The integration of GC–MS and LC–MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation
[Display omitted] •Tissue-specific profiling of primary and secondary metabolites in two different species of ginseng by using GC- and LC-MS.•Revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways.•149 primary metabolites and 10 ginsenosides were i...
Saved in:
Published in | Journal of pharmaceutical and biomedical analysis Vol. 135; pp. 176 - 185 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
20.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Tissue-specific profiling of primary and secondary metabolites in two different species of ginseng by using GC- and LC-MS.•Revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways.•149 primary metabolites and 10 ginsenosides were identified from tissues-specific in P. ginseng and P. quinquefolius.•To investigate the contribution of tissue-specific C and N metabolism to the biosynthesis of ginsenosides.•Ginsenosides was dependent on main and lateral root energy metabolism and independent of leaf and petiole photosynthesis.
The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. |
---|---|
AbstractList | [Display omitted]
•Tissue-specific profiling of primary and secondary metabolites in two different species of ginseng by using GC- and LC-MS.•Revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways.•149 primary metabolites and 10 ginsenosides were identified from tissues-specific in P. ginseng and P. quinquefolius.•To investigate the contribution of tissue-specific C and N metabolism to the biosynthesis of ginsenosides.•Ginsenosides was dependent on main and lateral root energy metabolism and independent of leaf and petiole photosynthesis.
The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. |
Author | Abozeid, Ann Tang, Zhong-Hua Liu, Yang Wang, Yu Liu, Jia Zu, Yuan-Gang |
Author_xml | – sequence: 1 givenname: Jia surname: Liu fullname: Liu, Jia organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China – sequence: 2 givenname: Yang surname: Liu fullname: Liu, Yang organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China – sequence: 3 givenname: Yu surname: Wang fullname: Wang, Yu organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China – sequence: 4 givenname: Ann surname: Abozeid fullname: Abozeid, Ann organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China – sequence: 5 givenname: Yuan-Gang surname: Zu fullname: Zu, Yuan-Gang organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China – sequence: 6 givenname: Zhong-Hua surname: Tang fullname: Tang, Zhong-Hua email: tangzh@nefu.edu.cn organization: Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28038384$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcFu1DAQtVAR3RZ-gAPyDyTYTppkJS5oRQvSIpAoErfIccbLrBI7tZ0Ve-Mf-L2e-iU4yZYDh55mNHpvZt57F-TMWAOEvOYs5YwXb_fpfmhkKmKfcpEyUTwjK16VWSKK_McZWbEy40nJqqtzcuH9njF2xdf5C3IuKpZVWZWvyP3tT6BoAuycDGgNtZrebB5-__n8jUrT0u2pD5ZK7-WRhojvIcjGdrZH5engrMYOzS6uoV-lkb_oDo2HOJgWLJO7Ec3dCNp2OHrq4ACy81TSgN6PkMxIP4BC8MlcNSqqrDGgAh4wHKe_Boe9dMfH8xjAz8TlnPXYTgOlxn7sZjEvyXMd78CrU70k368_3G4-JtsvN58277eJyosiJLppq7ZoqjVXohKlFE1ZFGVbNqXkOucZlJmO3om2kLngeZ7lUOiyYu16rRU0kF2SN8veYWx6aOvTo_WjzREgFoBy1nsH-h-Es3rKst7XU5b1lGXNRR2zjKTqP5LCMOsKTmL3NPXdQoWo-oDgah-tNQpadNHRurX4FP0v3AzByw |
CitedBy_id | crossref_primary_10_1111_jfbc_12901 crossref_primary_10_1016_j_plaphy_2021_08_027 crossref_primary_10_3389_fpls_2024_1463666 crossref_primary_10_1007_s11694_024_02527_5 crossref_primary_10_1021_acs_jafc_9b05339 crossref_primary_10_3390_molecules23082078 crossref_primary_10_1080_10942912_2022_2071294 crossref_primary_10_3390_foods9121734 crossref_primary_10_3390_biom10040504 crossref_primary_10_3390_molecules24224065 crossref_primary_10_1016_j_bej_2021_108100 crossref_primary_10_1039_C8RA04823A crossref_primary_10_1016_j_ijms_2020_116359 crossref_primary_10_3389_fchem_2017_00125 crossref_primary_10_3390_plants13243544 crossref_primary_10_1007_s10725_020_00686_1 crossref_primary_10_3390_molecules24213837 crossref_primary_10_1016_j_indcrop_2021_113531 crossref_primary_10_1080_17429145_2020_1831088 crossref_primary_10_4155_bio_2019_0014 crossref_primary_10_3390_molecules22030496 crossref_primary_10_1016_j_scienta_2020_109280 crossref_primary_10_1016_j_jfca_2020_103450 crossref_primary_10_1186_s12870_023_04282_z crossref_primary_10_1007_s11306_021_01776_5 crossref_primary_10_1242_jeb_195982 crossref_primary_10_3390_agronomy12102496 crossref_primary_10_1016_j_jgr_2019_12_009 crossref_primary_10_1155_2019_6217125 crossref_primary_10_1016_j_chemosphere_2022_137571 crossref_primary_10_1016_j_indcrop_2019_111564 crossref_primary_10_1016_j_jpba_2018_03_042 crossref_primary_10_3389_fpls_2021_713795 crossref_primary_10_1016_j_fct_2020_111849 crossref_primary_10_1186_s12906_024_04460_y crossref_primary_10_1002_bmc_5546 crossref_primary_10_1007_s11104_024_06744_1 crossref_primary_10_1080_10408347_2020_1736506 crossref_primary_10_3390_f13122141 crossref_primary_10_3390_molecules26226829 crossref_primary_10_3390_plants13131720 crossref_primary_10_3390_proteomes5040035 crossref_primary_10_3389_fpls_2021_628294 crossref_primary_10_1016_j_envpol_2024_124116 crossref_primary_10_3389_fpls_2023_1147076 crossref_primary_10_1007_s42161_024_01668_2 crossref_primary_10_1002_jssc_202200825 crossref_primary_10_1002_jms_4884 crossref_primary_10_3390_ijms19030728 crossref_primary_10_1002_cem_3376 crossref_primary_10_1007_s00344_021_10452_w crossref_primary_10_1038_s41598_020_74440_y crossref_primary_10_1016_j_foodchem_2020_126211 crossref_primary_10_3390_plants13040467 crossref_primary_10_1007_s42729_022_00835_7 crossref_primary_10_1016_j_jchromb_2021_122769 crossref_primary_10_1007_s00344_021_10374_7 crossref_primary_10_1016_j_jgr_2019_02_002 crossref_primary_10_1016_j_scitotenv_2023_167071 crossref_primary_10_3389_fpls_2023_1175878 crossref_primary_10_1007_s11356_022_21652_6 crossref_primary_10_1007_s11240_018_1446_1 crossref_primary_10_1016_j_envexpbot_2020_104094 crossref_primary_10_1016_j_saa_2018_07_094 crossref_primary_10_3390_molecules28052016 crossref_primary_10_3390_agronomy11112291 crossref_primary_10_3390_f11050542 crossref_primary_10_1002_pca_2752 crossref_primary_10_1080_10408398_2021_1952159 crossref_primary_10_1016_j_fshw_2022_10_003 crossref_primary_10_1016_j_jchromb_2018_03_044 crossref_primary_10_3390_molecules25010137 crossref_primary_10_1021_acs_jafc_7b00610 crossref_primary_10_1080_00218839_2019_1614273 crossref_primary_10_1016_j_afres_2025_100753 crossref_primary_10_3389_fphar_2021_741683 crossref_primary_10_3390_ijms242316694 crossref_primary_10_1038_s41598_021_81079_w crossref_primary_10_3390_f13091507 crossref_primary_10_1016_j_envexpbot_2021_104587 |
Cites_doi | 10.3390/molecules200916170 10.1093/mp/ssp100 10.1515/znc-2006-3-419 10.1016/S0006-2952(99)00212-9 10.1111/j.1365-3040.2008.01921.x 10.1016/j.copbio.2010.11.004 10.1146/annurev-arplant-042811-105439 10.1186/1471-2229-13-84 10.1371/journal.pone.0124794 10.1038/srep16346 10.1016/j.pbi.2004.03.007 10.1046/j.1365-313x.2000.00821.x 10.1111/j.1469-8137.2010.03626.x 10.1104/pp.111.184564 10.1016/j.biotechadv.2015.03.001 10.1104/pp.121.1.1 10.1016/S0022-2275(20)39958-2 10.1093/mp/ssq049 10.5142/jgr.2012.36.1.1 10.1093/jxb/erm164 10.1016/j.jpba.2014.04.032 10.1021/ac990819z 10.1016/j.fitote.2014.12.013 10.1046/j.1364-3703.2002.00131.x 10.1007/s11306-012-0470-0 10.1038/srep03698 10.1021/ac980890p 10.1016/j.jgr.2015.01.005 10.1186/s12864-015-1477-5 10.1016/j.jgr.2013.11.001 10.1016/j.phytochem.2006.10.023 10.1146/annurev.arplant.54.031902.135014 10.1016/j.foodchem.2006.05.053 10.1016/j.jgr.2013.11.011 10.1046/j.1365-313X.2003.01686.x 10.1016/j.jpba.2014.12.030 10.4161/psb.6.2.14425 10.1007/s11306-015-0927-z 10.1002/jssc.200700650 |
ContentType | Journal Article |
Copyright | 2016 The Author(s) Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 The Author(s) – notice: Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.jpba.2016.12.026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-264X |
EndPage | 185 |
ExternalDocumentID | 28038384 10_1016_j_jpba_2016_12_026 S0731708516314613 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATCM AAXUO ABFRF ABJNI ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M36 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSP SSZ T5K TEORI YK3 ~G- 29L 53G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMT HMU HVGLF HZ~ R2- SCB SEW SPT SSH WUQ XPP CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c466t-fbd8d6b891c2827a2b7667d7b7a1f413e73f0002d6a4214434e6f780d99fcebe3 |
IEDL.DBID | .~1 |
ISSN | 0731-7085 |
IngestDate | Wed Feb 19 02:42:50 EST 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 01:17:47 EDT 2025 Fri Feb 23 02:25:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon and nitrogen metabolism Tissue specific P. ginseng and P. quinquefolius Ginsenosides |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-fbd8d6b891c2827a2b7667d7b7a1f413e73f0002d6a4214434e6f780d99fcebe3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0731708516314613 |
PMID | 28038384 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_28038384 crossref_primary_10_1016_j_jpba_2016_12_026 crossref_citationtrail_10_1016_j_jpba_2016_12_026 elsevier_sciencedirect_doi_10_1016_j_jpba_2016_12_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-20 |
PublicationDateYYYYMMDD | 2017-02-20 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of pharmaceutical and biomedical analysis |
PublicationTitleAlternate | J Pharm Biomed Anal |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cordoba, Shishkova, Vance, Hernandez (bib0165) 2003; 33 Wu, Sun, Zhang, Guo, Liu (bib0010) 2015; 107 Wei, Wang, Li, Zhang, Lan (bib0045) 2007; 102 Weckwerth (bib0075) 2003; 54 Attele, Wu, Yuan (bib0040) 1999; 58 Doerfler, Lyon, Nagele, Sun, Fragner, Hadacek, Egelhofer, Weckwerth (bib0100) 2013; 9 Stermer, Bianchini, Korth (bib0175) 1994; 35 Sturm (bib0155) 1999; 121 Aharoni, Galili (bib0070) 2011; 22 Fernie, Carrari, Sweetlove (bib0160) 2004; 7 Kim, Zhang, Yang (bib0035) 2015; 33 Wang, Sakuma, Asafu-Adjaye, Shiu (bib0140) 1999; 71 Zhao, Zhao, Zhao, Zhou, Li, Zhang, Li, Hu, Li, Peng, Lu, Lin, Xu (bib0150) 2015; 5 Park, In, Kim, Cho, Han, Chang (bib0125) 2014; 38 Chan, But, Cheng, Kwok, Lau, Xu (bib0130) 2000; 72 Liu, Yang, Cheung, Yang, Zhou, Kwok, Liu, Li, Zhong, Lee, Tsui (bib0015) 2015; 16 Dai, Wang, Liu, Shi, Wang, Zhang, Liu, Huang (bib0055) 2014; 4 Fukusaki, Jumtee, Bamba, Yamaji, Kobayashi (bib0090) 2006; 61 Wang, Lu (bib0025) 2015; 6 Kim (bib0190) 2012; 36 Maeda, Dudareva (bib0065) 2012; 63 Tan, Xie, Xiang, Li, Zheng, Xu, Guo, Ye (bib0120) 2015; 10 Flores-Perez, Perez-Gil, Closa, Wright, Botella-Pavia, Phillips, Ferrer, Gershenzon, Rodriguez-Concepcion (bib0185) 2010; 3 Galili (bib0080) 2011; 6 Gotz, Staroske, Radchuk, Emery, Wutzke, Herzog, Weber (bib0060) 2007; 58 Farag, Huhman, Lei, Sumner (bib0095) 2007; 68 Sharma, Goyal (bib0020) 2015; 39 Kim, Jeon, Jang, Oh, Kwon, Jung, Yang (bib0050) 2014; 38 Moing, Aharoni, Biais, Rogachev, Meir, Brodsky, Allwood, Erban, Dunn, Kay, de Koning, de Vos, Jonker, Mumm, Deborde, Maucourt, Bernillon, Gibon, Hansen, Husted, Goodacre, Kopka, Schjoerring, Rolin, Hall (bib0115) 2011; 190 Korth, Jaggard, Dixon (bib0180) 2000; 23 Engel, Ewald, Gupta, Zrenner, Hagemann, Bauwe (bib0200) 2011; 157 Mao, Bai, Xu, Kong, Zhu, Zhu, Wang, Li (bib0135) 2014; 97 Dong, Yan, Bock, Nokhrina, Keller, Georges (bib0085) 2013; 13 Pace, Martinelli, Sardone, D E Combarieu E (bib0005) 2015; 101 Xie, Plumb, Su, Xu, Zhao, Qiu, Long, Liu, Jia (bib0030) 2008; 31 Nunes-Nesi, Fernie, Stitt (bib0145) 2010; 3 Dixon, Achnine, Kota, Liu, Reddy, Wang (bib0170) 2002; 3 Tschoep, Gibon, Carillo, Armengaud, Szecowka, Nunes-Nesi, Fernie, Koehl, Stitt (bib0195) 2009; 32 Han, Lee, Kim, Lee (bib0105) 2015; 20 Cuadros-Inostroza, Ruiz-Lara, Gonzalez, Eckardt, Willmitzer, Pena-Cortes (bib0110) 2016; 12 Fukusaki (10.1016/j.jpba.2016.12.026_bib0090) 2006; 61 Han (10.1016/j.jpba.2016.12.026_bib0105) 2015; 20 Engel (10.1016/j.jpba.2016.12.026_bib0200) 2011; 157 Flores-Perez (10.1016/j.jpba.2016.12.026_bib0185) 2010; 3 Zhao (10.1016/j.jpba.2016.12.026_bib0150) 2015; 5 Liu (10.1016/j.jpba.2016.12.026_bib0015) 2015; 16 Weckwerth (10.1016/j.jpba.2016.12.026_bib0075) 2003; 54 Dixon (10.1016/j.jpba.2016.12.026_bib0170) 2002; 3 Tan (10.1016/j.jpba.2016.12.026_bib0120) 2015; 10 Chan (10.1016/j.jpba.2016.12.026_bib0130) 2000; 72 Farag (10.1016/j.jpba.2016.12.026_bib0095) 2007; 68 Nunes-Nesi (10.1016/j.jpba.2016.12.026_bib0145) 2010; 3 Cuadros-Inostroza (10.1016/j.jpba.2016.12.026_bib0110) 2016; 12 Sturm (10.1016/j.jpba.2016.12.026_bib0155) 1999; 121 Cordoba (10.1016/j.jpba.2016.12.026_bib0165) 2003; 33 Kim (10.1016/j.jpba.2016.12.026_bib0050) 2014; 38 Dai (10.1016/j.jpba.2016.12.026_bib0055) 2014; 4 Maeda (10.1016/j.jpba.2016.12.026_bib0065) 2012; 63 Galili (10.1016/j.jpba.2016.12.026_bib0080) 2011; 6 Doerfler (10.1016/j.jpba.2016.12.026_bib0100) 2013; 9 Attele (10.1016/j.jpba.2016.12.026_bib0040) 1999; 58 Wang (10.1016/j.jpba.2016.12.026_bib0140) 1999; 71 Stermer (10.1016/j.jpba.2016.12.026_bib0175) 1994; 35 Wu (10.1016/j.jpba.2016.12.026_bib0010) 2015; 107 Dong (10.1016/j.jpba.2016.12.026_bib0085) 2013; 13 Xie (10.1016/j.jpba.2016.12.026_bib0030) 2008; 31 Aharoni (10.1016/j.jpba.2016.12.026_bib0070) 2011; 22 Tschoep (10.1016/j.jpba.2016.12.026_bib0195) 2009; 32 Fernie (10.1016/j.jpba.2016.12.026_bib0160) 2004; 7 Kim (10.1016/j.jpba.2016.12.026_bib0190) 2012; 36 Park (10.1016/j.jpba.2016.12.026_bib0125) 2014; 38 Kim (10.1016/j.jpba.2016.12.026_bib0035) 2015; 33 Wei (10.1016/j.jpba.2016.12.026_bib0045) 2007; 102 Mao (10.1016/j.jpba.2016.12.026_bib0135) 2014; 97 Korth (10.1016/j.jpba.2016.12.026_bib0180) 2000; 23 Moing (10.1016/j.jpba.2016.12.026_bib0115) 2011; 190 Sharma (10.1016/j.jpba.2016.12.026_bib0020) 2015; 39 Wang (10.1016/j.jpba.2016.12.026_bib0025) 2015; 6 Gotz (10.1016/j.jpba.2016.12.026_bib0060) 2007; 58 Pace (10.1016/j.jpba.2016.12.026_bib0005) 2015; 101 |
References_xml | – volume: 6 start-page: 1259 year: 2015 ident: bib0025 article-title: Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng publication-title: Front. Plant Sci. – volume: 107 start-page: 141 year: 2015 end-page: 150 ident: bib0010 article-title: Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry publication-title: J. Pharm. Biomed. Anal. – volume: 23 start-page: 507 year: 2000 end-page: 516 ident: bib0180 article-title: Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato publication-title: Plant J. – volume: 36 start-page: 1 year: 2012 end-page: 15 ident: bib0190 article-title: Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng publication-title: J. Ginseng Res. – volume: 22 start-page: 239 year: 2011 end-page: 244 ident: bib0070 article-title: Metabolic engineering of the plant primary-secondary metabolism interface publication-title: Curr. Opin. Biotechnol. – volume: 38 start-page: 66 year: 2014 end-page: 72 ident: bib0050 article-title: Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer publication-title: J. Ginseng Res. – volume: 35 start-page: 1133 year: 1994 end-page: 1140 ident: bib0175 article-title: Regulation of HMG-CoA reductase activity in plants publication-title: J. Lipid Res. – volume: 10 start-page: e0124794 year: 2015 ident: bib0120 article-title: Dynamic metabolic profiles and tissue-specific source effects on the metabolome of developing seeds of Brassica napus publication-title: PLoS One – volume: 6 start-page: 192 year: 2011 end-page: 195 ident: bib0080 article-title: The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation publication-title: Plant Signal. Behav. – volume: 71 start-page: 1579 year: 1999 end-page: 1584 ident: bib0140 article-title: Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS publication-title: Anal. Chem. – volume: 32 start-page: 300 year: 2009 end-page: 318 ident: bib0195 article-title: Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis publication-title: Plant Cell Environ. – volume: 16 start-page: 265 year: 2015 ident: bib0015 article-title: Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis publication-title: BMC Genom. – volume: 58 start-page: 1685 year: 1999 end-page: 1693 ident: bib0040 article-title: Ginseng pharmacology: multiple constituents and multiple actions publication-title: Biochem. Pharmacol. – volume: 102 start-page: 664 year: 2007 end-page: 668 ident: bib0045 article-title: Investigation of ginsenosides in different parts and ages of Panax ginseng publication-title: Food Chem. – volume: 4 start-page: 3698 year: 2014 ident: bib0055 article-title: Producing aglycons of ginsenosides in bakers' yeast publication-title: Sci. Rep. – volume: 121 start-page: 1 year: 1999 end-page: 8 ident: bib0155 article-title: Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning publication-title: Plant Physiol. – volume: 58 start-page: 3183 year: 2007 end-page: 3195 ident: bib0060 article-title: Uptake and allocation of carbon and nitrogen in Vicia narbonensis plants with increased seed sink strength achieved by seed-specific expression of an amino acid permease publication-title: J. Exp. Bot. – volume: 72 start-page: 1281 year: 2000 end-page: 1287 ident: bib0130 article-title: Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS publication-title: Anal. Chem. – volume: 5 start-page: 16346 year: 2015 ident: bib0150 article-title: A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC–MS and CE-MS publication-title: Sci. Rep. – volume: 3 start-page: 371 year: 2002 end-page: 390 ident: bib0170 article-title: The phenylpropanoid pathway and plant defence-a genomics perspective publication-title: Mol Plant Pathol. – volume: 61 start-page: 267 year: 2006 end-page: 272 ident: bib0090 article-title: Metabolic fingerprinting and profiling of Arabidopsis thaliana leaf and its cultured cells T87 by GC/MS publication-title: Z Naturforsch C – volume: 190 start-page: 683 year: 2011 end-page: 696 ident: bib0115 article-title: Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics publication-title: New Phytol. – volume: 68 start-page: 342 year: 2007 end-page: 354 ident: bib0095 article-title: Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI–MS and GC–MS publication-title: Phytochemistry – volume: 7 start-page: 254 year: 2004 end-page: 261 ident: bib0160 article-title: Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport publication-title: Curr. Opin. Plant Biol. – volume: 12 start-page: 39 year: 2016 ident: bib0110 article-title: GC–MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites publication-title: Metabolomics – volume: 101 start-page: 80 year: 2015 end-page: 91 ident: bib0005 article-title: Metabolomic evaluation of ginsenosides distribution in Panax genus (Panax ginseng and Panax quinquefolius) using multivariate statistical analysis publication-title: Fitoterapia – volume: 33 start-page: 1037 year: 2003 end-page: 1049 ident: bib0165 article-title: Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.) publication-title: Plant J. – volume: 63 start-page: 73 year: 2012 end-page: 105 ident: bib0065 article-title: The shikimate pathway and aromatic amino acid biosynthesis in plants publication-title: Annu. Rev. Plant Biol. – volume: 3 start-page: 973 year: 2010 end-page: 996 ident: bib0145 article-title: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions publication-title: Mol. Plant – volume: 9 start-page: 564 year: 2013 end-page: 574 ident: bib0100 article-title: Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism publication-title: Metabolomics – volume: 31 start-page: 1015 year: 2008 end-page: 1026 ident: bib0030 article-title: Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research publication-title: J. Sep. Sci. – volume: 3 start-page: 101 year: 2010 end-page: 112 ident: bib0185 article-title: Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis publication-title: Mol. Plant – volume: 38 start-page: 59 year: 2014 end-page: 65 ident: bib0125 article-title: Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS publication-title: J. Ginseng Res. – volume: 54 start-page: 669 year: 2003 end-page: 689 ident: bib0075 article-title: Metabolomics in systems biology publication-title: Annu. Rev. Plant Biol. – volume: 20 start-page: 16170 year: 2015 end-page: 16185 ident: bib0105 article-title: MS-based metabolite profiling of aboveground and root components of zingiber mioga and officinale publication-title: Molecules – volume: 39 start-page: 265 year: 2015 end-page: 273 ident: bib0020 article-title: Chemoprevention of chemical-induced skin cancer by Panax ginseng root extract publication-title: J. Ginseng Res. – volume: 33 start-page: 717 year: 2015 end-page: 735 ident: bib0035 article-title: Biosynthesis and biotechnological production of ginsenosides publication-title: Biotechnol. Adv. – volume: 13 start-page: 84 year: 2013 ident: bib0085 article-title: Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways publication-title: BMC Plant Biol. – volume: 157 start-page: 1711 year: 2011 end-page: 1720 ident: bib0200 article-title: The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria publication-title: Plant Physiol. – volume: 97 start-page: 129 year: 2014 end-page: 140 ident: bib0135 article-title: Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach publication-title: J. Pharm. Biomed. Anal. – volume: 20 start-page: 16170 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0105 article-title: MS-based metabolite profiling of aboveground and root components of zingiber mioga and officinale publication-title: Molecules doi: 10.3390/molecules200916170 – volume: 3 start-page: 101 year: 2010 ident: 10.1016/j.jpba.2016.12.026_bib0185 article-title: Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/ssp100 – volume: 61 start-page: 267 year: 2006 ident: 10.1016/j.jpba.2016.12.026_bib0090 article-title: Metabolic fingerprinting and profiling of Arabidopsis thaliana leaf and its cultured cells T87 by GC/MS publication-title: Z Naturforsch C doi: 10.1515/znc-2006-3-419 – volume: 58 start-page: 1685 year: 1999 ident: 10.1016/j.jpba.2016.12.026_bib0040 article-title: Ginseng pharmacology: multiple constituents and multiple actions publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(99)00212-9 – volume: 32 start-page: 300 year: 2009 ident: 10.1016/j.jpba.2016.12.026_bib0195 article-title: Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01921.x – volume: 22 start-page: 239 year: 2011 ident: 10.1016/j.jpba.2016.12.026_bib0070 article-title: Metabolic engineering of the plant primary-secondary metabolism interface publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.11.004 – volume: 63 start-page: 73 year: 2012 ident: 10.1016/j.jpba.2016.12.026_bib0065 article-title: The shikimate pathway and aromatic amino acid biosynthesis in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105439 – volume: 13 start-page: 84 year: 2013 ident: 10.1016/j.jpba.2016.12.026_bib0085 article-title: Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-84 – volume: 10 start-page: e0124794 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0120 article-title: Dynamic metabolic profiles and tissue-specific source effects on the metabolome of developing seeds of Brassica napus publication-title: PLoS One doi: 10.1371/journal.pone.0124794 – volume: 5 start-page: 16346 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0150 article-title: A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC–MS and CE-MS publication-title: Sci. Rep. doi: 10.1038/srep16346 – volume: 7 start-page: 254 year: 2004 ident: 10.1016/j.jpba.2016.12.026_bib0160 article-title: Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.03.007 – volume: 23 start-page: 507 year: 2000 ident: 10.1016/j.jpba.2016.12.026_bib0180 article-title: Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00821.x – volume: 190 start-page: 683 year: 2011 ident: 10.1016/j.jpba.2016.12.026_bib0115 article-title: Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03626.x – volume: 157 start-page: 1711 year: 2011 ident: 10.1016/j.jpba.2016.12.026_bib0200 article-title: The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria publication-title: Plant Physiol. doi: 10.1104/pp.111.184564 – volume: 33 start-page: 717 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0035 article-title: Biosynthesis and biotechnological production of ginsenosides publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.03.001 – volume: 121 start-page: 1 year: 1999 ident: 10.1016/j.jpba.2016.12.026_bib0155 article-title: Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning publication-title: Plant Physiol. doi: 10.1104/pp.121.1.1 – volume: 35 start-page: 1133 year: 1994 ident: 10.1016/j.jpba.2016.12.026_bib0175 article-title: Regulation of HMG-CoA reductase activity in plants publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39958-2 – volume: 3 start-page: 973 year: 2010 ident: 10.1016/j.jpba.2016.12.026_bib0145 article-title: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions publication-title: Mol. Plant doi: 10.1093/mp/ssq049 – volume: 36 start-page: 1 year: 2012 ident: 10.1016/j.jpba.2016.12.026_bib0190 article-title: Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng publication-title: J. Ginseng Res. doi: 10.5142/jgr.2012.36.1.1 – volume: 58 start-page: 3183 year: 2007 ident: 10.1016/j.jpba.2016.12.026_bib0060 article-title: Uptake and allocation of carbon and nitrogen in Vicia narbonensis plants with increased seed sink strength achieved by seed-specific expression of an amino acid permease publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm164 – volume: 97 start-page: 129 year: 2014 ident: 10.1016/j.jpba.2016.12.026_bib0135 article-title: Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2014.04.032 – volume: 72 start-page: 1281 year: 2000 ident: 10.1016/j.jpba.2016.12.026_bib0130 article-title: Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS publication-title: Anal. Chem. doi: 10.1021/ac990819z – volume: 101 start-page: 80 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0005 article-title: Metabolomic evaluation of ginsenosides distribution in Panax genus (Panax ginseng and Panax quinquefolius) using multivariate statistical analysis publication-title: Fitoterapia doi: 10.1016/j.fitote.2014.12.013 – volume: 3 start-page: 371 year: 2002 ident: 10.1016/j.jpba.2016.12.026_bib0170 article-title: The phenylpropanoid pathway and plant defence-a genomics perspective publication-title: Mol Plant Pathol. doi: 10.1046/j.1364-3703.2002.00131.x – volume: 9 start-page: 564 year: 2013 ident: 10.1016/j.jpba.2016.12.026_bib0100 article-title: Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism publication-title: Metabolomics doi: 10.1007/s11306-012-0470-0 – volume: 6 start-page: 1259 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0025 article-title: Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng publication-title: Front. Plant Sci. – volume: 4 start-page: 3698 year: 2014 ident: 10.1016/j.jpba.2016.12.026_bib0055 article-title: Producing aglycons of ginsenosides in bakers' yeast publication-title: Sci. Rep. doi: 10.1038/srep03698 – volume: 71 start-page: 1579 year: 1999 ident: 10.1016/j.jpba.2016.12.026_bib0140 article-title: Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS publication-title: Anal. Chem. doi: 10.1021/ac980890p – volume: 39 start-page: 265 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0020 article-title: Chemoprevention of chemical-induced skin cancer by Panax ginseng root extract publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2015.01.005 – volume: 16 start-page: 265 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0015 article-title: Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis publication-title: BMC Genom. doi: 10.1186/s12864-015-1477-5 – volume: 38 start-page: 66 year: 2014 ident: 10.1016/j.jpba.2016.12.026_bib0050 article-title: Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2013.11.001 – volume: 68 start-page: 342 year: 2007 ident: 10.1016/j.jpba.2016.12.026_bib0095 article-title: Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI–MS and GC–MS publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.10.023 – volume: 54 start-page: 669 year: 2003 ident: 10.1016/j.jpba.2016.12.026_bib0075 article-title: Metabolomics in systems biology publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.135014 – volume: 102 start-page: 664 year: 2007 ident: 10.1016/j.jpba.2016.12.026_bib0045 article-title: Investigation of ginsenosides in different parts and ages of Panax ginseng publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.05.053 – volume: 38 start-page: 59 year: 2014 ident: 10.1016/j.jpba.2016.12.026_bib0125 article-title: Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2013.11.011 – volume: 33 start-page: 1037 year: 2003 ident: 10.1016/j.jpba.2016.12.026_bib0165 article-title: Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.) publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01686.x – volume: 107 start-page: 141 year: 2015 ident: 10.1016/j.jpba.2016.12.026_bib0010 article-title: Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2014.12.030 – volume: 6 start-page: 192 year: 2011 ident: 10.1016/j.jpba.2016.12.026_bib0080 article-title: The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.2.14425 – volume: 12 start-page: 39 year: 2016 ident: 10.1016/j.jpba.2016.12.026_bib0110 article-title: GC–MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites publication-title: Metabolomics doi: 10.1007/s11306-015-0927-z – volume: 31 start-page: 1015 year: 2008 ident: 10.1016/j.jpba.2016.12.026_bib0030 article-title: Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research publication-title: J. Sep. Sci. doi: 10.1002/jssc.200700650 |
SSID | ssj0005194 |
Score | 2.4818625 |
Snippet | [Display omitted]
•Tissue-specific profiling of primary and secondary metabolites in two different species of ginseng by using GC- and LC-MS.•Revealed a... The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 176 |
SubjectTerms | Carbon and nitrogen metabolism Chromatography, Liquid - methods Gas Chromatography-Mass Spectrometry - methods Ginsenosides Ginsenosides - analysis Ginsenosides - metabolism Metabolomics - methods P. ginseng and P. quinquefolius Panax - chemistry Panax - metabolism Plant Leaves - chemistry Plant Leaves - metabolism Plant Roots - chemistry Plant Roots - metabolism Saponins - analysis Saponins - metabolism Species Specificity Tissue Distribution - physiology Tissue specific |
Title | The integration of GC–MS and LC–MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation |
URI | https://dx.doi.org/10.1016/j.jpba.2016.12.026 https://www.ncbi.nlm.nih.gov/pubmed/28038384 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECaCZOlSNOlfkja4IcjSqLYkmpTGwGjqtE1gIAmQTSApEVDgSG4tA_VS9B36ep36JL0jqSRdPHSyQJNHWXe-OxF338fYYWZGGLWyKhLDXEc8tzLKuTuDT6uhMLlINDU4n1-IyTX_dDO62WDjvheGyiqD7_c-3XnrMDIIT3Mwr-vBJRpnLCljECmRUxPiJ-eSrPz9j0dlHrEjQ6TJEc0OjTO-xut2rgl7KBbuSJAAFtYGp0eR5_QZexpSRjjxd7XNNqpmhx1NPeb06hiuHlqoFsdwBNMHNOrVc_Ybv4YeFAKVAK2Fj-M_P3-dX4JqSvgSrrsWMI9WK8CMEO6qDo1jRh3LC_C03hjiUAxMVaO-A51SVzhAAvzI12XdYIix7axeLoBwodCuQUHnFBu5mdTViS_mkfu0tQFDVTbG81fQfc099EW_PWbDC7fQb9cSsygOGLO8C6RjL9j16Yer8SQKlA6R4UJ0kdVlVgqd5bHBdz2pEi2FkKXUUsUW42klU0tOuhSKE5hbyithZTYs89watLf0Jdts2qZ6zcBIzm1iRmWZp9wIpblGh4LCnahE7rK412VhAt450W7Mir6w7bYg_Rek_yJOCtT_Lnt3vyb85LWzR72JFP_YbIHhaO26V96e7vcgirAszfjef0rcZ08SSjeo1X74hm1235bVW0yWOn3g_g0HbOvk7PPk4i91BhoJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECZSZ2iXov9N27Q3FFkawZZEkdIYGEmdxjYMxAGyCSIlAgocya1loN76Dn29THmS3olU3C4eOlmgyaOsO9-diLvvY-xzrCOMWnHhiUGiPJ4Y6SW8PYMPi4HQiQgUNThPpmJ0xb9dR9d7bNj1wlBZpfP91qe33tqN9N3T7C_Lsn-JxulLyhhESOTU4SO2T-hUUY_tn5xfjKbbSg-_5UOk-R4tcL0ztszrZqkIfsgX7akgYSzsjE9_BZ-zZ-ypyxrhxN7Yc7ZXVC_Y0czCTm-OYb7tolodwxHMtoDUm5fsDr-GDhcC9QC1ga_D-1-_J5eQVTmM3XVTA6bS2QYwKYTbokH7WFDT8gosszdGORQDs6zKfgIdVBc4QALsyPd1WWGUMfWiXK-AoKHQtCGDptWt186kxk58N_faT1Nq0FRooy2FBd3X0qJfdNtjQrxqF9rtaiIXxQGt17eOd-wVuzo7nQ9HnmN18DQXovGMyuNcqDjxNb7uySxQUgiZSyUz32BILWRoyE_nIuOE5xbyQhgZD_IkMRpNLnzNelVdFW8ZaMm5CXSU50nItcgUV-hTUHgrKpAHzO90mWoHeU7MG4u0q227SUn_Kek_9YMU9X_AvjyscT955-yoM5H0H7NNMSLtXPfG2tPDHsQSFocxf_efEj-xx6P5ZJyOz6cX79mTgLIP6rwffGC95se6OMTcqVEf3X_jD_1EHLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+integration+of+GC%E2%80%93MS+and+LC%E2%80%93MS+to+assay+the+metabolomics+profiling+in+Panax+ginseng+and+Panax+quinquefolius+reveals+a+tissue-+and+species-specific+connectivity+of+primary+metabolites+and+ginsenosides+accumulation&rft.jtitle=Journal+of+pharmaceutical+and+biomedical+analysis&rft.au=Liu%2C+Jia&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Yu&rft.au=Abozeid%2C+Ann&rft.date=2017-02-20&rft.issn=0731-7085&rft.volume=135&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1016%2Fj.jpba.2016.12.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpba_2016_12_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0731-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0731-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0731-7085&client=summon |