Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways
Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Methods and Results Autumn Royal table grape, used i...
Saved in:
Published in | Molecular nutrition & food research Vol. 65; no. 21; pp. e2100428 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scope
The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.
Methods and Results
Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated.
Conclusion
The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
This study demonstrates that a grape‐rich diet shows a great impact on human health through modulation of small RNA molecules, namely miRNAs found in serum. In this study, 20 circulating miRNAs differentially expresses after grape intake are identified, and notably, most of them are molecules down‐expressed by grape treatment and linked to pathways involved in cancer development, including colorectal and pancreatic cancer. |
---|---|
AbstractList | The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.
Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated.
The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. Scope The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. Methods and Results Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated. Conclusion The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. This study demonstrates that a grape‐rich diet shows a great impact on human health through modulation of small RNA molecules, namely miRNAs found in serum. In this study, 20 circulating miRNAs differentially expresses after grape intake are identified, and notably, most of them are molecules down‐expressed by grape treatment and linked to pathways involved in cancer development, including colorectal and pancreatic cancer. SCOPE: The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. METHODS AND RESULTS: Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated. CONCLUSION: The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.SCOPEThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated.METHODS AND RESULTSAutumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated.The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.CONCLUSIONThe dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. ScopeThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated.Methods and ResultsAutumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real‐Time quantitative PCR (RT‐qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down‐regulated and 2 are up‐regulated.ConclusionThe dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers. |
Author | De Nunzio, Valentina Lanzilotta, Elsa Gasparro, Marica Cisternino, Anna Maria Tutino, Valeria Caruso, Maria Gabriella Notarnicola, Maria Lippolis, Antonio Milella, Rosa Anna Lippolis, Tamara Gigante, Isabella Iacovazzi, Palma Aurelia |
Author_xml | – sequence: 1 givenname: Valeria surname: Tutino fullname: Tutino, Valeria organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 2 givenname: Valentina surname: De Nunzio fullname: De Nunzio, Valentina organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 3 givenname: Rosa Anna surname: Milella fullname: Milella, Rosa Anna organization: Council for Agricultural Research and Economics – sequence: 4 givenname: Marica surname: Gasparro fullname: Gasparro, Marica organization: Council for Agricultural Research and Economics – sequence: 5 givenname: Anna Maria surname: Cisternino fullname: Cisternino, Anna Maria organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 6 givenname: Isabella surname: Gigante fullname: Gigante, Isabella organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 7 givenname: Elsa surname: Lanzilotta fullname: Lanzilotta, Elsa organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 8 givenname: Palma Aurelia surname: Iacovazzi fullname: Iacovazzi, Palma Aurelia organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 9 givenname: Antonio surname: Lippolis fullname: Lippolis, Antonio organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 10 givenname: Tamara surname: Lippolis fullname: Lippolis, Tamara organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 11 givenname: Maria Gabriella surname: Caruso fullname: Caruso, Maria Gabriella organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital – sequence: 12 givenname: Maria orcidid: 0000-0003-2274-2198 surname: Notarnicola fullname: Notarnicola, Maria email: maria.notarnicola@irccsdebellis.it organization: National Institute of Gastroenterology “S. de Bellis” Research Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34495579$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhS1URH9gyxJZYsMmwf8zwy6KSBopLSgt69GNYzcOM55ge6iy4xF4Ah6OJ8Fp0y4qoa58LX3nXPvec4qOfOcNQm8pGVJC2MfW2zBkhOWLYOULdEIV5QNBOT96rJk8RqcxbgjhlAn-Ch1zISopi-oE_Zm1W9AJdxZPgolrfA3LxuBpgK3BM5_gu8Gdx2MXdN9Acv4Gt06HbnE5inhufpomYufxuYEmrXf4ql9ujE7xEx7hK3fjnXUafMIX3epOnq1ypynEFDrnk4nZERo8Bq9N-Pvr98JkyqzwV0jrW9jF1-ilhSaaN4fzDH2bfL4enw_mX6az8Wg-0EIVclDCqlxyDrqyBdgSSEkrYgtaUmWJFdwAgUJWoHhBVoQKy0pltSispQxKq_kZ-nDvuw3djz4_q25d1KZpwJuujzVTXKlKKimeR2VBeCE52aPvn6Cbrg_5w3tDWjLGFZeZeneg-mVrVvU2uBbCrn5YUgbEPZDnHmMwttYu3Q0zBXBNTUm9z0K9z0L9mIUsGz6RPTj_V3Doc-sas3uGri8uJwtBSsn_ASxkx2Y |
CitedBy_id | crossref_primary_10_1080_09637486_2024_2449037 crossref_primary_10_3390_jcm12185986 crossref_primary_10_3390_nu16060770 crossref_primary_10_3389_fpls_2022_1064023 crossref_primary_10_52881_gsbdergi_1484502 crossref_primary_10_3390_nu14142846 crossref_primary_10_1016_j_semcancer_2023_05_001 crossref_primary_10_3390_antiox13080908 crossref_primary_10_3390_biomedicines10092310 crossref_primary_10_3390_ijms24043813 crossref_primary_10_1016_j_advnut_2024_100241 crossref_primary_10_1016_j_ajcnut_2023_01_023 crossref_primary_10_3390_ijms241512167 crossref_primary_10_3390_nu16142259 |
Cites_doi | 10.1038/onc.2010.34 10.1093/nar/gkz1022 10.7717/peerj.3682 10.1016/j.stemcr.2017.02.012 10.1016/j.jnutbio.2015.05.001 10.1080/15476286.2019.1612217 10.3390/ijms18061178 10.1158/1535-7163.MCT-12-1231 10.18632/oncotarget.11122 10.1016/j.tibs.2014.02.003 10.3389/fphar.2020.619200 10.1186/s12967-016-0974-x 10.1186/s12943-017-0589-8 10.1002/ptr.6419 10.3390/nu11122855 10.1016/j.phrs.2013.03.011 10.3390/nu12061748 10.1016/j.freeradbiomed.2013.05.046 10.1097/MOL.0000000000000420 10.1016/j.cell.2010.02.020 10.3390/molecules25010063 10.1016/j.jnutbio.2017.08.012 10.1016/j.freeradbiomed.2019.12.043 10.3390/nu9111168 10.1016/j.cjca.2014.12.026 10.1186/s12859-019-3105-x 10.1002/jcb.24679 10.1007/s11010-014-2317-7 10.1158/0008-5472.CAN-16-0359 10.4161/cc.26087 10.1016/j.bbalip.2016.07.003 10.21873/anticanres.14360 10.1039/C8FO01997E 10.1093/nar/gky1010 10.1155/2017/3494289 10.3389/fendo.2018.00402 10.3945/an.112.002154 10.4161/cam.4081 10.1016/j.taap.2013.05.018 10.3390/mps4010001 10.1373/clinchem.2014.224238 10.1152/physiolgenomics.00141.2011 10.1111/j.1365-2621.2012.03197.x 10.3389/fimmu.2018.02334 10.1038/jcbfm.2014.152 10.7150/ijbs.20052 10.1016/j.dib.2020.105278 10.1080/00365513.2017.1328740 10.1017/S0007114515004328 10.1146/annurev-nutr-071813-105729 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7T5 7T7 7TK 8FD C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
DOI | 10.1002/mnfr.202100428 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | n/a |
ExternalDocumentID | 34495579 10_1002_mnfr_202100428 MNFR4085 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: This work was supported funderid: RC 2020–2021 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7QP 7T5 7T7 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. NAPCQ P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4675-8ad8b33ac9f7af8a08190f71816f0f43ea0a759a6370d014f286fc47ff12a8fc3 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Jul 11 18:28:11 EDT 2025 Tue Aug 05 09:32:47 EDT 2025 Wed Aug 13 08:02:58 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Tue Jul 01 04:01:50 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Wed Jan 22 16:27:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | nutrigenomics microRNA grape gastrointestinal cancer |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4675-8ad8b33ac9f7af8a08190f71816f0f43ea0a759a6370d014f286fc47ff12a8fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-2274-2198 |
PMID | 34495579 |
PQID | 2618223635 |
PQPubID | 2045123 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636695654 proquest_miscellaneous_2570375304 proquest_journals_2618223635 pubmed_primary_34495579 crossref_citationtrail_10_1002_mnfr_202100428 crossref_primary_10_1002_mnfr_202100428 wiley_primary_10_1002_mnfr_202100428_MNFR4085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol Nutr Food Res |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 8 2013; 48 2015; 402 2017; 2017 2019; 33 2019; 11 2020; 40 2017; 28 2019; 10 2015; 31 2013; 64 2016; 76 2019; 16 2016; 1861 2020; 12 2010; 140 2020; 11 2014; 60 2017; 9 2016; 14 2017; 50 2018; 9 2015; 26 2016; 7 2020; 4 2012; 3 2019; 20 2015; 116 2020; 152 2010; 29 2013; 12 2017; 16 2020 2017; 77 2013; 72 2017; 13 2019; 25 2019; 47 2020; 48 2017; 18 2013; 272 2016; 115 2014; 39 2007; 1 2012; 44 2014; 34 2020; 29 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Tutino V. (e_1_2_9_49_1) 2020 e_1_2_9_15_1 e_1_2_9_38_1 Tang G. Y. (e_1_2_9_3_1) 2017; 9 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 64 start-page: 40 year: 2013 publication-title: Free Radical Biol. Med. – volume: 140 start-page: 612 year: 2010 publication-title: Cell – volume: 39 start-page: 159 year: 2014 publication-title: Trends Biochem. Sci. – volume: 72 start-page: 69 year: 2013 publication-title: Pharmacol. Res. – volume: 9 year: 2017 publication-title: Nutrients – volume: 18 year: 2017 publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 1046 year: 2017 publication-title: Stem Cell Rep. – volume: 47 start-page: D1013 year: 2019 publication-title: Nucleic. Acids. Res. – volume: 115 start-page: 226 year: 2016 publication-title: Br. J. Nutr. – volume: 1 start-page: 13 year: 2007 publication-title: Cell Adhes. Migr. – volume: 29 start-page: 2302 year: 2010 publication-title: Oncogene – volume: 9 start-page: 402 year: 2018 publication-title: Front Endocrinol (Lausanne) – volume: 44 start-page: 237 year: 2012 publication-title: Physiol. Genomics – volume: 26 start-page: 1095 year: 2015 publication-title: J. Nutr. Biochem. – volume: 1861 start-page: 1671 year: 2016 publication-title: Bioch. Biophys. Acta – volume: 13 start-page: 815 year: 2017 publication-title: Int. J. Biol. Sci. – volume: 29 year: 2020 publication-title: Data in brief – volume: 76 start-page: 3666 year: 2016 publication-title: Cancer Res. – volume: 12 start-page: 3262 year: 2013 publication-title: Cell Cycle – volume: 116 start-page: 1807 year: 2015 publication-title: J. Cell. Biochem. – volume: 60 start-page: 1200 year: 2014 publication-title: Clin. Chem. – volume: 7 year: 2016 publication-title: Oncotarget – volume: 48 start-page: 221 year: 2013 publication-title: Int J Food Sci Tech – start-page: 25 year: 2020 publication-title: Molecules – volume: 40 start-page: 3713 year: 2020 publication-title: Anticancer Res. – volume: 14 start-page: 219 year: 2016 publication-title: J. Transl. Med. – volume: 10 start-page: 514 year: 2019 publication-title: Food Funct. – volume: 48 start-page: D142 year: 2020 publication-title: Nucleic. Acids. Res. – volume: 33 start-page: 2221 year: 2019 publication-title: Phytother. Res. – volume: 34 start-page: 305 year: 2014 publication-title: Annu. Rev. Nutr. – volume: 5 year: 2017 publication-title: PeerJ – volume: 16 start-page: 23 year: 2017 publication-title: Mol. Cancer – volume: 4 year: 2020 publication-title: Methods Protoc. – volume: 16 start-page: 1034 year: 2019 publication-title: Rna Biol – volume: 12 start-page: 1266 year: 2013 publication-title: Mol. Cancer Ther. – volume: 11 year: 2019 publication-title: Nutrients – volume: 11 year: 2020 publication-title: Front Pharmacol – volume: 402 start-page: 93 year: 2015 publication-title: Mol. Cell. Biochem. – volume: 20 start-page: 545 year: 2019 publication-title: BMC Bioinformatics – volume: 77 start-page: 379 year: 2017 publication-title: Scand. J. Clin. Lab. Invest. – volume: 3 start-page: 506 year: 2012 publication-title: Adv. Nutr. – volume: 272 start-page: 154 year: 2013 publication-title: Toxicol. Appl. Pharmacol. – volume: 152 start-page: 432 year: 2020 publication-title: Free Radical Biol. Med. – volume: 31 start-page: 679 year: 2015 publication-title: Can. J. Cardiol. – volume: 9 start-page: 2334 year: 2018 publication-title: Front. Immunol. – volume: 25 year: 2019 publication-title: Molecules – volume: 12 start-page: 1748 year: 2020 publication-title: Nutrients – volume: 2017 year: 2017 publication-title: Oxid Med Cell Longev – volume: 34 start-page: 1826 year: 2014 publication-title: J. Cereb. Blood Flow Metab. – volume: 28 start-page: 273 year: 2017 publication-title: Curr. Opin. Lipidol. – volume: 50 start-page: 66 year: 2017 publication-title: J. Nutr. Biochem. – ident: e_1_2_9_37_1 doi: 10.1038/onc.2010.34 – ident: e_1_2_9_50_1 doi: 10.1093/nar/gkz1022 – ident: e_1_2_9_35_1 doi: 10.7717/peerj.3682 – ident: e_1_2_9_36_1 doi: 10.1016/j.stemcr.2017.02.012 – ident: e_1_2_9_20_1 doi: 10.1016/j.jnutbio.2015.05.001 – start-page: 25 year: 2020 ident: e_1_2_9_49_1 publication-title: Molecules – ident: e_1_2_9_28_1 doi: 10.1080/15476286.2019.1612217 – ident: e_1_2_9_9_1 doi: 10.3390/ijms18061178 – ident: e_1_2_9_16_1 doi: 10.1158/1535-7163.MCT-12-1231 – ident: e_1_2_9_17_1 doi: 10.18632/oncotarget.11122 – ident: e_1_2_9_45_1 doi: 10.1016/j.tibs.2014.02.003 – ident: e_1_2_9_12_1 doi: 10.3389/fphar.2020.619200 – ident: e_1_2_9_27_1 doi: 10.1186/s12967-016-0974-x – ident: e_1_2_9_18_1 doi: 10.1186/s12943-017-0589-8 – ident: e_1_2_9_7_1 doi: 10.1002/ptr.6419 – ident: e_1_2_9_19_1 doi: 10.3390/nu11122855 – ident: e_1_2_9_22_1 doi: 10.1016/j.phrs.2013.03.011 – ident: e_1_2_9_1_1 doi: 10.3390/nu12061748 – ident: e_1_2_9_8_1 doi: 10.1016/j.freeradbiomed.2013.05.046 – ident: e_1_2_9_48_1 doi: 10.1097/MOL.0000000000000420 – ident: e_1_2_9_34_1 doi: 10.1016/j.cell.2010.02.020 – ident: e_1_2_9_10_1 doi: 10.3390/molecules25010063 – ident: e_1_2_9_23_1 doi: 10.1016/j.jnutbio.2017.08.012 – ident: e_1_2_9_40_1 doi: 10.1016/j.freeradbiomed.2019.12.043 – ident: e_1_2_9_13_1 doi: 10.3390/nu9111168 – ident: e_1_2_9_47_1 doi: 10.1016/j.cjca.2014.12.026 – ident: e_1_2_9_51_1 doi: 10.1186/s12859-019-3105-x – ident: e_1_2_9_33_1 doi: 10.1002/jcb.24679 – ident: e_1_2_9_15_1 doi: 10.1007/s11010-014-2317-7 – ident: e_1_2_9_30_1 doi: 10.1158/0008-5472.CAN-16-0359 – ident: e_1_2_9_38_1 doi: 10.4161/cc.26087 – ident: e_1_2_9_21_1 doi: 10.1016/j.bbalip.2016.07.003 – ident: e_1_2_9_32_1 doi: 10.21873/anticanres.14360 – ident: e_1_2_9_6_1 doi: 10.1039/C8FO01997E – ident: e_1_2_9_52_1 doi: 10.1093/nar/gky1010 – ident: e_1_2_9_44_1 doi: 10.1155/2017/3494289 – ident: e_1_2_9_11_1 doi: 10.3389/fendo.2018.00402 – ident: e_1_2_9_2_1 doi: 10.3945/an.112.002154 – ident: e_1_2_9_46_1 doi: 10.4161/cam.4081 – ident: e_1_2_9_25_1 doi: 10.1016/j.taap.2013.05.018 – ident: e_1_2_9_29_1 doi: 10.3390/mps4010001 – volume: 9 year: 2017 ident: e_1_2_9_3_1 publication-title: Nutrients – ident: e_1_2_9_26_1 doi: 10.1373/clinchem.2014.224238 – ident: e_1_2_9_39_1 doi: 10.1152/physiolgenomics.00141.2011 – ident: e_1_2_9_4_1 doi: 10.1111/j.1365-2621.2012.03197.x – ident: e_1_2_9_42_1 doi: 10.3389/fimmu.2018.02334 – ident: e_1_2_9_41_1 doi: 10.1038/jcbfm.2014.152 – ident: e_1_2_9_43_1 doi: 10.7150/ijbs.20052 – ident: e_1_2_9_24_1 doi: 10.1016/j.dib.2020.105278 – ident: e_1_2_9_31_1 doi: 10.1080/00365513.2017.1328740 – ident: e_1_2_9_5_1 doi: 10.1017/S0007114515004328 – ident: e_1_2_9_14_1 doi: 10.1146/annurev-nutr-071813-105729 |
SSID | ssj0031243 |
Score | 2.41136 |
Snippet | Scope
The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs... The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs... ScopeThe study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs... SCOPE: The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100428 |
SubjectTerms | Antioxidants bioinformatics Body weight Cancer carcinogenesis Circulating MicroRNA Diet Dietary intake Dosage Food intake food research Fruits Functional analysis gastrointestinal cancer Gastrointestinal Neoplasms gastrointestinal system grape Grapes Healthy Volunteers Humans microRNA MicroRNAs miRNA nutrigenomics nutritional intervention quantitative polymerase chain reaction randomized clinical trials table grapes Vitis |
Title | Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer‐Related Pathways |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.202100428 https://www.ncbi.nlm.nih.gov/pubmed/34495579 https://www.proquest.com/docview/2618223635 https://www.proquest.com/docview/2570375304 https://www.proquest.com/docview/2636695654 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT1z4_1koaJAQnNJm4yROuK223baIXaGllXqLHMduV20dtMkKlROPwBPwcH2Szjg_sCBAiGsyURzNeOYbZ-Ybxl6i1WhuIuWlqjBeKKXv5QUmrqHQQVLoQGlX8j-dxftH4dvj6PiHLv6GH6I_cKOd4fw1bXCZV9vfSUMvrCE-z2DoYD86YSrYIlQ07_mjOAYvV2GPMcsLMZR3rI1-sL3--HpU-gVqriNXF3omt5nsFt1UnJxtrep8S33-ic_xf77qDrvV4lIYNYZ0l93Q9h4b7Cx0Da-gJQ89h1nH3X-ffTtw_ZVQGphgyn4Kh9SEBXvUzQUHtpZnGkoL48VSuQlh9gQuqPhvPhtV8I5KlSpYWGjaoC4BHRidCFVvYAQfFieWKphQ6TAti3bAGL1pT1b1siSKC_RMtN4xGe3y6stXV9SnC3iPiPaTvKwesKPJ7uF432uHPXgKfXXkJbJIcs6lSo2QJpEOqhiMnMPY-CbkWvpSRKmMufALzOtMkMRGhcKYYSATo_hDtmFLqx8zoIkAQopECc5DnYg0TyU3aljkEpMnHg-Y1yk7Uy0TOg3kOM8aDucgIy1kvRYG7HUv_7HhAPmt5GZnO1nrC6oMc1REYRyR3YC96G_jLqZfM9LqcoUyRISGmaMf_kEm5nGM6WyEMo8au-yXw0NMdCOR4qc56_rLOrPpbDInbrsn_yj_lN2ki00z5ibbqJcr_QxRWZ0_dzvvGn08Mi4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgOcCFf5bCAoOE4JTdNM4vt6rQbaGtUOlK3CLHsZdqdx3UpELLiUfgCXg4noQZ5wcVBAhxzkR15PHM97kz3zD2BL1GcR1IJ5G5dnwhXCfLkbj6kfLiXHlS2ZL_2TwcH_mv3gVtNSH1wtT6EN2FG50MG6_pgNOF9MEP1dAzo0nQ0-tb3H-RXaKx3pZVLToFKY7py9bYY9ZyfEzmrW6j6x1sv7-dl34Bm9vY1Saf0TWWtcuua05O9jdVti8__aTo-F_fdZ1dbaApDGpfusEuKHOT9V6sVAVPodEPPYV5K99_i32d2BZLKDSMkLW_hyX1YcEhNXTBxFTiREFhYLhaSzskzBzDGdX_LeaDEqZUrVTCykDdCXUOGMPoUqh8DgN4uzo2VMSE-w6zIm9mjNEvHYqyWhekcoHBidY7JL9df_v8xdb1qRzeIKj9KM7L2-xo9HI5HDvNvAdHYrgOnFjkcca5kImOhI6FRSsak2c_1K72uRKuiIJEhDxyc6R22otDLf1I674nYi35HbZjCqPuMqChAJGIYhlx7qs4SrJEcC37eSaQP_Gwx5x2t1PZiKHTTI7TtJZx9lLahbTbhR571tl_qGVAfmu51zpP2oSDMkWaikCMI7jrscfdYzzI9O-MMKrYoA1poSF5dP0_2IQ8DJHRBmizWztmtxzuI9cNogQ_zbrXX9aZzuajBcnb3ftH-0fs8ng5m6bTyfz1fXaFDOrezD22U6036gGCtCp7aI_hd4GeNkk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1BkRAv3C-BAoOE4Mmt4_WVtyjBbaCxqtBKfbPW690StbWr2BEqT3wCX8DH8SXMrC8QECDEs8fyrnYuZ9YzZxh7jlqjuPakFclcW64QtpXlmLi6gXLCXDlSmZL_WeLvHrpvjryjH7r4G36I_sKNLMP4azLw81xvfycNPSs08Xk6QwP7L7Mrrm-HpNeTeU8gxTF6mRJ7DFqWi7G8o220ne3199fD0i9Ycx26mtgT32CiW3VTcnKytaqzLfnxJ0LH_9nWTXa9BaYwajTpFrukittsMFmoGl5Ayx56CklH3n-HfZmaBksoNcSYs7-HA-rCgh1q54JpUYsTBWUB48VSmhFhxTGcUfXfPBlVsEe1ShUsCmj6oC4APRhdCVWvYATvFscFlTDhqcOszNsJY_SlHVHVy5I4LtA10XrHpLXLr58-m6o-lcM-QtoP4qK6yw7j1wfjXaud9mBJdNaeFYo8zDgXMtKB0KEwWEVj6Bz62tYuV8IWgRcJnwd2jomddkJfSzfQeuiIUEt-j20UZaEeMKCRAIEIQhlw7qowiLJIcC2HeSYwe-L-gFndYaeypUKniRynaUPi7KR0Cml_CgP2spc_b0hAfiu52elO2jqDKsUkFWEYR2g3YM_6x2jG9G9GFKpcoQwxoWHqaLt_kPG572M-66HM_UYv--VwFzNdL4hwa0a7_rLOdJbEcyK3e_iP8k_Z1f1JnO5Nk7eP2DV63jRmbrKNerlSjxGh1dkTY4TfANR5NQE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Fresh+Table+Grape+Intake+on+Circulating+microRNAs+Levels+in+Healthy+Subjects%3A+A+Significant+Modulation+of+Gastrointestinal+Cancer%E2%80%90Related+Pathways&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Tutino%2C+Valeria&rft.au=De+Nunzio%2C+Valentina&rft.au=Milella%2C+Rosa+Anna&rft.au=Gasparro%2C+Marica&rft.date=2021-11-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=65&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmnfr.202100428&rft.externalDBID=10.1002%252Fmnfr.202100428&rft.externalDocID=MNFR4085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |