Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets
To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail all...
Saved in:
Published in | Computer graphics forum Vol. 35; no. 3; pp. 171 - 180 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation. |
---|---|
AbstractList | To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation. |
Author | Koning, F. Vilanova, A. Höllt, T. Eisemann, E. van Unen, V. Pezzotti, N. Lelieveldt, B. |
Author_xml | – sequence: 1 givenname: T. surname: Höllt fullname: Höllt, T. organization: TU Delft, Delft, The Netherlands – sequence: 2 givenname: N. surname: Pezzotti fullname: Pezzotti, N. organization: TU Delft, Delft, The Netherlands – sequence: 3 givenname: V. surname: van Unen fullname: van Unen, V. organization: Leiden University Medical Center, Leiden, The Netherlands – sequence: 4 givenname: F. surname: Koning fullname: Koning, F. organization: Leiden University Medical Center, Leiden, The Netherlands – sequence: 5 givenname: E. surname: Eisemann fullname: Eisemann, E. organization: TU Delft, Delft, The Netherlands – sequence: 6 givenname: B. surname: Lelieveldt fullname: Lelieveldt, B. organization: TU Delft, Delft, The Netherlands – sequence: 7 givenname: A. surname: Vilanova fullname: Vilanova, A. organization: TU Delft, Delft, The Netherlands |
BookMark | eNqNkcFOGzEQhq2KSg0pB95gpV7awwZ7vbZ3eysLCYEogEDq0XKc2dTpxg62A83b1xDKARUJX2xL3zcez7-P9qyzgNAhwQOS1pFetANSVDX9gHqk5CKvOKv3UA-TdBaYsU9oP4QlxrgUnPXQtNlGF9ad8_A9G9sIXulo7iEbr1YbC1kDXZdd_QLr4nZt7CJrnc8myi8gu0nXDvIn4kRFFSCGz-hjq7oAB897H90OT2-bs3xyORo3Pya5Tj3RnCmo2LyYgxJcUT5TIGZlK3jNKaWF5rrQdcXndcEYnoHiCuNWCK5FSRhnjPbR113ZtXd3GwhRrkzQqRFlwW2CJBUtijKB-B1oeoTWRBQJ_fIKXbqNt-kficKkFDVOg-2jox2lvQvBQyu1iSoaZ6NXppMEy8ckZEpCPiWRjG-vjLU3K-W3_2Wfqz-YDrZvg7IZDf8Z-c4wIcKfF0P53zKNWjD5czqSx2f1-TG7uJYl_QtZpKbd |
CitedBy_id | crossref_primary_10_1109_TVCG_2023_3326582 crossref_primary_10_1111_aji_13511 crossref_primary_10_3389_fimmu_2020_623993 crossref_primary_10_1111_cgf_14292 crossref_primary_10_1073_pnas_1907921117 crossref_primary_10_1136_jitc_2021_003591 crossref_primary_10_1111_aji_13157 crossref_primary_10_1109_TVCG_2019_2934307 crossref_primary_10_3389_fimmu_2020_00164 crossref_primary_10_3390_ijms242115752 crossref_primary_10_1016_j_cag_2021_04_010 crossref_primary_10_3389_fimmu_2020_571300 crossref_primary_10_1109_TVCG_2019_2934547 crossref_primary_10_1111_cgf_14575 crossref_primary_10_1038_s41590_021_00911_7 crossref_primary_10_3389_fimmu_2023_1274116 crossref_primary_10_1136_gutjnl_2019_318672 crossref_primary_10_1016_j_csbj_2018_10_004 crossref_primary_10_1016_j_isci_2022_104648 crossref_primary_10_1038_s41551_022_00875_5 crossref_primary_10_1002_eji_201970107 crossref_primary_10_1016_j_csbj_2020_03_024 crossref_primary_10_1016_j_gastha_2024_08_023 crossref_primary_10_1111_cgf_14859 crossref_primary_10_1016_j_csbj_2021_05_032 crossref_primary_10_1084_jem_20171934 crossref_primary_10_1093_bioinformatics_btz180 crossref_primary_10_3389_fimmu_2021_719979 crossref_primary_10_1038_s41467_017_01689_9 crossref_primary_10_1186_s13075_021_02630_8 crossref_primary_10_1093_ibd_izae103 crossref_primary_10_1136_jitc_2022_004638 crossref_primary_10_1109_TVCG_2023_3346641 crossref_primary_10_1186_s40425_019_0700_3 crossref_primary_10_1002_cyto_a_23738 crossref_primary_10_3389_fimmu_2019_01515 crossref_primary_10_1158_0008_5472_CAN_22_0232 crossref_primary_10_1007_s10067_023_06637_1 crossref_primary_10_1016_j_jaut_2019_102361 crossref_primary_10_1038_s41467_021_24347_7 crossref_primary_10_1158_1078_0432_CCR_18_1749 crossref_primary_10_1109_TVCG_2017_2744318 crossref_primary_10_1109_TVCG_2017_2744358 crossref_primary_10_3390_ijms24098130 crossref_primary_10_1016_j_isci_2020_101954 crossref_primary_10_4049_jimmunol_1901530 crossref_primary_10_1186_s40478_021_01126_5 crossref_primary_10_1109_TVCG_2020_2986996 crossref_primary_10_3390_cells12242810 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_1109_TVCG_2019_2931299 crossref_primary_10_1038_s41590_018_0294_9 crossref_primary_10_1093_bioinformatics_btaa816 crossref_primary_10_1016_j_jcmgh_2022_03_005 crossref_primary_10_3389_fimmu_2019_02917 crossref_primary_10_3389_fimmu_2017_01953 crossref_primary_10_4049_jimmunol_1801640 crossref_primary_10_2139_ssrn_3921277 crossref_primary_10_3390_ijms242015134 crossref_primary_10_1002_cyto_a_24480 crossref_primary_10_3389_fimmu_2022_893803 crossref_primary_10_1186_s12859_017_1945_9 crossref_primary_10_3390_cells11071062 crossref_primary_10_1093_bioinformatics_btaa946 crossref_primary_10_3390_cancers13174311 crossref_primary_10_1038_s41586_019_1506_7 crossref_primary_10_1016_j_compbiomed_2024_109105 crossref_primary_10_1126_scitranslmed_aaw3703 crossref_primary_10_1172_jci_insight_170210 crossref_primary_10_1038_s41591_023_02758_x crossref_primary_10_1371_journal_pone_0200818 crossref_primary_10_3390_biomedicines11102805 crossref_primary_10_1038_s41586_022_05593_1 crossref_primary_10_1101_gr_275569_121 crossref_primary_10_1111_cgf_13711 crossref_primary_10_1172_JCI128865 crossref_primary_10_3389_fimmu_2021_768113 crossref_primary_10_1158_0008_5472_CAN_21_3506 crossref_primary_10_1126_sciimmunol_abg3533 crossref_primary_10_3389_fimmu_2019_01932 crossref_primary_10_1038_s41598_023_35051_5 crossref_primary_10_1038_s41467_020_17260_y crossref_primary_10_1109_TVCG_2022_3209408 crossref_primary_10_1515_cclm_2019_0858 |
Cites_doi | 10.1016/j.immuni.2016.04.014 10.1073/pnas.1321405111 10.1109/TVCG.2009.167 10.1126/science.1259425 10.1039/B710510J 10.1109/TVCG.2011.185 10.1038/nbt.2594 10.1109/ICCV.2003.1238383 10.1016/j.stem.2015.01.015 10.1109/BioVis.2013.6664340 10.1111/j.1467-8659.2012.03110.x 10.1109/TVCG.2013.124 10.1111/j.1600-065X.2010.00965.x 10.1126/science.1198704 10.1038/nbt.1991 10.1109/34.1000236 10.1109/TVCG.2013.153 10.1109/PACIFICVIS.2011.5742387 10.1109/TVCG.2010.137 10.1145/2669557.2669559 10.1038/nature14274 10.1002/0471142956.cy1017s53 10.1038/nbt.2317 |
ContentType | Journal Article |
Copyright | 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 7T5 H94 |
DOI | 10.1111/cgf.12893 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database AIDS and Cancer Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 180 |
ExternalDocumentID | 4107220031 10_1111_cgf_12893 CGF12893 ark_67375_WNG_BH9JB5KQ_4 |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D F28 FR3 7T5 H94 |
ID | FETCH-LOGICAL-c4673-5ae85d2dea76a36bae7b4f76963332c6c2c986d92550bea6a00f776c74156553 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 11 04:02:55 EDT 2025 Fri Jul 11 08:29:02 EDT 2025 Fri Jul 25 23:42:53 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Tue Jul 01 02:23:06 EDT 2025 Wed Jan 22 16:22:47 EST 2025 Wed Oct 30 09:53:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4673-5ae85d2dea76a36bae7b4f76963332c6c2c986d92550bea6a00f776c74156553 |
Notes | ark:/67375/WNG-BH9JB5KQ-4 ArticleID:CGF12893 istex:0753B974D91EE1066B51FCA20563EC8C95B0701A Supporting Information SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1801479089 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1832245530 proquest_miscellaneous_1825539172 proquest_journals_1801479089 crossref_citationtrail_10_1111_cgf_12893 crossref_primary_10_1111_cgf_12893 wiley_primary_10_1111_cgf_12893_CGF12893 istex_primary_ark_67375_WNG_BH9JB5KQ_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06 June 2016 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Lujan E., Zunder E.R., Ng Y.H., Goronzy I.N., Nolan G.P., Wernig M.: Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521 (2015), 352-356. doi: 10.1038/nature14274. 3, 4 Meyer, Munzner T., DePace A., Pfister H.: MulteeSum: A tool for comparative spatial and temporal gene expression data. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 908-917. doi: 10.1109/TVCG.2010.137. 3 Rost R.J., Licea-Kane B.M., Ginsburg D., Kessenich J.M., Lichtenbelt B., Malan H., Weiblen M.: OpenGL Shading Language. Addison-Wesley Professional, 2009. 7 Sedlmair M., Munzner T., Tory M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2634-2643. doi: 10.1109/TVCG.2013.153. 5 Bostock M., Ogievetsky V., Heer J.: D3: Data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 7 Zunder E.R., Lujan E., Goltsev Y., Wernig M., Nolan G.P.: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 3 (2015), 323-337. doi: 10.1016/j.stem.2015.01.015. 3 van der Maaten L.: Learning a parametric embedding by preserving local structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) (2009), vol. 5, pp. 384-391. 5 Ornatsky O.I., Kinach R., Bandura D.R., Lou X., Tanner S.D., Baranov V.I., Nitz M., Winnik M.A.: Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 23 (2008), 463-469. doi: 10.1039/B710510J. 2 Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5 (2002), 603-619. doi: 10.1109/34.1000236. 6 Shekhar K., Brodin P., Davis M.M., Chakraborty A.K.: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences 111, 1 (2014), 202-207. doi: 10.1073/pnas.1321405111. 3, 6 Brehmer M., Munzner T.: A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. doi: 10.1109/TVCG.2013.124. 2, 4 Shreiner D., Sellers G., Kessenich J.M., Licea-Kane B.M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL. Addison-Wesley Professional, 2013. 7 Bendall S.C., Simonds E.F., Qiu P., Amir E.-a. D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., Balderas R.s., Plevritis S.K., Sachs K., Pe'er D., Tanner S.D., Nolan G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 6030 (2011), 687-696. doi: 10.1126/science.1198704. 3, 4 van Unen V., LI N., Molendijk I., Temurhan M., Höllt T., van der Meulen-de Jong A.E., Verspaget H.W., Mearin M.L., Mulder C.J., van Bergen J., Lelieveldt B. P. F., Koning F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44, in press (2016). doi: 10.1016/j.immuni.2016.04.014. 2, 8, 9 Qiu P., Simonds E.F., Bendall S.C., Gibbs Jr K.D., Bruggner R.V., Linderman M.D., Sachs K., Nolan G.P., Plevritis S.K.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 29 (2011), 886-891. doi: 10.1038/nbt.1991. 3, 4 Rothenberg E.V.: Lineage determination in the immune system. Immunological Reviews 238, 1 (2010), 5-11. doi: 10.1111/j.1600-065X.2010.00965.x. 4 Meyer M., Munzner T., Pfister H.: MizBee: A multiscale synteny browser. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 897-904. doi: 10.1109/TVCG.2009.167. 3 Amir E.-a. D., Davis K.L., Tadmor M.D., Simonds E.F., Levine J.H., Bendall S.C., Shenfeld D.K., Krishnaswamy S., Nolan G.P., Pe'er D.: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology 31 (2013), 545-552. doi: 10.1038/nbt.2594. 3 Bodenmiller B., Zunder E.R., Finck R., Chen T.J., Savig E.s., Bruggner R.V., Simonds E.F., Bendall S.C., Sachs K., Krutzik P.O., Nolan G.P.: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotechnology 30 (2012), 858-867. doi: 10.1038/nbt.2317. 3, 4 Lex A., Streit M., Schulz H., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: visual analysis of large-scale heterogeneous genomics data for cancer subtype characterization. Computer Graphics Forum 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 3 Spitzer M.H., Gherardini P.F., Fragiadakis G.K., Bhattacharya N., Yuan R.T., Hotson A.N., Finck R., Carmi Y., Zunder E.R., Fantl W.J., Bendall S.C., Engleman E.G., Nolan G.P.: An interactive reference framework for modeling a dynamic immune system. Science 349, 6244 (2015). doi: 10.1126/science.1259425. 3 van der Maaten L., Hinton G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579-2605. 3, 5 2010; 16 2015; 16 2011 2010 2015; 521 2009 2008; 9 2015; 349 2011; 17 2014; 111 2011; 332 2012; 31 2012; 30 2013; 19 2010; 238 2002; 24 2013; 31 2008; 23 2016 2014 2009; 5 2013 2003; 1 2011; 29 2009; 15 2016; 44 e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 Shreiner D. (e_1_2_10_27_2) 2013 van der Maaten L. (e_1_2_10_29_2) 2008; 9 e_1_2_10_19_2 van der Maaten L. (e_1_2_10_28_2) 2009; 5 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 Rost R.J. (e_1_2_10_21_2) 2009 e_1_2_10_26_2 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – reference: Ornatsky O.I., Kinach R., Bandura D.R., Lou X., Tanner S.D., Baranov V.I., Nitz M., Winnik M.A.: Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 23 (2008), 463-469. doi: 10.1039/B710510J. 2 – reference: Sedlmair M., Munzner T., Tory M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2634-2643. doi: 10.1109/TVCG.2013.153. 5 – reference: Brehmer M., Munzner T.: A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. doi: 10.1109/TVCG.2013.124. 2, 4 – reference: Lex A., Streit M., Schulz H., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: visual analysis of large-scale heterogeneous genomics data for cancer subtype characterization. Computer Graphics Forum 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 3 – reference: Qiu P., Simonds E.F., Bendall S.C., Gibbs Jr K.D., Bruggner R.V., Linderman M.D., Sachs K., Nolan G.P., Plevritis S.K.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 29 (2011), 886-891. doi: 10.1038/nbt.1991. 3, 4 – reference: Rothenberg E.V.: Lineage determination in the immune system. Immunological Reviews 238, 1 (2010), 5-11. doi: 10.1111/j.1600-065X.2010.00965.x. 4 – reference: Shekhar K., Brodin P., Davis M.M., Chakraborty A.K.: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proceedings of the National Academy of Sciences 111, 1 (2014), 202-207. doi: 10.1073/pnas.1321405111. 3, 6 – reference: Lujan E., Zunder E.R., Ng Y.H., Goronzy I.N., Nolan G.P., Wernig M.: Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521 (2015), 352-356. doi: 10.1038/nature14274. 3, 4 – reference: Rost R.J., Licea-Kane B.M., Ginsburg D., Kessenich J.M., Lichtenbelt B., Malan H., Weiblen M.: OpenGL Shading Language. Addison-Wesley Professional, 2009. 7 – reference: van der Maaten L., Hinton G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579-2605. 3, 5 – reference: Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5 (2002), 603-619. doi: 10.1109/34.1000236. 6 – reference: Amir E.-a. D., Davis K.L., Tadmor M.D., Simonds E.F., Levine J.H., Bendall S.C., Shenfeld D.K., Krishnaswamy S., Nolan G.P., Pe'er D.: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology 31 (2013), 545-552. doi: 10.1038/nbt.2594. 3 – reference: Shreiner D., Sellers G., Kessenich J.M., Licea-Kane B.M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL. Addison-Wesley Professional, 2013. 7 – reference: van Unen V., LI N., Molendijk I., Temurhan M., Höllt T., van der Meulen-de Jong A.E., Verspaget H.W., Mearin M.L., Mulder C.J., van Bergen J., Lelieveldt B. P. F., Koning F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44, in press (2016). doi: 10.1016/j.immuni.2016.04.014. 2, 8, 9 – reference: van der Maaten L.: Learning a parametric embedding by preserving local structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) (2009), vol. 5, pp. 384-391. 5 – reference: Spitzer M.H., Gherardini P.F., Fragiadakis G.K., Bhattacharya N., Yuan R.T., Hotson A.N., Finck R., Carmi Y., Zunder E.R., Fantl W.J., Bendall S.C., Engleman E.G., Nolan G.P.: An interactive reference framework for modeling a dynamic immune system. Science 349, 6244 (2015). doi: 10.1126/science.1259425. 3 – reference: Bostock M., Ogievetsky V., Heer J.: D3: Data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 7 – reference: Bendall S.C., Simonds E.F., Qiu P., Amir E.-a. D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., Balderas R.s., Plevritis S.K., Sachs K., Pe'er D., Tanner S.D., Nolan G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 6030 (2011), 687-696. doi: 10.1126/science.1198704. 3, 4 – reference: Zunder E.R., Lujan E., Goltsev Y., Wernig M., Nolan G.P.: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 3 (2015), 323-337. doi: 10.1016/j.stem.2015.01.015. 3 – reference: Bodenmiller B., Zunder E.R., Finck R., Chen T.J., Savig E.s., Bruggner R.V., Simonds E.F., Bendall S.C., Sachs K., Krutzik P.O., Nolan G.P.: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotechnology 30 (2012), 858-867. doi: 10.1038/nbt.2317. 3, 4 – reference: Meyer, Munzner T., DePace A., Pfister H.: MulteeSum: A tool for comparative spatial and temporal gene expression data. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 908-917. doi: 10.1109/TVCG.2010.137. 3 – reference: Meyer M., Munzner T., Pfister H.: MizBee: A multiscale synteny browser. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 897-904. doi: 10.1109/TVCG.2009.167. 3 – volume: 24 start-page: 603 issue: 5 year: 2002 end-page: 619 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2009 – volume: 15 start-page: 897 issue: 6 year: 2009 end-page: 904 article-title: MizBee: A multiscale synteny browser publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 349 start-page: 6244 year: 2015 article-title: An interactive reference framework for modeling a dynamic immune system publication-title: Science – volume: 17 start-page: 2301 issue: 12 year: 2011 end-page: 2309 article-title: D : Data‐driven documents publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 521 start-page: 352 year: 2015 end-page: 356 article-title: Early reprogramming regulators identified by prospective isolation and mass cytometry publication-title: Nature – volume: 1 start-page: 664 year: 2003 end-page: 671 article-title: Improved fast Gauss transform and efficient kernel density estimation – volume: 111 start-page: 202 issue: 1 year: 2014 end-page: 207 article-title: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE) publication-title: Proceedings of the National Academy of Sciences – start-page: 279 year: 2013 end-page: 285 – year: 2016 – volume: 31 start-page: 545 year: 2013 end-page: 552 article-title: viSNE enables visualization of high dimensional single‐cell data and reveals phenotypic heterogeneity of leukemia publication-title: Nature Biotechnology – start-page: 1 year: 2014 end-page: 8 – volume: 30 start-page: 858 year: 2012 end-page: 867 article-title: Multiplexed mass cytometry profiling of cellular states perturbed by small‐molecule regulators publication-title: Nature Biotechnology – year: 2010 – volume: 31 start-page: 1175 issue: 3 year: 2012 end-page: 1184 article-title: StratomeX: visual analysis of large‐scale heterogeneous genomics data for cancer subtype characterization publication-title: Computer Graphics Forum – volume: 23 start-page: 463 year: 2008 end-page: 469 article-title: Development of analytical methods for multiplex bio‐assay with inductively coupled plasma mass spectrometry publication-title: Journal of Analytical Atomic Spectrometry – volume: 16 start-page: 908 issue: 6 year: 2010 end-page: 917 article-title: MulteeSum: A tool for comparative spatial and temporal gene expression data publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 29 start-page: 886 year: 2011 end-page: 891 article-title: Extracting a cellular hierarchy from high‐dimensional cytometry data with SPADE publication-title: Nature Biotechnology – volume: 332 start-page: 687 issue: 6030 year: 2011 end-page: 696 article-title: Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum publication-title: Science – start-page: 1 year: 2013 end-page: 8 – volume: 16 start-page: 323 issue: 3 year: 2015 end-page: 337 article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single‐cell mass cytometry publication-title: Cell Stem Cell – start-page: 171 year: 2011 end-page: 178 – volume: 19 start-page: 2376 issue: 12 year: 2013 end-page: 2385 article-title: A multi‐level typology of abstract visualization tasks publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 5 start-page: 384 year: 2009 end-page: 391 article-title: Learning a parametric embedding by preserving local structure publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) – volume: 44 year: 2016 article-title: Mass cytometry of the human mucosal immune system identifies tissue‐ and disease‐associated immune subsets publication-title: Immunity – volume: 19 start-page: 2634 issue: 12 year: 2013 end-page: 2643 article-title: Empirical guidance on scatterplot and dimension reduction technique choices publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 9 start-page: 2579 year: 2008 end-page: 2605 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – volume: 238 start-page: 5 issue: 1 year: 2010 end-page: 11 article-title: Lineage determination in the immune system publication-title: Immunological Reviews – year: 2013 – volume: 9 start-page: 2579 year: 2008 ident: e_1_2_10_29_2 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – ident: e_1_2_10_30_2 doi: 10.1016/j.immuni.2016.04.014 – ident: e_1_2_10_23_2 doi: 10.1073/pnas.1321405111 – ident: e_1_2_10_11_2 – volume-title: OpenGL Shading Language year: 2009 ident: e_1_2_10_21_2 – volume: 5 start-page: 384 year: 2009 ident: e_1_2_10_28_2 article-title: Learning a parametric embedding by preserving local structure publication-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) – ident: e_1_2_10_17_2 doi: 10.1109/TVCG.2009.167 – ident: e_1_2_10_25_2 doi: 10.1126/science.1259425 – volume-title: OpenGL Programming Guide: The Official Guide to Learning OpenGL year: 2013 ident: e_1_2_10_27_2 – ident: e_1_2_10_18_2 doi: 10.1039/B710510J – ident: e_1_2_10_3_2 – ident: e_1_2_10_5_2 doi: 10.1109/TVCG.2011.185 – ident: e_1_2_10_2_2 doi: 10.1038/nbt.2594 – ident: e_1_2_10_31_2 doi: 10.1109/ICCV.2003.1238383 – ident: e_1_2_10_32_2 doi: 10.1016/j.stem.2015.01.015 – ident: e_1_2_10_10_2 doi: 10.1109/BioVis.2013.6664340 – ident: e_1_2_10_19_2 – ident: e_1_2_10_14_2 doi: 10.1111/j.1467-8659.2012.03110.x – ident: e_1_2_10_4_2 doi: 10.1109/TVCG.2013.124 – ident: e_1_2_10_22_2 doi: 10.1111/j.1600-065X.2010.00965.x – ident: e_1_2_10_7_2 doi: 10.1126/science.1198704 – ident: e_1_2_10_20_2 doi: 10.1038/nbt.1991 – ident: e_1_2_10_9_2 doi: 10.1109/34.1000236 – ident: e_1_2_10_26_2 doi: 10.1109/TVCG.2013.153 – ident: e_1_2_10_13_2 doi: 10.1109/PACIFICVIS.2011.5742387 – ident: e_1_2_10_16_2 doi: 10.1109/TVCG.2010.137 – ident: e_1_2_10_24_2 – ident: e_1_2_10_6_2 doi: 10.1145/2669557.2669559 – ident: e_1_2_10_15_2 doi: 10.1038/nature14274 – ident: e_1_2_10_12_2 doi: 10.1002/0471142956.cy1017s53 – ident: e_1_2_10_8_2 doi: 10.1038/nbt.2317 |
SSID | ssj0004765 |
Score | 2.4525125 |
Snippet | To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 171 |
SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Cellular Cellular biology Computer graphics Cytometry Data points Differentiation Handles I.3.8 [Computer Graphics]: Applications Immune system Immune systems Interactive Studies Visualization Workflow |
Title | Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets |
URI | https://api.istex.fr/ark:/67375/WNG-BH9JB5KQ-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12893 https://www.proquest.com/docview/1801479089 https://www.proquest.com/docview/1825539172 https://www.proquest.com/docview/1832245530 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VIOPFoQCwUZVFVcstpN_EjgRLdsl0KrAkX0gGSNHQekrrKom5UoJ34Cv5FfUo_zYIsAIW6JMolij2f82f78GWCLnJpxLKIiL2zE3TCNMEWMOLeusOnAyECiOTiUk3d8_0ScrMDTdi9MrQ_RTbhRZIR8TQGOZr4U5PZj0ffJNSOlT-JqESB681M6iispWl1vUoxpVIWIxdO9eakvukLV-uUS0FyGq6G_GV-HD-2f1jST0_6iMn379RcRx_8syg241uBQ9qxuODdhxZXrcHVJnXADjkbn1WxOFD33hIWZQwzJkb2gPSWOjdx0yo4-uXJWndOuK-bxL3tFzHL21t9O3Y9v34PNLla-r6zmt-B4_Px4NImaAxgi6_NnEgl0qcjj3KGSmEiDThleKOn9mySxlTa2WSrzzA9LBsahxMGgUEpaQilSiOQ2rJaz0t0BVphEcR7zPBbOf4GjlLEV1gwtWloL7cHj1hPaNuLkdEbGVLeDFF9HOtRRDx51pp9rRY7fGW0Hd3YWeHZKFDYl9PvDPb0zyfZ3xMvXmvdgs_W3bqJ3rockqaNoRbQHD7vHPu5oMQVLN1uQjS914ge78d9sfLrkdDCTL19oAH_-Yz3aG4eLu_9ueg_WPH6TNXNtE1ars4W77zFSZR6EYLgAmWQMcA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V7QE4AOVHBApdECAujhJ7vbaRONCENGnSqEAqelut12uQGjlV46iEE4_Ae_AqPAVPwsz6hxQB4tIDN1seWbs7P_vt7uw3AI9JqRFXqZMmqXa4aYeOCpVyONcm1WErFjaJZn8s-od878g_WoOv1V2Ygh-i3nAjz7DxmhycNqRXvFy_T5sYXaOqdPXQLM9wwTZ_Meiidp-4bu_VpNN3ypoCjsaQ4Dm-MqGfuIlRgVCeiJUJYp4GApvsea4W2tVRKJIIkXYrNkqoVisNAqFp4hU-lYjAeL9BBcSJqL_75idXFQ-EXxGJE0VNSWNEaUN1S89Nfhukx4_nkO0qPrYTXO8afKuGpshrOW4u8ripP_3CGvmfjN11uFoCbfay8IxNWDPZDbiyQr94Ew46y3w2pxxE85zZrVFloz8b0KUZwzpmOmUHH0w2y5d0rYwhwGcjSp1nb_F1ar5__mJluipHMJDPb8HkInp0G9azWWbuAEtjL-Dc5YnrG_wDV0K42tdxWytNh70NeFZpXuqSfZ2KgExltQpDlUirkgY8qkVPCsqR3wk9teZTS6jTY8rRC3z5brwrd_rR3o4_fC15A7Yq-5JleJrLNnEGBXTk24CH9WcMLHRapDIzW5AM9trD1bz7NxmcDzhVnsL-WYP7c4tlZ7dnH-7-u-g2XOpP9kdyNBgP78FlBKuiSNPbgvX8dGHuIyDM4wfWERnICzbeH0HzaCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD6aNgnBBf-IwgCDAHGTKk0cJ0HigrV07TqqApvYneU4Dkir0mlNBeWKR-A5eJW9xZ6Ec5wfOgSIm11wlyhHke3z48_28XcAHpNSY64yJ0sz7XDTiRwVKeVwrk2mIzcRNonm9VgM9vnOQXCwBt_ruzAlP0Sz4UaeYeM1OfhRmq04uf6QtTG4xnXl6pFZfsL12vzFsIfKfeJ5_Vd73YFTlRRwNEYE3wmUiYLUS40KhfJFokyY8CwU2GLf97TQno4jkcYItN3EKKFcNwtDoWneFQFViMBwv8GFG1OZiN7bn1RVPBRBzSNODDUVixFlDTUtPTP3bZAaP58Btqvw2M5v_StwUo9MmdZy2F4USVt_-YU08v8YuqtwuYLZ7GXpF9dgzeTX4dIK-eINmHSXxWxOGYjmObMbo8rGfjakKzOGdc10yiYfTT4rlnSpjCG8Z7uUOM_e4evUnH79ZmV6qkAoUMxvwt559OgWrOez3NwGliV-yLnHUy8w-AeuhPB0oJOOVpqOelvwrFa81BX3OpUAmcp6DYYqkVYlLXjUiB6VhCO_E3pqraeRUMeHlKEXBvL9eFtuDeKdrWD0RvIWbNbmJavgNJcdYgwK6cC3BQ-bzxhW6KxI5Wa2IBnstY9ree9vMjgbcKo7hf2z9vbnFsvudt8-3Pl30QdwYdLry93heHQXLiJSFWWO3iasF8cLcw_RYJHct27IQJ6z7f4Ahlxm0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytosplore%3A+Interactive+Immune+Cell+Phenotyping+for+Large+Single%E2%80%90Cell+Datasets&rft.jtitle=Computer+graphics+forum&rft.au=H%C3%B6llt%2C+T.&rft.au=Pezzotti%2C+N.&rft.au=van+Unen%2C+V.&rft.au=Koning%2C+F.&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1111%2Fcgf.12893&rft.externalDBID=10.1111%252Fcgf.12893&rft.externalDocID=CGF12893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |