Phase‐contrast visualization of human tissues using superimposed wavefront imaging of diffraction‐enhanced x‐rays

Background Phase‐contrast computed tomography (CT) using high‐brilliance, synchrotron‐generated x‐rays enable three‐dimensional (3D) visualization of microanatomical structures within biological specimens, offering exceptionally high‐contrast images of soft tissues. Traditional methods for phase‐con...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 51; no. 12; pp. 9179 - 9193
Main Authors Sunaguchi, Naoki, Yuasa, Tetsuya, Shimao, Daisuke, Huang, Zhuoran, Ichihara, Shu, Nishimura, Rieko, Iwakoshi, Akari, Kim, Jong‐Ki, Gupta, Rajiv, Ando, Masami
Format Journal Article
LanguageEnglish
Published United States 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Phase‐contrast computed tomography (CT) using high‐brilliance, synchrotron‐generated x‐rays enable three‐dimensional (3D) visualization of microanatomical structures within biological specimens, offering exceptionally high‐contrast images of soft tissues. Traditional methods for phase‐contrast CT; however, necessitate a gap between the subject and the x‐ray camera, compromising spatial resolution due to penumbral blurring. Our newly developed technique, Superimposed Wavefront Imaging of Diffraction‐enhanced x‐rays (SWIDeX), leverages a Laue‐case Si angle analyzer affixed to a scintillator to convert x‐rays to visible light, capturing second‐order differential phase contrast images and effectively eliminating the distance to the x‐ray camera. This innovation achieves superior spatial resolution over conventional methods. Purpose In this paper, the imaging principle and CT reconstruction algorithm based on SWIDeX are presented in detail and compared with conventional analyzer‐based imaging (ABI). It also shows the physical setup of SWIDeX that provides the resolution preserving second‐order differential images for reconstruction. We compare the spatial resolution and the sensitivity of SWIDeX to conventional ABI. Methods To demonstrate high‐spatial resolution achievable by SWIDeX, the internal structures of four human tissues—ductal carcinoma in situ, normal stomach, normal pancreas, and intraductal papillary mucinous neoplasm of the pancreas—were visualized using an imaging system configured at the Photon Factory's BL14B beamline under the High Energy Accelerator Research Organization (KEK). Each tissue was thinly sliced after imaging, stained with hematoxylin and eosin (H&E) for conventional microscope‐based pathology. Results A comparison of SWIDeX‐CT and pathological images visually demonstrates the effectiveness of SWIDeX‐CT for biological tissue imaging. SWIDeX could generate clearer 3D images than existing analyzer‐based phase‐contrast methods and accurately delineate tissue structures, as validated against histopathological images. Conclusions SWIDeX can visualize important 3D structures in biological soft tissue with high spatial resolution and can be an important tool for providing information between the disparate scales of clinical and pathological imaging.
AbstractList Phase-contrast computed tomography (CT) using high-brilliance, synchrotron-generated x-rays enable three-dimensional (3D) visualization of microanatomical structures within biological specimens, offering exceptionally high-contrast images of soft tissues. Traditional methods for phase-contrast CT; however, necessitate a gap between the subject and the x-ray camera, compromising spatial resolution due to penumbral blurring. Our newly developed technique, Superimposed Wavefront Imaging of Diffraction-enhanced x-rays (SWIDeX), leverages a Laue-case Si angle analyzer affixed to a scintillator to convert x-rays to visible light, capturing second-order differential phase contrast images and effectively eliminating the distance to the x-ray camera. This innovation achieves superior spatial resolution over conventional methods. In this paper, the imaging principle and CT reconstruction algorithm based on SWIDeX are presented in detail and compared with conventional analyzer-based imaging (ABI). It also shows the physical setup of SWIDeX that provides the resolution preserving second-order differential images for reconstruction. We compare the spatial resolution and the sensitivity of SWIDeX to conventional ABI. To demonstrate high-spatial resolution achievable by SWIDeX, the internal structures of four human tissues-ductal carcinoma in situ, normal stomach, normal pancreas, and intraductal papillary mucinous neoplasm of the pancreas-were visualized using an imaging system configured at the Photon Factory's BL14B beamline under the High Energy Accelerator Research Organization (KEK). Each tissue was thinly sliced after imaging, stained with hematoxylin and eosin (H&E) for conventional microscope-based pathology. A comparison of SWIDeX-CT and pathological images visually demonstrates the effectiveness of SWIDeX-CT for biological tissue imaging. SWIDeX could generate clearer 3D images than existing analyzer-based phase-contrast methods and accurately delineate tissue structures, as validated against histopathological images. SWIDeX can visualize important 3D structures in biological soft tissue with high spatial resolution and can be an important tool for providing information between the disparate scales of clinical and pathological imaging.
Background Phase‐contrast computed tomography (CT) using high‐brilliance, synchrotron‐generated x‐rays enable three‐dimensional (3D) visualization of microanatomical structures within biological specimens, offering exceptionally high‐contrast images of soft tissues. Traditional methods for phase‐contrast CT; however, necessitate a gap between the subject and the x‐ray camera, compromising spatial resolution due to penumbral blurring. Our newly developed technique, Superimposed Wavefront Imaging of Diffraction‐enhanced x‐rays (SWIDeX), leverages a Laue‐case Si angle analyzer affixed to a scintillator to convert x‐rays to visible light, capturing second‐order differential phase contrast images and effectively eliminating the distance to the x‐ray camera. This innovation achieves superior spatial resolution over conventional methods. Purpose In this paper, the imaging principle and CT reconstruction algorithm based on SWIDeX are presented in detail and compared with conventional analyzer‐based imaging (ABI). It also shows the physical setup of SWIDeX that provides the resolution preserving second‐order differential images for reconstruction. We compare the spatial resolution and the sensitivity of SWIDeX to conventional ABI. Methods To demonstrate high‐spatial resolution achievable by SWIDeX, the internal structures of four human tissues—ductal carcinoma in situ, normal stomach, normal pancreas, and intraductal papillary mucinous neoplasm of the pancreas—were visualized using an imaging system configured at the Photon Factory's BL14B beamline under the High Energy Accelerator Research Organization (KEK). Each tissue was thinly sliced after imaging, stained with hematoxylin and eosin (H&E) for conventional microscope‐based pathology. Results A comparison of SWIDeX‐CT and pathological images visually demonstrates the effectiveness of SWIDeX‐CT for biological tissue imaging. SWIDeX could generate clearer 3D images than existing analyzer‐based phase‐contrast methods and accurately delineate tissue structures, as validated against histopathological images. Conclusions SWIDeX can visualize important 3D structures in biological soft tissue with high spatial resolution and can be an important tool for providing information between the disparate scales of clinical and pathological imaging.
Author Ando, Masami
Yuasa, Tetsuya
Ichihara, Shu
Nishimura, Rieko
Gupta, Rajiv
Sunaguchi, Naoki
Huang, Zhuoran
Shimao, Daisuke
Iwakoshi, Akari
Kim, Jong‐Ki
Author_xml – sequence: 1
  givenname: Naoki
  surname: Sunaguchi
  fullname: Sunaguchi, Naoki
  email: sunaguchi@met.nagoya-u.ac.jp
  organization: Nagoya University Graduate School of Medicine
– sequence: 2
  givenname: Tetsuya
  surname: Yuasa
  fullname: Yuasa, Tetsuya
  organization: Yamagata University
– sequence: 3
  givenname: Daisuke
  surname: Shimao
  fullname: Shimao, Daisuke
  organization: Butsuryo College of Osaka
– sequence: 4
  givenname: Zhuoran
  surname: Huang
  fullname: Huang, Zhuoran
  organization: Nagoya University Graduate School of Medicine
– sequence: 5
  givenname: Shu
  surname: Ichihara
  fullname: Ichihara, Shu
  organization: NHO Nagoya Medical Center
– sequence: 6
  givenname: Rieko
  surname: Nishimura
  fullname: Nishimura, Rieko
  organization: NHO Nagoya Medical Center
– sequence: 7
  givenname: Akari
  surname: Iwakoshi
  fullname: Iwakoshi, Akari
  organization: NHO Nagoya Medical Center
– sequence: 8
  givenname: Jong‐Ki
  surname: Kim
  fullname: Kim, Jong‐Ki
  organization: Catholic University of Daegu
– sequence: 9
  givenname: Rajiv
  surname: Gupta
  fullname: Gupta, Rajiv
  organization: Massachusetts General Hospital and Harvard Medical School
– sequence: 10
  givenname: Masami
  surname: Ando
  fullname: Ando, Masami
  organization: High Energy Accelerator Research Organization
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39088789$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1OwzAUhC1URH9A4gTIF0h5iRM7XqKKP6mILmAdvdhOa9Q4UZy0lBVH4IychLQFVqOn-Wb0NGMycJUzhFyGMA0BouuynoaCMX5CRlEsWBBHIAdkBCDjIIohGZKx928AwFkCZ2TIJKSpSOWIbBcr9Ob780tVrm3Qt3RjfYdr-4GtrRytCrrqSnS0td53xtPOW7ekvqtNY8u68kbTLW5M0fR5aktc7u0-pW1RNKj2JX27cSt0qmff-6PBnT8npwWuvbn41Ql5vbt9mT0E8-f7x9nNPFAxFzxQmCSF5FyxVBhZ5GnOFIgo0TmA5oYzLRARjEalBOhcoAARayNzYEIzySbk6thbd3lpdFb3X2Ozy_4W6IHgCGzt2uz-_RCy_bJZWWeHZbOnxUHZDxiPc1Q
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
2024 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
– notice: 2024 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/mp.17336
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 9193
ExternalDocumentID 39088789
MP17336
Genre article
Journal Article
GrantInformation_xml – fundername: MTEC
  funderid: 22‐02‐MPAI‐115
– fundername: National Science Foundation
  funderid: 5R01CA212382‐05; 5R01EB024343‐04; 1R03EB032038‐01
– fundername: Grant‐in‐Aid for Scientific Research
  funderid: 16K01369; 15H01129; 26286079; 18K13765; 21K04077
– fundername: Grant-in-Aid for Scientific Research
  grantid: 21K04077
– fundername: National Science Foundation
  grantid: 5R01EB024343-04
– fundername: Grant-in-Aid for Scientific Research
  grantid: 26286079
– fundername: Grant-in-Aid for Scientific Research
  grantid: 18K13765
– fundername: National Science Foundation
  grantid: 1R03EB032038-01
– fundername: MTEC
  grantid: 22-02-MPAI-115
– fundername: NIBIB NIH HHS
  grantid: R03 EB032038
– fundername: Grant-in-Aid for Scientific Research
  grantid: 15H01129
– fundername: Grant-in-Aid for Scientific Research
  grantid: 16K01369
– fundername: National Science Foundation
  grantid: 5R01CA212382-05
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
24P
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
ADMLS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c4676-ca55f966c387e9fb8b3c0725db00d6e63d7aaa0edacc70db7a7074de9b037d393
IEDL.DBID 24P
ISSN 0094-2405
IngestDate Wed Feb 19 02:00:21 EST 2025
Wed Jan 22 17:11:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords histopathology
SWIDeX
superimposed wavefront imaging
synchrotron radiation
analyzer based refraction‐contrast CT
diffraction‐enhanced x‐rays
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4676-ca55f966c387e9fb8b3c0725db00d6e63d7aaa0edacc70db7a7074de9b037d393
Notes Both Prof. Masami Ando and Dr. Rajiv Gupta were co‐senior authors for this research.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.17336
PMID 39088789
PageCount 15
ParticipantIDs pubmed_primary_39088789
wiley_primary_10_1002_mp_17336_MP17336
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2024
References 2010; 97
2009; 46
2007; 106
1985; 5
1997; 42
2020; 180
2023; 122
2015; 54
2016; 32
1996
1962; 15
1992
2006; 2
2007; 52
2011; 36
1961; 14
2018; 25
2009; 75
2021; 11
2002; 41
2021; 18
2015; 66
1995; 66
2017; 12
2020; 237
2022; 12
2022; 12286
2013; 250
2021; 298
2012; 7
2008; 452
1996; 2
2003; 42
1996; 67
References_xml – volume: 97
  issue: 15
  year: 2010
  article-title: X‐ray refraction‐contrast computed tomography images using dark‐field imaging optics
  publication-title: Appl Phys Lett
– volume: 41
  issue: 9A
  year: 2002
  article-title: Simple x‐ray dark‐ and bright‐field imaging using achromatic Laue optics
  publication-title: Jap J Appl Phys
– volume: 66
  start-page: 5486
  issue: 12
  year: 1995
  end-page: 5492
  article-title: On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation
  publication-title: Rev Sci Instrum
– volume: 42
  start-page: 2015
  issue: 11
  year: 1997
  end-page: 2025
  article-title: Diffraction enhanced x‐ray imaging
  publication-title: Phys Med Biol
– volume: 15
  start-page: 1311
  issue: 12
  year: 1962
  end-page: 1312
  article-title: Dynamical theory of diffraction applicable to crystals with any kind of small distortion
  publication-title: Acta Cryst
– year: 1996
– volume: 2
  start-page: 473
  issue: 4
  year: 1996
  end-page: 475
  article-title: Phase–contrast X–ray computed tomography for observing biological soft tissues
  publication-title: Nat Med
– volume: 36
  start-page: 391
  issue: 3
  year: 2011
  end-page: 393
  article-title: Convolution reconstruction algorithm for refraction‐contrast computed tomography using a Laue‐case analyzer for dark‐field imaging
  publication-title: Opt Lett
– volume: 250
  start-page: 21
  issue: 1
  year: 2013
  end-page: 31
  article-title: An exploratory study of contrast agents for soft tissue visualization by means of high resolution x‐ray computed tomography imaging
  publication-title: J Microsc
– volume: 2
  start-page: 258
  issue: 4
  year: 2006
  end-page: 261
  article-title: Phase retrieval and differential phase‐contrast imaging with low‐brilliance x‐ray sources
  publication-title: Nat Phys
– volume: 54
  issue: 9
  year: 2015
  article-title: Visualization of soft tissues by highly sensitive x‐ray crystal analyzer‐based multi diffraction enhanced imaging
  publication-title: Jpn J Appl Phys
– year: 1992
– volume: 5
  start-page: 57
  year: 1985
  end-page: 65
  article-title: Three‐dimensional atypical structure in intraductal carcinoma differentiating from papilloma and papillomatosis of the breast
  publication-title: Breast Cancer Res Treat
– volume: 452
  start-page: 41
  year: 2008
  end-page: 47
  article-title: 3‐D reconstruction and virtual ductoscopy of high‐grade ductal carcinoma in situ of the breast with casting type calcifications using refraction‐based x‐ray CT
  publication-title: Virchows Archiv
– volume: 12
  issue: 2
  year: 2017
  article-title: µCT of ex‐vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry
  publication-title: PLoS One
– volume: 12286
  start-page: 77
  year: 2022
  end-page: 82
  article-title: Refraction‐contrast CT measurement system based on x‐ray dark field imaging for µm‐order scale imaging of breast tissue specimens
– volume: 67
  start-page: 3360
  year: 1996
  article-title: Mammography imaging studies using a Laue crystal analyzer
  publication-title: Rev Sci Instrum
– volume: 11
  start-page: 487
  issue: 3
  year: 2021
  article-title: Synchrotron radiation‐based refraction‐contrast tomographic images using x‐ray dark‐field imaging optics in human lung adenocarcinoma and histologic correlations
  publication-title: Diagnostics
– volume: 66
  start-page: 966
  issue: 7
  year: 2015
  end-page: 973
  article-title: Three‐dimensional reconstruction of ductal carcinoma in situ with virtual slides
  publication-title: Histopathology
– volume: 180
  start-page: 397
  year: 2020
  end-page: 405
  article-title: Three‐dimensional microanatomy of human nipple visualized by x‐ray dark‐field computed tomography
  publication-title: Breast Cancer Res Treat
– volume: 18
  start-page: 1532
  issue: 12
  year: 2021
  end-page: 1541
  article-title: Imaging intact human organs with local resolution of cellular structures using hierarchical phase‐contrast tomography
  publication-title: Nat methods
– volume: 122
  issue: 12
  year: 2023
  article-title: Superimposed wavefront imaging of diffraction‐enhanced x‐rays: a method to achieve higher resolution in crystal analyzer‐based x‐ray phase‐contrast imaging
  publication-title: Appl Phys Lett
– volume: 32
  start-page: 1801
  issue: 12
  year: 2016
  end-page: 1812
  article-title: Dark‐field imaging: recent developments and potential clinical applications
  publication-title: Phys Med
– volume: 12
  issue: 1
  year: 2022
  article-title: Crystal optics simulations for delineation of the three‐dimensional cellular nuclear distribution using analyzer‐based refraction‐contrast computed tomography
  publication-title: Sci Rep
– volume: 75
  start-page: 945
  issue: 9
  year: 2009
  end-page: 951
  article-title: Imaging renal structures by x‐ray phase‐contrast microtomography
  publication-title: Kidney Int
– volume: 14
  start-page: 526
  issue: 5
  year: 1961
  end-page: 532
  article-title: A theoretical study of pendellösung fringes. I. General considerations
  publication-title: Acta Cryst
– volume: 25
  start-page: 1153
  issue: 4
  year: 2018
  end-page: 1161
  article-title: Synchrotron inline phase contrast µCT enables detailed virtual histology of embedded soft‐tissue samples with and without staining
  publication-title: J Synchrotron Rad
– volume: 52
  start-page: 2197
  issue: 8
  year: 2007
  end-page: 2211
  article-title: High‐resolution CT by diffraction‐enhanced x‐ray imaging: mapping of breast tissue samples and comparison with their histo‐pathology
  publication-title: Phys Med Biol
– volume: 42
  issue: 7B
  year: 2003
  article-title: Demonstration of x‐ray talbot interferometry
  publication-title: Jap J Appl Phys
– volume: 46
  start-page: 908
  issue: 4
  year: 2009
  end-page: 914
  article-title: Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging
  publication-title: Neuroimage
– volume: 7
  issue: 9
  year: 2012
  article-title: Automated reconstruction algorithm for identification of 3D architectures of cribriform ductal carcinoma in situ
  publication-title: PLoS One
– volume: 298
  start-page: 135
  issue: 1
  year: 2021
  end-page: 146
  article-title: High‐spatial‐resolution three‐dimensional imaging of human spinal cord and column anatomy with postmortem x‐ray phase‐contrast micro‐CT
  publication-title: Radiology
– volume: 106
  start-page: 171
  year: 2007
  end-page: 179
  article-title: Breast duct anatomy in the human nipple: three‐dimensional patterns and clinical implications
  publication-title: Breast Cancer Res Treat
– volume: 237
  start-page: 311
  issue: 2
  year: 2020
  end-page: 322
  article-title: The bronchial tree of the human embryo: an analysis of variations in the bronchial segments
  publication-title: J Anat
SSID ssj0006350
Score 2.4525764
Snippet Background Phase‐contrast computed tomography (CT) using high‐brilliance, synchrotron‐generated x‐rays enable three‐dimensional (3D) visualization of...
Phase-contrast computed tomography (CT) using high-brilliance, synchrotron-generated x-rays enable three-dimensional (3D) visualization of microanatomical...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage 9179
SubjectTerms Algorithms
analyzer based refraction‐contrast CT
diffraction‐enhanced x‐rays
histopathology
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
superimposed wavefront imaging
SWIDeX
synchrotron radiation
Tomography, X-Ray Computed - methods
X-Ray Diffraction
Title Phase‐contrast visualization of human tissues using superimposed wavefront imaging of diffraction‐enhanced x‐rays
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.17336
https://www.ncbi.nlm.nih.gov/pubmed/39088789
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWgCMSCoLzKSx4QW6gbJ7E9IkRVIaXKQKVukV-hHZpWTR-w8Ql8I1-CH23pyJIoSpzhWtfnJj7nXADuEwOJCikcRJImQSSkDKhmLFCYGrSjTMah1Tun3aTTi177cX_FqrRaGO8PsfnhZjPDrdc2wbmomn-moaPJY8t6-e2CPaustb75YZRtVmEDpF5-wiK7gxCvjWdR2FyP3AKd7cLUIUv7GBytSkL45OfwBOzosg4O0tWmdx3sO5amrE7BMhsY0Pn5-nYEc17N4GJYWVWk11LCcQFdzz04c-GsoGW1v8Nq7lz8J-NKK7jkC11Y1wI4HLkORXaUbZMy9RIH83ZdDhwvAH6Yiyn_rM5Ar_3y9twJVp0TAmkWviSQPI4L8yEjMSWaFYIKLBEJY2WSTCU6wYpwzpFWXEqClCCcmFJCaSYQJgozfA5q5bjUlwBqrLVGvCi4RJFuKcFESCnnEQkLjHjUABc-iPnE22Pk2FKnCGUN8OCiurnhHZLDfDTJXfzzNHPnq_8-eA0OQ1NTeDbJDajNpnN9a2qCmbhzk2-O3Sz9BWMbuVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIpYLYt_BB8Qt4MZObIsTQqCyFPUAErfIsR3aQxc1bYEbn8A38iV4aQtHTlGUOJHGmXkTe94bgJPUQqLGmkRU8TSiuVIRN0JEmnCLdlyoJHZ858ZjWn-mdy_JSwUuplyYoA8xW3BznuHjtXNwtyB9_qsa2umf1ZyY3xzMU_tK55Uxbc7CsEXSwD8R1G0hJFPlWRyfT0f-QZ2_mamHlptVWJnkhOgyTOIaVEx3HRYbk13vdVjwZZqq3IC3Zsuizvfnl68wl-UQjdulo0UGMiXqFcg33UNDb88SubL2V1SOvIx_v1cajd7k2BROtgC1O75FkRvl-qQMAsfBPt10W74wAL3bk4H8KDfh-eb66aoeTVonRMpGvjRSMkkK-yejCGdGFDnPicIsTrT1Mp2alGgmpcRGS6UY1jmTzOYS2ogcE6aJIFtQ7fa6ZgeQIcYYLItCKkxNTecijzmXkrK4IFjSXdgORsz6QR8jI652inGxC6feqrMLQSI5zjr9zNs_azT9ce-_Nx7DUv2p8ZA93D7e78NybBOMUFpyANXhYGQObYIwzI_8h_ADCni7tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LUsIwFM0ojowbR_GFzywcd5XQtE2ydFQGHzAsZIZdJ01SYQF0aAHd-Ql-o19iHoAsXXU6bbq46X2095xzAbiOdEqUSGIvEDTygkQIjyrGPImpznaUidA3fOdWO2p2g-de2FugKg0XxulDrH64Gc-w8do4eCbT2p9o6DC7rRstv02wZXt9RtU56KyisE6kjn7CAtNBCJfCs8ivLVeuJZ31wtRmlsYe2F2UhPDO7eE-2FCjCii3Fk3vCti2KE2RH4B5p6-Tzs_XtwWY87yAs0FuWJGOSwnHKbQz92BhzZlDg2p_h_nUqvhn41xJOOczlRrVAjgY2glFZpUZkzJxFAf9dDXqW1wA_NAnE_6ZH4Ju4_HtvuktJid4Qge-yBM8DFP9ISMwJYqlCU2wQMQPpXYyGakIS8I5R0pyIQiSCeFElxJSsQRhIjHDR6A0Go_UCYAKK6UQT1MuUKDqMmGJTynnAfFTjHhQBcfOiHHm5DFibKBThLIquLFWXV1wCsl-PMxia_-41bHH0__eeAXKnYdG_PrUfjkDO74uLxyw5ByUislUXejyoEgu7XvwCzX9uuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90contrast+visualization+of+human+tissues+using+superimposed+wavefront+imaging+of+diffraction%E2%80%90enhanced+x%E2%80%90rays&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Sunaguchi%2C+Naoki&rft.au=Yuasa%2C+Tetsuya&rft.au=Shimao%2C+Daisuke&rft.au=Huang%2C+Zhuoran&rft.date=2024-12-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=51&rft.issue=12&rft.spage=9179&rft.epage=9193&rft_id=info:doi/10.1002%2Fmp.17336&rft.externalDBID=10.1002%252Fmp.17336&rft.externalDocID=MP17336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon