Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Nai...
Saved in:
Published in | Cellular microbiology Vol. 9; no. 10; pp. 2344 - 2357 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2007
Blackwell Publishing Ltd Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways. |
---|---|
AbstractList | Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways. Summary Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)‐α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF‐α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways. Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-alpha or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-alpha and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways. |
Author | Dietrich, William F Coers, Jörn Fontana, Mary F Vance, Russell E |
Author_xml | – sequence: 1 fullname: Coers, Jörn – sequence: 2 fullname: Vance, Russell E – sequence: 3 fullname: Fontana, Mary F – sequence: 4 fullname: Dietrich, William F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17506816$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUc2O0zAYtNAi9gdeASwO3Jr1T-LYEhdUwVKpgATs2XIdO3VJ7KydqNs34LHXoVWROOGLR59nRt94rsGFD94AADEqcD63uwKXjCwqTkhBEKoLhASjxeMzcHV-uDhjXF6C65R2CGFWY_wCXOK6QoxjdgV-fzdpjE6PLngYLFybNiPTdQoO3kx9GLYu4zaG_biFzsNe6ZiHqjUJRvMwuZjBuDVQB69NHE0D1dlNH8bwy3kDlW_gV-WG6nY1KAuTa73qOudbOKhxu1eH9BI8t6pL5tXpvgH3nz7-XH5erL_drZYf1gtdspouOMv5G8E4EZRUttHUKN1oocoNbqhAda3ZpmG2EqXgG2S4ZrbUmFJeCUGtpjfg3dF3iOFhyuFl75KeA3sTpiSzM8O0Zpn49h_iLkwxr50kQbTijGKSSfxIyp-SUjRWDtH1Kh4kRnKuSu7k3IKcG5FzVfJPVfIxS1-f_KdNb5q_wlM3mfD-SNi7zhz-21guv6wyyPI3R7lVQao2uiTvfxCEKUI8748r-gSF4K7G |
CitedBy_id | crossref_primary_10_1016_j_clim_2008_08_011 crossref_primary_10_1016_j_celrep_2018_06_012 crossref_primary_10_1053_j_gastro_2008_04_022 crossref_primary_10_1016_j_jmb_2019_07_028 crossref_primary_10_1111_j_1462_5822_2011_01707_x crossref_primary_10_1371_journal_ppat_1000665 crossref_primary_10_1371_journal_ppat_1003414 crossref_primary_10_2217_fmb_13_139 crossref_primary_10_1073_pnas_1615771114 crossref_primary_10_1111_j_1600_065X_2008_00730_x crossref_primary_10_1016_j_ijmm_2017_10_004 crossref_primary_10_1371_journal_ppat_1004222 crossref_primary_10_1128_IAI_01077_10 crossref_primary_10_1128_IAI_01546_08 crossref_primary_10_3389_fimmu_2023_1119564 crossref_primary_10_15252_embr_201540726 crossref_primary_10_1016_j_aggene_2017_07_003 crossref_primary_10_1016_j_mib_2008_12_004 crossref_primary_10_1051_medsci_20132911013 crossref_primary_10_1080_21505594_2021_2022861 crossref_primary_10_1016_j_molmed_2018_06_004 crossref_primary_10_1128_IAI_00070_09 crossref_primary_10_1139_cjm_2022_0119 crossref_primary_10_4049_jimmunol_180_11_7558 crossref_primary_10_1111_j_1462_5822_2007_01099_x crossref_primary_10_3389_fimmu_2015_00447 crossref_primary_10_3390_microorganisms10010141 crossref_primary_10_1152_physrev_00009_2014 crossref_primary_10_1093_femsle_fnaa053 crossref_primary_10_3389_fcimb_2017_00528 crossref_primary_10_1007_s12016_017_8613_8 crossref_primary_10_1073_pnas_1321700111 crossref_primary_10_1038_nri3133 crossref_primary_10_1371_journal_ppat_1005408 crossref_primary_10_1128_IAI_00991_16 crossref_primary_10_1111_cmi_12840 crossref_primary_10_1111_j_1600_065X_2011_01037_x crossref_primary_10_1016_j_micinf_2014_08_008 crossref_primary_10_1111_cmi_12168 crossref_primary_10_1038_nrd2783 crossref_primary_10_1371_journal_ppat_1006502 crossref_primary_10_1111_j_1462_5822_2011_01646_x crossref_primary_10_1016_j_micinf_2011_09_002 crossref_primary_10_1128_mBio_02629_19 crossref_primary_10_1371_journal_ppat_1011088 crossref_primary_10_1111_j_1462_5822_2008_01232_x crossref_primary_10_1128_JB_00176_18 crossref_primary_10_1371_journal_ppat_0030152 crossref_primary_10_1128_iai_00179_22 crossref_primary_10_1016_j_vaccine_2010_06_022 crossref_primary_10_1164_rccm_200909_1427SO crossref_primary_10_1111_j_1462_5822_2008_01145_x crossref_primary_10_1128_CMR_00052_09 crossref_primary_10_1007_s00251_007_0248_0 crossref_primary_10_1128_IAI_01187_10 crossref_primary_10_1007_s10495_009_0320_3 crossref_primary_10_15252_embj_201489055 crossref_primary_10_1002_JLB_3A0218_069RR crossref_primary_10_4049_jimmunol_1000128 crossref_primary_10_4049_jimmunol_1200415 crossref_primary_10_1371_journal_pone_0023135 crossref_primary_10_1074_jbc_C700181200 crossref_primary_10_1128_IAI_01536_15 crossref_primary_10_1111_cmi_13151 crossref_primary_10_1007_s10495_009_0312_3 crossref_primary_10_1371_journal_ppat_1005591 crossref_primary_10_1073_pnas_2122872119 crossref_primary_10_1371_journal_ppat_1007886 crossref_primary_10_4049_jimmunol_1100088 crossref_primary_10_1074_jbc_M109_018283 crossref_primary_10_1111_cmi_12971 crossref_primary_10_1128_IAI_00044_19 crossref_primary_10_4049_jimmunol_1401139 crossref_primary_10_1016_j_devcel_2008_09_012 crossref_primary_10_1038_nmicrobiol_2016_54 crossref_primary_10_1128_mBio_02345_16 crossref_primary_10_1371_journal_ppat_1010767 crossref_primary_10_4049_jimmunol_180_10_6808 crossref_primary_10_1016_j_molcel_2022_11_022 crossref_primary_10_1189_jlb_3MR0916_380R crossref_primary_10_1038_ni_1646 crossref_primary_10_1128_spectrum_02338_22 crossref_primary_10_1089_adt_2014_577 crossref_primary_10_1128_msphere_00454_22 crossref_primary_10_1007_s00018_016_2422_8 crossref_primary_10_1016_j_immuni_2007_10_002 crossref_primary_10_1128_IAI_00750_16 crossref_primary_10_1111_j_1462_5822_2010_01478_x crossref_primary_10_1002_eji_200838804 crossref_primary_10_1128_JB_00755_18 crossref_primary_10_1016_j_immuni_2011_05_007 crossref_primary_10_1128_IAI_00557_12 crossref_primary_10_1128_AAC_01248_15 crossref_primary_10_1371_journal_ppat_1002731 crossref_primary_10_3389_fcimb_2017_00467 crossref_primary_10_1097_IPC_0b013e31821bc8f9 crossref_primary_10_1128_IAI_01540_15 |
Cites_doi | 10.1046/j.1525-1373.2000.22420.x 10.1073/pnas.0603338103 10.1016/j.tim.2005.05.007 10.1111/j.1462-5822.2005.00509.x 10.1074/jbc.M604933200 10.1038/ni1412 10.1371/journal.ppat.0020018 10.1016/j.it.2005.06.004 10.1128/IAI.61.12.4980-4983.1993 10.1086/504525 10.1128/IAI.63.9.3253-3258.1995 10.1038/ni1346 10.1016/S1074-7613(00)80596-8 10.1371/journal.ppat.0010034 10.1086/516530 10.1038/sj.cdd.4401850 10.1126/science.1096158 10.4049/jimmunol.176.10.6162 10.1128/IAI.73.1.352-361.2005 10.1016/j.molcel.2006.05.012 10.1073/pnas.95.4.1669 10.1074/jbc.M604638200 10.1152/physiolgenomics.00128.2004 10.1002/jlb.49.1.98 10.1128/IAI.02049-05 10.4049/jimmunol.170.8.4209 10.1146/annurev.immunol.23.021704.115616 10.1042/BJ20031506 10.1172/JCI111493 10.1073/pnas.93.17.9090 10.1016/j.immuni.2004.10.001 10.1128/IAI.73.5.3166-3171.2005 10.1128/IAI.56.2.370-375.1988 10.1038/ng1065 10.1016/j.tim.2005.06.004 10.1084/jem.20060766 10.1111/j.1365-2958.1993.tb01092.x 10.1084/jem.20051659 10.1128/IAI.72.11.6221-6229.2004 10.1128/IAI.69.6.3605-3610.2001 10.1016/S0960-9822(02)01359-3 10.1038/ni1344 10.1084/jem.194.8.1081 10.1126/science.1096645 10.1128/CMR.15.3.506-526.2002 10.1038/sj.cr.7310019 10.1016/j.immuni.2005.12.003 10.1146/annurev.biochem.74.082803.133347 10.1186/gb-2005-6-11-r92 10.1038/ni1112 10.1128/IAI.64.8.3236-3243.1996 10.1128/IAI.73.12.7967-7976.2005 10.1084/jem.158.4.1319 10.1038/ni1305 10.1111/j.1462-5822.2006.00839.x 10.1038/15687 10.1128/IAI.73.4.1907-1916.2005 10.1242/jcs.114.24.4637 10.1074/jbc.M209677200 10.4049/jimmunol.173.2.1266 |
ContentType | Journal Article |
Copyright | 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.1111/j.1462-5822.2007.00963.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-5822 |
EndPage | 2357 |
ExternalDocumentID | 1330591561 10_1111_j_1462_5822_2007_00963_x 17506816 CMI963 US201300803515 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: K22 AI70739-01 – fundername: NIAID NIH HHS grantid: R01 AI062827 – fundername: NIAID NIH HHS grantid: R01 AI049987 – fundername: NIAID NIH HHS grantid: F32 AI62017 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAJEY AAONW AAVGM AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABPTK ABPVW ABWRO ACAHQ ACCFJ ACFBH ACGFS ACMXC ACPOU ACPRK ACSCC ACXME ADAWD ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIACR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBD EBS EDH EJD EMB EMK EMOBN ESTFP ESX F00 F01 F04 F5P FBQ FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MM. MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT ACXQS ADZMN AIURR OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c4673-86111d96829325fdc3eacdc9a4b1d39077c6bd6f59498b0e8c6f4c13385993fc3 |
IEDL.DBID | DR2 |
ISSN | 1462-5814 |
IngestDate | Sun Sep 29 07:39:55 EDT 2024 Thu Oct 10 20:15:40 EDT 2024 Fri Dec 06 02:57:11 EST 2024 Sat Sep 28 07:47:00 EDT 2024 Sat Aug 24 00:44:57 EDT 2024 Wed Dec 27 18:59:18 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4673-86111d96829325fdc3eacdc9a4b1d39077c6bd6f59498b0e8c6f4c13385993fc3 |
Notes | http://dx.doi.org/10.1111/j.1462-5822.2007.00963.x Authors contributed equally to this study. Present address: Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-5822.2007.00963.x |
PMID | 17506816 |
PQID | 203586312 |
PQPubID | 46747 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_68261376 proquest_journals_203586312 crossref_primary_10_1111_j_1462_5822_2007_00963_x pubmed_primary_17506816 wiley_primary_10_1111_j_1462_5822_2007_00963_x_CMI963 fao_agris_US201300803515 |
PublicationCentury | 2000 |
PublicationDate | October 2007 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: October 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Cellular microbiology |
PublicationTitleAlternate | Cell Microbiol |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Hindawi Limited |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Hindawi Limited |
References | 1993; 7 2004; 21 2002; 15 1983; 158 2006; 74 1993; 61 2003; 13 2006; 176 2004; 5 2005; 26 2003; 278 2005; 23 1995; 63 2004; 72 1991; 49 2006; 24 2006; 22 2004; 173 2005; 73 2005; 74 2006; 281 2006; 203 1998; 95 1996; 64 1992; 4 2006; 13 2006; 16 1997; 176 2004; 381 2006; 9 2006; 7 1996; 93 1988; 56 2003; 170 1999; 1 2006; 193 2006; 2 2004; 304 2001; 69 2003; 33 1984; 74 2001; 194 2004; 19 2000; 224 2005; 7 2005; 6 2005; 1 2001; 114 1998; 9 2006; 103 2005; 13 b45_773 Nash T.W. (b12_769) 1984; 74 b9_765 b29_733 b47_782 Sporri R. (b50_780) 2006; 176 b54_730 b21_787 b30_743 b24_790 b2_777 b53_739 b49_754 b36_774 b28_766 b8_752 Schiavoni G. (b44_775) 2004; 173 b59_761 b52_738 b20_745 b46_746 b1_763 b61_737 b11_747 b7_785 Tilney L.G. (b14_784) 2001; 114 Tateda K. (b32_783) 2003; 170 b10_749 b4_758 b55_731 b42_771 b5_756 Yamamoto Y. (b18_788) 1988; 56 Fujio H. (b31_753) 1992; 4 b39_762 b56_768 Skerrett S.J. (b41_779) 1997; 176 b43_781 b17_742 b19_744 b60_789 b27_751 b57_770 Klein T.W. (b35_759) 1991; 49 b6_760 b23_772 b33_786 b3_757 Matsiota-Bernard P. (b37_764) 1993; 61 b48_734 b26_750 Brieland J.K. (b40_740) 1995; 63 b13_755 b34_732 b51_735 b25_748 b58_741 Skerrett S.J. (b38_778) 1996; 64 b15_736 b22_767 b16_776 |
References_xml | – volume: 74 start-page: 771 year: 1984 end-page: 782 article-title: Interaction between the Legionnaires' disease bacterium ( ) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone publication-title: J Clin Invest – volume: 7 start-page: 7 year: 1993 end-page: 19 article-title: Two distinct defects in intracellular growth complemented by a single genetic locus in publication-title: Mol Microbiol – volume: 6 start-page: R92 year: 2005 article-title: The interferon‐inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage publication-title: Genome Biol – volume: 176 start-page: 1019 year: 1997 end-page: 1028 article-title: Antibody‐mediated depletion of tumor necrosis factor‐alpha impairs pulmonary host defenses to publication-title: J Infect Dis – volume: 304 start-page: 1014 year: 2004 end-page: 1018 article-title: Regulation of phagosome maturation by signals from Toll‐like receptors publication-title: Science – volume: 193 start-page: 1693 year: 2006 end-page: 1702 article-title: Myeloid differentiation primary response gene (88)‐ and Toll‐like receptor 2‐deficient mice are susceptible to infection with aerosolized publication-title: J Infect Dis – volume: 7 start-page: 765 year: 2005 end-page: 778 article-title: Autophagy is an immediate macrophage response to publication-title: Cell Microbiol – volume: 170 start-page: 4209 year: 2003 end-page: 4216 article-title: Hyperoxia mediates acute lung injury and increased lethality in murine : the role of apoptosis publication-title: J Immunol – volume: 4 start-page: 183 year: 1992 end-page: 191 article-title: Investigation of the role of macrophages and endogenous interferon‐gamma in natural resistance of mice against infection publication-title: FEMS Microbiol Immunol – volume: 13 start-page: 328 year: 2005 end-page: 335 article-title: Naip5/Birc1e and susceptibility to publication-title: Trends Microbiol – volume: 203 start-page: 2177 year: 2006 end-page: 2189 article-title: NF‐kappaB translocation prevents host cell death after low‐dose challenge by publication-title: J Exp Med – volume: 74 start-page: 355 year: 2005 end-page: 383 article-title: NOD‐LRR proteins: role in host–microbial interactions and inflammatory disease publication-title: Annu Rev Biochem – volume: 69 start-page: 3605 year: 2001 end-page: 3610 article-title: Differential induction of gamma interferon in ‐infected macrophages from BALB/c and A/J mice publication-title: Infect Immun – volume: 7 start-page: 1250 year: 2006 end-page: 1257 article-title: Nod‐like proteins in immunity, inflammation and disease publication-title: Nat Immunol – volume: 73 start-page: 3166 year: 2005 end-page: 3171 article-title: Maturation of the ‐containing phagosome into a phagolysosome within gamma interferon‐activated macrophages publication-title: Infect Immun – volume: 1 start-page: 279 year: 2005 end-page: 285 article-title: NOD2 and Toll‐like receptors are nonredundant recognition systems of publication-title: Plos Pathog – volume: 281 start-page: 35217 year: 2006 end-page: 35223 article-title: Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF publication-title: J Biol Chem – volume: 63 start-page: 3253 year: 1995 end-page: 3258 article-title: regulation of replicative lung infection by endogenous tumor necrosis factor alpha and nitric oxide publication-title: Infect Immun – volume: 95 start-page: 1669 year: 1998 end-page: 1674 article-title: Host cell killing and bacterial conjugation require overlapping sets of genes within a 22‐kb region of the genome publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 93 year: 2006 end-page: 103 article-title: Recognition of cytosolic DNA activates an IRF3‐dependent innate immune response publication-title: Immunity – volume: 7 start-page: 569 year: 2006 end-page: 575 article-title: Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf publication-title: Nat Immunol – volume: 73 start-page: 7967 year: 2005 end-page: 7976 article-title: Synergistic effect of Nod1 and Nod2 agonists with Toll‐like receptor agonists on human dendritic cells to generate interleukin‐12 and T helper type 1 cells publication-title: Infect Immun – volume: 203 start-page: 1093 year: 2006 end-page: 1104 article-title: Cytosolic recognition of flagellin by mouse macrophages restricts infection publication-title: J Exp Med – volume: 9 start-page: 910 year: 2006 end-page: 923 article-title: Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by publication-title: Cell Microbiol – volume: 72 start-page: 6221 year: 2004 end-page: 6229 article-title: Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to publication-title: Infect Immun – volume: 173 start-page: 1266 year: 2004 end-page: 1275 article-title: Type I IFN protects permissive macrophages from infection through an IFN‐gamma‐independent pathway publication-title: J Immunol – volume: 1 start-page: 451 year: 1999 end-page: 453 article-title: Modulation of phagosome biogenesis by creates an organelle permissive for intracellular growth publication-title: Nat Cell Biol – volume: 103 start-page: 14092 year: 2006 end-page: 14097 article-title: The p47 GTPases Igtp and Irgb10 map to the susceptibility locus Ctrq‐3 and mediate cellular resistance in mice publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 461 year: 2004 end-page: 465 article-title: Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction publication-title: Immunity – volume: 194 start-page: 1081 year: 2001 end-page: 1096 article-title: is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus publication-title: J Exp Med – volume: 19 start-page: 319 year: 2004 end-page: 330 article-title: The induction of macrophage gene expression by LPS predominantly utilizes MyD88‐independent signaling cascades publication-title: Physiol Genomics – volume: 33 start-page: 55 year: 2003 end-page: 60 article-title: Birc1e is the gene within the Lgn1 locus associated with resistance to publication-title: Nat Genet – volume: 15 start-page: 506 year: 2002 end-page: 526 article-title: Legionella and Legionnaires' disease: 25 years of investigation publication-title: Clin Microbiol Rev – volume: 9 start-page: 143 year: 1998 end-page: 150 article-title: Targeted disruption of the MyD88 gene results in loss of IL‐1‐ and IL‐18‐mediated function publication-title: Immunity – volume: 93 start-page: 9090 year: 1996 end-page: 9095 article-title: Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF‐kappa B publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 4637 year: 2001 end-page: 4650 article-title: How the parasitic bacterium modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane publication-title: J Cell Sci – volume: 56 start-page: 370 year: 1988 end-page: 375 article-title: Growth of in thioglycolate‐elicited peritoneal macrophages from A/J mice publication-title: Infect Immun – volume: 158 start-page: 1319 year: 1983 end-page: 1331 article-title: Formation of a novel phagosome by the Legionnaires' disease bacterium ( ) in human monocytes publication-title: J Exp Med – volume: 26 start-page: 447 year: 2005 end-page: 454 article-title: NLRs join TLRs as innate sensors of pathogens publication-title: Trends Immunol – volume: 176 start-page: 6162 year: 2006 end-page: 6171 article-title: MyD88‐dependent IFN‐gamma production by NK cells is key for control of infection publication-title: J Immunol – volume: 16 start-page: 141 year: 2006 end-page: 147 article-title: Antiviral innate immunity pathways publication-title: Cell Res – volume: 13 start-page: 816 year: 2006 end-page: 825 article-title: TLR signaling publication-title: Cell Death Differ – volume: 23 start-page: 387 year: 2005 end-page: 414 article-title: CATERPILLER: a novel gene family important in immunity, cell death, and diseases publication-title: Annu Rev Immunol – volume: 7 start-page: 318 year: 2006 end-page: 325 article-title: The Birc1e cytosolic pattern‐recognition receptor contributes to the detection and control of infection publication-title: Nat Immunol – volume: 2 start-page: e18 year: 2006 article-title: Flagellin‐deficient Legionella mutants evade caspase‐1‐ and Naip5‐mediated macrophage immunity publication-title: PLoS Pathog – volume: 61 start-page: 4980 year: 1993 end-page: 4983 article-title: Involvement of tumor necrosis factor alpha in intracellular multiplication of in human monocytes publication-title: Infect Immun – volume: 13 start-page: 381 year: 2005 end-page: 388 article-title: NACHT‐LRR proteins (NLRs) in bacterial infection and immunity publication-title: Trends Microbiol – volume: 64 start-page: 3236 year: 1996 end-page: 3243 article-title: Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to publication-title: Infect Immun – volume: 304 start-page: 1500 year: 2004 end-page: 1502 article-title: Regulation of an ATG7‐beclin 1 program of autophagic cell death by caspase‐8 publication-title: Science – volume: 224 start-page: 191 year: 2000 end-page: 196 article-title: Tumor necrosis factor induces resistance of macrophages to infection publication-title: Proc Soc Exp Biol Medical – volume: 73 start-page: 352 year: 2005 end-page: 361 article-title: Differential roles of Toll‐like receptors 2 and 4 in in vitro responses of macrophages to publication-title: Infect Immun – volume: 278 start-page: 1450 year: 2003 end-page: 1456 article-title: BMS‐345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF‐kappa B‐dependent transcription in mice publication-title: J Biol Chem – volume: 49 start-page: 98 year: 1991 end-page: 103 article-title: Interferon‐gamma induced resistance to in susceptible A/J mouse macrophages publication-title: J Leukoc Biol – volume: 22 start-page: 561 year: 2006 end-page: 569 article-title: Toll‐like receptors and RNA helicases: two parallel ways to trigger antiviral responses publication-title: Mol Cell – volume: 281 start-page: 36173 year: 2006 end-page: 36179 article-title: induced IFNbeta in lung epithelial cells via IPS‐1 and IRF3 which also control bacterial replication publication-title: J Biol Chem – volume: 74 start-page: 3325 year: 2006 end-page: 3333 article-title: MyD88‐dependent responses involving Toll‐like receptor 2 are important for protection and clearance of in a mouse model of Legionnaires' disease publication-title: Infect Immun – volume: 13 start-page: 27 year: 2003 end-page: 36 article-title: Naip5 affects host susceptibility to the intracellular pathogen publication-title: Curr Biol – volume: 381 start-page: 213 year: 2004 end-page: 219 article-title: Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses publication-title: Biochem J – volume: 7 start-page: 576 year: 2006 end-page: 582 article-title: Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages publication-title: Nat Immunol – volume: 5 start-page: 987 year: 2004 end-page: 995 article-title: Toll‐like receptor control of the adaptive immune responses publication-title: Nat Immunol – volume: 73 start-page: 1907 year: 2005 end-page: 1916 article-title: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells publication-title: Infect Immun – ident: b39_762 doi: 10.1046/j.1525-1373.2000.22420.x – ident: b61_737 doi: 10.1073/pnas.0603338103 – ident: b10_749 doi: 10.1016/j.tim.2005.05.007 – ident: b34_732 doi: 10.1111/j.1462-5822.2005.00509.x – ident: b29_733 doi: 10.1074/jbc.M604933200 – ident: b8_752 doi: 10.1038/ni1412 – ident: b23_772 doi: 10.1371/journal.ppat.0020018 – ident: b1_763 doi: 10.1016/j.it.2005.06.004 – volume: 61 start-page: 4980 year: 1993 ident: b37_764 publication-title: Infect Immun doi: 10.1128/IAI.61.12.4980-4983.1993 contributor: fullname: Matsiota-Bernard P. – ident: b49_754 doi: 10.1086/504525 – volume: 63 start-page: 3253 year: 1995 ident: b40_740 publication-title: Infect Immun doi: 10.1128/IAI.63.9.3253-3258.1995 contributor: fullname: Brieland J.K. – ident: b27_751 doi: 10.1038/ni1346 – ident: b54_730 doi: 10.1016/S1074-7613(00)80596-8 – ident: b46_746 doi: 10.1371/journal.ppat.0010034 – volume: 176 start-page: 1019 year: 1997 ident: b41_779 publication-title: J Infect Dis doi: 10.1086/516530 contributor: fullname: Skerrett S.J. – ident: b4_758 doi: 10.1038/sj.cdd.4401850 – ident: b53_739 doi: 10.1126/science.1096158 – volume: 176 start-page: 6162 year: 2006 ident: b50_780 publication-title: J Immunol doi: 10.4049/jimmunol.176.10.6162 contributor: fullname: Sporri R. – ident: b55_731 doi: 10.1128/IAI.73.1.352-361.2005 – ident: b9_765 doi: 10.1016/j.molcel.2006.05.012 – ident: b16_776 doi: 10.1073/pnas.95.4.1669 – ident: b42_771 doi: 10.1074/jbc.M604638200 – ident: b52_738 doi: 10.1152/physiolgenomics.00128.2004 – volume: 49 start-page: 98 year: 1991 ident: b35_759 publication-title: J Leukoc Biol doi: 10.1002/jlb.49.1.98 contributor: fullname: Klein T.W. – ident: b48_734 doi: 10.1128/IAI.02049-05 – volume: 170 start-page: 4209 year: 2003 ident: b32_783 publication-title: J Immunol doi: 10.4049/jimmunol.170.8.4209 contributor: fullname: Tateda K. – ident: b7_785 doi: 10.1146/annurev.immunol.23.021704.115616 – ident: b30_743 doi: 10.1042/BJ20031506 – volume: 74 start-page: 771 year: 1984 ident: b12_769 publication-title: J Clin Invest doi: 10.1172/JCI111493 contributor: fullname: Nash T.W. – ident: b57_770 doi: 10.1073/pnas.93.17.9090 – ident: b56_768 doi: 10.1016/j.immuni.2004.10.001 – ident: b36_774 doi: 10.1128/IAI.73.5.3166-3171.2005 – volume: 56 start-page: 370 year: 1988 ident: b18_788 publication-title: Infect Immun doi: 10.1128/IAI.56.2.370-375.1988 contributor: fullname: Yamamoto Y. – ident: b20_745 doi: 10.1038/ng1065 – ident: b6_760 doi: 10.1016/j.tim.2005.06.004 – ident: b59_761 doi: 10.1084/jem.20060766 – ident: b15_736 doi: 10.1111/j.1365-2958.1993.tb01092.x – ident: b22_767 doi: 10.1084/jem.20051659 – ident: b19_744 doi: 10.1128/IAI.72.11.6221-6229.2004 – ident: b45_773 doi: 10.1128/IAI.69.6.3605-3610.2001 – volume: 4 start-page: 183 year: 1992 ident: b31_753 publication-title: FEMS Microbiol Immunol contributor: fullname: Fujio H. – ident: b21_787 doi: 10.1016/S0960-9822(02)01359-3 – ident: b28_766 doi: 10.1038/ni1344 – ident: b33_786 doi: 10.1084/jem.194.8.1081 – ident: b60_789 doi: 10.1126/science.1096645 – ident: b11_747 doi: 10.1128/CMR.15.3.506-526.2002 – ident: b2_777 doi: 10.1038/sj.cr.7310019 – ident: b43_781 doi: 10.1016/j.immuni.2005.12.003 – ident: b5_756 doi: 10.1146/annurev.biochem.74.082803.133347 – ident: b51_735 doi: 10.1186/gb-2005-6-11-r92 – ident: b3_757 doi: 10.1038/ni1112 – volume: 64 start-page: 3236 year: 1996 ident: b38_778 publication-title: Infect Immun doi: 10.1128/IAI.64.8.3236-3243.1996 contributor: fullname: Skerrett S.J. – ident: b47_782 doi: 10.1128/IAI.73.12.7967-7976.2005 – ident: b13_755 doi: 10.1084/jem.158.4.1319 – ident: b24_790 doi: 10.1038/ni1305 – ident: b26_750 doi: 10.1111/j.1462-5822.2006.00839.x – ident: b17_742 doi: 10.1038/15687 – ident: b25_748 doi: 10.1128/IAI.73.4.1907-1916.2005 – volume: 114 start-page: 4637 year: 2001 ident: b14_784 publication-title: J Cell Sci doi: 10.1242/jcs.114.24.4637 contributor: fullname: Tilney L.G. – ident: b58_741 doi: 10.1074/jbc.M209677200 – volume: 173 start-page: 1266 year: 2004 ident: b44_775 publication-title: J Immunol doi: 10.4049/jimmunol.173.2.1266 contributor: fullname: Schiavoni G. |
SSID | ssj0016711 |
Score | 2.2924583 |
Snippet | Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The... Summary Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive.... Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila , whereas A/J macrophages are highly permissive. The... |
SourceID | proquest crossref pubmed wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2344 |
SubjectTerms | Animals Apoptosis Regulatory Proteins - genetics Apoptosis Regulatory Proteins - physiology Calcium-Binding Proteins - genetics Calcium-Binding Proteins - physiology Cells, Cultured Interferon Type I - biosynthesis Interferon Type I - physiology Legionella pneumophila - physiology Luminescent Measurements Macrophages - metabolism Macrophages - microbiology Mice Mice, Inbred C57BL Mice, Knockout Neuronal Apoptosis-Inhibitory Protein - genetics Neuronal Apoptosis-Inhibitory Protein - physiology Signal Transduction Tumor Necrosis Factor-alpha - biosynthesis Tumor Necrosis Factor-alpha - physiology |
Title | Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-5822.2007.00963.x https://www.ncbi.nlm.nih.gov/pubmed/17506816 https://www.proquest.com/docview/203586312 https://search.proquest.com/docview/68261376 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBa2DgN2Wfeu267TYVdnsSXL8rGPBe2w9tAtQG-GrEcTBLWN2MGW_oL-7JKykyFFD8OwmwBBgmiR4kfrE0nI59gC6LZWhJm0RcjBIYTKxDoU4G70ULnY-SoR5xfidMy_XSVXPf8J38J0-SHWP9zQMvx5jQauiuahkUMgBR5ulYkQlGmAeDJiKbL7Ti7XmaQikfpSvP2QiG-Seh6daMNTPXWqegyEbmJa75RG22S2EqfjoswGi7YY6NsHmR7_j7yvyMseu9LDTtlekye2fEOed9Usl2_J3aXFIiD-oQStHP1ukeuM7Cpal3ZxU9WTKbSvIfBvJ3Ra0huF9cMmcKI1dG6RkgwNAKRU41vKOWBhqtaz6WVbzUAIqkpDL9S0Tr6c1cpRJKAon1icYnXlX2rZvCPj0defx6dhX-gh1HBOs1AKENFkQgL2iBNnNAN3YHSmeBEZBuF7qkVhhEsynsliaKUWjmuMrhOAV06z92SrBIF2CE2HTsL-Sh2bhFseK6mdFqlhSkVOcRmQaLWped3l88g34qA4xy-M1TnxYh6-cP47IDuw-7m6hmM3H_-I8bIXgDYDKBiQvZVK5L3xNzCWJVKwKA7Ip3UvWC1exajSVosmB1EBR6UiIB86PfqzGIBwQkbQk3ht-OtV5sfnZ9DY_cdxe-SF_23teYr7ZKudL-xHwFttcUCeHR6dHI0OvEXdA9gnHMo |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCNEL79KlQH3guiH7crxHVKgSSHIojdSb5fXaTVS6u0o2KuEX8LP5ZjcJStUDQtysXdnyeGY839jjGcbehxag21rhp9JmfgyD4Os8NL6AuTFd7ULXVIkYjUV_En-5SC7W5YDoLUybH2J74Eaa0ezXpOB0IH1by-FJwcRtUhFCmjoAlA-g_QHFd3062-aSCvApaJ8aUZ8g3g3ruXOkHVt13-nyLhi6i2obs3T6hH3fENRGo1x1lnXWMT9v5Xr8TxQ_ZY_X8JV_bOXtGbtni-fsYVvQcvWC_TqzVAekeSvBS8eHlsKdKcCKV4VdXpfVdIb2JXz_espnBb_WVEJsik1tweeWopLRACblhp5TzgGHud6OZlZ1eQUquC5yPtazKvkwqLTjFIOim9zinAos3-jV4iWbnH4-P-n761oPvgGzIl8KkJinQgJ-hInLTQSLkJtUx1mQR_Dge0ZkuXBJGqcy61pphIsNOdgJEJYz0QHbK0DQIeO9rpNgsDRhnsQ2DrU0zoheHmkdOB1LjwUbrqqqTemhdlyhUNEKU4FOupvHCqsfHjsE-5W-xM6rJt9Cuu8F1o6ABj12tJEJtdb_BfpGiRRREHrsePsXiku3Mbqw5XKhQCqgVE947FUrSH8mAxQnZIA_SSMOfz1LdTIaoPH6H_sds0f989FQDQfjr0dsvznFbsIW37C9er60bwG_6uxdo1a_AcXLH3k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEGgvfG8LG8wPvKY0TuI4j2ijWmGr0KDS3izHH2tVLYnaVFD-Av5szk7aqdMeEOLNSmTLZ9_H7-zzHcB7ahB0G8PCnJsiTNAghFJTFTI0N6ovLbW-SsTFiJ2Nk89X6VUX_-TewrT5ITYHbk4yvL52Al5re1fI0ZFCC7fORIjM1EM8-Qi_5y6P_unlJpVUxDJfi7frEyXbUT33jrRlqh5aWd2HQrdBrbdKg2cwW9PTBqPMesum6Klfd1I9_h-Cn8PTDrySjy23vYAHpnwJj9tylqtX8PvSuCog_qUEqSw5Ny7Y2YVXkbo0y5uqnkyxfY2efzMh05LcSFdAbIIqbUHmxsUkYwMRKVHuMeUcwTCRm9HUqqlmSASRpSYjOa3TD8NaWuIiUKTPLE5ceeUfcrV4DePBp-8nZ2FX6SFUqKjjkDMkUeeMI_igqdUqRnugVS6TItIx-u-ZYoVmNs2TnBd9wxWziXLudYr4yqp4D3ZKJOgASNa3HPeXK6rTxCRUcmUVy3QsZWRlwgOI1psq6jahh9hyhKhwK-zKc7qbeVxh8TOAA9x9Ia9R74rxN-puexFpx4gFAzhcs4TopH-BfeOUsziiARxv_qLYursYWZpquRBIKgKpjAWw3_LR7WQQwzEe4Z_Uc8Nfz1KcXAyx8eYf-x3Dk6-nA3E-HH05hF1_hO1jFo9gp5kvzVvEXk3xzgvVHzzjHig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restriction+of+Legionella+pneumophila+growth+in+macrophages+requires+the+concerted+action+of+cytokine+and+Naip5%2FIpaf+signalling+pathways&rft.jtitle=Cellular+microbiology&rft.au=Coers%2C+J%C3%B6rn&rft.au=Vance%2C+Russell+E&rft.au=Fontana%2C+Mary+F&rft.au=Dietrich%2C+William+F&rft.date=2007-10-01&rft.issn=1462-5814&rft.volume=9&rft.issue=10&rft.spage=2344&rft_id=info:doi/10.1111%2Fj.1462-5822.2007.00963.x&rft_id=info%3Apmid%2F17506816&rft.externalDocID=17506816 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon |