ma16114117
crossref_primary_10_1016_j_ijom_2011_11_017
crossref_primary_10_7126_cumudj_298891
crossref_primary_10_4012_dmj_2010_060
crossref_primary_10_3390_ma15093106
crossref_primary_10_1902_jop_2008_070298
crossref_primary_10_1186_s40902_020_00280_5
crossref_primary_10_3390_ma10010017
crossref_primary_10_1155_2013_307136
crossref_primary_10_1016_j_ijom_2013_11_014
crossref_primary_10_1002_jbm_b_33660
crossref_primary_10_1111_clr_12361
crossref_primary_10_1111_clr_12474
crossref_primary_10_1111_clr_13687
crossref_primary_10_1111_clr_12357
crossref_primary_10_1155_2020_3945076
crossref_primary_10_1902_jop_2013_120635
crossref_primary_10_1902_jop_2009_090075
crossref_primary_10_1097_SCS_0000000000006326
crossref_primary_10_1111_cid_12145
crossref_primary_10_1002_jbm_b_31271
crossref_primary_10_1111_j_1708_8208_2010_00224_x
crossref_primary_10_1002_mawe_200900505
crossref_primary_10_1002_jbm_b_35299
crossref_primary_10_1039_C8BM00910D
crossref_primary_10_1016_j_injury_2008_08_013
crossref_primary_10_1097_SCS_0b013e3182a244ae
crossref_primary_10_1111_clr_12349
crossref_primary_10_3390_dj6030027
crossref_primary_10_1111_clr_12900
crossref_primary_10_3390_ma14051096
crossref_primary_10_4012_dmj_2021_173
crossref_primary_10_1111_cid_12374
crossref_primary_10_1097_BRS_0b013e3182a3cbb3
crossref_primary_10_3390_app11041906
crossref_primary_10_3390_ma13214902
crossref_primary_10_5125_jkaoms_2016_42_1_20
crossref_primary_10_1016_j_joms_2013_10_026
crossref_primary_10_1111_clr_12574
crossref_primary_10_1016_j_jdsr_2018_09_003
crossref_primary_10_1563_AAID_JOI_D_09_00091_1
crossref_primary_10_3390_ma12233946
crossref_primary_10_1111_j_1600_0501_2010_01951_x
crossref_primary_10_1111_j_1600_0501_2011_02193_x
crossref_primary_10_1016_j_tripleo_2007_12_001
crossref_primary_10_1088_1748_6041_3_4_044113
crossref_primary_10_1111_jre_12818
crossref_primary_10_4047_jkap_2016_54_3_298
crossref_primary_10_1016_j_biomaterials_2007_11_034
crossref_primary_10_1111_j_1600_0501_2009_01705_x
crossref_primary_10_1038_s41405_020_0042_8
crossref_primary_10_3390_ijms23052539
crossref_primary_10_1007_s00894_017_3316_x
crossref_primary_10_1080_08941939_2018_1441343
crossref_primary_10_1111_jcpe_12841
crossref_primary_10_1177_0363546515608484
crossref_primary_10_1080_08941939_2019_1616859
crossref_primary_10_1016_j_jphotobiol_2016_07_023
crossref_primary_10_1111_j_1600_0501_2007_01417_x
crossref_primary_10_1007_s00264_018_4079_4
crossref_primary_10_1002_JPER_20_0040
crossref_primary_10_3390_jfb8030031
crossref_primary_10_1016_j_tripleo_2011_04_013
crossref_primary_10_4028_www_scientific_net_JBBBE_25_98
crossref_primary_10_1902_jop_2009_080626
crossref_primary_10_1186_s40729_017_0086_2
crossref_primary_10_1111_clr_12550
crossref_primary_10_1111_clr_12673
crossref_primary_10_3724_SP_J_1008_2010_00335
crossref_primary_10_1111_clr_12432
crossref_primary_10_1111_clr_12435
crossref_primary_10_1016_j_aanat_2022_151960
crossref_primary_10_1111_clr_13649
crossref_primary_10_1016_j_biomaterials_2008_05_027
crossref_primary_10_1111_jre_13203
crossref_primary_10_1007_s00784_019_03092_8
crossref_primary_10_25083_rbl_24_1_66_74
crossref_primary_10_1007_s11837_022_05414_w
crossref_primary_10_3390_jfb13010028
crossref_primary_10_1097_ID_0b013e3182777239
crossref_primary_10_4236_ss_2013_41020
crossref_primary_10_1111_cid_12101
crossref_primary_10_1016_j_jbiomech_2015_01_040
crossref_primary_10_3390_ma13173854
crossref_primary_10_1002_mba2_38
crossref_primary_10_1111_clr_12420
crossref_primary_10_1186_s40902_015_0048_7
crossref_primary_10_1111_clr_12789
crossref_primary_10_1111_prd_12039
crossref_primary_10_3390_nano9101501
crossref_primary_10_4028_www_scientific_net_KEM_361_363_1241
crossref_primary_10_3390_jfb15030066
crossref_primary_10_3390_jfb9030048
crossref_primary_10_1016_j_biomaterials_2014_12_014
crossref_primary_10_1155_2020_1487681
crossref_primary_10_1016_j_prosdent_2023_02_012
crossref_primary_10_1002_jbm_a_34501
crossref_primary_10_1002_jbm_b_34171
crossref_primary_10_7759_cureus_62351
crossref_primary_10_1002_cre2_390
crossref_primary_10_1111_j_1600_0501_2008_01573_x
crossref_primary_10_1097_MS9_0000000000000475
crossref_primary_10_1002_jbm_b_35226
crossref_primary_10_1016_j_jcms_2009_07_010
crossref_primary_10_1002_adhm_201801565
crossref_primary_10_1016_j_acthis_2017_07_003
crossref_primary_10_1111_jre_12060
crossref_primary_10_1563_AAID_JOI_D_11_00091
crossref_primary_10_3390_ma17020313
crossref_primary_10_1016_j_injury_2009_08_014
crossref_primary_10_1111_clr_12768
crossref_primary_10_5125_jkaoms_2010_36_3_161
crossref_primary_10_2298_VSP1104366K
crossref_primary_10_1016_j_odw_2012_01_003
crossref_primary_10_1111_clr_12649
crossref_primary_10_1097_ID_0000000000000289
crossref_primary_10_1016_j_jcms_2014_11_006
crossref_primary_10_1007_s12663_021_01653_7
crossref_primary_10_1902_jop_2010_090342
crossref_primary_10_1111_cid_12512
crossref_primary_10_1111_prd_12170
crossref_primary_10_1038_sj_bdj_2017_355
crossref_primary_10_3390_sym11111356
crossref_primary_10_1111_j_1600_0501_2010_01937_x
crossref_primary_10_1016_j_biomaterials_2008_04_021
crossref_primary_10_1111_clr_12996
crossref_primary_10_1563_aaid_joi_D_20_00202
crossref_primary_10_1002_adfm_202401953
crossref_primary_10_1902_jop_2008_070105
crossref_primary_10_1016_j_jmbbm_2015_05_001
crossref_primary_10_1089_ten_tea_2011_0501
crossref_primary_10_1002_jbm_a_32633
crossref_primary_10_1016_j_biomaterials_2011_01_076
crossref_primary_10_1111_prd_12185
crossref_primary_10_1590_1807_2577_04119
crossref_primary_10_1002_jbm_b_32768
crossref_primary_10_1186_s40824_015_0039_x
crossref_primary_10_1111_clr_14253
crossref_primary_10_17826_cumj_376439
crossref_primary_10_1002_JPER_17_0655
crossref_primary_10_1097_01_id_0000433590_33926_af
crossref_primary_10_3390_jfb10010015
crossref_primary_10_1590_S0102_86502014000300002
crossref_primary_10_3390_biom10060887
crossref_primary_10_34172_japid_2022_020
crossref_primary_10_1111_prd_12517
crossref_primary_10_3390_ma14112858
crossref_primary_10_1902_jop_2011_100675
crossref_primary_10_1088_1748_605X_12_1_015009
crossref_primary_10_1155_2015_156850
crossref_primary_10_1902_cap_2011_100003
crossref_primary_10_5051_jpis_2011_41_3_123
crossref_primary_10_1016_j_joscr_2024_06_003
crossref_primary_10_32322_jhsm_1217729
crossref_primary_10_1902_jop_2014_140182
crossref_primary_10_1016_j_jeurceramsoc_2023_02_036
crossref_primary_10_1016_j_actbio_2010_01_037
crossref_primary_10_1088_1748_605X_acd672
crossref_primary_10_3390_dj8010007
crossref_primary_10_17221_3156_VETMED
crossref_primary_10_1002_JPER_18_0574
crossref_primary_10_1186_s13287_019_1281_2
crossref_primary_10_1007_s00784_013_1089_x
crossref_primary_10_1016_j_biomaterials_2006_11_029
crossref_primary_10_1088_1748_6041_4_1_015012
crossref_primary_10_1002_osi2_1170
crossref_primary_10_1007_s11838_020_00107_z
crossref_primary_10_1111_prd_12539
crossref_primary_10_3390_pharmaceutics14122643
crossref_primary_10_1016_j_dental_2015_03_005
crossref_primary_10_1016_j_jcms_2015_02_012
crossref_primary_10_1016_j_oooo_2011_09_027
crossref_primary_10_1111_cid_13120
crossref_primary_10_3390_ijms24065539
crossref_primary_10_1007_s10006_017_0608_3
crossref_primary_10_1016_j_biomaterials_2023_122410
crossref_primary_10_1007_s44174_023_00094_9
crossref_primary_10_1016_j_matchemphys_2014_11_027
crossref_primary_10_4103_njms_NJMS_59_20
crossref_primary_10_1111_clr_14210
crossref_primary_10_1902_jop_2015_150246
crossref_primary_10_1177_0022034513504949
crossref_primary_10_1902_jop_2009_090034
crossref_primary_10_1021_cg900070v
crossref_primary_10_1007_BF03401150
crossref_primary_10_1111_clr_13805
crossref_primary_10_1111_j_1600_0501_2009_01821_x
crossref_primary_10_1902_jop_2008_080071
crossref_primary_10_1186_s12903_023_03345_9
crossref_primary_10_1563_aaid_joi_D_21_00012
crossref_primary_10_1007_s00402_012_1578_4
crossref_primary_10_1055_s_0035_1551544
crossref_primary_10_5051_jpis_2016_46_1_57
crossref_primary_10_4055_cios20317
crossref_primary_10_1597_08_095_1
crossref_primary_10_1111_clr_12143
crossref_primary_10_1111_clr_12265
crossref_primary_10_1111_odi_12704
crossref_primary_10_1097_SCS_0b013e318286a0a3
crossref_primary_10_1556_ABiol_59_2008_3_6
crossref_primary_10_1111_clr_13117
crossref_primary_10_1016_j_ijom_2014_12_004
crossref_primary_10_1902_jop_2009_080360
crossref_primary_10_3390_ma13030786
crossref_primary_10_1016_j_msec_2018_11_070
crossref_primary_10_1093_rb_rbae041
crossref_primary_10_1007_s00784_011_0531_1
crossref_primary_10_1111_j_1600_0501_2011_02366_x
crossref_primary_10_1155_2016_6409546
crossref_primary_10_1016_j_tripleo_2010_04_011
crossref_primary_10_1111_clr_12380
Cites_doi 10.1034/j.1600-0501.2003.140316.x
10.1016/S0901-5027(88)80078-X
10.1016/S0020-1383(00)80022-4
10.1007/s10006-001-0343-6
10.1097/00003086-198807000-00017
10.1034/j.1600-0501.1998.090207.x
10.1007/s00198-004-1787-y
10.1034/j.1600-0501.1998.090301.x
10.1034/j.1600-0501.1998.090302.x
10.1016/S0030-5898(20)30384-9
10.1097/00003086-198304000-00005
10.1038/sj.dmfr.4600601
10.1111/j.1600-0501.2004.01055.x
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
8FD
FR3
P64
7TB
F28
7X8
DOI 10.1111/j.1600-0501.2005.01257.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database

Engineering Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1600-0501
EndPage 243
ExternalDocumentID 10_1111_j_1600_0501_2005_01257_x
16672017
CLR1257
ark_67375_WNG_WV5X40C9_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29B
31~
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABLJU
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CWXXS
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
V9Y
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WQJ
WRC
WXSBR
XG1
YFH
YUY
ZA5
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
8FD
FR3
P64
7TB
F28
7X8
ID FETCH-LOGICAL-c4677-1b675de30f4263eaed8fd7c5a401cd49f9bfb9dabf3d61c51defc25101dfd0cb3
IEDL.DBID DR2
ISSN 0905-7161
IngestDate Fri Aug 16 01:18:48 EDT 2024
Fri Aug 16 05:46:47 EDT 2024
Sat Aug 17 02:24:04 EDT 2024
Fri Aug 23 02:30:13 EDT 2024
Sat Sep 28 07:45:23 EDT 2024
Sat Aug 24 00:54:56 EDT 2024
Wed Jan 17 05:00:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4677-1b675de30f4263eaed8fd7c5a401cd49f9bfb9dabf3d61c51defc25101dfd0cb3
Notes istex:2681A45A897EE7BA91C09ED2BB2FF7BB5999452E
ark:/67375/WNG-WV5X40C9-C
ArticleID:CLR1257
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 16672017
PQID 19380461
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_67934583
proquest_miscellaneous_33067052
proquest_miscellaneous_19380461
crossref_primary_10_1111_j_1600_0501_2005_01257_x
pubmed_primary_16672017
wiley_primary_10_1111_j_1600_0501_2005_01257_x_CLR1257
istex_primary_ark_67375_WNG_WV5X40C9_C
PublicationCentury 2000
PublicationDate 2006-06
June 2006
2006-Jun
2006-06-00
20060601
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
PublicationTitle Clinical oral implants research
PublicationTitleAlternate Clin Oral Implants Res
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Jensen, S.S., Aaboe, M., Pinholt, E.M., Hjørting-Hansen, E., Melsen, F. & Ruyter, I.E. (1996) Tissue reaction and material characteristics of four bone substitutes. International Journal of Oral & Maxillofacial Implants 11: 55-66.
Johansson, B., Grepe, A., Wannfors, K. & Hirsch, J.-M. (2001) A clinical study of changes in the volume of bone grafts in the atrophic maxilla. Dentomaxillofacial Radiology 30: 157-161.
Reddi, A.H., Wientroub, S. & Muthukumaran, N. (1987) Biologic principles of bone induction. Orthopedic Clinics of North America 18: 207-212.
Zerbo, I.R., Zijderveld, S.A., De Boer, A., Bronckers, A.L.J.J., De Lange, G., Ten Bruggenkate, C.M. & Burger, E.H. (2004) Histomorphometry of human sinus floor augmentation using a porous β-tricalcium phosphate: a prospective study. Clinical Oral Implants Research 15: 724-732.
Bohner, M. (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31 (Suppl. 4): 37-47.
Haas, R., Mailath, G., Dörtbudak, O. & Watzek, G. (1998) Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clinical Oral Implants Research 9: 117-122.
Trisi, P., Rao, W., Rebaudi, A. & Fiore, P. (2003) Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects. International Journal of Periodontics & Restorative Dentistry 23: 69-77.
Pogoda, P., Priemel, M., Rueger, J.M. & Amling, M. (2005) Bone remodeling: new aspects of a key process that controls skeletal maintenance and repair. Osteoporosis International 16: 518-524.
Von Arx, T., Cochran, D.L., Hermann, J.S., Schenk, R.K., Higginbottom, F.L. & Buser, D. (2001) Lateral ridge augmentation and implant placement: an experimental study evaluating implant osseointegration in different augmentation materials in the canine mandible. International Journal of Oral & Maxillofacial Implants 16: 343-354.
Buser, D., Hoffmann, B., Bernard, J.P., Lussi, A., Mettler, D. & Schenk, R.K. (1998) Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clinical Oral Implants Research 9: 137-150.
Kasperk, C., Ewers, R., Simons, B. & Kasperk, R. (1988) Algae-derived (phykogene) hydroxylapatite: a comparative histological study. International Journal of Oral and Maxillofacial Surgery 17: 319-324.
Jensen, S.S., Broggini, N., Weibrich, G., Hjørting-Hansen, E., Schenk, R. & Buser, D. (2005) Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate. A histologic and histomorphometric study in the mandibles of minipigs. International Journal of Oral & Maxillofacial Implants 20: 703-712.
Eggli, P.S., Müller, W. & Schenk, R.K. (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution. Clinical Orthopaedics and Related Research 232: 127-138.
Sartori, S., Silvestri, M., Forni, F., Cornaglia, A.L., Tesei, P. & Cattaneo, V. (2003) Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clinical Oral Implants Research 14: 369-372.
Artzi, Z., Weinreb, M., Givol, N., Rohrer, M.D., Nemcovsky, C.E., Prasad, H.S. & Tal, H. (2004) Biomaterial resorption rate and healing site morphology of inorganic bovine bone and β-tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis. International Journal of Oral & Maxillofacial Implants 19: 357-368.
Hämmerle, C.H.F., Chiantella, G.C., Karring, T. & Lang, N.P. (1998) The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clinical Oral Implants Research 9: 151-162.
Schlegel, K.A., Fichtner, G., Schultze-Mosgau, S. & Wiltfang, J. (2003) Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. International Journal of Oral & Maxillofacial Implants 18: 53-58.
Hjørting-Hansen, E. (2002) Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery. A historical review. Mund-, Kiefer- und Gesichtschirurgie 6: 6-14.
Piattelli, M., Favero, G.A., Scarano, A., Orsini, G. & Piattelli, A. (1999) Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. International Journal of Oral & Maxillofacial Implants 14: 835-840.
Burchardt, H. (1983) The biology of bone graft repair. Clinical Orthopaedics and Related Research 174: 28-42.
Taylor, J.C., Cuff, S.E., Leger, J.P.L., Morra, A. & Anderson, G.I. (2002) In vitro osteoblast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. International Journal of Oral & Maxillofacial Implants 17: 321-330.
2002; 17
2004; 19
1983; 174
2002; 6
2004; 15
2000; 31
1988; 17
1999; 14
2003; 14
2005; 20
1988; 232
1984
2003; 18
2001; 16
1979; Vol. I
2005; 16
2001; 30
1987; 18
1998; 9
1996; 11
2003; 23
e_1_2_7_5_1
Schenk R.K. (e_1_2_7_18_1) 1984
e_1_2_7_4_1
e_1_2_7_3_1
Jensen S.S. (e_1_2_7_11_1) 2005; 20
e_1_2_7_9_1
e_1_2_7_8_1
Jensen S.S. (e_1_2_7_10_1) 1996; 11
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_12_1
Reddi A.H. (e_1_2_7_16_1) 1987; 18
Trisi P. (e_1_2_7_21_1) 2003; 23
Eggli P.S. (e_1_2_7_6_1) 1988; 232
Schlegel K.A. (e_1_2_7_19_1) 2003; 18
Von Arx T. (e_1_2_7_22_1) 2001; 16
Artzi Z. (e_1_2_7_2_1) 2004; 19
Piattelli M. (e_1_2_7_14_1) 1999; 14
Taylor J.C. (e_1_2_7_20_1) 2002; 17
Weibel E.R. (e_1_2_7_23_1) 1979
References_xml – volume: 174
  start-page: 28
  year: 1983
  end-page: 42
  article-title: The biology of bone graft repair
  publication-title: Clinical Orthopaedics and Related Research
– start-page: 1
  year: 1984
  end-page: 56
– volume: 23
  start-page: 69
  year: 2003
  end-page: 77
  article-title: Histologic effect of pure‐phase beta‐tricalcium phosphate on bone regeneration in human artificial jawbone defects
  publication-title: International Journal of Periodontics & Restorative Dentistry
– volume: Vol. I
  start-page: 1
  year: 1979
  end-page: 415
– volume: 19
  start-page: 357
  year: 2004
  end-page: 368
  article-title: Biomaterial resorption rate and healing site morphology of inorganic bovine bone and β‐tricalcium phosphate in the canine
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 232
  start-page: 127
  year: 1988
  end-page: 138
  article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution
  publication-title: Clinical Orthopaedics and Related Research
– volume: 20
  start-page: 703
  year: 2005
  end-page: 712
  article-title: Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate. A histologic and histomorphometric study in the mandibles of minipigs
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 16
  start-page: 518
  year: 2005
  end-page: 524
  article-title: Bone remodeling: new aspects of a key process that controls skeletal maintenance and repair
  publication-title: Osteoporosis International
– volume: 15
  start-page: 724
  year: 2004
  end-page: 732
  article-title: Histomorphometry of human sinus floor augmentation using a porous β‐tricalcium phosphate
  publication-title: Clinical Oral Implants Research
– volume: 16
  start-page: 343
  year: 2001
  end-page: 354
  article-title: Lateral ridge augmentation and implant placement
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 6
  start-page: 6
  year: 2002
  end-page: 14
  article-title: Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery. A historical review
  publication-title: Mund-, Kiefer- und Gesichtschirurgie
– volume: 30
  start-page: 157
  year: 2001
  end-page: 161
  article-title: A clinical study of changes in the volume of bone grafts in the atrophic maxilla
  publication-title: Dentomaxillofacial Radiology
– volume: 14
  start-page: 835
  year: 1999
  end-page: 840
  article-title: Bone reactions to anorganic bovine bone (Bio‐Oss) used in sinus augmentation procedures
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 17
  start-page: 321
  year: 2002
  end-page: 330
  article-title: In vitro osteoblast resorption of bone substitute biomaterials used for implant site augmentation
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 9
  start-page: 137
  year: 1998
  end-page: 150
  article-title: Evaluation of filling materials in membrane‐protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs
  publication-title: Clinical Oral Implants Research
– volume: 18
  start-page: 53
  year: 2003
  end-page: 58
  article-title: Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 14
  start-page: 369
  year: 2003
  end-page: 372
  article-title: Ten‐year follow‐up in a maxillary sinus augmentation using anorganic bovine bone (Bio‐Oss). A case report with histomorphometric evaluation
  publication-title: Clinical Oral Implants Research
– volume: 11
  start-page: 55
  year: 1996
  end-page: 66
  article-title: Tissue reaction and material characteristics of four bone substitutes
  publication-title: International Journal of Oral & Maxillofacial Implants
– volume: 18
  start-page: 207
  year: 1987
  end-page: 212
  article-title: Biologic principles of bone induction
  publication-title: Orthopedic Clinics of North America
– volume: 31
  start-page: 37
  issue: (Suppl. 4)
  year: 2000
  end-page: 47
  article-title: Calcium orthophosphates in medicine
  publication-title: Injury
– volume: 9
  start-page: 151
  year: 1998
  end-page: 162
  article-title: The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants
  publication-title: Clinical Oral Implants Research
– volume: 17
  start-page: 319
  year: 1988
  end-page: 324
  article-title: Algae‐derived (phykogene) hydroxylapatite
  publication-title: International Journal of Oral and Maxillofacial Surgery
– volume: 9
  start-page: 117
  year: 1998
  end-page: 122
  article-title: Bovine hydroxyapatite for maxillary sinus augmentation
  publication-title: Clinical Oral Implants Research
– ident: e_1_2_7_17_1
  doi: 10.1034/j.1600-0501.2003.140316.x
– ident: e_1_2_7_13_1
  doi: 10.1016/S0901-5027(88)80078-X
– start-page: 1
  volume-title: Stereological Methods
  year: 1979
  ident: e_1_2_7_23_1
  contributor:
    fullname: Weibel E.R.
– start-page: 1
  volume-title: Methods of Calcified Tissue Preparation
  year: 1984
  ident: e_1_2_7_18_1
  contributor:
    fullname: Schenk R.K.
– volume: 17
  start-page: 321
  year: 2002
  ident: e_1_2_7_20_1
  article-title: In vitro osteoblast resorption of bone substitute biomaterials used for implant site augmentation
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Taylor J.C.
– ident: e_1_2_7_3_1
  doi: 10.1016/S0020-1383(00)80022-4
– volume: 18
  start-page: 53
  year: 2003
  ident: e_1_2_7_19_1
  article-title: Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Schlegel K.A.
– volume: 14
  start-page: 835
  year: 1999
  ident: e_1_2_7_14_1
  article-title: Bone reactions to anorganic bovine bone (Bio‐Oss) used in sinus augmentation procedures
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Piattelli M.
– volume: 20
  start-page: 703
  year: 2005
  ident: e_1_2_7_11_1
  article-title: Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate. A histologic and histomorphometric study in the mandibles of minipigs
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Jensen S.S.
– ident: e_1_2_7_9_1
  doi: 10.1007/s10006-001-0343-6
– volume: 11
  start-page: 55
  year: 1996
  ident: e_1_2_7_10_1
  article-title: Tissue reaction and material characteristics of four bone substitutes
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Jensen S.S.
– volume: 16
  start-page: 343
  year: 2001
  ident: e_1_2_7_22_1
  article-title: Lateral ridge augmentation and implant placement
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Von Arx T.
– volume: 232
  start-page: 127
  year: 1988
  ident: e_1_2_7_6_1
  article-title: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1097/00003086-198807000-00017
  contributor:
    fullname: Eggli P.S.
– ident: e_1_2_7_7_1
  doi: 10.1034/j.1600-0501.1998.090207.x
– ident: e_1_2_7_15_1
  doi: 10.1007/s00198-004-1787-y
– ident: e_1_2_7_5_1
  doi: 10.1034/j.1600-0501.1998.090301.x
– ident: e_1_2_7_8_1
  doi: 10.1034/j.1600-0501.1998.090302.x
– volume: 23
  start-page: 69
  year: 2003
  ident: e_1_2_7_21_1
  article-title: Histologic effect of pure‐phase beta‐tricalcium phosphate on bone regeneration in human artificial jawbone defects
  publication-title: International Journal of Periodontics & Restorative Dentistry
  contributor:
    fullname: Trisi P.
– volume: 18
  start-page: 207
  year: 1987
  ident: e_1_2_7_16_1
  article-title: Biologic principles of bone induction
  publication-title: Orthopedic Clinics of North America
  doi: 10.1016/S0030-5898(20)30384-9
  contributor:
    fullname: Reddi A.H.
– volume: 19
  start-page: 357
  year: 2004
  ident: e_1_2_7_2_1
  article-title: Biomaterial resorption rate and healing site morphology of inorganic bovine bone and β‐tricalcium phosphate in the canine
  publication-title: International Journal of Oral & Maxillofacial Implants
  contributor:
    fullname: Artzi Z.
– ident: e_1_2_7_4_1
  doi: 10.1097/00003086-198304000-00005
– ident: e_1_2_7_12_1
  doi: 10.1038/sj.dmfr.4600601
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1600-0501.2004.01055.x
SSID ssj0006989
Score 2.3923655
Snippet Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both...
The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic...
Abstract Objective: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used...
ObjectiveThe purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both...
OBJECTIVEThe purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 237
SubjectTerms Animals
anorganic bovine bone
autograft
Biocompatible Materials - therapeutic use
Bone Marrow - pathology
Bone Marrow - physiology
bone regeneration
Bone Regeneration - physiology
Bone Resorption - pathology
Bone Resorption - physiopathology
bone substitute
Bone Substitutes - therapeutic use
Bone Transplantation - pathology
Bone Transplantation - physiology
Calcium Phosphates - therapeutic use
Cattle
Dentistry
experimental study
Mandible - pathology
Mandible - surgery
Mandibular Diseases - pathology
Mandibular Diseases - surgery
Osseointegration - physiology
Osteogenesis - physiology
Swine
Swine, Miniature
Time Factors
Transplantation, Autologous
tricalcium phosphate
Wound Healing - physiology
Title Bone healing and graft resorption of autograft, anorganic bovine bone and β-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs
URI https://api.istex.fr/ark:/67375/WNG-WV5X40C9-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-0501.2005.01257.x
https://www.ncbi.nlm.nih.gov/pubmed/16672017
https://search.proquest.com/docview/19380461
https://search.proquest.com/docview/33067052
https://search.proquest.com/docview/67934583
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbhNBEG2hcIAL-zKEpQ-IE2PN1j3uYzCECEEOESG-tXqNLeMZyzMjRTnxCXwHRz6Ej-BLqOqxE4wSCSEu3tQ9o3JXVb-qqX5FyHOwPVt6p-Ok8CIuHASsKgVdthCxmMwmRlg8O_xhn-8dFu_GbLyqf8KzMD0_xFnCDS0j-Gs0cKWbTSPneCqaJekqNQJ7dTlAPIm8eoiPDs6ZpLBPYqDdS1gMIUK6WdRz4YU2dqqr-KefXARDN1Ft2JZ2b5LZWqC-GmU26Fo9MKd_cD3-H4lvkRsr9Ep3enW7Ta646g659horjrBp3F3y7VVdOYroE7ZEqipLj5fKtxSC-noZvBOtPVVdW4ffX8KQvq-UoRpzGw7e4AUn_vj-88vXNjCYmGk3p4tJ3SwmWL9Fd2igSQ5uO4wNX-dwh0k9xxZhhgbaXDqtKABcOsezO_qza_DmSKaymB4398jh7puPo7141Q4iNqBRZZxqCG6syxOPJPNOOTv0tjRMQYhobCG80F6DammfW54allrnTYY-x3pQOp3fJ1sVyPCQUAuqO9SMcQimijwrhXCaOyW0YCpnOotIul56uehZP-Rv0RKsgsRVwB6eTIZVkCcReRF05GyCWs6waq5k8mj_rTz6xMZFMhJyFJFnayWSYMv4gEZVru4aCWB6iAT4l4_IMcJLWHb5CA4OF5-FR-RBr5_nAnBeAtwrI8KDlv21ZHL0_gA_PfrXidvkep-5wuTVY7LVLjv3BLBcq58GK_0FNkRAcg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6h9lAuvB_m1T0gTjjya-3ssaSUAGkOVUtzW-2zidrYUWJLFSd-Ar-DIz-EH8EvYWadtAS1EkJcbCfajTOex86MZ78h5CXonimcVWGUOR5mFgJWGYMsG4hYdGIizQ3uHd4f5v2j7MOIjZbtgHAvTIsPcZFwQ83w9hoVHBPS61qe47ZoFsXL3Ags1kUHHMpN-AcMtXT34BJLCjsleuC9iIUQJMTrZT1X_tLaWrWJj_38Kkd03a_1C9PebXK2IqmtRzntNLXq6M9_oD3-J5rvkFtLB5butBJ3l9yw5T2ytYtFR9g37j759qYqLUUHFFZFKktDT-bS1RTi-mruDRStHJVNXfnvX8OQtrWUpgrTGxZOcMCJP77__PK19iAmetJM6WxcLWZjLOGiO9QjJXvL7cf6j1O4w7iaYpcwTT1yLp2UFHxcOsXtO-rMLvDmiKcym5wsHpCjvbeHvX647AgRamBpEcYKGGtsGjnEmbfSmq4zhWYSokRtMu64cgqkS7nU5LFmsbFOJ2h2jAO5U-lDslECDY8JNSC9XcVYDvFUliYF51blVnLFmUyZSgISr3gvZi3wh_gtYAIuCOQCtvFkwnNBnAfklReSiwlyfoqFcwUTx8N34vgTG2VRj4teQLZXUiRAnfEdjSxt1SwE-NNdxMC_fkSKQV7EkutH5GBz8XV4QB61AnpJQJ4X4PEVAcm9mP01ZaI3OMCrJ_86cZts9Q_3B2LwfvjxKbnZJrIwl_WMbNTzxj4H165WL7zK_gIun0SS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbhNBEG2hRAIu7IvZ0gfEibFm6x7PMdiYAMFCESG-tXqNLeOZkT0jRZz4BL6DIx_CR_AlVPXYCUaJhBAXb-qeUblfVVfVVL8i5CnonsmcVUGYujxILQSsMgIsG4hYdGxCnRs8O_xuxPcO0zdjNl7VP-FZmJYf4jThhprh7TUqeGXcppJzPBXNwmiVGoG9OuuCP7md8iTGQGxwcEYlhY0SPe9eyAKIEaLNqp5zr7SxVW3jv35ynh-66db6fWl4nczWErXlKLNuU6uu_vwH2eP_EfkGubZyX-lui7eb5JItbpErAyw5wq5xt8m3F2VhKbqfsCdSWRh6vJCuphDVlwtvnmjpqGzq0v_-HIa0jaU0VZjcsPAGLzjxx_efX77WnsJET5s5rSblsppgARfdpZ4n2dttP9Z_ncMdJuUce4Rp6nlz6bSg4OHSOR7eUZ_sEm-ObCrV9Hh5hxwOX37o7wWrfhCBBkhlQaQgujE2CR2yzFtpTc-ZTDMJMaI2ae5y5RRgS7nE8EizyFinYzQ6xgHqVHKXbBUgw31CDWC3pxjjEE2lAJY8t4pbmaucyYSpuEOi9dKLqqX9EL-FS7AKAlcBm3gy4VdBnHTIM4-R0wlyMcOyuYyJo9ErcfSRjdOwn4t-h-ysQSRAmfEJjSxs2SwFeNM9ZMC_eESCIV7I4otHcLC4-DC8Q-61-DwTgPMM_L2sQ7hH2V9LJvr7B_jpwb9O3CGX3w-GYv_16O1DcrXNYmEi6xHZqheNfQx-Xa2eeIX9BSg0Q0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+healing+and+graft+resorption+of+autograft%2C+anorganic+bovine+bone+and+beta-tricalcium+phosphate.+A+histologic+and+histomorphometric+study+in+the+mandibles+of+minipigs&rft.jtitle=Clinical+oral+implants+research&rft.au=Jensen%2C+Simon+Storgard&rft.au=Broggini%2C+Nina&rft.au=Hjorting-Hansen%2C+Erik&rft.au=Schenk%2C+Robert&rft.date=2006-06-01&rft.issn=0905-7161&rft.volume=17&rft.issue=3&rft.spage=237&rft.epage=243&rft_id=info:doi/10.1111%2Fj.1600-0501.2005.01257.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-7161&client=summon