Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease
Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores. For this retrospective study, we examined ban...
Saved in:
Published in | Journal of neuroinflammation Vol. 14; no. 1; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
03.01.2017
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores.
For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples.
Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels.
Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders.
ClinicalTrials.gov NCT01504854. |
---|---|
AbstractList | Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores.BACKGROUNDTreatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores.For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples.METHODSFor this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples.Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels.RESULTSCompared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels.Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders.CONCLUSIONSCollectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders.ClinicalTrials.gov NCT01504854.TRIAL REGISTRATIONClinicalTrials.gov NCT01504854. Background Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF A[beta]40 levels and activities of daily living (ADL) scores. Methods For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF A[beta]42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Results Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF A[beta]42 levels during the 52-week trial, but did not alter tau levels. Conclusions Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. Trial registration ClinicalTrials.gov NCT01504854 Keywords: Resveratrol, Matrix metalloproteinase-(MMP)-9, Alzheimer, Interleukin-4, Macrophage-derived chemokine (MDC) Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF A[beta]40 levels and activities of daily living (ADL) scores. For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF A[beta]42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF A[beta]42 levels during the 52-week trial, but did not alter tau levels. Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores. For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels. Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. ClinicalTrials.gov NCT01504854. |
ArticleNumber | 1 |
Audience | Academic |
Author | Hebron, Michaeline Turner, R. Scott Huang, Xu Moussa, Charbel Ahn, Jaeil Aisen, Paul S. Rissman, Robert A. |
Author_xml | – sequence: 1 givenname: Charbel orcidid: 0000-0002-2012-7063 surname: Moussa fullname: Moussa, Charbel – sequence: 2 givenname: Michaeline surname: Hebron fullname: Hebron, Michaeline – sequence: 3 givenname: Xu surname: Huang fullname: Huang, Xu – sequence: 4 givenname: Jaeil surname: Ahn fullname: Ahn, Jaeil – sequence: 5 givenname: Robert A. surname: Rissman fullname: Rissman, Robert A. – sequence: 6 givenname: Paul S. surname: Aisen fullname: Aisen, Paul S. – sequence: 7 givenname: R. Scott surname: Turner fullname: Turner, R. Scott |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28086917$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Us1qFTEUDlKxP_oAbmTAjZupJ5lkMrMRLsU_KBSKrkNucuY2kkmuycyFuvI1fD2fxIy3La1YskjI95Occ75jchBiQEJeUjiltGvfZsp6yWugbQ1S9jU8IUdUclYz6PnBvfMhOc75G0DDRMuekUPWQdf2VB4RdYl5h0lPKfoq4Wb2esJcBZxTrF0YvB5HPbkYKh1s5YKdTYG11dvJ7bBy4zgHN10XpFr5H1foRky_f_7KlXUZdcbn5OmgfcYXN_sJ-frh_ZezT_X5xcfPZ6vz2vC2nepBDFqY3kiQrQFuGtkIq3vB-SDtUGoTw9py2TEL2AqkAJrBuu0kNKURQjQn5N3edzuvR7QGw5S0V9vkRp2uVdROPUSCu1KbuFOCNZw2XTF4c2OQ4vcZ86RGlw16rwPGOavyDBWUASzU13vqRntUpUmxOJqFrlZcSi572S-s0_-wyrI4OlMGObhy_0Dw6n4Jd3-_HVYhyD3BpJhzwkEZN_0dTnF2XlFQSyzUPhaqxEItsVBQlPQf5a3545o_A227fg |
CitedBy_id | crossref_primary_10_1016_j_bcp_2022_114915 crossref_primary_10_3233_BPL_180078 crossref_primary_10_1186_s12974_020_01991_2 crossref_primary_10_3390_antiox11020281 crossref_primary_10_18632_aging_102713 crossref_primary_10_3390_ijms24065903 crossref_primary_10_1111_cas_15576 crossref_primary_10_3390_antiox13111364 crossref_primary_10_1016_j_nbd_2019_104481 crossref_primary_10_3390_nu17050837 crossref_primary_10_1134_S181971242305001X crossref_primary_10_2174_1568026619666191202155738 crossref_primary_10_5650_jos_ess21333 crossref_primary_10_1016_j_mad_2020_111250 crossref_primary_10_1016_j_mcn_2017_12_003 crossref_primary_10_1155_2022_8100195 crossref_primary_10_1515_jbcpp_2016_0147 crossref_primary_10_1016_j_toxrep_2021_03_020 crossref_primary_10_14336_AD_2021_0122 crossref_primary_10_1016_j_neubiorev_2022_104961 crossref_primary_10_1089_ars_2023_0247 crossref_primary_10_1210_endocr_bqab079 crossref_primary_10_2174_1570159X21666230308090351 crossref_primary_10_1016_j_neuint_2021_105046 crossref_primary_10_1007_s11307_020_01485_w crossref_primary_10_1080_1028415X_2021_1972514 crossref_primary_10_1016_j_sleep_2021_10_009 crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_3233_JAD_191303 crossref_primary_10_2174_1570159X16666180803162059 crossref_primary_10_3390_antiox11081421 crossref_primary_10_1016_j_dscb_2023_100094 crossref_primary_10_1016_j_brainresbull_2023_110835 crossref_primary_10_1016_j_ejphar_2019_172847 crossref_primary_10_19161_etd_1201643 crossref_primary_10_1016_j_arr_2022_101831 crossref_primary_10_1016_j_foodres_2025_115752 crossref_primary_10_1016_j_jddst_2024_105418 crossref_primary_10_1016_j_biopha_2024_117235 crossref_primary_10_1021_acs_chemrev_8b00138 crossref_primary_10_1007_s00425_019_03276_2 crossref_primary_10_3390_ph14050458 crossref_primary_10_3390_ijms242216119 crossref_primary_10_1371_journal_pone_0302470 crossref_primary_10_1021_acschemneuro_3c00571 crossref_primary_10_3390_ijms21239220 crossref_primary_10_3390_ijms232415674 crossref_primary_10_3390_ph15080957 crossref_primary_10_3233_JAD_190316 crossref_primary_10_1038_s41598_020_79242_w crossref_primary_10_3390_ijms25020747 crossref_primary_10_1590_0004_282x20200010 crossref_primary_10_1007_s00210_024_03319_w crossref_primary_10_1080_1028415X_2024_2425565 crossref_primary_10_3390_antiox11112116 crossref_primary_10_3390_cells13080719 crossref_primary_10_3390_molecules28145426 crossref_primary_10_2174_1389557520666200513122357 crossref_primary_10_1002_ptr_8192 crossref_primary_10_3233_JAD_221064 crossref_primary_10_1016_j_joto_2017_04_002 crossref_primary_10_1016_j_mad_2020_111259 crossref_primary_10_3390_antiox10101509 crossref_primary_10_3748_wjg_v30_i33_3791 crossref_primary_10_1002_adhm_201901589 crossref_primary_10_1002_anbr_202000073 crossref_primary_10_3390_pharmaceutics15041133 crossref_primary_10_1016_j_fct_2020_111229 crossref_primary_10_1016_j_tjpad_2024_100013 crossref_primary_10_1007_s10068_022_01052_9 crossref_primary_10_3390_antiox12071362 crossref_primary_10_1080_17474086_2020_1738213 crossref_primary_10_1016_j_ejphar_2021_173974 crossref_primary_10_3390_metabo15030159 crossref_primary_10_1016_j_crphar_2021_100033 crossref_primary_10_1016_j_mad_2020_111297 crossref_primary_10_1016_j_biopha_2021_112164 crossref_primary_10_1007_s12035_021_02509_4 crossref_primary_10_1016_j_bcp_2021_114600 crossref_primary_10_1093_jn_nxaa064 crossref_primary_10_3389_fphar_2020_585821 crossref_primary_10_1016_j_hnm_2023_200232 crossref_primary_10_1002_ptr_8171 crossref_primary_10_1016_j_tifs_2018_06_007 crossref_primary_10_1166_jbmb_2024_2397 crossref_primary_10_3390_molecules22081329 crossref_primary_10_31083_j_fbl2904136 crossref_primary_10_1016_j_expneurol_2017_08_013 crossref_primary_10_1016_j_neuint_2022_105385 crossref_primary_10_15789_1563_0625_LOC_2811 crossref_primary_10_3233_JAD_170429 crossref_primary_10_2174_0115672050272577231120060909 crossref_primary_10_1016_j_chemosphere_2021_132982 crossref_primary_10_2174_1570159X20666221012122855 crossref_primary_10_3390_molecules28031486 crossref_primary_10_4049_jimmunol_1900844 crossref_primary_10_1016_j_ecoenv_2023_115401 crossref_primary_10_1016_j_biopha_2022_113670 crossref_primary_10_3389_fnut_2018_00106 crossref_primary_10_1016_j_bmcl_2022_128601 crossref_primary_10_3390_antiox10040573 crossref_primary_10_1016_j_arr_2020_101141 crossref_primary_10_1021_acschemneuro_0c00696 crossref_primary_10_3390_nu13114080 crossref_primary_10_3389_fchem_2022_896386 crossref_primary_10_2174_0127724328268507231218051058 crossref_primary_10_3390_ijms21082749 crossref_primary_10_1039_C7FO01300K crossref_primary_10_1155_2021_6673343 crossref_primary_10_1007_s40120_021_00271_2 crossref_primary_10_1515_revneuro_2022_0021 crossref_primary_10_1016_j_phymed_2024_155665 crossref_primary_10_1039_D3NA00149K crossref_primary_10_3390_antiox11050923 crossref_primary_10_1002_ptr_7068 crossref_primary_10_1007_s12031_021_01902_x crossref_primary_10_31665_JFB_2021_16289 crossref_primary_10_2174_0115672050300063240305074310 crossref_primary_10_7759_cureus_40463 crossref_primary_10_3389_fphar_2018_00867 crossref_primary_10_3390_molecules28227631 crossref_primary_10_1007_s40266_022_00923_4 crossref_primary_10_1017_erm_2022_36 crossref_primary_10_1016_j_neuroscience_2018_03_047 crossref_primary_10_1016_j_apsb_2019_11_008 crossref_primary_10_1016_j_npep_2018_07_001 crossref_primary_10_3390_antiox9010035 crossref_primary_10_1016_j_ebiom_2021_103244 crossref_primary_10_1097_MD_0000000000025320 crossref_primary_10_3390_ijms21103719 crossref_primary_10_1016_j_phrs_2019_104476 crossref_primary_10_3390_jpm11111116 crossref_primary_10_4103_1673_5374_374137 crossref_primary_10_31665_JFB_2020_13256 crossref_primary_10_1002_ejoc_202200758 crossref_primary_10_3390_molecules27123835 crossref_primary_10_33667_2078_5631_2022_24_31_37 crossref_primary_10_1016_j_phytochem_2022_113225 crossref_primary_10_1021_acsptsci_0c00224 crossref_primary_10_3390_cells13231945 crossref_primary_10_3390_ijms21051746 crossref_primary_10_3390_molecules23061455 crossref_primary_10_3390_ijms231810627 crossref_primary_10_3390_jfb14010050 crossref_primary_10_3390_nu10121892 crossref_primary_10_1038_s41526_021_00162_8 crossref_primary_10_3390_antiox11112097 crossref_primary_10_3390_biom10101401 crossref_primary_10_3389_fphar_2022_983623 crossref_primary_10_1017_S095442242100041X crossref_primary_10_1186_s12974_019_1444_1 crossref_primary_10_3390_pharmaceutics13040451 crossref_primary_10_1016_j_arr_2023_102029 crossref_primary_10_2174_1567205016666190321163438 crossref_primary_10_3389_fimmu_2023_1075395 crossref_primary_10_1002_ptr_8012 crossref_primary_10_3390_ph13100306 crossref_primary_10_14336_AD_2020_0913 crossref_primary_10_1080_14728222_2022_2166829 crossref_primary_10_1016_j_nbas_2022_100050 crossref_primary_10_2174_0929867330666230504121523 crossref_primary_10_3390_ijms23136923 crossref_primary_10_3390_medicina59091584 crossref_primary_10_1016_j_phymed_2023_155272 crossref_primary_10_2174_1570159X22666231017141636 crossref_primary_10_3390_ijms19103199 crossref_primary_10_3390_cimb45120596 crossref_primary_10_2174_1381612825666190717110932 crossref_primary_10_1016_j_mam_2019_100836 crossref_primary_10_1007_s11011_021_00806_4 crossref_primary_10_1016_j_fct_2021_112185 crossref_primary_10_14283_jpad_2023_108 crossref_primary_10_3390_ijms21228751 crossref_primary_10_1007_s10072_021_05303_1 crossref_primary_10_3389_fnagi_2022_1019942 crossref_primary_10_3389_fphys_2021_752117 crossref_primary_10_3390_molecules25204649 crossref_primary_10_1016_j_ijpharm_2021_121042 crossref_primary_10_1016_j_arr_2023_102003 crossref_primary_10_1186_s12974_022_02565_0 crossref_primary_10_3177_jnsv_68_S121 crossref_primary_10_1002_ddr_21605 crossref_primary_10_1080_10408398_2020_1740644 crossref_primary_10_1016_j_biopha_2024_116481 crossref_primary_10_1080_14756366_2022_2091556 crossref_primary_10_20517_and_2023_04 crossref_primary_10_1186_s12974_019_1677_z crossref_primary_10_1016_j_heliyon_2022_e12172 crossref_primary_10_1016_j_jpsychores_2019_109783 crossref_primary_10_1016_j_jphs_2018_08_006 crossref_primary_10_1186_s12974_019_1653_7 crossref_primary_10_1089_ars_2019_7911 crossref_primary_10_3390_nu9111263 crossref_primary_10_1016_j_arr_2022_101806 crossref_primary_10_3389_fphys_2021_661852 crossref_primary_10_1002_ptr_8101 crossref_primary_10_2174_1389200223666220321103942 crossref_primary_10_2147_IJN_S434873 crossref_primary_10_1021_acsomega_3c00678 crossref_primary_10_14336_AD_2023_0907 crossref_primary_10_1515_tnsci_2020_0109 crossref_primary_10_3389_fphar_2023_1101452 crossref_primary_10_1016_j_arr_2024_102210 crossref_primary_10_1016_j_pharmthera_2021_108013 crossref_primary_10_3233_JAD_231222 crossref_primary_10_1007_s12035_024_04415_x crossref_primary_10_14336_AD_2021_0616 crossref_primary_10_1016_j_biopha_2024_116376 crossref_primary_10_1021_acsptsci_4c00457 crossref_primary_10_1186_s12974_024_03139_y crossref_primary_10_3389_fphar_2022_952876 crossref_primary_10_3233_JAD_220666 crossref_primary_10_1089_ars_2022_0046 crossref_primary_10_3233_JAD_215086 crossref_primary_10_61958_NDFS3904 crossref_primary_10_3389_fendo_2018_00161 crossref_primary_10_1155_2022_5288698 crossref_primary_10_3390_molecules26175327 crossref_primary_10_3390_antiox11112167 crossref_primary_10_14336_AD_2022_1123 crossref_primary_10_1016_j_ijbiomac_2024_134329 crossref_primary_10_3390_jox14010014 crossref_primary_10_1111_jfbc_13375 crossref_primary_10_1038_s41434_019_0089_0 crossref_primary_10_1007_s12035_018_1157_y crossref_primary_10_3390_foods9030340 crossref_primary_10_3390_antiox11020213 crossref_primary_10_5812_jamm_144281 crossref_primary_10_1021_acschemneuro_4c00220 crossref_primary_10_1007_s12035_023_03706_z crossref_primary_10_1016_j_bbii_2023_100025 crossref_primary_10_1155_2018_8296824 crossref_primary_10_1017_S0007114524001405 crossref_primary_10_3389_fphar_2022_1057083 crossref_primary_10_1155_2018_1483791 crossref_primary_10_1155_2018_8152373 crossref_primary_10_1016_j_biomaterials_2020_119844 crossref_primary_10_1016_j_addr_2022_114317 crossref_primary_10_1002_ptr_7580 crossref_primary_10_56543_aaeeu_2024_3_4_04 crossref_primary_10_1016_j_ibneur_2022_11_005 crossref_primary_10_3389_fonc_2021_664380 crossref_primary_10_1016_j_ijpharm_2021_121244 crossref_primary_10_1016_j_arr_2024_102224 crossref_primary_10_3390_antiox12020214 crossref_primary_10_3389_fphar_2020_00261 crossref_primary_10_1007_s12035_024_04292_4 crossref_primary_10_3390_nu15020445 crossref_primary_10_3389_fncel_2021_746631 crossref_primary_10_1161_CIRCULATIONAHA_118_037398 crossref_primary_10_1016_j_jtcme_2020_03_008 crossref_primary_10_3390_antiox9080669 crossref_primary_10_1016_j_smim_2023_101802 crossref_primary_10_1016_j_exger_2018_09_019 crossref_primary_10_1515_tjb_2020_0091 crossref_primary_10_3390_nu16091298 crossref_primary_10_1080_07357907_2022_2115057 crossref_primary_10_3389_fnins_2021_736814 crossref_primary_10_1039_D1CP01913A crossref_primary_10_1155_2018_8092713 crossref_primary_10_3390_nu12051344 crossref_primary_10_1016_j_phrs_2020_105069 crossref_primary_10_3389_fphar_2021_825330 crossref_primary_10_3389_fnins_2018_00690 crossref_primary_10_1002_med_21565 crossref_primary_10_1016_j_apsb_2022_01_008 crossref_primary_10_1038_s41598_020_70266_w crossref_primary_10_3390_metabo13030438 crossref_primary_10_3390_nu9101122 crossref_primary_10_2174_1381612825666190410153307 crossref_primary_10_14283_jpad_2023_54 crossref_primary_10_2174_1389450120666191017120505 crossref_primary_10_3390_life10050056 crossref_primary_10_1080_19490976_2024_2374608 crossref_primary_10_1016_j_ejphar_2020_172973 crossref_primary_10_3390_molecules27123692 crossref_primary_10_1016_j_biopha_2019_108634 crossref_primary_10_1515_revneuro_2021_0146 crossref_primary_10_1016_j_heliyon_2022_e11434 crossref_primary_10_1038_s41598_022_05165_3 crossref_primary_10_1016_j_jep_2024_117915 crossref_primary_10_1016_j_exger_2023_112320 crossref_primary_10_1021_acschemneuro_0c00067 crossref_primary_10_3390_antiox12020393 crossref_primary_10_1039_D2FO01475K crossref_primary_10_1111_os_13560 crossref_primary_10_1016_j_nbd_2018_03_006 crossref_primary_10_1016_j_advms_2020_08_002 crossref_primary_10_1007_s43440_023_00481_5 crossref_primary_10_1080_07391102_2022_2154842 crossref_primary_10_3390_antiox9111105 crossref_primary_10_1007_s11064_024_04264_z crossref_primary_10_3390_ijms22094628 crossref_primary_10_1002_mnfr_202400670 crossref_primary_10_1007_s12031_021_01889_5 crossref_primary_10_1111_jnc_14345 crossref_primary_10_1089_caff_2019_0007 crossref_primary_10_1080_10408398_2021_1975093 crossref_primary_10_3390_app14062366 crossref_primary_10_1080_00207454_2022_2057849 crossref_primary_10_1016_j_phyplu_2021_100188 crossref_primary_10_1079_fsncases_2024_0005 crossref_primary_10_1080_00207454_2022_2079506 crossref_primary_10_3389_fimmu_2024_1360065 crossref_primary_10_1016_j_biopha_2023_114474 crossref_primary_10_1080_1547691X_2020_1833113 crossref_primary_10_1016_j_ejphar_2024_177038 crossref_primary_10_3390_antiox10020283 crossref_primary_10_3389_fnbeh_2023_1271653 crossref_primary_10_1016_j_neuroscience_2021_08_020 crossref_primary_10_2174_1568026619666190201153257 crossref_primary_10_1007_s10787_020_00751_1 crossref_primary_10_1093_gerona_glz135 crossref_primary_10_1016_j_neubiorev_2021_07_004 crossref_primary_10_3389_fphar_2018_01261 crossref_primary_10_3390_nu12103082 crossref_primary_10_31083_j_fbl2704134 crossref_primary_10_1111_nyas_13431 crossref_primary_10_1177_2472630317751840 crossref_primary_10_3389_fphys_2020_00361 crossref_primary_10_2174_1874467214666210309115605 crossref_primary_10_3389_fnins_2018_00778 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_3390_molecules23010196 crossref_primary_10_3233_JAD_215370 crossref_primary_10_2174_1573401316999200714160126 crossref_primary_10_3390_biomedicines10102434 crossref_primary_10_3389_fnagi_2020_00103 crossref_primary_10_1080_00207454_2018_1466781 crossref_primary_10_2174_1389450121999201209201004 crossref_primary_10_1186_s13041_019_0444_5 crossref_primary_10_1002_biof_1396 crossref_primary_10_1021_acs_jafc_1c00923 crossref_primary_10_3389_fphar_2023_1192714 crossref_primary_10_4049_jimmunol_1901166 crossref_primary_10_1101_cshperspect_a040485 crossref_primary_10_3390_ijms242417223 crossref_primary_10_1016_j_phymed_2023_155101 crossref_primary_10_1007_s11033_021_06890_0 crossref_primary_10_1021_acs_jafc_4c00523 crossref_primary_10_3390_ph17060692 crossref_primary_10_1515_jcim_2022_0074 crossref_primary_10_3390_nutraceuticals4020011 crossref_primary_10_1039_C9NP00057G crossref_primary_10_3389_fnagi_2023_1130253 crossref_primary_10_3390_ijms25021264 crossref_primary_10_3390_antiox11020408 crossref_primary_10_3390_molecules29174056 crossref_primary_10_3390_pharmaceutics14030576 crossref_primary_10_1002_bab_2317 crossref_primary_10_1038_s41420_025_02389_w crossref_primary_10_3389_fphar_2022_948889 crossref_primary_10_1016_j_meatsci_2021_108724 crossref_primary_10_1007_s12035_018_1065_1 crossref_primary_10_1016_j_bbr_2022_114201 crossref_primary_10_1002_bkcs_12390 crossref_primary_10_1016_j_cej_2025_161138 crossref_primary_10_1007_s12975_023_01132_w crossref_primary_10_1002_cmdc_202000996 crossref_primary_10_1016_j_pharmthera_2025_108830 crossref_primary_10_1016_j_biopha_2023_114394 crossref_primary_10_1152_physrev_00030_2022 crossref_primary_10_3389_fimmu_2024_1332776 crossref_primary_10_3389_fimmu_2024_1365673 crossref_primary_10_1007_s13311_021_01138_y crossref_primary_10_1002_ptr_7981 crossref_primary_10_3389_fmed_2023_1288993 crossref_primary_10_1016_j_ejphar_2018_01_005 crossref_primary_10_1002_jdn_10137 crossref_primary_10_1080_21678421_2019_1593596 crossref_primary_10_3390_cells11192962 crossref_primary_10_1007_s12031_025_02324_9 crossref_primary_10_1186_s12974_021_02161_8 crossref_primary_10_1515_revneuro_2021_0047 crossref_primary_10_1080_01496395_2019_1604755 crossref_primary_10_1016_j_heliyon_2023_e21800 crossref_primary_10_1016_j_ejmech_2022_114242 crossref_primary_10_3389_fphar_2022_922232 crossref_primary_10_1007_s10522_024_10128_4 crossref_primary_10_1016_j_biopha_2020_110575 crossref_primary_10_3390_molecules28052406 crossref_primary_10_1016_j_freeradbiomed_2022_05_002 crossref_primary_10_1038_s41598_020_66532_6 crossref_primary_10_3390_nu13041362 crossref_primary_10_2174_1386207326666230713125512 crossref_primary_10_3390_ijms20205090 crossref_primary_10_3389_fnut_2023_1213223 crossref_primary_10_1016_j_apsb_2025_01_015 crossref_primary_10_3390_ijms20194666 crossref_primary_10_1016_j_trci_2018_09_009 crossref_primary_10_1134_S1819712421020045 crossref_primary_10_31083_j_fbl2711312 crossref_primary_10_1002_med_22017 crossref_primary_10_1016_j_toxrep_2025_101906 crossref_primary_10_1002_jcp_26170 crossref_primary_10_1016_j_exger_2018_07_018 crossref_primary_10_3390_ijms20133274 crossref_primary_10_3390_antiox6030065 crossref_primary_10_3390_toxics11040379 crossref_primary_10_1186_s13024_023_00631_6 crossref_primary_10_3390_nu14102030 crossref_primary_10_1007_s13311_019_00742_3 crossref_primary_10_3233_NHA_170035 crossref_primary_10_1155_2021_9993873 crossref_primary_10_3390_ijms21041250 crossref_primary_10_1002_ptr_6621 crossref_primary_10_3390_ijms20081883 crossref_primary_10_1007_s11011_018_0348_6 crossref_primary_10_1111_jfbc_13820 crossref_primary_10_3390_nu11081764 crossref_primary_10_1007_s12035_024_04608_4 crossref_primary_10_3390_cells9112347 crossref_primary_10_1021_acsomega_3c05662 crossref_primary_10_3390_ijms24076518 crossref_primary_10_1007_s10787_023_01173_5 crossref_primary_10_1007_s12035_024_04585_8 crossref_primary_10_3390_ijms19010325 crossref_primary_10_14336_AD_2020_0216 crossref_primary_10_1146_annurev_pharmtox_010716_104908 crossref_primary_10_1177_1740774520982315 crossref_primary_10_1111_cns_14276 crossref_primary_10_3390_antiox12010180 crossref_primary_10_1002_biof_1728 crossref_primary_10_1002_ptr_6732 crossref_primary_10_1093_hmg_ddaa182 crossref_primary_10_3389_fneur_2024_1376104 crossref_primary_10_3389_fnins_2021_803927 crossref_primary_10_3390_ijms22179592 crossref_primary_10_1016_j_bbadis_2019_165612 crossref_primary_10_1016_j_jnutbio_2020_108569 crossref_primary_10_1007_s11064_021_03500_0 crossref_primary_10_1080_13510002_2023_2289740 crossref_primary_10_3390_biomedicines9050524 crossref_primary_10_1016_j_ejmech_2018_01_037 crossref_primary_10_3233_JIN_170032 crossref_primary_10_1021_jacs_1c05470 crossref_primary_10_3389_fphar_2022_876614 crossref_primary_10_1016_j_freeradbiomed_2021_05_036 crossref_primary_10_3390_foods11172570 crossref_primary_10_1016_j_brainres_2024_148821 crossref_primary_10_1007_s12311_020_01226_3 crossref_primary_10_1080_87559129_2021_1888973 crossref_primary_10_17816_clinpract624496 crossref_primary_10_3390_molecules26020415 crossref_primary_10_1089_jmf_2021_0084 crossref_primary_10_1016_j_jnutbio_2020_108552 crossref_primary_10_1038_nrn_2017_170 crossref_primary_10_1080_07391102_2023_2166992 crossref_primary_10_1016_j_arr_2020_101199 crossref_primary_10_3389_fragi_2023_1231706 crossref_primary_10_1016_j_arr_2019_100942 crossref_primary_10_1016_j_freeradbiomed_2021_12_008 crossref_primary_10_7555_JBR_36_20220145 crossref_primary_10_1155_2020_6782872 crossref_primary_10_3233_JAD_210198 crossref_primary_10_3390_brainsci14111101 crossref_primary_10_4103_1673_5374_268970 crossref_primary_10_1016_j_phrs_2024_107145 crossref_primary_10_3390_antiox6040073 crossref_primary_10_1007_s40011_020_01170_6 crossref_primary_10_1038_s41582_020_00435_y crossref_primary_10_3390_dietetics3030023 crossref_primary_10_1186_s41120_022_00058_1 crossref_primary_10_1016_j_bcp_2018_05_016 crossref_primary_10_1080_10715762_2025_2450504 crossref_primary_10_1016_j_pharmthera_2021_107861 crossref_primary_10_2174_1389557523666230511122435 crossref_primary_10_3390_antiox10081257 crossref_primary_10_3390_ph17111482 crossref_primary_10_1021_acsomega_2c03291 crossref_primary_10_1515_nipt_2023_0012 crossref_primary_10_1038_s41698_017_0038_6 crossref_primary_10_1016_j_pbb_2019_172743 crossref_primary_10_3390_antiox13091138 crossref_primary_10_2174_1567205016666190801153751 crossref_primary_10_2174_1871527320666210218084444 crossref_primary_10_3390_ijms24087569 crossref_primary_10_1007_s12035_018_1281_8 crossref_primary_10_3390_molecules27020424 crossref_primary_10_1016_j_arr_2021_101271 |
Cites_doi | 10.1016/S0166-2236(97)01169-7 10.1016/j.neuron.2014.11.020 10.1007/s00281-016-0568-y 10.1016/j.neuron.2014.12.068 10.1016/j.jneuroim.2005.02.001 10.3233/JAD-130647 10.1602/neurorx.2.1.120 10.1016/S0165-5728(02)00170-4 10.1038/nri3499 10.1016/j.jns.2006.11.021 10.1016/j.neuroscience.2009.12.061 10.1016/j.brainres.2009.05.040 10.1111/jnc.13415 10.1083/jcb.200612097 10.1074/jbc.M700641200 10.3233/JAD-131634 10.1634/stemcells.2008-0519 10.4049/jimmunol.156.1.1 10.1007/s12035-013-8538-z 10.1523/JNEUROSCI.4391-06.2007 10.1523/JNEUROSCI.20-18-07037.2000 10.1016/j.pneurobio.2013.03.004 10.1016/j.bbadis.2014.10.006 10.1016/j.neuroscience.2008.06.025 10.1084/jem.20051342 10.1523/JNEUROSCI.4085-05.2006 10.1007/s40263-014-0140-z 10.1096/fj.06-6099fje 10.1016/j.neuron.2015.01.021 10.1002/glia.10108 10.1212/WNL.0000000000002035 10.1172/JCI6886 10.3389/fncel.2015.00280 10.1016/S0092-8674(00)80519-X 10.1212/01.WNL.0000159743.08996.99 10.1016/j.neurobiolaging.2008.11.004 10.1586/14760584.2016.1121815 10.1007/s12035-015-9295-y 10.3109/13550289909029740 10.1093/intimm/11.1.81 10.1038/labinvest.3780235 10.1016/j.brainres.2015.04.024 10.4110/in.2016.16.1.1 10.1371/journal.pone.0028499 10.2174/156720207782446351 10.1086/313922 10.3389/fnana.2014.00068 10.1097/00004647-200012000-00007 10.1007/s11481-013-9520-2 10.1016/j.febslet.2004.03.070 10.1523/JNEUROSCI.6028-11.2012 10.1002/hipo.20466 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. The Author(s). 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1186/s12974-016-0779-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1742-2094 |
ExternalDocumentID | PMC5234138 A477479798 28086917 10_1186_s12974_016_0779_0 |
Genre | Multicenter Study Clinical Trial, Phase II Randomized Controlled Trial Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG010483 – fundername: ; grantid: AG010483 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY 5PM PJZUB |
ID | FETCH-LOGICAL-c466t-f5fa5c9c7076c04c3735da9544f7df7795fbd4782d0e65e100a20b68703186553 |
IEDL.DBID | M48 |
ISSN | 1742-2094 |
IngestDate | Thu Aug 21 18:40:15 EDT 2025 Thu Jul 10 23:24:58 EDT 2025 Tue Jun 17 21:47:00 EDT 2025 Tue Jun 10 20:21:00 EDT 2025 Thu Jan 02 23:02:22 EST 2025 Tue Jul 01 02:54:27 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interleukin-4 Macrophage-derived chemokine (MDC) Matrix metalloproteinase-(MMP)-9 Alzheimer Resveratrol |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-f5fa5c9c7076c04c3735da9544f7df7795fbd4782d0e65e100a20b68703186553 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-2012-7063 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12974-016-0779-0 |
PMID | 28086917 |
PQID | 1861512008 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5234138 proquest_miscellaneous_1861512008 gale_infotracmisc_A477479798 gale_infotracacademiconefile_A477479798 pubmed_primary_28086917 crossref_citationtrail_10_1186_s12974_016_0779_0 crossref_primary_10_1186_s12974_016_0779_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-1-3 2017-01-03 20170103 |
PublicationDateYYYYMMDD | 2017-01-03 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-1-3 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroinflammation |
PublicationTitleAlternate | J Neuroinflammation |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | P Svedin (779_CR9) 2007; 27 D Leppert (779_CR12) 2000; 31 T Wisniewski (779_CR53) 2016; 15 SM Reinhard (779_CR32) 2015; 9 M Verslegers (779_CR6) 2013; 105 E Candelario-Jalil (779_CR8) 2009; 158 D Wu (779_CR49) 2005; 2 S Columba-Cabezas (779_CR38) 2002; 130 F Safciuc (779_CR27) 2007; 4 A Reijerkerk (779_CR7) 2006; 20 GA Rosenberg (779_CR10) 2002; 39 GM Pasinetti (779_CR1) 2015; 1852 S Murase (779_CR25) 2016; 53 779_CR42 L Lu (779_CR35) 2008; 18 K Conant (779_CR23) 2010; 166 B Mroczko (779_CR29) 2014; 40 S Agrawal (779_CR31) 2006; 203 AR Glabinski (779_CR40) 1999; 5 JP Michaud (779_CR52) 2015; 85 R Khokha (779_CR44) 2013; 13 Y Yang (779_CR15) 2015; 1623 NC Fox (779_CR3) 2005; 64 J Dzwonek (779_CR20) 2004; 567 T Imai (779_CR36) 1999; 11 B Dubois (779_CR11) 1999; 104 VW Yong (779_CR14) 2007; 259 P Michaluk (779_CR21) 2007; 282 M Dziembowska (779_CR22) 2012; 32 DM Wingerchuk (779_CR39) 2001; 81 B Mroczko (779_CR28) 2013; 37 SR Lee (779_CR34) 2006; 26 M Abraham (779_CR45) 2005; 163 VW Yong (779_CR47) 1998; 21 X Wang (779_CR18) 2000; 20 L Tian (779_CR24) 2007; 178 M Asahi (779_CR19) 2000; 20 CP Blobel (779_CR37) 1997; 90 N De Stefano (779_CR4) 2014; 28 779_CR5 M Stawarski (779_CR30) 2014; 8 T Hayashi (779_CR17) 2009; 1280 EJ Goetzl (779_CR46) 1996; 156 F Jugde (779_CR41) 2001; 12 H Na (779_CR43) 2016; 16 M Chaturvedi (779_CR16) 2014; 49 P Gramegna (779_CR13) 2011; 6 MV Guillot-Sestier (779_CR50) 2015; 85 P Chakrabarty (779_CR51) 2015; 85 JR Romero (779_CR26) 2010; 31 BZ Barkho (779_CR33) 2008; 26 RS Turner (779_CR2) 2015; 85 J Fields (779_CR48) 2014; 9 28148845 - Sci Transl Med. 2017 Feb 1;9(375) |
References_xml | – volume: 21 start-page: 75 year: 1998 ident: 779_CR47 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(97)01169-7 – volume: 85 start-page: 519 year: 2015 ident: 779_CR51 publication-title: Neuron doi: 10.1016/j.neuron.2014.11.020 – volume: 12 start-page: 468 year: 2001 ident: 779_CR41 publication-title: Eur Cytokine Netw – ident: 779_CR42 doi: 10.1007/s00281-016-0568-y – volume: 85 start-page: 534 year: 2015 ident: 779_CR50 publication-title: Neuron doi: 10.1016/j.neuron.2014.12.068 – volume: 163 start-page: 157 year: 2005 ident: 779_CR45 publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2005.02.001 – volume: 37 start-page: 273 year: 2013 ident: 779_CR28 publication-title: J Alzheimers Dis doi: 10.3233/JAD-130647 – volume: 2 start-page: 120 year: 2005 ident: 779_CR49 publication-title: NeuroRx doi: 10.1602/neurorx.2.1.120 – volume: 130 start-page: 10 year: 2002 ident: 779_CR38 publication-title: J Neuroimmunol doi: 10.1016/S0165-5728(02)00170-4 – volume: 13 start-page: 649 year: 2013 ident: 779_CR44 publication-title: Nat Rev Immunol doi: 10.1038/nri3499 – volume: 259 start-page: 79 year: 2007 ident: 779_CR14 publication-title: J Neurol Sci doi: 10.1016/j.jns.2006.11.021 – volume: 166 start-page: 508 year: 2010 ident: 779_CR23 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.12.061 – volume: 1280 start-page: 172 year: 2009 ident: 779_CR17 publication-title: Brain Res doi: 10.1016/j.brainres.2009.05.040 – ident: 779_CR5 doi: 10.1111/jnc.13415 – volume: 178 start-page: 687 year: 2007 ident: 779_CR24 publication-title: J Cell Biol doi: 10.1083/jcb.200612097 – volume: 282 start-page: 16036 year: 2007 ident: 779_CR21 publication-title: J Biol Chem doi: 10.1074/jbc.M700641200 – volume: 40 start-page: 351 year: 2014 ident: 779_CR29 publication-title: J Alzheimers Dis doi: 10.3233/JAD-131634 – volume: 26 start-page: 3139 year: 2008 ident: 779_CR33 publication-title: Stem Cells doi: 10.1634/stemcells.2008-0519 – volume: 156 start-page: 1 year: 1996 ident: 779_CR46 publication-title: J Immunol doi: 10.4049/jimmunol.156.1.1 – volume: 49 start-page: 563 year: 2014 ident: 779_CR16 publication-title: Mol Neurobiol doi: 10.1007/s12035-013-8538-z – volume: 27 start-page: 1511 year: 2007 ident: 779_CR9 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4391-06.2007 – volume: 20 start-page: 7037 year: 2000 ident: 779_CR18 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-18-07037.2000 – volume: 105 start-page: 60 year: 2013 ident: 779_CR6 publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2013.03.004 – volume: 1852 start-page: 1202 year: 2015 ident: 779_CR1 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2014.10.006 – volume: 158 start-page: 983 year: 2009 ident: 779_CR8 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.06.025 – volume: 203 start-page: 1007 year: 2006 ident: 779_CR31 publication-title: J Exp Med doi: 10.1084/jem.20051342 – volume: 26 start-page: 3491 year: 2006 ident: 779_CR34 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4085-05.2006 – volume: 28 start-page: 147 year: 2014 ident: 779_CR4 publication-title: CNS Drugs doi: 10.1007/s40263-014-0140-z – volume: 20 start-page: 2550 year: 2006 ident: 779_CR7 publication-title: FASEB J doi: 10.1096/fj.06-6099fje – volume: 85 start-page: 450 year: 2015 ident: 779_CR52 publication-title: Neuron doi: 10.1016/j.neuron.2015.01.021 – volume: 39 start-page: 279 year: 2002 ident: 779_CR10 publication-title: Glia doi: 10.1002/glia.10108 – volume: 85 start-page: 1383 year: 2015 ident: 779_CR2 publication-title: Neurology doi: 10.1212/WNL.0000000000002035 – volume: 104 start-page: 1507 year: 1999 ident: 779_CR11 publication-title: J Clin Invest doi: 10.1172/JCI6886 – volume: 9 start-page: 280 year: 2015 ident: 779_CR32 publication-title: Front Cell Neurosci doi: 10.3389/fncel.2015.00280 – volume: 90 start-page: 589 year: 1997 ident: 779_CR37 publication-title: Cell doi: 10.1016/S0092-8674(00)80519-X – volume: 64 start-page: 1563 year: 2005 ident: 779_CR3 publication-title: Neurology doi: 10.1212/01.WNL.0000159743.08996.99 – volume: 31 start-page: 2128 year: 2010 ident: 779_CR26 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2008.11.004 – volume: 15 start-page: 401 year: 2016 ident: 779_CR53 publication-title: Expert Rev Vaccines doi: 10.1586/14760584.2016.1121815 – volume: 53 start-page: 3477 year: 2016 ident: 779_CR25 publication-title: Mol Neurobiol doi: 10.1007/s12035-015-9295-y – volume: 5 start-page: 3 year: 1999 ident: 779_CR40 publication-title: J Neurovirol doi: 10.3109/13550289909029740 – volume: 11 start-page: 81 year: 1999 ident: 779_CR36 publication-title: Int Immunol doi: 10.1093/intimm/11.1.81 – volume: 81 start-page: 263 year: 2001 ident: 779_CR39 publication-title: Lab Invest doi: 10.1038/labinvest.3780235 – volume: 1623 start-page: 30 year: 2015 ident: 779_CR15 publication-title: Brain Res doi: 10.1016/j.brainres.2015.04.024 – volume: 16 start-page: 1 year: 2016 ident: 779_CR43 publication-title: Immune Netw doi: 10.4110/in.2016.16.1.1 – volume: 6 start-page: e28499 year: 2011 ident: 779_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0028499 – volume: 4 start-page: 228 year: 2007 ident: 779_CR27 publication-title: Curr Neurovasc Res doi: 10.2174/156720207782446351 – volume: 31 start-page: 80 year: 2000 ident: 779_CR12 publication-title: Clin Infect Dis doi: 10.1086/313922 – volume: 8 start-page: 68 year: 2014 ident: 779_CR30 publication-title: Front Neuroanat doi: 10.3389/fnana.2014.00068 – volume: 20 start-page: 1681 year: 2000 ident: 779_CR19 publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200012000-00007 – volume: 9 start-page: 102 year: 2014 ident: 779_CR48 publication-title: J Neuroimmune Pharmacol doi: 10.1007/s11481-013-9520-2 – volume: 567 start-page: 129 year: 2004 ident: 779_CR20 publication-title: FEBS Lett doi: 10.1016/j.febslet.2004.03.070 – volume: 32 start-page: 14538 year: 2012 ident: 779_CR22 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6028-11.2012 – volume: 18 start-page: 1074 year: 2008 ident: 779_CR35 publication-title: Hippocampus doi: 10.1002/hipo.20466 – reference: 28148845 - Sci Transl Med. 2017 Feb 1;9(375): |
SSID | ssj0032562 |
Score | 2.6260011 |
Snippet | Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily)... Background Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice... Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily)... Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily)... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Activities of Daily Living Adaptive Immunity - drug effects Alzheimer Disease - complications Alzheimer Disease - drug therapy Alzheimer Disease - metabolism Alzheimer Disease - psychology Alzheimer's disease Amyloid beta-Peptides - blood Amyloid beta-Peptides - cerebrospinal fluid Analysis Anti-Inflammatory Agents, Non-Steroidal - pharmacology Anti-Inflammatory Agents, Non-Steroidal - therapeutic use Care and treatment Chemokine CCL5 - metabolism Cognition Disorders - drug therapy Cognition Disorders - etiology Cytokines - metabolism Dosage and administration Double-Blind Method Encephalitis - drug therapy Encephalitis - etiology Female Fibroblast Growth Factor 2 - cerebrospinal fluid Fibroblast growth factors Follow-Up Studies Humans Inflammation Male Matrix Metalloproteinase 9 - cerebrospinal fluid Mental Status Schedule Peptide Fragments - cerebrospinal fluid Resveratrol Stilbenes - pharmacology Stilbenes - therapeutic use tau Proteins - blood tau Proteins - cerebrospinal fluid |
Title | Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28086917 https://www.proquest.com/docview/1861512008 https://pubmed.ncbi.nlm.nih.gov/PMC5234138 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6FsZexr6brQsaDAoDb6ojS_LDGOloKYOWURbIyxCyLNFA5nR2Wtr-9b2TnVCX0mfJsqw76X4_6z4APmsruPcukAR8gvjWJrp0Mkn3bNDO5dL7mO3zRB5NxK9pNt2AVXmrbgGbB6kd1ZOa1POvV_-vf-CG_x43vJbfGrRZinwpkBsrlSfI4LfQMCnap8difakwQuuetvGRKU4tF90l54ND9MzU_cP6jrXqe1LeMU2HL-B5hynZuFWCl7Dhq1fw9Li7NX8Nf099c0nJk-vFnNVt8XnfsJjKMsFvRqVoAxiZrUqGJB3F3TBb2nM6C9kshpAsr7GFjec3Z372z9e7Devudt7A5PDgz8-jpCurkDgh5TIJWbCZy53iSjou3EiNstLmmRBBlQG_PgtFKRA5lNzLzO9xblNeSE2Z7imMdfQWNqtF5beBicJLmwcEMYgSrJCFzlKR6ZK7gNRL8QHw1Soa1-Ucp9IXcxO5h5amXXhDfma08AYf-bJ-5LxNuPFY510SjSH1wHGd7WIKcHaU1sqMBaJblatcD2Cn1xM3kes1f1oJ11ATeZ5VfnHRGHwvgSKESgN41wp7Pa9UIyFEvjsA1VODdQfK3d1vqWZnMYc38n-ED_r949P6AM9SghHR7W0HNpf1hf-IIGhZDOGJmqohbO0fnPw-HcZfCcOo7rfF5wWO |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resveratrol+regulates+neuro-inflammation+and+induces+adaptive+immunity+in+Alzheimer%27s+disease&rft.jtitle=Journal+of+neuroinflammation&rft.au=Moussa%2C+Charbel&rft.au=Hebron%2C+Michaeline&rft.au=Huang%2C+Xu&rft.au=Ahn%2C+Jaeil&rft.date=2017-01-03&rft.pub=BioMed+Central+Ltd&rft.issn=1742-2094&rft.eissn=1742-2094&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs12974-016-0779-0&rft.externalDocID=A477479798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon |