Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways

Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Methods and Results Autumn Royal table grape, used i...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 65; no. 21; pp. e2100428 - n/a
Main Authors Tutino, Valeria, De Nunzio, Valentina, Milella, Rosa Anna, Gasparro, Marica, Cisternino, Anna Maria, Gigante, Isabella, Lanzilotta, Elsa, Iacovazzi, Palma Aurelia, Lippolis, Antonio, Lippolis, Tamara, Caruso, Maria Gabriella, Notarnicola, Maria
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Methods and Results Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated. Conclusion The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. This study demonstrates that a grape‐rich diet shows a great impact on human health through modulation of small RNA molecules, namely miRNAs found in serum. In this study, 20 circulating miRNAs differentially expresses after grape intake are identified, and notably, most of them are molecules down‐expressed by grape treatment and linked to pathways involved in cancer development, including colorectal and pancreatic cancer.
AbstractList The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated. The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Methods and Results Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated. Conclusion The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. This study demonstrates that a grape‐rich diet shows a great impact on human health through modulation of small RNA molecules, namely miRNAs found in serum. In this study, 20 circulating miRNAs differentially expresses after grape intake are identified, and notably, most of them are molecules down‐expressed by grape treatment and linked to pathways involved in cancer development, including colorectal and pancreatic cancer.
SCOPE: The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. METHODS AND RESULTS: Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated. CONCLUSION: The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.SCOPEThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated.METHODS AND RESULTSAutumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated.The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.CONCLUSIONThe dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
ScopeThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.Methods and ResultsAutumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated.ConclusionThe dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
Author De Nunzio, Valentina
Lanzilotta, Elsa
Gasparro, Marica
Cisternino, Anna Maria
Tutino, Valeria
Caruso, Maria Gabriella
Notarnicola, Maria
Lippolis, Antonio
Milella, Rosa Anna
Lippolis, Tamara
Gigante, Isabella
Iacovazzi, Palma Aurelia
Author_xml – sequence: 1
  givenname: Valeria
  surname: Tutino
  fullname: Tutino, Valeria
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 2
  givenname: Valentina
  surname: De Nunzio
  fullname: De Nunzio, Valentina
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 3
  givenname: Rosa Anna
  surname: Milella
  fullname: Milella, Rosa Anna
  organization: Council for Agricultural Research and Economics
– sequence: 4
  givenname: Marica
  surname: Gasparro
  fullname: Gasparro, Marica
  organization: Council for Agricultural Research and Economics
– sequence: 5
  givenname: Anna Maria
  surname: Cisternino
  fullname: Cisternino, Anna Maria
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 6
  givenname: Isabella
  surname: Gigante
  fullname: Gigante, Isabella
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 7
  givenname: Elsa
  surname: Lanzilotta
  fullname: Lanzilotta, Elsa
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 8
  givenname: Palma Aurelia
  surname: Iacovazzi
  fullname: Iacovazzi, Palma Aurelia
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 9
  givenname: Antonio
  surname: Lippolis
  fullname: Lippolis, Antonio
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 10
  givenname: Tamara
  surname: Lippolis
  fullname: Lippolis, Tamara
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 11
  givenname: Maria Gabriella
  surname: Caruso
  fullname: Caruso, Maria Gabriella
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
– sequence: 12
  givenname: Maria
  orcidid: 0000-0003-2274-2198
  surname: Notarnicola
  fullname: Notarnicola, Maria
  email: maria.notarnicola@irccsdebellis.it
  organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34495579$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URH9gyxJZYsMmwf8zwy6KSBopLSgt69GNYzcOM55ge6iy4xF4Ah6OJ8Fp0y4qoa58LX3nXPvec4qOfOcNQm8pGVJC2MfW2zBkhOWLYOULdEIV5QNBOT96rJk8RqcxbgjhlAn-Ch1zISopi-oE_Zm1W9AJdxZPgolrfA3LxuBpgK3BM5_gu8Gdx2MXdN9Acv4Gt06HbnE5inhufpomYufxuYEmrXf4ql9ujE7xEx7hK3fjnXUafMIX3epOnq1ypynEFDrnk4nZERo8Bq9N-Pvr98JkyqzwV0jrW9jF1-ilhSaaN4fzDH2bfL4enw_mX6az8Wg-0EIVclDCqlxyDrqyBdgSSEkrYgtaUmWJFdwAgUJWoHhBVoQKy0pltSispQxKq_kZ-nDvuw3djz4_q25d1KZpwJuujzVTXKlKKimeR2VBeCE52aPvn6Cbrg_5w3tDWjLGFZeZeneg-mVrVvU2uBbCrn5YUgbEPZDnHmMwttYu3Q0zBXBNTUm9z0K9z0L9mIUsGz6RPTj_V3Doc-sas3uGri8uJwtBSsn_ASxkx2Y
CitedBy_id crossref_primary_10_1080_09637486_2024_2449037
crossref_primary_10_3390_jcm12185986
crossref_primary_10_3390_nu16060770
crossref_primary_10_3389_fpls_2022_1064023
crossref_primary_10_52881_gsbdergi_1484502
crossref_primary_10_3390_nu14142846
crossref_primary_10_1016_j_semcancer_2023_05_001
crossref_primary_10_3390_antiox13080908
crossref_primary_10_3390_biomedicines10092310
crossref_primary_10_3390_ijms24043813
crossref_primary_10_1016_j_advnut_2024_100241
crossref_primary_10_1016_j_ajcnut_2023_01_023
crossref_primary_10_3390_ijms241512167
crossref_primary_10_3390_nu16142259
Cites_doi 10.1038/onc.2010.34
10.1093/nar/gkz1022
10.7717/peerj.3682
10.1016/j.stemcr.2017.02.012
10.1016/j.jnutbio.2015.05.001
10.1080/15476286.2019.1612217
10.3390/ijms18061178
10.1158/1535-7163.MCT-12-1231
10.18632/oncotarget.11122
10.1016/j.tibs.2014.02.003
10.3389/fphar.2020.619200
10.1186/s12967-016-0974-x
10.1186/s12943-017-0589-8
10.1002/ptr.6419
10.3390/nu11122855
10.1016/j.phrs.2013.03.011
10.3390/nu12061748
10.1016/j.freeradbiomed.2013.05.046
10.1097/MOL.0000000000000420
10.1016/j.cell.2010.02.020
10.3390/molecules25010063
10.1016/j.jnutbio.2017.08.012
10.1016/j.freeradbiomed.2019.12.043
10.3390/nu9111168
10.1016/j.cjca.2014.12.026
10.1186/s12859-019-3105-x
10.1002/jcb.24679
10.1007/s11010-014-2317-7
10.1158/0008-5472.CAN-16-0359
10.4161/cc.26087
10.1016/j.bbalip.2016.07.003
10.21873/anticanres.14360
10.1039/C8FO01997E
10.1093/nar/gky1010
10.1155/2017/3494289
10.3389/fendo.2018.00402
10.3945/an.112.002154
10.4161/cam.4081
10.1016/j.taap.2013.05.018
10.3390/mps4010001
10.1373/clinchem.2014.224238
10.1152/physiolgenomics.00141.2011
10.1111/j.1365-2621.2012.03197.x
10.3389/fimmu.2018.02334
10.1038/jcbfm.2014.152
10.7150/ijbs.20052
10.1016/j.dib.2020.105278
10.1080/00365513.2017.1328740
10.1017/S0007114515004328
10.1146/annurev-nutr-071813-105729
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7T5
7T7
7TK
8FD
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
DOI 10.1002/mnfr.202100428
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage n/a
ExternalDocumentID 34495579
10_1002_mnfr_202100428
MNFR4085
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: This work was supported
  funderid: RC 2020–2021
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7QP
7T5
7T7
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
NAPCQ
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c4675-8ad8b33ac9f7af8a08190f71816f0f43ea0a759a6370d014f286fc47ff12a8fc3
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Fri Jul 11 18:28:11 EDT 2025
Tue Aug 05 09:32:47 EDT 2025
Wed Aug 13 08:02:58 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Tue Jul 01 04:01:50 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Wed Jan 22 16:27:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords nutrigenomics
microRNA
grape
gastrointestinal cancer
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4675-8ad8b33ac9f7af8a08190f71816f0f43ea0a759a6370d014f286fc47ff12a8fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-2274-2198
PMID 34495579
PQID 2618223635
PQPubID 2045123
PageCount 10
ParticipantIDs proquest_miscellaneous_2636695654
proquest_miscellaneous_2570375304
proquest_journals_2618223635
pubmed_primary_34495579
crossref_citationtrail_10_1002_mnfr_202100428
crossref_primary_10_1002_mnfr_202100428
wiley_primary_10_1002_mnfr_202100428_MNFR4085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol Nutr Food Res
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2013; 48
2015; 402
2017; 2017
2019; 33
2019; 11
2020; 40
2017; 28
2019; 10
2015; 31
2013; 64
2016; 76
2019; 16
2016; 1861
2020; 12
2010; 140
2020; 11
2014; 60
2017; 9
2016; 14
2017; 50
2018; 9
2015; 26
2016; 7
2020; 4
2012; 3
2019; 20
2015; 116
2020; 152
2010; 29
2013; 12
2017; 16
2020
2017; 77
2013; 72
2017; 13
2019; 25
2019; 47
2020; 48
2017; 18
2013; 272
2016; 115
2014; 39
2007; 1
2012; 44
2014; 34
2020; 29
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Tutino V. (e_1_2_9_49_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
Tang G. Y. (e_1_2_9_3_1) 2017; 9
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 64
  start-page: 40
  year: 2013
  publication-title: Free Radical Biol. Med.
– volume: 140
  start-page: 612
  year: 2010
  publication-title: Cell
– volume: 39
  start-page: 159
  year: 2014
  publication-title: Trends Biochem. Sci.
– volume: 72
  start-page: 69
  year: 2013
  publication-title: Pharmacol. Res.
– volume: 9
  year: 2017
  publication-title: Nutrients
– volume: 18
  year: 2017
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 1046
  year: 2017
  publication-title: Stem Cell Rep.
– volume: 47
  start-page: D1013
  year: 2019
  publication-title: Nucleic. Acids. Res.
– volume: 115
  start-page: 226
  year: 2016
  publication-title: Br. J. Nutr.
– volume: 1
  start-page: 13
  year: 2007
  publication-title: Cell Adhes. Migr.
– volume: 29
  start-page: 2302
  year: 2010
  publication-title: Oncogene
– volume: 9
  start-page: 402
  year: 2018
  publication-title: Front Endocrinol (Lausanne)
– volume: 44
  start-page: 237
  year: 2012
  publication-title: Physiol. Genomics
– volume: 26
  start-page: 1095
  year: 2015
  publication-title: J. Nutr. Biochem.
– volume: 1861
  start-page: 1671
  year: 2016
  publication-title: Bioch. Biophys. Acta
– volume: 13
  start-page: 815
  year: 2017
  publication-title: Int. J. Biol. Sci.
– volume: 29
  year: 2020
  publication-title: Data in brief
– volume: 76
  start-page: 3666
  year: 2016
  publication-title: Cancer Res.
– volume: 12
  start-page: 3262
  year: 2013
  publication-title: Cell Cycle
– volume: 116
  start-page: 1807
  year: 2015
  publication-title: J. Cell. Biochem.
– volume: 60
  start-page: 1200
  year: 2014
  publication-title: Clin. Chem.
– volume: 7
  year: 2016
  publication-title: Oncotarget
– volume: 48
  start-page: 221
  year: 2013
  publication-title: Int J Food Sci Tech
– start-page: 25
  year: 2020
  publication-title: Molecules
– volume: 40
  start-page: 3713
  year: 2020
  publication-title: Anticancer Res.
– volume: 14
  start-page: 219
  year: 2016
  publication-title: J. Transl. Med.
– volume: 10
  start-page: 514
  year: 2019
  publication-title: Food Funct.
– volume: 48
  start-page: D142
  year: 2020
  publication-title: Nucleic. Acids. Res.
– volume: 33
  start-page: 2221
  year: 2019
  publication-title: Phytother. Res.
– volume: 34
  start-page: 305
  year: 2014
  publication-title: Annu. Rev. Nutr.
– volume: 5
  year: 2017
  publication-title: PeerJ
– volume: 16
  start-page: 23
  year: 2017
  publication-title: Mol. Cancer
– volume: 4
  year: 2020
  publication-title: Methods Protoc.
– volume: 16
  start-page: 1034
  year: 2019
  publication-title: Rna Biol
– volume: 12
  start-page: 1266
  year: 2013
  publication-title: Mol. Cancer Ther.
– volume: 11
  year: 2019
  publication-title: Nutrients
– volume: 11
  year: 2020
  publication-title: Front Pharmacol
– volume: 402
  start-page: 93
  year: 2015
  publication-title: Mol. Cell. Biochem.
– volume: 20
  start-page: 545
  year: 2019
  publication-title: BMC Bioinformatics
– volume: 77
  start-page: 379
  year: 2017
  publication-title: Scand. J. Clin. Lab. Invest.
– volume: 3
  start-page: 506
  year: 2012
  publication-title: Adv. Nutr.
– volume: 272
  start-page: 154
  year: 2013
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 152
  start-page: 432
  year: 2020
  publication-title: Free Radical Biol. Med.
– volume: 31
  start-page: 679
  year: 2015
  publication-title: Can. J. Cardiol.
– volume: 9
  start-page: 2334
  year: 2018
  publication-title: Front. Immunol.
– volume: 25
  year: 2019
  publication-title: Molecules
– volume: 12
  start-page: 1748
  year: 2020
  publication-title: Nutrients
– volume: 2017
  year: 2017
  publication-title: Oxid Med Cell Longev
– volume: 34
  start-page: 1826
  year: 2014
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 28
  start-page: 273
  year: 2017
  publication-title: Curr. Opin. Lipidol.
– volume: 50
  start-page: 66
  year: 2017
  publication-title: J. Nutr. Biochem.
– ident: e_1_2_9_37_1
  doi: 10.1038/onc.2010.34
– ident: e_1_2_9_50_1
  doi: 10.1093/nar/gkz1022
– ident: e_1_2_9_35_1
  doi: 10.7717/peerj.3682
– ident: e_1_2_9_36_1
  doi: 10.1016/j.stemcr.2017.02.012
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jnutbio.2015.05.001
– start-page: 25
  year: 2020
  ident: e_1_2_9_49_1
  publication-title: Molecules
– ident: e_1_2_9_28_1
  doi: 10.1080/15476286.2019.1612217
– ident: e_1_2_9_9_1
  doi: 10.3390/ijms18061178
– ident: e_1_2_9_16_1
  doi: 10.1158/1535-7163.MCT-12-1231
– ident: e_1_2_9_17_1
  doi: 10.18632/oncotarget.11122
– ident: e_1_2_9_45_1
  doi: 10.1016/j.tibs.2014.02.003
– ident: e_1_2_9_12_1
  doi: 10.3389/fphar.2020.619200
– ident: e_1_2_9_27_1
  doi: 10.1186/s12967-016-0974-x
– ident: e_1_2_9_18_1
  doi: 10.1186/s12943-017-0589-8
– ident: e_1_2_9_7_1
  doi: 10.1002/ptr.6419
– ident: e_1_2_9_19_1
  doi: 10.3390/nu11122855
– ident: e_1_2_9_22_1
  doi: 10.1016/j.phrs.2013.03.011
– ident: e_1_2_9_1_1
  doi: 10.3390/nu12061748
– ident: e_1_2_9_8_1
  doi: 10.1016/j.freeradbiomed.2013.05.046
– ident: e_1_2_9_48_1
  doi: 10.1097/MOL.0000000000000420
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cell.2010.02.020
– ident: e_1_2_9_10_1
  doi: 10.3390/molecules25010063
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jnutbio.2017.08.012
– ident: e_1_2_9_40_1
  doi: 10.1016/j.freeradbiomed.2019.12.043
– ident: e_1_2_9_13_1
  doi: 10.3390/nu9111168
– ident: e_1_2_9_47_1
  doi: 10.1016/j.cjca.2014.12.026
– ident: e_1_2_9_51_1
  doi: 10.1186/s12859-019-3105-x
– ident: e_1_2_9_33_1
  doi: 10.1002/jcb.24679
– ident: e_1_2_9_15_1
  doi: 10.1007/s11010-014-2317-7
– ident: e_1_2_9_30_1
  doi: 10.1158/0008-5472.CAN-16-0359
– ident: e_1_2_9_38_1
  doi: 10.4161/cc.26087
– ident: e_1_2_9_21_1
  doi: 10.1016/j.bbalip.2016.07.003
– ident: e_1_2_9_32_1
  doi: 10.21873/anticanres.14360
– ident: e_1_2_9_6_1
  doi: 10.1039/C8FO01997E
– ident: e_1_2_9_52_1
  doi: 10.1093/nar/gky1010
– ident: e_1_2_9_44_1
  doi: 10.1155/2017/3494289
– ident: e_1_2_9_11_1
  doi: 10.3389/fendo.2018.00402
– ident: e_1_2_9_2_1
  doi: 10.3945/an.112.002154
– ident: e_1_2_9_46_1
  doi: 10.4161/cam.4081
– ident: e_1_2_9_25_1
  doi: 10.1016/j.taap.2013.05.018
– ident: e_1_2_9_29_1
  doi: 10.3390/mps4010001
– volume: 9
  year: 2017
  ident: e_1_2_9_3_1
  publication-title: Nutrients
– ident: e_1_2_9_26_1
  doi: 10.1373/clinchem.2014.224238
– ident: e_1_2_9_39_1
  doi: 10.1152/physiolgenomics.00141.2011
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-2621.2012.03197.x
– ident: e_1_2_9_42_1
  doi: 10.3389/fimmu.2018.02334
– ident: e_1_2_9_41_1
  doi: 10.1038/jcbfm.2014.152
– ident: e_1_2_9_43_1
  doi: 10.7150/ijbs.20052
– ident: e_1_2_9_24_1
  doi: 10.1016/j.dib.2020.105278
– ident: e_1_2_9_31_1
  doi: 10.1080/00365513.2017.1328740
– ident: e_1_2_9_5_1
  doi: 10.1017/S0007114515004328
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev-nutr-071813-105729
SSID ssj0031243
Score 2.41136
Snippet Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs...
The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs...
ScopeThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs...
SCOPE: The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100428
SubjectTerms Antioxidants
bioinformatics
Body weight
Cancer
carcinogenesis
Circulating MicroRNA
Diet
Dietary intake
Dosage
Food intake
food research
Fruits
Functional analysis
gastrointestinal cancer
Gastrointestinal Neoplasms
gastrointestinal system
grape
Grapes
Healthy Volunteers
Humans
microRNA
MicroRNAs
miRNA
nutrigenomics
nutritional intervention
quantitative polymerase chain reaction
randomized clinical trials
table grapes
Vitis
Title Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100428
https://www.ncbi.nlm.nih.gov/pubmed/34495579
https://www.proquest.com/docview/2618223635
https://www.proquest.com/docview/2570375304
https://www.proquest.com/docview/2636695654
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT1z4_1koaJAQnNJm4yROuK223baIXaGllXqLHMduV20dtMkKlROPwBPwcH2Szjg_sCBAiGsyURzNeOYbZ-Ybxl6i1WhuIuWlqjBeKKXv5QUmrqHQQVLoQGlX8j-dxftH4dvj6PiHLv6GH6I_cKOd4fw1bXCZV9vfSUMvrCE-z2DoYD86YSrYIlQ07_mjOAYvV2GPMcsLMZR3rI1-sL3--HpU-gVqriNXF3omt5nsFt1UnJxtrep8S33-ic_xf77qDrvV4lIYNYZ0l93Q9h4b7Cx0Da-gJQ89h1nH3X-ffTtw_ZVQGphgyn4Kh9SEBXvUzQUHtpZnGkoL48VSuQlh9gQuqPhvPhtV8I5KlSpYWGjaoC4BHRidCFVvYAQfFieWKphQ6TAti3bAGL1pT1b1siSKC_RMtN4xGe3y6stXV9SnC3iPiPaTvKwesKPJ7uF432uHPXgKfXXkJbJIcs6lSo2QJpEOqhiMnMPY-CbkWvpSRKmMufALzOtMkMRGhcKYYSATo_hDtmFLqx8zoIkAQopECc5DnYg0TyU3aljkEpMnHg-Y1yk7Uy0TOg3kOM8aDucgIy1kvRYG7HUv_7HhAPmt5GZnO1nrC6oMc1REYRyR3YC96G_jLqZfM9LqcoUyRISGmaMf_kEm5nGM6WyEMo8au-yXw0NMdCOR4qc56_rLOrPpbDInbrsn_yj_lN2ki00z5ibbqJcr_QxRWZ0_dzvvGn08Mi4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgOcCFf5bCAoOE4JTdNM4vt6rQbaGtUOlK3CLHsZdqdx3UpELLiUfgCXg4noQZ5wcVBAhxzkR15PHM97kz3zD2BL1GcR1IJ5G5dnwhXCfLkbj6kfLiXHlS2ZL_2TwcH_mv3gVtNSH1wtT6EN2FG50MG6_pgNOF9MEP1dAzo0nQ0-tb3H-RXaKx3pZVLToFKY7py9bYY9ZyfEzmrW6j6x1sv7-dl34Bm9vY1Saf0TWWtcuua05O9jdVti8__aTo-F_fdZ1dbaApDGpfusEuKHOT9V6sVAVPodEPPYV5K99_i32d2BZLKDSMkLW_hyX1YcEhNXTBxFTiREFhYLhaSzskzBzDGdX_LeaDEqZUrVTCykDdCXUOGMPoUqh8DgN4uzo2VMSE-w6zIm9mjNEvHYqyWhekcoHBidY7JL9df_v8xdb1qRzeIKj9KM7L2-xo9HI5HDvNvAdHYrgOnFjkcca5kImOhI6FRSsak2c_1K72uRKuiIJEhDxyc6R22otDLf1I674nYi35HbZjCqPuMqChAJGIYhlx7qs4SrJEcC37eSaQP_Gwx5x2t1PZiKHTTI7TtJZx9lLahbTbhR571tl_qGVAfmu51zpP2oSDMkWaikCMI7jrscfdYzzI9O-MMKrYoA1poSF5dP0_2IQ8DJHRBmizWztmtxzuI9cNogQ_zbrXX9aZzuajBcnb3ftH-0fs8ng5m6bTyfz1fXaFDOrezD22U6036gGCtCp7aI_hd4GeNkk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1BkRAv3C-BAoOE4Mmt4_WVtyjBbaCxqtBKfbPW690StbWr2BEqT3wCX8DH8SXMrC8QECDEs8fyrnYuZ9YzZxh7jlqjuPakFclcW64QtpXlmLi6gXLCXDlSmZL_WeLvHrpvjryjH7r4G36I_sKNLMP4azLw81xvfycNPSs08Xk6QwP7L7Mrrm-HpNeTeU8gxTF6mRJ7DFqWi7G8o220ne3199fD0i9Ycx26mtgT32CiW3VTcnKytaqzLfnxJ0LH_9nWTXa9BaYwajTpFrukittsMFmoGl5Ayx56CklH3n-HfZmaBksoNcSYs7-HA-rCgh1q54JpUYsTBWUB48VSmhFhxTGcUfXfPBlVsEe1ShUsCmj6oC4APRhdCVWvYATvFscFlTDhqcOszNsJY_SlHVHVy5I4LtA10XrHpLXLr58-m6o-lcM-QtoP4qK6yw7j1wfjXaud9mBJdNaeFYo8zDgXMtKB0KEwWEVj6Bz62tYuV8IWgRcJnwd2jomddkJfSzfQeuiIUEt-j20UZaEeMKCRAIEIQhlw7qowiLJIcC2HeSYwe-L-gFndYaeypUKniRynaUPi7KR0Cml_CgP2spc_b0hAfiu52elO2jqDKsUkFWEYR2g3YM_6x2jG9G9GFKpcoQwxoWHqaLt_kPG572M-66HM_UYv--VwFzNdL4hwa0a7_rLOdJbEcyK3e_iP8k_Z1f1JnO5Nk7eP2DV63jRmbrKNerlSjxGh1dkTY4TfANR5NQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Fresh+Table+Grape+Intake+on+Circulating+microRNAs+Levels+in+Healthy+Subjects%3A+A+Significant+Modulation+of+Gastrointestinal+Cancer%E2%80%90Related+Pathways&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Tutino%2C+Valeria&rft.au=De+Nunzio%2C+Valentina&rft.au=Milella%2C+Rosa+Anna&rft.au=Gasparro%2C+Marica&rft.date=2021-11-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=65&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmnfr.202100428&rft.externalDBID=10.1002%252Fmnfr.202100428&rft.externalDocID=MNFR4085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon