Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets

To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail all...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 35; no. 3; pp. 171 - 180
Main Authors Höllt, T., Pezzotti, N., van Unen, V., Koning, F., Eisemann, E., Lelieveldt, B., Vilanova, A.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation.
AbstractList To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation.
Author Koning, F.
Vilanova, A.
Höllt, T.
Eisemann, E.
van Unen, V.
Pezzotti, N.
Lelieveldt, B.
Author_xml – sequence: 1
  givenname: T.
  surname: Höllt
  fullname: Höllt, T.
  organization: TU Delft, Delft, The Netherlands
– sequence: 2
  givenname: N.
  surname: Pezzotti
  fullname: Pezzotti, N.
  organization: TU Delft, Delft, The Netherlands
– sequence: 3
  givenname: V.
  surname: van Unen
  fullname: van Unen, V.
  organization: Leiden University Medical Center, Leiden, The Netherlands
– sequence: 4
  givenname: F.
  surname: Koning
  fullname: Koning, F.
  organization: Leiden University Medical Center, Leiden, The Netherlands
– sequence: 5
  givenname: E.
  surname: Eisemann
  fullname: Eisemann, E.
  organization: TU Delft, Delft, The Netherlands
– sequence: 6
  givenname: B.
  surname: Lelieveldt
  fullname: Lelieveldt, B.
  organization: TU Delft, Delft, The Netherlands
– sequence: 7
  givenname: A.
  surname: Vilanova
  fullname: Vilanova, A.
  organization: TU Delft, Delft, The Netherlands
BookMark eNqNkcFOGzEQhq2KSg0pB95gpV7awwZ7vbZ3eysLCYEogEDq0XKc2dTpxg62A83b1xDKARUJX2xL3zcez7-P9qyzgNAhwQOS1pFetANSVDX9gHqk5CKvOKv3UA-TdBaYsU9oP4QlxrgUnPXQtNlGF9ad8_A9G9sIXulo7iEbr1YbC1kDXZdd_QLr4nZt7CJrnc8myi8gu0nXDvIn4kRFFSCGz-hjq7oAB897H90OT2-bs3xyORo3Pya5Tj3RnCmo2LyYgxJcUT5TIGZlK3jNKaWF5rrQdcXndcEYnoHiCuNWCK5FSRhnjPbR113ZtXd3GwhRrkzQqRFlwW2CJBUtijKB-B1oeoTWRBQJ_fIKXbqNt-kficKkFDVOg-2jox2lvQvBQyu1iSoaZ6NXppMEy8ckZEpCPiWRjG-vjLU3K-W3_2Wfqz-YDrZvg7IZDf8Z-c4wIcKfF0P53zKNWjD5czqSx2f1-TG7uJYl_QtZpKbd
CitedBy_id crossref_primary_10_1109_TVCG_2023_3326582
crossref_primary_10_1111_aji_13511
crossref_primary_10_3389_fimmu_2020_623993
crossref_primary_10_1111_cgf_14292
crossref_primary_10_1073_pnas_1907921117
crossref_primary_10_1136_jitc_2021_003591
crossref_primary_10_1111_aji_13157
crossref_primary_10_1109_TVCG_2019_2934307
crossref_primary_10_3389_fimmu_2020_00164
crossref_primary_10_3390_ijms242115752
crossref_primary_10_1016_j_cag_2021_04_010
crossref_primary_10_3389_fimmu_2020_571300
crossref_primary_10_1109_TVCG_2019_2934547
crossref_primary_10_1111_cgf_14575
crossref_primary_10_1038_s41590_021_00911_7
crossref_primary_10_3389_fimmu_2023_1274116
crossref_primary_10_1136_gutjnl_2019_318672
crossref_primary_10_1016_j_csbj_2018_10_004
crossref_primary_10_1016_j_isci_2022_104648
crossref_primary_10_1038_s41551_022_00875_5
crossref_primary_10_1002_eji_201970107
crossref_primary_10_1016_j_csbj_2020_03_024
crossref_primary_10_1016_j_gastha_2024_08_023
crossref_primary_10_1111_cgf_14859
crossref_primary_10_1016_j_csbj_2021_05_032
crossref_primary_10_1084_jem_20171934
crossref_primary_10_1093_bioinformatics_btz180
crossref_primary_10_3389_fimmu_2021_719979
crossref_primary_10_1038_s41467_017_01689_9
crossref_primary_10_1186_s13075_021_02630_8
crossref_primary_10_1093_ibd_izae103
crossref_primary_10_1136_jitc_2022_004638
crossref_primary_10_1109_TVCG_2023_3346641
crossref_primary_10_1186_s40425_019_0700_3
crossref_primary_10_1002_cyto_a_23738
crossref_primary_10_3389_fimmu_2019_01515
crossref_primary_10_1158_0008_5472_CAN_22_0232
crossref_primary_10_1007_s10067_023_06637_1
crossref_primary_10_1016_j_jaut_2019_102361
crossref_primary_10_1038_s41467_021_24347_7
crossref_primary_10_1158_1078_0432_CCR_18_1749
crossref_primary_10_1109_TVCG_2017_2744318
crossref_primary_10_1109_TVCG_2017_2744358
crossref_primary_10_3390_ijms24098130
crossref_primary_10_1016_j_isci_2020_101954
crossref_primary_10_4049_jimmunol_1901530
crossref_primary_10_1186_s40478_021_01126_5
crossref_primary_10_1109_TVCG_2020_2986996
crossref_primary_10_3390_cells12242810
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_1109_TVCG_2019_2931299
crossref_primary_10_1038_s41590_018_0294_9
crossref_primary_10_1093_bioinformatics_btaa816
crossref_primary_10_1016_j_jcmgh_2022_03_005
crossref_primary_10_3389_fimmu_2019_02917
crossref_primary_10_3389_fimmu_2017_01953
crossref_primary_10_4049_jimmunol_1801640
crossref_primary_10_2139_ssrn_3921277
crossref_primary_10_3390_ijms242015134
crossref_primary_10_1002_cyto_a_24480
crossref_primary_10_3389_fimmu_2022_893803
crossref_primary_10_1186_s12859_017_1945_9
crossref_primary_10_3390_cells11071062
crossref_primary_10_1093_bioinformatics_btaa946
crossref_primary_10_3390_cancers13174311
crossref_primary_10_1038_s41586_019_1506_7
crossref_primary_10_1016_j_compbiomed_2024_109105
crossref_primary_10_1126_scitranslmed_aaw3703
crossref_primary_10_1172_jci_insight_170210
crossref_primary_10_1038_s41591_023_02758_x
crossref_primary_10_1371_journal_pone_0200818
crossref_primary_10_3390_biomedicines11102805
crossref_primary_10_1038_s41586_022_05593_1
crossref_primary_10_1101_gr_275569_121
crossref_primary_10_1111_cgf_13711
crossref_primary_10_1172_JCI128865
crossref_primary_10_3389_fimmu_2021_768113
crossref_primary_10_1158_0008_5472_CAN_21_3506
crossref_primary_10_1126_sciimmunol_abg3533
crossref_primary_10_3389_fimmu_2019_01932
crossref_primary_10_1038_s41598_023_35051_5
crossref_primary_10_1038_s41467_020_17260_y
crossref_primary_10_1109_TVCG_2022_3209408
crossref_primary_10_1515_cclm_2019_0858
Cites_doi 10.1016/j.immuni.2016.04.014
10.1073/pnas.1321405111
10.1109/TVCG.2009.167
10.1126/science.1259425
10.1039/B710510J
10.1109/TVCG.2011.185
10.1038/nbt.2594
10.1109/ICCV.2003.1238383
10.1016/j.stem.2015.01.015
10.1109/BioVis.2013.6664340
10.1111/j.1467-8659.2012.03110.x
10.1109/TVCG.2013.124
10.1111/j.1600-065X.2010.00965.x
10.1126/science.1198704
10.1038/nbt.1991
10.1109/34.1000236
10.1109/TVCG.2013.153
10.1109/PACIFICVIS.2011.5742387
10.1109/TVCG.2010.137
10.1145/2669557.2669559
10.1038/nature14274
10.1002/0471142956.cy1017s53
10.1038/nbt.2317
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7T5
H94
DOI 10.1111/cgf.12893
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Immunology Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Technology Research Database
AIDS and Cancer Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 180
ExternalDocumentID 4107220031
10_1111_cgf_12893
CGF12893
ark_67375_WNG_BH9JB5KQ_4
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
7T5
H94
ID FETCH-LOGICAL-c4673-5ae85d2dea76a36bae7b4f76963332c6c2c986d92550bea6a00f776c74156553
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 04:02:55 EDT 2025
Fri Jul 11 08:29:02 EDT 2025
Fri Jul 25 23:42:53 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Jul 01 02:23:06 EDT 2025
Wed Jan 22 16:22:47 EST 2025
Wed Oct 30 09:53:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4673-5ae85d2dea76a36bae7b4f76963332c6c2c986d92550bea6a00f776c74156553
Notes ark:/67375/WNG-BH9JB5KQ-4
ArticleID:CGF12893
istex:0753B974D91EE1066B51FCA20563EC8C95B0701A
Supporting Information
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1801479089
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1832245530
proquest_miscellaneous_1825539172
proquest_journals_1801479089
crossref_citationtrail_10_1111_cgf_12893
crossref_primary_10_1111_cgf_12893
wiley_primary_10_1111_cgf_12893_CGF12893
istex_primary_ark_67375_WNG_BH9JB5KQ_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06
June 2016
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Lujan E., Zunder E.R., Ng Y.H., Goronzy I.N., Nolan G.P., Wernig M.: Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521 (2015), 352-356. doi: 10.1038/nature14274. 3, 4
Meyer, Munzner T., DePace A., Pfister H.: MulteeSum: A tool for comparative spatial and temporal gene expression data. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 908-917. doi: 10.1109/TVCG.2010.137. 3
Rost R.J., Licea-Kane B.M., Ginsburg D., Kessenich J.M., Lichtenbelt B., Malan H., Weiblen M.: OpenGL Shading Language. Addison-Wesley Professional, 2009. 7
Sedlmair M., Munzner T., Tory M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2634-2643. doi: 10.1109/TVCG.2013.153. 5
Bostock M., Ogievetsky V., Heer J.: D3: Data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 7
Zunder E.R., Lujan E., Goltsev Y., Wernig M., Nolan G.P.: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 3 (2015), 323-337. doi: 10.1016/j.stem.2015.01.015. 3
van der Maaten L.: Learning a parametric embedding by preserving local structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) (2009), vol. 5, pp. 384-391. 5
Ornatsky O.I., Kinach R., Bandura D.R., Lou X., Tanner S.D., Baranov V.I., Nitz M., Winnik M.A.: Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 23 (2008), 463-469. doi: 10.1039/B710510J. 2
Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5 (2002), 603-619. doi: 10.1109/34.1000236. 6
Shekhar K., Brodin P., Davis M.M., Chakraborty A.K.: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences 111, 1 (2014), 202-207. doi: 10.1073/pnas.1321405111. 3, 6
Brehmer M., Munzner T.: A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. doi: 10.1109/TVCG.2013.124. 2, 4
Shreiner D., Sellers G., Kessenich J.M., Licea-Kane B.M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL. Addison-Wesley Professional, 2013. 7
Bendall S.C., Simonds E.F., Qiu P., Amir E.-a. D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., Balderas R.s., Plevritis S.K., Sachs K., Pe'er D., Tanner S.D., Nolan G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 6030 (2011), 687-696. doi: 10.1126/science.1198704. 3, 4
van Unen V., LI N., Molendijk I., Temurhan M., Höllt T., van der Meulen-de Jong A.E., Verspaget H.W., Mearin M.L., Mulder C.J., van Bergen J., Lelieveldt B. P. F., Koning F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44, in press (2016). doi: 10.1016/j.immuni.2016.04.014. 2, 8, 9
Qiu P., Simonds E.F., Bendall S.C., Gibbs Jr K.D., Bruggner R.V., Linderman M.D., Sachs K., Nolan G.P., Plevritis S.K.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 29 (2011), 886-891. doi: 10.1038/nbt.1991. 3, 4
Rothenberg E.V.: Lineage determination in the immune system. Immunological Reviews 238, 1 (2010), 5-11. doi: 10.1111/j.1600-065X.2010.00965.x. 4
Meyer M., Munzner T., Pfister H.: MizBee: A multiscale synteny browser. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 897-904. doi: 10.1109/TVCG.2009.167. 3
Amir E.-a. D., Davis K.L., Tadmor M.D., Simonds E.F., Levine J.H., Bendall S.C., Shenfeld D.K., Krishnaswamy S., Nolan G.P., Pe'er D.: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology 31 (2013), 545-552. doi: 10.1038/nbt.2594. 3
Bodenmiller B., Zunder E.R., Finck R., Chen T.J., Savig E.s., Bruggner R.V., Simonds E.F., Bendall S.C., Sachs K., Krutzik P.O., Nolan G.P.: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotechnology 30 (2012), 858-867. doi: 10.1038/nbt.2317. 3, 4
Lex A., Streit M., Schulz H., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: visual analysis of large-scale heterogeneous genomics data for cancer subtype characterization. Computer Graphics Forum 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 3
Spitzer M.H., Gherardini P.F., Fragiadakis G.K., Bhattacharya N., Yuan R.T., Hotson A.N., Finck R., Carmi Y., Zunder E.R., Fantl W.J., Bendall S.C., Engleman E.G., Nolan G.P.: An interactive reference framework for modeling a dynamic immune system. Science 349, 6244 (2015). doi: 10.1126/science.1259425. 3
van der Maaten L., Hinton G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579-2605. 3, 5
2010; 16
2015; 16
2011
2010
2015; 521
2009
2008; 9
2015; 349
2011; 17
2014; 111
2011; 332
2012; 31
2012; 30
2013; 19
2010; 238
2002; 24
2013; 31
2008; 23
2016
2014
2009; 5
2013
2003; 1
2011; 29
2009; 15
2016; 44
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
Shreiner D. (e_1_2_10_27_2) 2013
van der Maaten L. (e_1_2_10_29_2) 2008; 9
e_1_2_10_19_2
van der Maaten L. (e_1_2_10_28_2) 2009; 5
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
Rost R.J. (e_1_2_10_21_2) 2009
e_1_2_10_26_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Ornatsky O.I., Kinach R., Bandura D.R., Lou X., Tanner S.D., Baranov V.I., Nitz M., Winnik M.A.: Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 23 (2008), 463-469. doi: 10.1039/B710510J. 2
– reference: Sedlmair M., Munzner T., Tory M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2634-2643. doi: 10.1109/TVCG.2013.153. 5
– reference: Brehmer M., Munzner T.: A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. doi: 10.1109/TVCG.2013.124. 2, 4
– reference: Lex A., Streit M., Schulz H., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: visual analysis of large-scale heterogeneous genomics data for cancer subtype characterization. Computer Graphics Forum 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 3
– reference: Qiu P., Simonds E.F., Bendall S.C., Gibbs Jr K.D., Bruggner R.V., Linderman M.D., Sachs K., Nolan G.P., Plevritis S.K.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 29 (2011), 886-891. doi: 10.1038/nbt.1991. 3, 4
– reference: Rothenberg E.V.: Lineage determination in the immune system. Immunological Reviews 238, 1 (2010), 5-11. doi: 10.1111/j.1600-065X.2010.00965.x. 4
– reference: Shekhar K., Brodin P., Davis M.M., Chakraborty A.K.: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences 111, 1 (2014), 202-207. doi: 10.1073/pnas.1321405111. 3, 6
– reference: Lujan E., Zunder E.R., Ng Y.H., Goronzy I.N., Nolan G.P., Wernig M.: Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521 (2015), 352-356. doi: 10.1038/nature14274. 3, 4
– reference: Rost R.J., Licea-Kane B.M., Ginsburg D., Kessenich J.M., Lichtenbelt B., Malan H., Weiblen M.: OpenGL Shading Language. Addison-Wesley Professional, 2009. 7
– reference: van der Maaten L., Hinton G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579-2605. 3, 5
– reference: Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5 (2002), 603-619. doi: 10.1109/34.1000236. 6
– reference: Amir E.-a. D., Davis K.L., Tadmor M.D., Simonds E.F., Levine J.H., Bendall S.C., Shenfeld D.K., Krishnaswamy S., Nolan G.P., Pe'er D.: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology 31 (2013), 545-552. doi: 10.1038/nbt.2594. 3
– reference: Shreiner D., Sellers G., Kessenich J.M., Licea-Kane B.M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL. Addison-Wesley Professional, 2013. 7
– reference: van Unen V., LI N., Molendijk I., Temurhan M., Höllt T., van der Meulen-de Jong A.E., Verspaget H.W., Mearin M.L., Mulder C.J., van Bergen J., Lelieveldt B. P. F., Koning F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44, in press (2016). doi: 10.1016/j.immuni.2016.04.014. 2, 8, 9
– reference: van der Maaten L.: Learning a parametric embedding by preserving local structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) (2009), vol. 5, pp. 384-391. 5
– reference: Spitzer M.H., Gherardini P.F., Fragiadakis G.K., Bhattacharya N., Yuan R.T., Hotson A.N., Finck R., Carmi Y., Zunder E.R., Fantl W.J., Bendall S.C., Engleman E.G., Nolan G.P.: An interactive reference framework for modeling a dynamic immune system. Science 349, 6244 (2015). doi: 10.1126/science.1259425. 3
– reference: Bostock M., Ogievetsky V., Heer J.: D3: Data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 7
– reference: Bendall S.C., Simonds E.F., Qiu P., Amir E.-a. D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., Balderas R.s., Plevritis S.K., Sachs K., Pe'er D., Tanner S.D., Nolan G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 6030 (2011), 687-696. doi: 10.1126/science.1198704. 3, 4
– reference: Zunder E.R., Lujan E., Goltsev Y., Wernig M., Nolan G.P.: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 3 (2015), 323-337. doi: 10.1016/j.stem.2015.01.015. 3
– reference: Bodenmiller B., Zunder E.R., Finck R., Chen T.J., Savig E.s., Bruggner R.V., Simonds E.F., Bendall S.C., Sachs K., Krutzik P.O., Nolan G.P.: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotechnology 30 (2012), 858-867. doi: 10.1038/nbt.2317. 3, 4
– reference: Meyer, Munzner T., DePace A., Pfister H.: MulteeSum: A tool for comparative spatial and temporal gene expression data. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 908-917. doi: 10.1109/TVCG.2010.137. 3
– reference: Meyer M., Munzner T., Pfister H.: MizBee: A multiscale synteny browser. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 897-904. doi: 10.1109/TVCG.2009.167. 3
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  end-page: 619
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2009
– volume: 15
  start-page: 897
  issue: 6
  year: 2009
  end-page: 904
  article-title: MizBee: A multiscale synteny browser
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 349
  start-page: 6244
  year: 2015
  article-title: An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
– volume: 17
  start-page: 2301
  issue: 12
  year: 2011
  end-page: 2309
  article-title: D : Data‐driven documents
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 521
  start-page: 352
  year: 2015
  end-page: 356
  article-title: Early reprogramming regulators identified by prospective isolation and mass cytometry
  publication-title: Nature
– volume: 1
  start-page: 664
  year: 2003
  end-page: 671
  article-title: Improved fast Gauss transform and efficient kernel density estimation
– volume: 111
  start-page: 202
  issue: 1
  year: 2014
  end-page: 207
  article-title: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 279
  year: 2013
  end-page: 285
– year: 2016
– volume: 31
  start-page: 545
  year: 2013
  end-page: 552
  article-title: viSNE enables visualization of high dimensional single‐cell data and reveals phenotypic heterogeneity of leukemia
  publication-title: Nature Biotechnology
– start-page: 1
  year: 2014
  end-page: 8
– volume: 30
  start-page: 858
  year: 2012
  end-page: 867
  article-title: Multiplexed mass cytometry profiling of cellular states perturbed by small‐molecule regulators
  publication-title: Nature Biotechnology
– year: 2010
– volume: 31
  start-page: 1175
  issue: 3
  year: 2012
  end-page: 1184
  article-title: StratomeX: visual analysis of large‐scale heterogeneous genomics data for cancer subtype characterization
  publication-title: Computer Graphics Forum
– volume: 23
  start-page: 463
  year: 2008
  end-page: 469
  article-title: Development of analytical methods for multiplex bio‐assay with inductively coupled plasma mass spectrometry
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 16
  start-page: 908
  issue: 6
  year: 2010
  end-page: 917
  article-title: MulteeSum: A tool for comparative spatial and temporal gene expression data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 29
  start-page: 886
  year: 2011
  end-page: 891
  article-title: Extracting a cellular hierarchy from high‐dimensional cytometry data with SPADE
  publication-title: Nature Biotechnology
– volume: 332
  start-page: 687
  issue: 6030
  year: 2011
  end-page: 696
  article-title: Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
  publication-title: Science
– start-page: 1
  year: 2013
  end-page: 8
– volume: 16
  start-page: 323
  issue: 3
  year: 2015
  end-page: 337
  article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single‐cell mass cytometry
  publication-title: Cell Stem Cell
– start-page: 171
  year: 2011
  end-page: 178
– volume: 19
  start-page: 2376
  issue: 12
  year: 2013
  end-page: 2385
  article-title: A multi‐level typology of abstract visualization tasks
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 5
  start-page: 384
  year: 2009
  end-page: 391
  article-title: Learning a parametric embedding by preserving local structure
  publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS)
– volume: 44
  year: 2016
  article-title: Mass cytometry of the human mucosal immune system identifies tissue‐ and disease‐associated immune subsets
  publication-title: Immunity
– volume: 19
  start-page: 2634
  issue: 12
  year: 2013
  end-page: 2643
  article-title: Empirical guidance on scatterplot and dimension reduction technique choices
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 238
  start-page: 5
  issue: 1
  year: 2010
  end-page: 11
  article-title: Lineage determination in the immune system
  publication-title: Immunological Reviews
– year: 2013
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_2_10_29_2
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_30_2
  doi: 10.1016/j.immuni.2016.04.014
– ident: e_1_2_10_23_2
  doi: 10.1073/pnas.1321405111
– ident: e_1_2_10_11_2
– volume-title: OpenGL Shading Language
  year: 2009
  ident: e_1_2_10_21_2
– volume: 5
  start-page: 384
  year: 2009
  ident: e_1_2_10_28_2
  article-title: Learning a parametric embedding by preserving local structure
  publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS)
– ident: e_1_2_10_17_2
  doi: 10.1109/TVCG.2009.167
– ident: e_1_2_10_25_2
  doi: 10.1126/science.1259425
– volume-title: OpenGL Programming Guide: The Official Guide to Learning OpenGL
  year: 2013
  ident: e_1_2_10_27_2
– ident: e_1_2_10_18_2
  doi: 10.1039/B710510J
– ident: e_1_2_10_3_2
– ident: e_1_2_10_5_2
  doi: 10.1109/TVCG.2011.185
– ident: e_1_2_10_2_2
  doi: 10.1038/nbt.2594
– ident: e_1_2_10_31_2
  doi: 10.1109/ICCV.2003.1238383
– ident: e_1_2_10_32_2
  doi: 10.1016/j.stem.2015.01.015
– ident: e_1_2_10_10_2
  doi: 10.1109/BioVis.2013.6664340
– ident: e_1_2_10_19_2
– ident: e_1_2_10_14_2
  doi: 10.1111/j.1467-8659.2012.03110.x
– ident: e_1_2_10_4_2
  doi: 10.1109/TVCG.2013.124
– ident: e_1_2_10_22_2
  doi: 10.1111/j.1600-065X.2010.00965.x
– ident: e_1_2_10_7_2
  doi: 10.1126/science.1198704
– ident: e_1_2_10_20_2
  doi: 10.1038/nbt.1991
– ident: e_1_2_10_9_2
  doi: 10.1109/34.1000236
– ident: e_1_2_10_26_2
  doi: 10.1109/TVCG.2013.153
– ident: e_1_2_10_13_2
  doi: 10.1109/PACIFICVIS.2011.5742387
– ident: e_1_2_10_16_2
  doi: 10.1109/TVCG.2010.137
– ident: e_1_2_10_24_2
– ident: e_1_2_10_6_2
  doi: 10.1145/2669557.2669559
– ident: e_1_2_10_15_2
  doi: 10.1038/nature14274
– ident: e_1_2_10_12_2
  doi: 10.1002/0471142956.cy1017s53
– ident: e_1_2_10_8_2
  doi: 10.1038/nbt.2317
SSID ssj0004765
Score 2.4525125
Snippet To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Cellular
Cellular biology
Computer graphics
Cytometry
Data points
Differentiation
Handles
I.3.8 [Computer Graphics]: Applications
Immune system
Immune systems
Interactive
Studies
Visualization
Workflow
Title Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets
URI https://api.istex.fr/ark:/67375/WNG-BH9JB5KQ-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12893
https://www.proquest.com/docview/1801479089
https://www.proquest.com/docview/1825539172
https://www.proquest.com/docview/1832245530
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VIOPFoQCwUZVFVcstpN_EjgRLdsl0KrAkX0gGSNHQekrrKom5UoJ34Cv5FfUo_zYIsAIW6JMolij2f82f78GWCLnJpxLKIiL2zE3TCNMEWMOLeusOnAyECiOTiUk3d8_0ScrMDTdi9MrQ_RTbhRZIR8TQGOZr4U5PZj0ffJNSOlT-JqESB681M6iispWl1vUoxpVIWIxdO9eakvukLV-uUS0FyGq6G_GV-HD-2f1jST0_6iMn379RcRx_8syg241uBQ9qxuODdhxZXrcHVJnXADjkbn1WxOFD33hIWZQwzJkb2gPSWOjdx0yo4-uXJWndOuK-bxL3tFzHL21t9O3Y9v34PNLla-r6zmt-B4_Px4NImaAxgi6_NnEgl0qcjj3KGSmEiDThleKOn9mySxlTa2WSrzzA9LBsahxMGgUEpaQilSiOQ2rJaz0t0BVphEcR7zPBbOf4GjlLEV1gwtWloL7cHj1hPaNuLkdEbGVLeDFF9HOtRRDx51pp9rRY7fGW0Hd3YWeHZKFDYl9PvDPb0zyfZ3xMvXmvdgs_W3bqJ3rockqaNoRbQHD7vHPu5oMQVLN1uQjS914ge78d9sfLrkdDCTL19oAH_-Yz3aG4eLu_9ueg_WPH6TNXNtE1ars4W77zFSZR6EYLgAmWQMcA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V7QE4AOVHBApdECAujhJ7vbaRONCENGnSqEAqelut12uQGjlV46iEE4_Ae_AqPAVPwsz6hxQB4tIDN1seWbs7P_vt7uw3AI9JqRFXqZMmqXa4aYeOCpVyONcm1WErFjaJZn8s-od878g_WoOv1V2Ygh-i3nAjz7DxmhycNqRXvFy_T5sYXaOqdPXQLM9wwTZ_Meiidp-4bu_VpNN3ypoCjsaQ4Dm-MqGfuIlRgVCeiJUJYp4GApvsea4W2tVRKJIIkXYrNkqoVisNAqFp4hU-lYjAeL9BBcSJqL_75idXFQ-EXxGJE0VNSWNEaUN1S89Nfhukx4_nkO0qPrYTXO8afKuGpshrOW4u8ripP_3CGvmfjN11uFoCbfay8IxNWDPZDbiyQr94Ew46y3w2pxxE85zZrVFloz8b0KUZwzpmOmUHH0w2y5d0rYwhwGcjSp1nb_F1ar5__mJluipHMJDPb8HkInp0G9azWWbuAEtjL-Dc5YnrG_wDV0K42tdxWytNh70NeFZpXuqSfZ2KgExltQpDlUirkgY8qkVPCsqR3wk9teZTS6jTY8rRC3z5brwrd_rR3o4_fC15A7Yq-5JleJrLNnEGBXTk24CH9WcMLHRapDIzW5AM9trD1bz7NxmcDzhVnsL-WYP7c4tlZ7dnH-7-u-g2XOpP9kdyNBgP78FlBKuiSNPbgvX8dGHuIyDM4wfWERnICzbeH0HzaCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD6aNgnBBf-IwgCDAHGTKk0cJ0HigrV07TqqApvYneU4Dkir0mlNBeWKR-A5eJW9xZ6Ec5wfOgSIm11wlyhHke3z48_28XcAHpNSY64yJ0sz7XDTiRwVKeVwrk2mIzcRNonm9VgM9vnOQXCwBt_ruzAlP0Sz4UaeYeM1OfhRmq04uf6QtTG4xnXl6pFZfsL12vzFsIfKfeJ5_Vd73YFTlRRwNEYE3wmUiYLUS40KhfJFokyY8CwU2GLf97TQno4jkcYItN3EKKFcNwtDoWneFQFViMBwv8GFG1OZiN7bn1RVPBRBzSNODDUVixFlDTUtPTP3bZAaP58Btqvw2M5v_StwUo9MmdZy2F4USVt_-YU08v8YuqtwuYLZ7GXpF9dgzeTX4dIK-eINmHSXxWxOGYjmObMbo8rGfjakKzOGdc10yiYfTT4rlnSpjCG8Z7uUOM_e4evUnH79ZmV6qkAoUMxvwt559OgWrOez3NwGliV-yLnHUy8w-AeuhPB0oJOOVpqOelvwrFa81BX3OpUAmcp6DYYqkVYlLXjUiB6VhCO_E3pqraeRUMeHlKEXBvL9eFtuDeKdrWD0RvIWbNbmJavgNJcdYgwK6cC3BQ-bzxhW6KxI5Wa2IBnstY9ree9vMjgbcKo7hf2z9vbnFsvudt8-3Pl30QdwYdLry93heHQXLiJSFWWO3iasF8cLcw_RYJHct27IQJ6z7f4Ahlxm0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytosplore%3A+Interactive+Immune+Cell+Phenotyping+for+Large+Single%E2%80%90Cell+Datasets&rft.jtitle=Computer+graphics+forum&rft.au=H%C3%B6llt%2C+T.&rft.au=Pezzotti%2C+N.&rft.au=van+Unen%2C+V.&rft.au=Koning%2C+F.&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1111%2Fcgf.12893&rft.externalDBID=10.1111%252Fcgf.12893&rft.externalDocID=CGF12893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon