Toward defining the Anthropocene onset using a rapid increase in anthropogenic fingerprints in global geological archives
One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy rec...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 41; p. e2313098121 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2313098121 |
Cover
Abstract | One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952. |
---|---|
AbstractList | One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952. In the context of the Anthropocene, identifying the precise moment at which the consequences of fundamental human-induced changes in the Earth system first appear on the planet remains a long-standing challenge. This is due to the lack of a clear stratigraphic marker for the start date, as human impacts on Earth’s environments are significantly time-transgressive and spatiotemporally variable. Our study revealed that the number of anthropogenic fingerprints in global strata began to increase abruptly from 1952 ± 3 CE. This signal may reflect the onset of key human-induced changes in the Earth system, providing unambiguous stratigraphic evidence. This unprecedented synchronous increase has potential significance for defining the start of the Anthropocene in the future. One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952. One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952.One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952. |
Author | Doi, Hideyuki Aze, Takahiro Tsugeki, Narumi Fifield, L. Keith Saito, Yoshiki Kuwae, Michinobu Tims, Stephen Yokoyama, Yusuke Froehlich, Michaela |
Author_xml | – sequence: 1 givenname: Michinobu orcidid: 0000-0002-7747-5421 surname: Kuwae fullname: Kuwae, Michinobu – sequence: 2 givenname: Yusuke orcidid: 0000-0001-7869-5891 surname: Yokoyama fullname: Yokoyama, Yusuke – sequence: 3 givenname: Stephen orcidid: 0000-0001-6014-0126 surname: Tims fullname: Tims, Stephen – sequence: 4 givenname: Michaela orcidid: 0000-0002-1938-8119 surname: Froehlich fullname: Froehlich, Michaela – sequence: 5 givenname: L. Keith surname: Fifield fullname: Fifield, L. Keith – sequence: 6 givenname: Takahiro surname: Aze fullname: Aze, Takahiro – sequence: 7 givenname: Narumi orcidid: 0000-0003-1236-906X surname: Tsugeki fullname: Tsugeki, Narumi – sequence: 8 givenname: Hideyuki orcidid: 0000-0002-2701-3982 surname: Doi fullname: Doi, Hideyuki – sequence: 9 givenname: Yoshiki orcidid: 0000-0003-3212-6356 surname: Saito fullname: Saito, Yoshiki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39312679$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaTZpz70VQy-9OBl9WLZPJYR-BAK9pGcxlsdeBa_kSt6E_PeVyaZtAj3NwPze4w3vhB354Imx9xzOONTyfPaYzoTkEtqGC_6KbTi0vNSqhSO2ARB12SihjtlJSrcA0FYNvGHHspVc6LrdsIebcI-xL3oanHd-LJYtFRd-2cYwB0ueiuATLcU-rUcsIs6uL5y3kTBRXgo8wCN5Z4vsMlKco_NLWq_jFDqcipHCFEZn84rRbt0dpbfs9YBToneHecp-fv1yc_m9vP7x7ery4rq0SuulHNqqs9raSjV6QJCd0pWsu76Hvm-bRnRKVgIVogAlpURBPVQcgCMfhCUrT9nnR9953-2ozz8tESeTI-4wPpiAzjy_eLc1Y7gznKtagW6zw6eDQwy_9pQWs3PJ0jShp7BPRnJoai01iIx-fIHehn30-b9McV1nT1Fl6sO_kf5keaolA9UjYGNIKdJgrFtwcWFN6CbDwaz1m7V-87f-rDt_oXuy_p_iN8ZVtP0 |
CitedBy_id | crossref_primary_10_1177_03091333241310742 crossref_primary_10_1021_acs_est_4c09706 |
Cites_doi | 10.1126/science.1170510 10.5194/acp-15-7287-2015 10.1016/j.scitotenv.2020.140767 10.1007/s10750-024-05519-0 10.1038/415023a 10.1038/nature14258 10.3389/fmars.2022.843824 10.1126/science.1186120 10.1177/20530196221136422 10.1017/9781108621359 10.1007/s10933-006-0002-x 10.1126/sciadv.aav7337 10.1016/j.scitotenv.2022.158751 10.31223/X5RD71 10.1007/s10933-008-9226-2 10.1038/s41598-020-67642-x 10.1016/j.gca.2009.02.009 10.1016/j.csda.2009.12.005 10.1002/jqs.3416 10.1002/jgrd.50668 10.1038/nclimate1583 10.1029/1999PA000477 10.1038/srep05848 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 10.1038/s41598-022-14179-w 10.1029/2005GC001115 10.1038/s41598-021-03899-0 10.1023/B:CLIM.0000004577.17928.fa 10.1016/j.quaint.2015.06.039 10.2110/palo.2012.p12-034r 10.1007/s10933-013-9745-3 10.1029/2003PA000964 10.1126/sciadv.1400253 10.5194/cp-9-1403-2013 10.1073/pnas.0803564105 10.1016/j.margeo.2013.06.002 10.5194/esd-3-149-2012 10.1038/s41598-017-07680-0 10.1007/s003380050147 10.1038/s41467-018-04922-1 10.1029/2008GL035634 10.2307/2261418 10.1021/acs.est.7b06122 10.1007/s10933-019-00068-2 10.1127/nos/2017/0385 10.1177/2053019614564785 10.1002/2013EF000165 10.1002/2015JC011066 10.1002/grl.50209 10.1016/j.earscirev.2012.11.001 10.1146/annurev-earth-050212-123944 10.1038/s41598-023-33849-x 10.1016/j.envpol.2020.115587 10.1073/pnas.2023483118 10.1111/j.1541-0420.2006.00662.x 10.1029/2009EO490006 10.1016/j.heliyon.2023.e14153 10.31223/X5MQ3C 10.1021/es990279n 10.1016/j.qsa.2023.100088 10.1038/nature09678 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Oct 8, 2024 Copyright © 2024 the Author(s). Published by PNAS. 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Oct 8, 2024 – notice: Copyright © 2024 the Author(s). Published by PNAS. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2313098121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Geology |
EISSN | 1091-6490 |
ExternalDocumentID | PMC11474069 39312679 10_1073_pnas_2313098121 |
Genre | Historical Article Journal Article |
GrantInformation_xml | – fundername: Grants-in-Aid for Scientific Research from the Japan Society for Promotion of Science grantid: 20H00193 21H01170 and 21H05058 – fundername: The Moonshot Research and Development Program, New Energy and Industrial Technology Development Organization grantid: JPNP18016 (20001823-0) – fundername: Marine Core Research Institute, Kochi University grantid: 08B033 09B043 15A035 15B058 19A007 21C001 21B045 – fundername: ; grantid: 20H00193 21H01170 and 21H05058 – fundername: ; grantid: 08B033 09B043 15A035 15B058 19A007 21C001 21B045 – fundername: ; grantid: JPNP18016 (20001823-0) |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c466t-f95bc6cc5486fa03b46537bdd0dd9882b4352a4aa204333a2ed051001a1f2cec3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:31 EDT 2025 Thu Sep 04 16:45:24 EDT 2025 Mon Jun 30 09:38:42 EDT 2025 Wed Feb 19 02:18:49 EST 2025 Thu Apr 24 22:58:29 EDT 2025 Tue Jul 01 02:37:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | anthropogenic fingerprints great acceleration anthropocene plutonium technosphere |
Language | English |
License | This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-f95bc6cc5486fa03b46537bdd0dd9882b4352a4aa204333a2ed051001a1f2cec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Carl Folke, Kungliga Vetenskapsakademien, Stockholm, Sweden; received August 15, 2023; accepted August 2, 2024 |
ORCID | 0000-0002-7747-5421 0000-0002-1938-8119 0000-0003-3212-6356 0000-0001-6014-0126 0000-0001-7869-5891 0000-0003-1236-906X 0000-0002-2701-3982 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11474069 |
PMID | 39312679 |
PQID | 3116711425 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11474069 proquest_miscellaneous_3108763602 proquest_journals_3116711425 pubmed_primary_39312679 crossref_citationtrail_10_1073_pnas_2313098121 crossref_primary_10_1073_pnas_2313098121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-08 |
PublicationDateYYYYMMDD | 2024-10-08 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 Zinke J. (e_1_3_4_30_2) 2023; 10 IPCC (e_1_3_4_16_2) 2021 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_5_2 McCarthy F. (e_1_3_4_28_2) 2023; 10 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 Fiałkiewicz-Kozieł B. (e_1_3_4_71_2) 2023; 10 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_51_2 e_1_3_4_11_2 DeLong K. L. (e_1_3_4_29_2) 2023; 10 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 Thomas E. R. (e_1_3_4_40_2) 2023; 10 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 Talento S. (e_1_3_4_66_2) 2021; 2021 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 Himson S. (e_1_3_4_70_2) 2023; 10 Han Y. (e_1_3_4_43_2) 2023; 10 Stegner M. A. (e_1_3_4_39_2) 2023; 10 Kaiser J. (e_1_3_4_44_2) 2023; 10 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_37_2 e_1_3_4_14_2 Kuwae M. (e_1_3_4_20_2) 2023; 10 e_1_3_4_35_2 e_1_3_4_18_2 MacFarling M. C. (e_1_3_4_56_2) 2006; 33 |
References_xml | – ident: e_1_3_4_55_2 doi: 10.1126/science.1170510 – start-page: 3 volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2021 ident: e_1_3_4_16_2 – volume: 10 start-page: 201 year: 2023 ident: e_1_3_4_30_2 article-title: North flinders reef (Coral Sea, Australia) Porites sp. corals as a candidate global boundary stratotype section and point for the Anthropocene Series publication-title: Anthr. Rev. – volume: 10 start-page: 87 year: 2023 ident: e_1_3_4_70_2 article-title: The San Francisco Estuary, USA as a reference section for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_59_2 doi: 10.5194/acp-15-7287-2015 – ident: e_1_3_4_50_2 doi: 10.1016/j.scitotenv.2020.140767 – ident: e_1_3_4_72_2 doi: 10.1007/s10750-024-05519-0 – ident: e_1_3_4_2_2 doi: 10.1038/415023a – ident: e_1_3_4_13_2 doi: 10.1038/nature14258 – ident: e_1_3_4_52_2 doi: 10.3389/fmars.2022.843824 – ident: e_1_3_4_63_2 doi: 10.1126/science.1186120 – volume: 10 start-page: 25 year: 2023 ident: e_1_3_4_44_2 article-title: The East Gotland Basin (Baltic Sea) as a candidate global boundary stratotype section and point for the Anthropocene series publication-title: Anthr. Rev. – volume: 10 start-page: 177 year: 2023 ident: e_1_3_4_43_2 article-title: The Sihailongwan Maar Lake, northeastern China as a candidate global boundary Stratotype section and point for the Anthropocene Series publication-title: Anthr. Rev. – ident: e_1_3_4_7_2 doi: 10.1177/20530196221136422 – ident: e_1_3_4_4_2 doi: 10.1017/9781108621359 – ident: e_1_3_4_41_2 doi: 10.1007/s10933-006-0002-x – ident: e_1_3_4_64_2 doi: 10.1126/sciadv.aav7337 – ident: e_1_3_4_57_2 doi: 10.1016/j.scitotenv.2022.158751 – volume: 33 year: 2006 ident: e_1_3_4_56_2 article-title: Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP publication-title: Geophys. Res. Lett. – ident: e_1_3_4_19_2 doi: 10.31223/X5RD71 – ident: e_1_3_4_36_2 doi: 10.1007/s10933-008-9226-2 – ident: e_1_3_4_58_2 doi: 10.1038/s41598-020-67642-x – ident: e_1_3_4_37_2 doi: 10.1016/j.gca.2009.02.009 – ident: e_1_3_4_76_2 doi: 10.1016/j.csda.2009.12.005 – ident: e_1_3_4_14_2 doi: 10.1002/jqs.3416 – ident: e_1_3_4_25_2 doi: 10.1002/jgrd.50668 – ident: e_1_3_4_31_2 doi: 10.1038/nclimate1583 – ident: e_1_3_4_61_2 doi: 10.1029/1999PA000477 – ident: e_1_3_4_24_2 doi: 10.1038/srep05848 – ident: e_1_3_4_3_2 doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 – ident: e_1_3_4_48_2 doi: 10.1038/s41598-022-14179-w – ident: e_1_3_4_60_2 doi: 10.1029/2005GC001115 – ident: e_1_3_4_73_2 doi: 10.1038/s41598-021-03899-0 – ident: e_1_3_4_5_2 – volume: 10 start-page: 225 year: 2023 ident: e_1_3_4_29_2 article-title: The Flower Garden Banks Siderastrea siderea coral as a candidate global boundary stratotype section and point for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_11_2 doi: 10.1023/B:CLIM.0000004577.17928.fa – ident: e_1_3_4_15_2 doi: 10.1016/j.quaint.2015.06.039 – volume: 10 start-page: 251 year: 2023 ident: e_1_3_4_40_2 article-title: The palmer ice core as a candidate global boundary stratotype section and point for the anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_53_2 doi: 10.2110/palo.2012.p12-034r – volume: 10 start-page: 288 year: 2023 ident: e_1_3_4_71_2 article-title: The Śnieżka peatland as a candidate global boundary stratotype section and point for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_9_2 – ident: e_1_3_4_33_2 doi: 10.1007/s10933-013-9745-3 – ident: e_1_3_4_54_2 doi: 10.1029/2003PA000964 – ident: e_1_3_4_18_2 doi: 10.1126/sciadv.1400253 – volume: 10 start-page: 146 year: 2023 ident: e_1_3_4_28_2 article-title: The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate global boundary Stratotype section and point for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_46_2 doi: 10.5194/cp-9-1403-2013 – ident: e_1_3_4_23_2 doi: 10.1073/pnas.0803564105 – ident: e_1_3_4_69_2 doi: 10.1016/j.margeo.2013.06.002 – ident: e_1_3_4_21_2 doi: 10.5194/esd-3-149-2012 – ident: e_1_3_4_67_2 doi: 10.1038/s41598-017-07680-0 – ident: e_1_3_4_42_2 doi: 10.1007/s003380050147 – ident: e_1_3_4_68_2 doi: 10.1038/s41467-018-04922-1 – ident: e_1_3_4_35_2 doi: 10.1029/2008GL035634 – ident: e_1_3_4_26_2 doi: 10.2307/2261418 – ident: e_1_3_4_45_2 doi: 10.1021/acs.est.7b06122 – ident: e_1_3_4_27_2 doi: 10.1007/s10933-019-00068-2 – ident: e_1_3_4_6_2 doi: 10.1127/nos/2017/0385 – ident: e_1_3_4_1_2 doi: 10.1177/2053019614564785 – ident: e_1_3_4_65_2 doi: 10.1002/2013EF000165 – ident: e_1_3_4_34_2 doi: 10.1002/2015JC011066 – volume: 10 start-page: 49 year: 2023 ident: e_1_3_4_20_2 article-title: Beppu Bay, Japan, as a candidate Global boundary Stratotype Section and Point for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_32_2 doi: 10.1002/grl.50209 – ident: e_1_3_4_62_2 doi: 10.1016/j.earscirev.2012.11.001 – ident: e_1_3_4_12_2 doi: 10.1146/annurev-earth-050212-123944 – ident: e_1_3_4_38_2 doi: 10.1038/s41598-023-33849-x – ident: e_1_3_4_51_2 doi: 10.1016/j.envpol.2020.115587 – ident: e_1_3_4_10_2 doi: 10.1073/pnas.2023483118 – ident: e_1_3_4_75_2 doi: 10.1111/j.1541-0420.2006.00662.x – ident: e_1_3_4_22_2 doi: 10.1029/2009EO490006 – ident: e_1_3_4_49_2 doi: 10.1016/j.heliyon.2023.e14153 – volume: 10 start-page: 116 year: 2023 ident: e_1_3_4_39_2 article-title: The Searsville Lake Site (California, USA) as a candidate global boundary Stratotype section and point for the Anthropocene series publication-title: Anthr. Rev. – ident: e_1_3_4_8_2 doi: 10.31223/X5MQ3C – ident: e_1_3_4_47_2 doi: 10.1021/es990279n – ident: e_1_3_4_74_2 doi: 10.1016/j.qsa.2023.100088 – ident: e_1_3_4_17_2 doi: 10.1038/nature09678 – volume: 2021 start-page: 1 year: 2021 ident: e_1_3_4_66_2 article-title: Evolution of the climate in the next million years: A reduced-complexity model for glacial cycles and impact of anthropogenic CO2 emissions publication-title: Earth Syst. Dynam. Discuss. |
SSID | ssj0009580 |
Score | 2.4928825 |
Snippet | One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early... In the context of the Anthropocene, identifying the precise moment at which the consequences of fundamental human-induced changes in the Earth system first... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2313098121 |
SubjectTerms | Anthropocene Anthropogenic Effects Anthropogenic factors Archives Archives & records Climatic conditions Earth Earth, Planet Fingerprints Geology Holocene Human influences Humans Physical Sciences Social Sciences Stratigraphy |
Title | Toward defining the Anthropocene onset using a rapid increase in anthropogenic fingerprints in global geological archives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39312679 https://www.proquest.com/docview/3116711425 https://www.proquest.com/docview/3108763602 https://pubmed.ncbi.nlm.nih.gov/PMC11474069 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCKM-FgozEoSjKksTePI4VAq1AWvXQSuUU2Y5DVy3ZapMIld_FD2T8THZLpcIlimLHTna-nRk7M98g9I6CVPOEkpDmHBYoRcTDnOY0BOPGYsrjXDAdILtMF6f0y9n8bDL5PYpa6js-E7_-mlfyP1KFayBXlSX7D5L1g8IFOAf5whEkDMe7yVjHvAaVrHWZB5MmYisfCFBigQqV7oJe7wewYMOuVopqSTmKrSYLYbYzzLASQa23-NROX6ejZC1ZyHfpFSSzPLVjl_bYm8DWBRws3Q7j0ZCvYpVIG4TB8XKofvy1_8mki99fNWveD3roYn3Nfmjn9lvf9hcegoCvdhSh5iG4Wcvzy5WpbWXTAdh4VyOhJqxurKkTsJ7U5FfPpFHO4NuEKTXlRb32NgnWFqaGROuGWQA9pmoZN6ydgT9LoiJ3t20RcO8YRh-uqD_UZ6RUA5TDAPfQ_STLdHDAYjGmes5N4pN9A0colZEPO0-w7QvdWODsxumOHJ-TR-ihXbHgIwO_fTSRzWO078SJDy1x-fsn6NrgETs8YsACHuMRazxijUfMsMYjdniEE7yFRzzGo2o1eMQDHrHD41N0-vnTycdFaEt7hIKmaRfWxZyLVAhYL6c1iwhXNH8Zr6qoqgpY9HHw4hNGGVOp24SwRFbKekQxi-tESEGeob1m3cgXCBfgk-dU0dRJQWsYbc6ihGex5AnLZUWnaOZ-5FJY3ntVfuWyvEWsU3Tob7gylC-3dz1wUiutXmhLoj5tqhT1-RS99c2gtdWnONbIda_6aCrINEqm6LkRsp-LFCRO0qyYonxL_L6DYoTfbmlW55oZHmbNVCr7y7u_wiv0YPj_HaC9btPL1-Bnd_yNhvUfr3bYQA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+defining+the+Anthropocene+onset+using+a+rapid+increase+in+anthropogenic+fingerprints+in+global+geological+archives&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kuwae%2C+Michinobu&rft.au=Yokoyama%2C+Yusuke&rft.au=Tims%2C+Stephen&rft.au=Froehlich%2C+Michaela&rft.date=2024-10-08&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=41&rft_id=info:doi/10.1073%2Fpnas.2313098121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2313098121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |