Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways

Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Nai...

Full description

Saved in:
Bibliographic Details
Published inCellular microbiology Vol. 9; no. 10; pp. 2344 - 2357
Main Authors Coers, Jörn, Vance, Russell E, Fontana, Mary F, Dietrich, William F
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2007
Blackwell Publishing Ltd
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.
AbstractList Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.
Summary Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)‐α or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF‐α and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-alpha or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-alpha and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.
Author Dietrich, William F
Coers, Jörn
Fontana, Mary F
Vance, Russell E
Author_xml – sequence: 1
  fullname: Coers, Jörn
– sequence: 2
  fullname: Vance, Russell E
– sequence: 3
  fullname: Fontana, Mary F
– sequence: 4
  fullname: Dietrich, William F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17506816$$D View this record in MEDLINE/PubMed
BookMark eNqNUc2O0zAYtNAi9gdeASwO3Jr1T-LYEhdUwVKpgATs2XIdO3VJ7KydqNs34LHXoVWROOGLR59nRt94rsGFD94AADEqcD63uwKXjCwqTkhBEKoLhASjxeMzcHV-uDhjXF6C65R2CGFWY_wCXOK6QoxjdgV-fzdpjE6PLngYLFybNiPTdQoO3kx9GLYu4zaG_biFzsNe6ZiHqjUJRvMwuZjBuDVQB69NHE0D1dlNH8bwy3kDlW_gV-WG6nY1KAuTa73qOudbOKhxu1eH9BI8t6pL5tXpvgH3nz7-XH5erL_drZYf1gtdspouOMv5G8E4EZRUttHUKN1oocoNbqhAda3ZpmG2EqXgG2S4ZrbUmFJeCUGtpjfg3dF3iOFhyuFl75KeA3sTpiSzM8O0Zpn49h_iLkwxr50kQbTijGKSSfxIyp-SUjRWDtH1Kh4kRnKuSu7k3IKcG5FzVfJPVfIxS1-f_KdNb5q_wlM3mfD-SNi7zhz-21guv6wyyPI3R7lVQao2uiTvfxCEKUI8748r-gSF4K7G
CitedBy_id crossref_primary_10_1016_j_clim_2008_08_011
crossref_primary_10_1016_j_celrep_2018_06_012
crossref_primary_10_1053_j_gastro_2008_04_022
crossref_primary_10_1016_j_jmb_2019_07_028
crossref_primary_10_1111_j_1462_5822_2011_01707_x
crossref_primary_10_1371_journal_ppat_1000665
crossref_primary_10_1371_journal_ppat_1003414
crossref_primary_10_2217_fmb_13_139
crossref_primary_10_1073_pnas_1615771114
crossref_primary_10_1111_j_1600_065X_2008_00730_x
crossref_primary_10_1016_j_ijmm_2017_10_004
crossref_primary_10_1371_journal_ppat_1004222
crossref_primary_10_1128_IAI_01077_10
crossref_primary_10_1128_IAI_01546_08
crossref_primary_10_3389_fimmu_2023_1119564
crossref_primary_10_15252_embr_201540726
crossref_primary_10_1016_j_aggene_2017_07_003
crossref_primary_10_1016_j_mib_2008_12_004
crossref_primary_10_1051_medsci_20132911013
crossref_primary_10_1080_21505594_2021_2022861
crossref_primary_10_1016_j_molmed_2018_06_004
crossref_primary_10_1128_IAI_00070_09
crossref_primary_10_1139_cjm_2022_0119
crossref_primary_10_4049_jimmunol_180_11_7558
crossref_primary_10_1111_j_1462_5822_2007_01099_x
crossref_primary_10_3389_fimmu_2015_00447
crossref_primary_10_3390_microorganisms10010141
crossref_primary_10_1152_physrev_00009_2014
crossref_primary_10_1093_femsle_fnaa053
crossref_primary_10_3389_fcimb_2017_00528
crossref_primary_10_1007_s12016_017_8613_8
crossref_primary_10_1073_pnas_1321700111
crossref_primary_10_1038_nri3133
crossref_primary_10_1371_journal_ppat_1005408
crossref_primary_10_1128_IAI_00991_16
crossref_primary_10_1111_cmi_12840
crossref_primary_10_1111_j_1600_065X_2011_01037_x
crossref_primary_10_1016_j_micinf_2014_08_008
crossref_primary_10_1111_cmi_12168
crossref_primary_10_1038_nrd2783
crossref_primary_10_1371_journal_ppat_1006502
crossref_primary_10_1111_j_1462_5822_2011_01646_x
crossref_primary_10_1016_j_micinf_2011_09_002
crossref_primary_10_1128_mBio_02629_19
crossref_primary_10_1371_journal_ppat_1011088
crossref_primary_10_1111_j_1462_5822_2008_01232_x
crossref_primary_10_1128_JB_00176_18
crossref_primary_10_1371_journal_ppat_0030152
crossref_primary_10_1128_iai_00179_22
crossref_primary_10_1016_j_vaccine_2010_06_022
crossref_primary_10_1164_rccm_200909_1427SO
crossref_primary_10_1111_j_1462_5822_2008_01145_x
crossref_primary_10_1128_CMR_00052_09
crossref_primary_10_1007_s00251_007_0248_0
crossref_primary_10_1128_IAI_01187_10
crossref_primary_10_1007_s10495_009_0320_3
crossref_primary_10_15252_embj_201489055
crossref_primary_10_1002_JLB_3A0218_069RR
crossref_primary_10_4049_jimmunol_1000128
crossref_primary_10_4049_jimmunol_1200415
crossref_primary_10_1371_journal_pone_0023135
crossref_primary_10_1074_jbc_C700181200
crossref_primary_10_1128_IAI_01536_15
crossref_primary_10_1111_cmi_13151
crossref_primary_10_1007_s10495_009_0312_3
crossref_primary_10_1371_journal_ppat_1005591
crossref_primary_10_1073_pnas_2122872119
crossref_primary_10_1371_journal_ppat_1007886
crossref_primary_10_4049_jimmunol_1100088
crossref_primary_10_1074_jbc_M109_018283
crossref_primary_10_1111_cmi_12971
crossref_primary_10_1128_IAI_00044_19
crossref_primary_10_4049_jimmunol_1401139
crossref_primary_10_1016_j_devcel_2008_09_012
crossref_primary_10_1038_nmicrobiol_2016_54
crossref_primary_10_1128_mBio_02345_16
crossref_primary_10_1371_journal_ppat_1010767
crossref_primary_10_4049_jimmunol_180_10_6808
crossref_primary_10_1016_j_molcel_2022_11_022
crossref_primary_10_1189_jlb_3MR0916_380R
crossref_primary_10_1038_ni_1646
crossref_primary_10_1128_spectrum_02338_22
crossref_primary_10_1089_adt_2014_577
crossref_primary_10_1128_msphere_00454_22
crossref_primary_10_1007_s00018_016_2422_8
crossref_primary_10_1016_j_immuni_2007_10_002
crossref_primary_10_1128_IAI_00750_16
crossref_primary_10_1111_j_1462_5822_2010_01478_x
crossref_primary_10_1002_eji_200838804
crossref_primary_10_1128_JB_00755_18
crossref_primary_10_1016_j_immuni_2011_05_007
crossref_primary_10_1128_IAI_00557_12
crossref_primary_10_1128_AAC_01248_15
crossref_primary_10_1371_journal_ppat_1002731
crossref_primary_10_3389_fcimb_2017_00467
crossref_primary_10_1097_IPC_0b013e31821bc8f9
crossref_primary_10_1128_IAI_01540_15
Cites_doi 10.1046/j.1525-1373.2000.22420.x
10.1073/pnas.0603338103
10.1016/j.tim.2005.05.007
10.1111/j.1462-5822.2005.00509.x
10.1074/jbc.M604933200
10.1038/ni1412
10.1371/journal.ppat.0020018
10.1016/j.it.2005.06.004
10.1128/IAI.61.12.4980-4983.1993
10.1086/504525
10.1128/IAI.63.9.3253-3258.1995
10.1038/ni1346
10.1016/S1074-7613(00)80596-8
10.1371/journal.ppat.0010034
10.1086/516530
10.1038/sj.cdd.4401850
10.1126/science.1096158
10.4049/jimmunol.176.10.6162
10.1128/IAI.73.1.352-361.2005
10.1016/j.molcel.2006.05.012
10.1073/pnas.95.4.1669
10.1074/jbc.M604638200
10.1152/physiolgenomics.00128.2004
10.1002/jlb.49.1.98
10.1128/IAI.02049-05
10.4049/jimmunol.170.8.4209
10.1146/annurev.immunol.23.021704.115616
10.1042/BJ20031506
10.1172/JCI111493
10.1073/pnas.93.17.9090
10.1016/j.immuni.2004.10.001
10.1128/IAI.73.5.3166-3171.2005
10.1128/IAI.56.2.370-375.1988
10.1038/ng1065
10.1016/j.tim.2005.06.004
10.1084/jem.20060766
10.1111/j.1365-2958.1993.tb01092.x
10.1084/jem.20051659
10.1128/IAI.72.11.6221-6229.2004
10.1128/IAI.69.6.3605-3610.2001
10.1016/S0960-9822(02)01359-3
10.1038/ni1344
10.1084/jem.194.8.1081
10.1126/science.1096645
10.1128/CMR.15.3.506-526.2002
10.1038/sj.cr.7310019
10.1016/j.immuni.2005.12.003
10.1146/annurev.biochem.74.082803.133347
10.1186/gb-2005-6-11-r92
10.1038/ni1112
10.1128/IAI.64.8.3236-3243.1996
10.1128/IAI.73.12.7967-7976.2005
10.1084/jem.158.4.1319
10.1038/ni1305
10.1111/j.1462-5822.2006.00839.x
10.1038/15687
10.1128/IAI.73.4.1907-1916.2005
10.1242/jcs.114.24.4637
10.1074/jbc.M209677200
10.4049/jimmunol.173.2.1266
ContentType Journal Article
Copyright 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd
Copyright_xml – notice: 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.1111/j.1462-5822.2007.00963.x
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-5822
EndPage 2357
ExternalDocumentID 1330591561
10_1111_j_1462_5822_2007_00963_x
17506816
CMI963
US201300803515
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: K22 AI70739-01
– fundername: NIAID NIH HHS
  grantid: R01 AI062827
– fundername: NIAID NIH HHS
  grantid: R01 AI049987
– fundername: NIAID NIH HHS
  grantid: F32 AI62017
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAVGM
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACFBH
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXME
ADAWD
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIACR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FIJ
FUBAC
G-S
G.N
GODZA
GROUPED_DOAJ
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MM.
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RHX
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
ACXQS
ADZMN
AIURR
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c4673-86111d96829325fdc3eacdc9a4b1d39077c6bd6f59498b0e8c6f4c13385993fc3
IEDL.DBID DR2
ISSN 1462-5814
IngestDate Sun Sep 29 07:39:55 EDT 2024
Thu Oct 10 20:15:40 EDT 2024
Fri Dec 06 02:57:11 EST 2024
Sat Sep 28 07:47:00 EDT 2024
Sat Aug 24 00:44:57 EDT 2024
Wed Dec 27 18:59:18 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4673-86111d96829325fdc3eacdc9a4b1d39077c6bd6f59498b0e8c6f4c13385993fc3
Notes http://dx.doi.org/10.1111/j.1462-5822.2007.00963.x
Authors contributed equally to this study.
Present address: Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-5822.2007.00963.x
PMID 17506816
PQID 203586312
PQPubID 46747
PageCount 14
ParticipantIDs proquest_miscellaneous_68261376
proquest_journals_203586312
crossref_primary_10_1111_j_1462_5822_2007_00963_x
pubmed_primary_17506816
wiley_primary_10_1111_j_1462_5822_2007_00963_x_CMI963
fao_agris_US201300803515
PublicationCentury 2000
PublicationDate October 2007
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: October 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Cellular microbiology
PublicationTitleAlternate Cell Microbiol
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Hindawi Limited
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Hindawi Limited
References 1993; 7
2004; 21
2002; 15
1983; 158
2006; 74
1993; 61
2003; 13
2006; 176
2004; 5
2005; 26
2003; 278
2005; 23
1995; 63
2004; 72
1991; 49
2006; 24
2006; 22
2004; 173
2005; 73
2005; 74
2006; 281
2006; 203
1998; 95
1996; 64
1992; 4
2006; 13
2006; 16
1997; 176
2004; 381
2006; 9
2006; 7
1996; 93
1988; 56
2003; 170
1999; 1
2006; 193
2006; 2
2004; 304
2001; 69
2003; 33
1984; 74
2001; 194
2004; 19
2000; 224
2005; 7
2005; 6
2005; 1
2001; 114
1998; 9
2006; 103
2005; 13
b45_773
Nash T.W. (b12_769) 1984; 74
b9_765
b29_733
b47_782
Sporri R. (b50_780) 2006; 176
b54_730
b21_787
b30_743
b24_790
b2_777
b53_739
b49_754
b36_774
b28_766
b8_752
Schiavoni G. (b44_775) 2004; 173
b59_761
b52_738
b20_745
b46_746
b1_763
b61_737
b11_747
b7_785
Tilney L.G. (b14_784) 2001; 114
Tateda K. (b32_783) 2003; 170
b10_749
b4_758
b55_731
b42_771
b5_756
Yamamoto Y. (b18_788) 1988; 56
Fujio H. (b31_753) 1992; 4
b39_762
b56_768
Skerrett S.J. (b41_779) 1997; 176
b43_781
b17_742
b19_744
b60_789
b27_751
b57_770
Klein T.W. (b35_759) 1991; 49
b6_760
b23_772
b33_786
b3_757
Matsiota-Bernard P. (b37_764) 1993; 61
b48_734
b26_750
Brieland J.K. (b40_740) 1995; 63
b13_755
b34_732
b51_735
b25_748
b58_741
Skerrett S.J. (b38_778) 1996; 64
b15_736
b22_767
b16_776
References_xml – volume: 74
  start-page: 771
  year: 1984
  end-page: 782
  article-title: Interaction between the Legionnaires' disease bacterium ( ) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone
  publication-title: J Clin Invest
– volume: 7
  start-page: 7
  year: 1993
  end-page: 19
  article-title: Two distinct defects in intracellular growth complemented by a single genetic locus in
  publication-title: Mol Microbiol
– volume: 6
  start-page: R92
  year: 2005
  article-title: The interferon‐inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage
  publication-title: Genome Biol
– volume: 176
  start-page: 1019
  year: 1997
  end-page: 1028
  article-title: Antibody‐mediated depletion of tumor necrosis factor‐alpha impairs pulmonary host defenses to
  publication-title: J Infect Dis
– volume: 304
  start-page: 1014
  year: 2004
  end-page: 1018
  article-title: Regulation of phagosome maturation by signals from Toll‐like receptors
  publication-title: Science
– volume: 193
  start-page: 1693
  year: 2006
  end-page: 1702
  article-title: Myeloid differentiation primary response gene (88)‐ and Toll‐like receptor 2‐deficient mice are susceptible to infection with aerosolized
  publication-title: J Infect Dis
– volume: 7
  start-page: 765
  year: 2005
  end-page: 778
  article-title: Autophagy is an immediate macrophage response to
  publication-title: Cell Microbiol
– volume: 170
  start-page: 4209
  year: 2003
  end-page: 4216
  article-title: Hyperoxia mediates acute lung injury and increased lethality in murine : the role of apoptosis
  publication-title: J Immunol
– volume: 4
  start-page: 183
  year: 1992
  end-page: 191
  article-title: Investigation of the role of macrophages and endogenous interferon‐gamma in natural resistance of mice against infection
  publication-title: FEMS Microbiol Immunol
– volume: 13
  start-page: 328
  year: 2005
  end-page: 335
  article-title: Naip5/Birc1e and susceptibility to
  publication-title: Trends Microbiol
– volume: 203
  start-page: 2177
  year: 2006
  end-page: 2189
  article-title: NF‐kappaB translocation prevents host cell death after low‐dose challenge by
  publication-title: J Exp Med
– volume: 74
  start-page: 355
  year: 2005
  end-page: 383
  article-title: NOD‐LRR proteins: role in host–microbial interactions and inflammatory disease
  publication-title: Annu Rev Biochem
– volume: 69
  start-page: 3605
  year: 2001
  end-page: 3610
  article-title: Differential induction of gamma interferon in ‐infected macrophages from BALB/c and A/J mice
  publication-title: Infect Immun
– volume: 7
  start-page: 1250
  year: 2006
  end-page: 1257
  article-title: Nod‐like proteins in immunity, inflammation and disease
  publication-title: Nat Immunol
– volume: 73
  start-page: 3166
  year: 2005
  end-page: 3171
  article-title: Maturation of the ‐containing phagosome into a phagolysosome within gamma interferon‐activated macrophages
  publication-title: Infect Immun
– volume: 1
  start-page: 279
  year: 2005
  end-page: 285
  article-title: NOD2 and Toll‐like receptors are nonredundant recognition systems of
  publication-title: Plos Pathog
– volume: 281
  start-page: 35217
  year: 2006
  end-page: 35223
  article-title: Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF
  publication-title: J Biol Chem
– volume: 63
  start-page: 3253
  year: 1995
  end-page: 3258
  article-title: regulation of replicative lung infection by endogenous tumor necrosis factor alpha and nitric oxide
  publication-title: Infect Immun
– volume: 95
  start-page: 1669
  year: 1998
  end-page: 1674
  article-title: Host cell killing and bacterial conjugation require overlapping sets of genes within a 22‐kb region of the genome
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 93
  year: 2006
  end-page: 103
  article-title: Recognition of cytosolic DNA activates an IRF3‐dependent innate immune response
  publication-title: Immunity
– volume: 7
  start-page: 569
  year: 2006
  end-page: 575
  article-title: Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf
  publication-title: Nat Immunol
– volume: 73
  start-page: 7967
  year: 2005
  end-page: 7976
  article-title: Synergistic effect of Nod1 and Nod2 agonists with Toll‐like receptor agonists on human dendritic cells to generate interleukin‐12 and T helper type 1 cells
  publication-title: Infect Immun
– volume: 203
  start-page: 1093
  year: 2006
  end-page: 1104
  article-title: Cytosolic recognition of flagellin by mouse macrophages restricts infection
  publication-title: J Exp Med
– volume: 9
  start-page: 910
  year: 2006
  end-page: 923
  article-title: Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by
  publication-title: Cell Microbiol
– volume: 72
  start-page: 6221
  year: 2004
  end-page: 6229
  article-title: Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to
  publication-title: Infect Immun
– volume: 173
  start-page: 1266
  year: 2004
  end-page: 1275
  article-title: Type I IFN protects permissive macrophages from infection through an IFN‐gamma‐independent pathway
  publication-title: J Immunol
– volume: 1
  start-page: 451
  year: 1999
  end-page: 453
  article-title: Modulation of phagosome biogenesis by creates an organelle permissive for intracellular growth
  publication-title: Nat Cell Biol
– volume: 103
  start-page: 14092
  year: 2006
  end-page: 14097
  article-title: The p47 GTPases Igtp and Irgb10 map to the susceptibility locus Ctrq‐3 and mediate cellular resistance in mice
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 461
  year: 2004
  end-page: 465
  article-title: Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction
  publication-title: Immunity
– volume: 194
  start-page: 1081
  year: 2001
  end-page: 1096
  article-title: is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus
  publication-title: J Exp Med
– volume: 19
  start-page: 319
  year: 2004
  end-page: 330
  article-title: The induction of macrophage gene expression by LPS predominantly utilizes MyD88‐independent signaling cascades
  publication-title: Physiol Genomics
– volume: 33
  start-page: 55
  year: 2003
  end-page: 60
  article-title: Birc1e is the gene within the Lgn1 locus associated with resistance to
  publication-title: Nat Genet
– volume: 15
  start-page: 506
  year: 2002
  end-page: 526
  article-title: Legionella and Legionnaires' disease: 25 years of investigation
  publication-title: Clin Microbiol Rev
– volume: 9
  start-page: 143
  year: 1998
  end-page: 150
  article-title: Targeted disruption of the MyD88 gene results in loss of IL‐1‐ and IL‐18‐mediated function
  publication-title: Immunity
– volume: 93
  start-page: 9090
  year: 1996
  end-page: 9095
  article-title: Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF‐kappa B
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 4637
  year: 2001
  end-page: 4650
  article-title: How the parasitic bacterium modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane
  publication-title: J Cell Sci
– volume: 56
  start-page: 370
  year: 1988
  end-page: 375
  article-title: Growth of in thioglycolate‐elicited peritoneal macrophages from A/J mice
  publication-title: Infect Immun
– volume: 158
  start-page: 1319
  year: 1983
  end-page: 1331
  article-title: Formation of a novel phagosome by the Legionnaires' disease bacterium ( ) in human monocytes
  publication-title: J Exp Med
– volume: 26
  start-page: 447
  year: 2005
  end-page: 454
  article-title: NLRs join TLRs as innate sensors of pathogens
  publication-title: Trends Immunol
– volume: 176
  start-page: 6162
  year: 2006
  end-page: 6171
  article-title: MyD88‐dependent IFN‐gamma production by NK cells is key for control of infection
  publication-title: J Immunol
– volume: 16
  start-page: 141
  year: 2006
  end-page: 147
  article-title: Antiviral innate immunity pathways
  publication-title: Cell Res
– volume: 13
  start-page: 816
  year: 2006
  end-page: 825
  article-title: TLR signaling
  publication-title: Cell Death Differ
– volume: 23
  start-page: 387
  year: 2005
  end-page: 414
  article-title: CATERPILLER: a novel gene family important in immunity, cell death, and diseases
  publication-title: Annu Rev Immunol
– volume: 7
  start-page: 318
  year: 2006
  end-page: 325
  article-title: The Birc1e cytosolic pattern‐recognition receptor contributes to the detection and control of infection
  publication-title: Nat Immunol
– volume: 2
  start-page: e18
  year: 2006
  article-title: Flagellin‐deficient Legionella mutants evade caspase‐1‐ and Naip5‐mediated macrophage immunity
  publication-title: PLoS Pathog
– volume: 61
  start-page: 4980
  year: 1993
  end-page: 4983
  article-title: Involvement of tumor necrosis factor alpha in intracellular multiplication of in human monocytes
  publication-title: Infect Immun
– volume: 13
  start-page: 381
  year: 2005
  end-page: 388
  article-title: NACHT‐LRR proteins (NLRs) in bacterial infection and immunity
  publication-title: Trends Microbiol
– volume: 64
  start-page: 3236
  year: 1996
  end-page: 3243
  article-title: Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to
  publication-title: Infect Immun
– volume: 304
  start-page: 1500
  year: 2004
  end-page: 1502
  article-title: Regulation of an ATG7‐beclin 1 program of autophagic cell death by caspase‐8
  publication-title: Science
– volume: 224
  start-page: 191
  year: 2000
  end-page: 196
  article-title: Tumor necrosis factor induces resistance of macrophages to infection
  publication-title: Proc Soc Exp Biol Medical
– volume: 73
  start-page: 352
  year: 2005
  end-page: 361
  article-title: Differential roles of Toll‐like receptors 2 and 4 in in vitro responses of macrophages to
  publication-title: Infect Immun
– volume: 278
  start-page: 1450
  year: 2003
  end-page: 1456
  article-title: BMS‐345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF‐kappa B‐dependent transcription in mice
  publication-title: J Biol Chem
– volume: 49
  start-page: 98
  year: 1991
  end-page: 103
  article-title: Interferon‐gamma induced resistance to in susceptible A/J mouse macrophages
  publication-title: J Leukoc Biol
– volume: 22
  start-page: 561
  year: 2006
  end-page: 569
  article-title: Toll‐like receptors and RNA helicases: two parallel ways to trigger antiviral responses
  publication-title: Mol Cell
– volume: 281
  start-page: 36173
  year: 2006
  end-page: 36179
  article-title: induced IFNbeta in lung epithelial cells via IPS‐1 and IRF3 which also control bacterial replication
  publication-title: J Biol Chem
– volume: 74
  start-page: 3325
  year: 2006
  end-page: 3333
  article-title: MyD88‐dependent responses involving Toll‐like receptor 2 are important for protection and clearance of in a mouse model of Legionnaires' disease
  publication-title: Infect Immun
– volume: 13
  start-page: 27
  year: 2003
  end-page: 36
  article-title: Naip5 affects host susceptibility to the intracellular pathogen
  publication-title: Curr Biol
– volume: 381
  start-page: 213
  year: 2004
  end-page: 219
  article-title: Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses
  publication-title: Biochem J
– volume: 7
  start-page: 576
  year: 2006
  end-page: 582
  article-title: Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages
  publication-title: Nat Immunol
– volume: 5
  start-page: 987
  year: 2004
  end-page: 995
  article-title: Toll‐like receptor control of the adaptive immune responses
  publication-title: Nat Immunol
– volume: 73
  start-page: 1907
  year: 2005
  end-page: 1916
  article-title: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells
  publication-title: Infect Immun
– ident: b39_762
  doi: 10.1046/j.1525-1373.2000.22420.x
– ident: b61_737
  doi: 10.1073/pnas.0603338103
– ident: b10_749
  doi: 10.1016/j.tim.2005.05.007
– ident: b34_732
  doi: 10.1111/j.1462-5822.2005.00509.x
– ident: b29_733
  doi: 10.1074/jbc.M604933200
– ident: b8_752
  doi: 10.1038/ni1412
– ident: b23_772
  doi: 10.1371/journal.ppat.0020018
– ident: b1_763
  doi: 10.1016/j.it.2005.06.004
– volume: 61
  start-page: 4980
  year: 1993
  ident: b37_764
  publication-title: Infect Immun
  doi: 10.1128/IAI.61.12.4980-4983.1993
  contributor:
    fullname: Matsiota-Bernard P.
– ident: b49_754
  doi: 10.1086/504525
– volume: 63
  start-page: 3253
  year: 1995
  ident: b40_740
  publication-title: Infect Immun
  doi: 10.1128/IAI.63.9.3253-3258.1995
  contributor:
    fullname: Brieland J.K.
– ident: b27_751
  doi: 10.1038/ni1346
– ident: b54_730
  doi: 10.1016/S1074-7613(00)80596-8
– ident: b46_746
  doi: 10.1371/journal.ppat.0010034
– volume: 176
  start-page: 1019
  year: 1997
  ident: b41_779
  publication-title: J Infect Dis
  doi: 10.1086/516530
  contributor:
    fullname: Skerrett S.J.
– ident: b4_758
  doi: 10.1038/sj.cdd.4401850
– ident: b53_739
  doi: 10.1126/science.1096158
– volume: 176
  start-page: 6162
  year: 2006
  ident: b50_780
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.10.6162
  contributor:
    fullname: Sporri R.
– ident: b55_731
  doi: 10.1128/IAI.73.1.352-361.2005
– ident: b9_765
  doi: 10.1016/j.molcel.2006.05.012
– ident: b16_776
  doi: 10.1073/pnas.95.4.1669
– ident: b42_771
  doi: 10.1074/jbc.M604638200
– ident: b52_738
  doi: 10.1152/physiolgenomics.00128.2004
– volume: 49
  start-page: 98
  year: 1991
  ident: b35_759
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.49.1.98
  contributor:
    fullname: Klein T.W.
– ident: b48_734
  doi: 10.1128/IAI.02049-05
– volume: 170
  start-page: 4209
  year: 2003
  ident: b32_783
  publication-title: J Immunol
  doi: 10.4049/jimmunol.170.8.4209
  contributor:
    fullname: Tateda K.
– ident: b7_785
  doi: 10.1146/annurev.immunol.23.021704.115616
– ident: b30_743
  doi: 10.1042/BJ20031506
– volume: 74
  start-page: 771
  year: 1984
  ident: b12_769
  publication-title: J Clin Invest
  doi: 10.1172/JCI111493
  contributor:
    fullname: Nash T.W.
– ident: b57_770
  doi: 10.1073/pnas.93.17.9090
– ident: b56_768
  doi: 10.1016/j.immuni.2004.10.001
– ident: b36_774
  doi: 10.1128/IAI.73.5.3166-3171.2005
– volume: 56
  start-page: 370
  year: 1988
  ident: b18_788
  publication-title: Infect Immun
  doi: 10.1128/IAI.56.2.370-375.1988
  contributor:
    fullname: Yamamoto Y.
– ident: b20_745
  doi: 10.1038/ng1065
– ident: b6_760
  doi: 10.1016/j.tim.2005.06.004
– ident: b59_761
  doi: 10.1084/jem.20060766
– ident: b15_736
  doi: 10.1111/j.1365-2958.1993.tb01092.x
– ident: b22_767
  doi: 10.1084/jem.20051659
– ident: b19_744
  doi: 10.1128/IAI.72.11.6221-6229.2004
– ident: b45_773
  doi: 10.1128/IAI.69.6.3605-3610.2001
– volume: 4
  start-page: 183
  year: 1992
  ident: b31_753
  publication-title: FEMS Microbiol Immunol
  contributor:
    fullname: Fujio H.
– ident: b21_787
  doi: 10.1016/S0960-9822(02)01359-3
– ident: b28_766
  doi: 10.1038/ni1344
– ident: b33_786
  doi: 10.1084/jem.194.8.1081
– ident: b60_789
  doi: 10.1126/science.1096645
– ident: b11_747
  doi: 10.1128/CMR.15.3.506-526.2002
– ident: b2_777
  doi: 10.1038/sj.cr.7310019
– ident: b43_781
  doi: 10.1016/j.immuni.2005.12.003
– ident: b5_756
  doi: 10.1146/annurev.biochem.74.082803.133347
– ident: b51_735
  doi: 10.1186/gb-2005-6-11-r92
– ident: b3_757
  doi: 10.1038/ni1112
– volume: 64
  start-page: 3236
  year: 1996
  ident: b38_778
  publication-title: Infect Immun
  doi: 10.1128/IAI.64.8.3236-3243.1996
  contributor:
    fullname: Skerrett S.J.
– ident: b47_782
  doi: 10.1128/IAI.73.12.7967-7976.2005
– ident: b13_755
  doi: 10.1084/jem.158.4.1319
– ident: b24_790
  doi: 10.1038/ni1305
– ident: b26_750
  doi: 10.1111/j.1462-5822.2006.00839.x
– ident: b17_742
  doi: 10.1038/15687
– ident: b25_748
  doi: 10.1128/IAI.73.4.1907-1916.2005
– volume: 114
  start-page: 4637
  year: 2001
  ident: b14_784
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.24.4637
  contributor:
    fullname: Tilney L.G.
– ident: b58_741
  doi: 10.1074/jbc.M209677200
– volume: 173
  start-page: 1266
  year: 2004
  ident: b44_775
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.2.1266
  contributor:
    fullname: Schiavoni G.
SSID ssj0016711
Score 2.2924583
Snippet Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The...
Summary Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive....
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila , whereas A/J macrophages are highly permissive. The...
SourceID proquest
crossref
pubmed
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2344
SubjectTerms Animals
Apoptosis Regulatory Proteins - genetics
Apoptosis Regulatory Proteins - physiology
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - physiology
Cells, Cultured
Interferon Type I - biosynthesis
Interferon Type I - physiology
Legionella pneumophila - physiology
Luminescent Measurements
Macrophages - metabolism
Macrophages - microbiology
Mice
Mice, Inbred C57BL
Mice, Knockout
Neuronal Apoptosis-Inhibitory Protein - genetics
Neuronal Apoptosis-Inhibitory Protein - physiology
Signal Transduction
Tumor Necrosis Factor-alpha - biosynthesis
Tumor Necrosis Factor-alpha - physiology
Title Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-5822.2007.00963.x
https://www.ncbi.nlm.nih.gov/pubmed/17506816
https://www.proquest.com/docview/203586312
https://search.proquest.com/docview/68261376
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBa2DgN2Wfeu267TYVdnsSXL8rGPBe2w9tAtQG-GrEcTBLWN2MGW_oL-7JKykyFFD8OwmwBBgmiR4kfrE0nI59gC6LZWhJm0RcjBIYTKxDoU4G70ULnY-SoR5xfidMy_XSVXPf8J38J0-SHWP9zQMvx5jQauiuahkUMgBR5ulYkQlGmAeDJiKbL7Ti7XmaQikfpSvP2QiG-Seh6daMNTPXWqegyEbmJa75RG22S2EqfjoswGi7YY6NsHmR7_j7yvyMseu9LDTtlekye2fEOed9Usl2_J3aXFIiD-oQStHP1ukeuM7Cpal3ZxU9WTKbSvIfBvJ3Ra0huF9cMmcKI1dG6RkgwNAKRU41vKOWBhqtaz6WVbzUAIqkpDL9S0Tr6c1cpRJKAon1icYnXlX2rZvCPj0defx6dhX-gh1HBOs1AKENFkQgL2iBNnNAN3YHSmeBEZBuF7qkVhhEsynsliaKUWjmuMrhOAV06z92SrBIF2CE2HTsL-Sh2bhFseK6mdFqlhSkVOcRmQaLWped3l88g34qA4xy-M1TnxYh6-cP47IDuw-7m6hmM3H_-I8bIXgDYDKBiQvZVK5L3xNzCWJVKwKA7Ip3UvWC1exajSVosmB1EBR6UiIB86PfqzGIBwQkbQk3ht-OtV5sfnZ9DY_cdxe-SF_23teYr7ZKudL-xHwFttcUCeHR6dHI0OvEXdA9gnHMo
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCNEL79KlQH3guiH7crxHVKgSSHIojdSb5fXaTVS6u0o2KuEX8LP5ZjcJStUDQtysXdnyeGY839jjGcbehxag21rhp9JmfgyD4Os8NL6AuTFd7ULXVIkYjUV_En-5SC7W5YDoLUybH2J74Eaa0ezXpOB0IH1by-FJwcRtUhFCmjoAlA-g_QHFd3062-aSCvApaJ8aUZ8g3g3ruXOkHVt13-nyLhi6i2obs3T6hH3fENRGo1x1lnXWMT9v5Xr8TxQ_ZY_X8JV_bOXtGbtni-fsYVvQcvWC_TqzVAekeSvBS8eHlsKdKcCKV4VdXpfVdIb2JXz_espnBb_WVEJsik1tweeWopLRACblhp5TzgGHud6OZlZ1eQUquC5yPtazKvkwqLTjFIOim9zinAos3-jV4iWbnH4-P-n761oPvgGzIl8KkJinQgJ-hInLTQSLkJtUx1mQR_Dge0ZkuXBJGqcy61pphIsNOdgJEJYz0QHbK0DQIeO9rpNgsDRhnsQ2DrU0zoheHmkdOB1LjwUbrqqqTemhdlyhUNEKU4FOupvHCqsfHjsE-5W-xM6rJt9Cuu8F1o6ABj12tJEJtdb_BfpGiRRREHrsePsXiku3Mbqw5XKhQCqgVE947FUrSH8mAxQnZIA_SSMOfz1LdTIaoPH6H_sds0f989FQDQfjr0dsvznFbsIW37C9er60bwG_6uxdo1a_AcXLH3k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEGgvfG8LG8wPvKY0TuI4j2ijWmGr0KDS3izHH2tVLYnaVFD-Av5szk7aqdMeEOLNSmTLZ9_H7-zzHcB7ahB0G8PCnJsiTNAghFJTFTI0N6ovLbW-SsTFiJ2Nk89X6VUX_-TewrT5ITYHbk4yvL52Al5re1fI0ZFCC7fORIjM1EM8-Qi_5y6P_unlJpVUxDJfi7frEyXbUT33jrRlqh5aWd2HQrdBrbdKg2cwW9PTBqPMesum6Klfd1I9_h-Cn8PTDrySjy23vYAHpnwJj9tylqtX8PvSuCog_qUEqSw5Ny7Y2YVXkbo0y5uqnkyxfY2efzMh05LcSFdAbIIqbUHmxsUkYwMRKVHuMeUcwTCRm9HUqqlmSASRpSYjOa3TD8NaWuIiUKTPLE5ceeUfcrV4DePBp-8nZ2FX6SFUqKjjkDMkUeeMI_igqdUqRnugVS6TItIx-u-ZYoVmNs2TnBd9wxWziXLudYr4yqp4D3ZKJOgASNa3HPeXK6rTxCRUcmUVy3QsZWRlwgOI1psq6jahh9hyhKhwK-zKc7qbeVxh8TOAA9x9Ia9R74rxN-puexFpx4gFAzhcs4TopH-BfeOUsziiARxv_qLYursYWZpquRBIKgKpjAWw3_LR7WQQwzEe4Z_Uc8Nfz1KcXAyx8eYf-x3Dk6-nA3E-HH05hF1_hO1jFo9gp5kvzVvEXk3xzgvVHzzjHig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restriction+of+Legionella+pneumophila+growth+in+macrophages+requires+the+concerted+action+of+cytokine+and+Naip5%2FIpaf+signalling+pathways&rft.jtitle=Cellular+microbiology&rft.au=Coers%2C+J%C3%B6rn&rft.au=Vance%2C+Russell+E&rft.au=Fontana%2C+Mary+F&rft.au=Dietrich%2C+William+F&rft.date=2007-10-01&rft.issn=1462-5814&rft.volume=9&rft.issue=10&rft.spage=2344&rft_id=info:doi/10.1111%2Fj.1462-5822.2007.00963.x&rft_id=info%3Apmid%2F17506816&rft.externalDocID=17506816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon