Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy
The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 56; no. 55; pp. 7537 - 7548 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient
1
O
2
quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.
DNA distortion induced by metallodrugs is one of the main subjects for drug design. In this Feature Article, the developments of DNA-targeted metallohelices for antitumor chemotherapy and photodynamic therapy are presented with future perspectives. |
---|---|
AbstractList | The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient O quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1 O 2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. DNA distortion induced by metallodrugs is one of the main subjects for drug design. In this Feature Article, the developments of DNA-targeted metallohelices for antitumor chemotherapy and photodynamic therapy are presented with future perspectives. The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1 O 2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient ¹O₂ quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented. |
Author | Li, Xuezhao Hao, Xiaorou Wu, Jinlong Shi, Zhuolin Duan, Chunying He, Cheng Wu, Jinguo |
AuthorAffiliation | State Key Laboratory of Fine Chemicals Dalian University of Technology Zhang Dayu College of Chemistry |
AuthorAffiliation_xml | – name: State Key Laboratory of Fine Chemicals – name: Zhang Dayu College of Chemistry – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Xuezhao surname: Li fullname: Li, Xuezhao – sequence: 2 givenname: Zhuolin surname: Shi fullname: Shi, Zhuolin – sequence: 3 givenname: Jinguo surname: Wu fullname: Wu, Jinguo – sequence: 4 givenname: Jinlong surname: Wu fullname: Wu, Jinlong – sequence: 5 givenname: Cheng surname: He fullname: He, Cheng – sequence: 6 givenname: Xiaorou surname: Hao fullname: Hao, Xiaorou – sequence: 7 givenname: Chunying surname: Duan fullname: Duan, Chunying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32573609$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9rFTEQx4O02PbpxbsS8SKF1fzaX97K6w-Fh14seFuyyaSbsptsk-zh_femfa8WiuhcZuD7mRnmxwk6cN4BQm8o-UQJbz9rohRhtBXmBTqmvBJFKZpfB_dx2RY1F-UROonxlmSjZfMSHXFW1rwi7TG63tibIVl3g5cZT5DkOPoBRqsgfsEm-Amffz_DvXUaQsTJYzXA5NMAQc5bLJ3G8-CT11snJ6vwXniFDo0cI7ze-xW6vrz4uf5abH5cfVufbQolqioVhpVV3XBtCK9b2QtaQQ2ibhqqCfSS9AoEq7mhBAhXqpZalKxvmFE1Z1AxvkIfd3Xn4O8WiKmbbFQwjtKBX2LH2iZ3oJzS_6O5O6tKnje6Qh-eobd-CS4PkilGBWlaXmbq3Z5a-gl0Nwc7ybDtHnebAbIDVPAxBjCdskkm610K0o4dJd39-bpzsl4_nO8yp5w-S3ms-lf47Q4OUf3hnn4h6-__pXezNvw3YzWtlA |
CitedBy_id | crossref_primary_10_1002_ange_202013039 crossref_primary_10_1016_j_jinorgbio_2022_111854 crossref_primary_10_1021_acs_inorgchem_3c01213 crossref_primary_10_3390_biomedicines9091199 crossref_primary_10_3390_molecules27123676 crossref_primary_10_1016_j_jphotochem_2022_114228 crossref_primary_10_1002_anie_202013039 crossref_primary_10_3390_ijms23158271 crossref_primary_10_1002_ejic_202100673 crossref_primary_10_1039_D3NJ04859D crossref_primary_10_1039_D0CC08180A crossref_primary_10_1002_anie_202419292 crossref_primary_10_1039_D3DT02535G crossref_primary_10_1039_D2DT02657K crossref_primary_10_1039_D2DT02720H crossref_primary_10_1002_ange_202419292 crossref_primary_10_1002_1873_3468_14535 crossref_primary_10_1016_j_molstruc_2024_139594 |
Cites_doi | 10.1021/ja9613522 10.1039/B517643C 10.1002/ejic.200600723 10.3322/caac.20114 10.2174/1568026043387421 10.1111/febs.12696 10.1039/C9SC05586J 10.1039/c1cc11356a 10.1016/j.chembiol.2008.10.016 10.1002/anie.201805510 10.1016/j.jphotobiol.2009.11.013 10.1002/anie.200503822 10.1016/j.jinorgbio.2006.02.013 10.1002/1521-3765(20001002)6:19<3485::AID-CHEM3485>3.0.CO;2-3 10.1002/hlca.19950780103 10.1038/nrc1071 10.1016/j.ccr.2018.01.010 10.1016/j.ccr.2018.02.006 10.1002/anie.201002776 10.1039/b927129p 10.1016/j.ica.2016.01.006 10.1016/S0022-2836(61)80004-1 10.1039/C9CC09312E 10.1039/c0pp00147c 10.1039/C5DT02018B 10.1002/(SICI)1521-3773(19980420)37:7<928::AID-ANIE928>3.0.CO;2-T 10.1201/b12414-10 10.1039/c1dt11423a 10.1038/nrc1894 10.1002/anie.199509961 10.1098/rsfs.2013.0032 10.1002/chem.200400169 10.1007/b100440 10.1002/anie.201901268 10.1038/nrc2167 10.1039/B606046N 10.1002/1521-3773(20010302)40:5<879::AID-ANIE879>3.0.CO;2-X 10.1158/1078-0432.CCR-06-0169 10.1002/chem.200600060 10.1002/chem.200801364 10.1002/chem.200501168 10.1002/anie.200803066 10.1002/stem.1298 10.1016/j.ica.2008.02.050 10.1073/pnas.062634499 10.1016/0959-440X(92)90222-S 10.1021/jacs.7b07490 10.1002/cbic.201800182 10.1039/a703713i 10.1093/nar/gkn569 10.1196/annals.1430.010 10.1039/C8DT00887F 10.1021/ic062415c 10.1038/nchem.1231 10.1039/c0dt00292e 10.1002/anie.200700656 10.1021/ja506327c 10.1039/C9SC02651G 10.1021/ja410723r 10.1039/B614093A 10.1039/C4CC03606A 10.1021/ja807780j 10.1021/cr068207j 10.1002/anie.201915281 10.1002/chem.200700159 10.1016/S1074-5521(02)00188-6 10.1073/pnas.1015271108 10.1002/ejic.200700360 10.1002/anie.201904181 10.1021/cr400460s 10.1016/j.ijantimicag.2008.10.031 10.1039/C9SC03532J 10.1038/nchem.2024 10.1073/pnas.200221397 10.1039/b707313e 10.1002/anie.200590000 10.1016/j.ccr.2018.03.016 10.1002/chem.200401054 10.1002/anie.200601351 10.1002/1521-3773(20020617)41:12<2086::AID-ANIE2086>3.0.CO;2-0 10.1039/b822039e 10.1038/377649a0 10.1039/C8SC04242J 10.1038/nchem.1206 10.1016/j.ccr.2018.03.002 10.1021/acs.chemrev.7b00425 10.1016/j.biomaterials.2016.01.014 10.1039/b508531b 10.1038/s41557-019-0328-4 10.1016/0022-2836(92)90962-J 10.1021/jacs.5b12752 10.1073/pnas.2434016100 10.1002/anie.202001059 10.1007/s00775-004-0531-6 10.1080/10610270310001632386 10.1126/science.347.6219.226 10.1021/ar068185n 10.1093/oso/9780198506355.001.0001 10.4155/fmc-2016-0095 10.1039/C2CS35259A 10.1002/anie.201407468 10.1093/nar/gkn244 10.1038/nrc749 10.1021/ic060966x 10.1073/pnas.84.9.2565 10.1201/b12414-8 10.1021/acs.accounts.6b00586 10.4155/fmc.14.150 10.1021/ja309031h 10.1111/j.1445-2197.2007.04096.x 10.1021/ar5000924 10.1021/acs.chemrev.5b00597 10.1002/chem.201705362 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cc02194f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 7548 |
ExternalDocumentID | 32573609 10_1039_D0CC02194F d0cc02194f |
Genre | Journal Article Review |
GroupedDBID | - 0-7 0R 1TJ 29B 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO H13 HZ H~N IDZ IH2 J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP HZ~ R56 RAOCF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c466t-f256783df0379ab416e7e47881d0eba0bce4273f10e03cc7ad452b82fc732e623 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 11:51:44 EDT 2025 Fri Jul 11 02:34:50 EDT 2025 Sun Jun 29 16:41:03 EDT 2025 Mon Jul 21 05:48:50 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 04:09:11 EDT 2025 Wed Nov 11 00:27:44 EST 2020 Sat Jan 08 04:02:04 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 55 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-f256783df0379ab416e7e47881d0eba0bce4273f10e03cc7ad452b82fc732e623 |
Notes | Xuezhao Li received his PhD degree in 2016 from Dalian University of Technology (DUT). Then he worked with Prof. Chunying Duan as a postdoctoral researcher at State Key Laboratory of Fine Chemicals, DUT. He joined DLUT as an Associate Professor from 2020. His research interests focus on iridium complex-based supramolecular chemistry, photocatalysis and cancer therapy. Chunying Duan completed his PhD in 1992 at Nanjing University. Since 2006, he has worked at the DaLian University of Technology as a professor. His research interests cover aspects of coordination chemistry, supramolecular chemistry, molecular sensors, chiral materials, and enzyme mimics catalysis. Cheng He received his PhD degree in 2000 from Nanjing University. After postdoctoral studies at Peking University and the Pohang University of Technology, he was awarded the Alexander von Humboldt fellowship and then worked with Prof. Herbert W. Roesky as a postdoctoral researcher at Goettingen University. He has worked at the Dalian University of Technology as a Professor since 2006. His research interest is in supramolecular coordination chemistry. Jinguo Wu obtained his BS degree from Dalian University of Technology in 2014. Now, he is a PhD candidate under the supervision of Prof. Cheng He in State Key Laboratory of Fine Chemicals, Dalian University of Technology. His research interests focus on the construction of functional Metal-Organic Cages for photocatalysis and recognition. Zhuolin Shi received her MS degrees from Henan Key Laboratory of Polyoxometalate Chemistry, Henan University. In 2019, she began to pursue her PhD degree under the supervision of Prof. Cheng He at State Key Laboratory of Fine Chemicals, Dalian University of Technology. Her research interests now focus on polyoxometalate-based metal organic cages/frameworks and relevant catalytic properties. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1638-6633 0000-0002-1426-0124 |
PMID | 32573609 |
PQID | 2421408935 |
PQPubID | 2047502 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2416265310 rsc_primary_d0cc02194f crossref_citationtrail_10_1039_D0CC02194F proquest_journals_2421408935 crossref_primary_10_1039_D0CC02194F proquest_miscellaneous_2985671311 pubmed_primary_32573609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-14 |
PublicationDateYYYYMMDD | 2020-07-14 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hannon (D0CC02194F-(cit28b)/*[position()=1]) 2001; 40 American Cancer Society (D0CC02194F-(cit3)/*[position()=1]) 2017 Hannon (D0CC02194F-(cit28a)/*[position()=1]) 1997 Howson (D0CC02194F-(cit13a)/*[position()=1]) 2011; 40 Qu (D0CC02194F-(cit29)/*[position()=1]) 2000; 97 Morrison (D0CC02194F-(cit4a)/*[position()=1]) 2020; 11 Huang (D0CC02194F-(cit62e)/*[position()=1]) 2018; 47 Childs (D0CC02194F-(cit28l)/*[position()=1]) 2006; 12 Saeed (D0CC02194F-(cit51a)/*[position()=1]) 2020; 56 Kersting (D0CC02194F-(cit21b)/*[position()=1]) 1996; 118 Dolmans (D0CC02194F-(cit16a)/*[position()=1]) 2003; 3 Khalid (D0CC02194F-(cit28g)/*[position()=1]) 2006; 12 Mjos (D0CC02194F-(cit9)/*[position()=1]) 2014; 114 Wang (D0CC02194F-(cit8b)/*[position()=1]) 2013; 42 Kerckhoffs (D0CC02194F-(cit30b)/*[position()=1]) 2007 Bünzli (D0CC02194F-(cit58b)/*[position()=1]) 2013; 3 Hatz (D0CC02194F-(cit55a)/*[position()=1]) 2007; 6 Fletcher (D0CC02194F-(cit25a)/*[position()=1]) 2006; 45 Hotze (D0CC02194F-(cit50e)/*[position()=1]) 2004; 9 Agostinis (D0CC02194F-(cit54)/*[position()=1]) 2011; 61 Hao (D0CC02194F-(cit62d)/*[position()=1]) 2019; 10 Johnstone (D0CC02194F-(cit8a)/*[position()=1]) 2016; 116 Lutzen (D0CC02194F-(cit20a)/*[position()=1]) 2002; 41 Pascu (D0CC02194F-(cit28f)/*[position()=1]) 2006 Song (D0CC02194F-(cit46)/*[position()=1]) 2019; 10 Wright (D0CC02194F-(cit11)/*[position()=1]) 2012; 4 Pracharova (D0CC02194F-(cit62c)/*[position()=1]) 2018; 24 Huang (D0CC02194F-(cit61b)/*[position()=1]) 2018; 19 He (D0CC02194F-(cit63b)/*[position()=1]) 2014; 53 Li (D0CC02194F-(cit26)/*[position()=1]) 2020; 59 Martir (D0CC02194F-(cit65a)/*[position()=1]) 2018; 364 Meistermann (D0CC02194F-(cit28h)/*[position()=1]) 2002; 99 Lerner (D0CC02194F-(cit32a)/*[position()=1]) 1961; 3 Schoentjes (D0CC02194F-(cit27)/*[position()=1]) 1995; 78 Allison (D0CC02194F-(cit53)/*[position()=1]) 2018; 57 Meyers (D0CC02194F-(cit4b)/*[position()=1]) 2016; 8 Malina (D0CC02194F-(cit36)/*[position()=1]) 2014; 281 Zaki (D0CC02194F-(cit2)/*[position()=1]) 2016; 444 Enemark (D0CC02194F-(cit21a)/*[position()=1]) 1995; 34 Ang (D0CC02194F-(cit50d)/*[position()=1]) 2006 Hannon (D0CC02194F-(cit14)/*[position()=1]) 2007; 36 Farrell (D0CC02194F-(cit10c)/*[position()=1]) 2004; 42 Albrecht (D0CC02194F-(cit19)/*[position()=1]) 2000; 6 He (D0CC02194F-(cit18)/*[position()=1]) 2007 Bugaj (D0CC02194F-(cit56b)/*[position()=1]) 2011; 10 Huang (D0CC02194F-(cit62b)/*[position()=1]) 2019; 11 Cerasino (D0CC02194F-(cit28j)/*[position()=1]) 2007; 46 Pascu (D0CC02194F-(cit28m)/*[position()=1]) 2007; 46 Hartinger (D0CC02194F-(cit50c)/*[position()=1]) 2006; 100 Pope (D0CC02194F-(cit41)/*[position()=1]) 2010; 39 Qin (D0CC02194F-(cit49)/*[position()=1]) 2017; 139 Dervan (D0CC02194F-(cit57)/*[position()=1]) 2005; 253 Yan (D0CC02194F-(cit50f)/*[position()=1]) 2005 Caporale (D0CC02194F-(cit63a)/*[position()=1]) 2018; 363 Zhang (D0CC02194F-(cit16c)/*[position()=1]) 2018; 118 Mal (D0CC02194F-(cit24a)/*[position()=1]) 2008; 47 Cerasino (D0CC02194F-(cit31b)/*[position()=1]) 2007; 46 Richards (D0CC02194F-(cit40)/*[position()=1]) 2009; 33 Kaner (D0CC02194F-(cit12)/*[position()=1]) 2015; 7 Huang (D0CC02194F-(cit62f)/*[position()=1]) 2016; 83 Bünzli (D0CC02194F-(cit13b)/*[position()=1]) 2013; 3 Nitschke (D0CC02194F-(cit23a)/*[position()=1]) 2007; 40 Malina (D0CC02194F-(cit28k)/*[position()=1]) 2007; 14 Malina (D0CC02194F-(cit60)/*[position()=1]) 2008; 14 Chen (D0CC02194F-(cit10a)/*[position()=1]) 2003; 100 Castilla (D0CC02194F-(cit23b)/*[position()=1]) 2014; 47 Lehn (D0CC02194F-(cit17)/*[position()=1]) 1987; 84 Hannon (D0CC02194F-(cit28c)/*[position()=1]) 2004; 16 Castano (D0CC02194F-(cit16b)/*[position()=1]) 2006; 6 Faulkner (D0CC02194F-(cit45)/*[position()=1]) 2014; 6 Chepelin (D0CC02194F-(cit65b)/*[position()=1]) 2012; 134 Xi (D0CC02194F-(cit35)/*[position()=1]) 2002; 9 Alessio (D0CC02194F-(cit50a)/*[position()=1]) 2004; 4 Takahara (D0CC02194F-(cit32c)/*[position()=1]) 1995; 377 Wheate (D0CC02194F-(cit8d)/*[position()=1]) 2010; 39 Gütz (D0CC02194F-(cit20c)/*[position()=1]) 2014; 136 Nakamura (D0CC02194F-(cit25b)/*[position()=1]) 2016; 138 Kelland (D0CC02194F-(cit8c)/*[position()=1]) 2007; 7 Bunzen (D0CC02194F-(cit20b)/*[position()=1]) 2009; 131 Childs (D0CC02194F-(cit28d)/*[position()=1]) 2004; 10 Yu (D0CC02194F-(cit37)/*[position()=1]) 2008; 36 Hackbarth (D0CC02194F-(cit55b)/*[position()=1]) 2010; 98 Howson (D0CC02194F-(cit42)/*[position()=1]) 2012; 4 Turner (D0CC02194F-(cit34)/*[position()=1]) 1992; 2 Olesksi (D0CC02194F-(cit28i)/*[position()=1]) 2005; 44 Gamba (D0CC02194F-(cit66)/*[position()=1]) 2014; 50 Shirasu (D0CC02194F-(cit56a)/*[position()=1]) 2013; 33 Xu (D0CC02194F-(cit24b)/*[position()=1]) 2020; 59 Liu (D0CC02194F-(cit51b)/*[position()=1]) 2018; 363 Hotze (D0CC02194F-(cit39)/*[position()=1]) 2008; 15 Hotze (D0CC02194F-(cit52)/*[position()=1]) 2006; 45 Parajó (D0CC02194F-(cit28n)/*[position()=1]) 2009 Hung (D0CC02194F-(cit4c)/*[position()=1]) 2011; 108 Oleksi (D0CC02194F-(cit31a)/*[position()=1]) 2006; 45 Malina (D0CC02194F-(cit44)/*[position()=1]) 2015; 44 Novohradsky (D0CC02194F-(cit62a)/*[position()=1]) 2019; 58 Neidle (D0CC02194F-(cit1b)/*[position()=1]) 2002 Cardo (D0CC02194F-(cit33)/*[position()=1]) 2011; 47 Meistermann (D0CC02194F-(cit30a)/*[position()=1]) 2002; 99 Alessio (D0CC02194F-(cit50b)/*[position()=1]) 2004; 42 Malina (D0CC02194F-(cit31c)/*[position()=1]) 2007; 13 Balic (D0CC02194F-(cit47a)/*[position()=1]) 2006; 12 Malina (D0CC02194F-(cit30c)/*[position()=1]) 2008; 36 Kaiser (D0CC02194F-(cit48a)/*[position()=1]) 2015; 347 Hurley (D0CC02194F-(cit1a)/*[position()=1]) 2002; 2 Jung (D0CC02194F-(cit15)/*[position()=1]) 2007; 107 Zhao (D0CC02194F-(cit38)/*[position()=1]) 2013; 135 Masood (D0CC02194F-(cit22a)/*[position()=1]) 1998; 37 Zamora (D0CC02194F-(cit61a)/*[position()=1]) 2018; 360 Cardo (D0CC02194F-(cit67)/*[position()=1]) 2009; 362 Bünzli (D0CC02194F-(cit58a)/*[position()=1]) 2008; 1130 Dömer (D0CC02194F-(cit22b)/*[position()=1]) 2010; 49 Zhang (D0CC02194F-(cit64)/*[position()=1]) 2017; 50 Simpson (D0CC02194F-(cit43)/*[position()=1]) 2019; 10 Chen (D0CC02194F-(cit21c)/*[position()=1]) 2019; 58 Pascu (D0CC02194F-(cit59)/*[position()=1]) 2007; 46 Uerpmann (D0CC02194F-(cit28e)/*[position()=1]) 2005; 11 McGregor (D0CC02194F-(cit10b)/*[position()=1]) 2002; 7 Zhang (D0CC02194F-(cit47b)/*[position()=1]) 2013; 31 Spillane (D0CC02194F-(cit48b)/*[position()=1]) 2007; 77 Brown (D0CC02194F-(cit32b)/*[position()=1]) 1992; 226 |
References_xml | – issn: 1987 publication-title: US Pat. doi: Kidani Masahide – issn: 1979 publication-title: US Pat. doi: Rosenberg Camp Krigas – issn: 1979 publication-title: US Pat. doi: Cleare Hoeschele Rosenberg Camp – issn: 2002 publication-title: Nucleic Acid Structure and Recognition doi: Neidle – issn: 2017 publication-title: Cancer Facts & Figures doi: American Cancer Society – volume: 118 start-page: 7221 year: 1996 ident: D0CC02194F-(cit21b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9613522 – volume: 33 start-page: 2823 year: 2013 ident: D0CC02194F-(cit56a)/*[position()=1] publication-title: Anticancer Res. – start-page: 2635 year: 2006 ident: D0CC02194F-(cit28f)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/B517643C – start-page: 4003 year: 2006 ident: D0CC02194F-(cit50d)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200600723 – volume: 61 start-page: 250 year: 2011 ident: D0CC02194F-(cit54)/*[position()=1] publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 4 start-page: 1525 year: 2004 ident: D0CC02194F-(cit50a)/*[position()=1] publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026043387421 – volume: 281 start-page: 987 year: 2014 ident: D0CC02194F-(cit36)/*[position()=1] publication-title: FEBS J. doi: 10.1111/febs.12696 – volume: 11 start-page: 1216 year: 2020 ident: D0CC02194F-(cit4a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC05586J – volume: 47 start-page: 6575 year: 2011 ident: D0CC02194F-(cit33)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc11356a – volume: 15 start-page: 1258 year: 2008 ident: D0CC02194F-(cit39)/*[position()=1] publication-title: Chem. Bio. doi: 10.1016/j.chembiol.2008.10.016 – volume: 57 start-page: 9799 year: 2018 ident: D0CC02194F-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805510 – volume: 98 start-page: 173 year: 2010 ident: D0CC02194F-(cit55b)/*[position()=1] publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2009.11.013 – volume: 45 start-page: 1227 year: 2006 ident: D0CC02194F-(cit31a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200503822 – volume: 100 start-page: 891 year: 2006 ident: D0CC02194F-(cit50c)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2006.02.013 – volume: 6 start-page: 3485 year: 2000 ident: D0CC02194F-(cit19)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/1521-3765(20001002)6:19<3485::AID-CHEM3485>3.0.CO;2-3 – volume: 78 start-page: 1 year: 1995 ident: D0CC02194F-(cit27)/*[position()=1] publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19950780103 – volume: 3 start-page: 380 year: 2003 ident: D0CC02194F-(cit16a)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 – volume: 360 start-page: 34 year: 2018 ident: D0CC02194F-(cit61a)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.01.010 – volume: 363 start-page: 71 year: 2018 ident: D0CC02194F-(cit63a)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.02.006 – volume: 49 start-page: 6430 year: 2010 ident: D0CC02194F-(cit22b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002776 – volume: 39 start-page: 2772 year: 2010 ident: D0CC02194F-(cit41)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b927129p – volume: 444 start-page: 1 year: 2016 ident: D0CC02194F-(cit2)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2016.01.006 – volume: 3 start-page: 18 year: 1961 ident: D0CC02194F-(cit32a)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(61)80004-1 – volume: 56 start-page: 1464 year: 2020 ident: D0CC02194F-(cit51a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC09312E – volume: 10 start-page: 1097 year: 2011 ident: D0CC02194F-(cit56b)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00147c – volume: 44 start-page: 14656 year: 2015 ident: D0CC02194F-(cit44)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT02018B – volume: 37 start-page: 928 year: 1998 ident: D0CC02194F-(cit22a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980420)37:7<928::AID-ANIE928>3.0.CO;2-T – volume: 42 start-page: 323 year: 2004 ident: D0CC02194F-(cit50b)/*[position()=1] publication-title: Met. Ions Biol. Syst. doi: 10.1201/b12414-10 – volume: 40 start-page: 10268 year: 2011 ident: D0CC02194F-(cit13a)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c1dt11423a – volume: 6 start-page: 535 year: 2006 ident: D0CC02194F-(cit16b)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1894 – volume: 34 start-page: 996 year: 1995 ident: D0CC02194F-(cit21a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199509961 – volume: 3 start-page: 20130032 year: 2013 ident: D0CC02194F-(cit58b)/*[position()=1] publication-title: Interface Focus doi: 10.1098/rsfs.2013.0032 – volume: 10 start-page: 4291 year: 2004 ident: D0CC02194F-(cit28d)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200400169 – volume: 253 start-page: 1 year: 2005 ident: D0CC02194F-(cit57)/*[position()=1] publication-title: Top. Curr. Chem. doi: 10.1007/b100440 – volume: 58 start-page: 6311 year: 2019 ident: D0CC02194F-(cit62a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901268 – volume: 7 start-page: 573 year: 2007 ident: D0CC02194F-(cit8c)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2167 – volume: 3 start-page: 20130032 year: 2013 ident: D0CC02194F-(cit13b)/*[position()=1] publication-title: Interface Focus doi: 10.1098/rsfs.2013.0032 – volume: 36 start-page: 280 year: 2007 ident: D0CC02194F-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B606046N – volume: 40 start-page: 879 year: 2001 ident: D0CC02194F-(cit28b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010302)40:5<879::AID-ANIE879>3.0.CO;2-X – volume: 12 start-page: 5615 year: 2006 ident: D0CC02194F-(cit47a)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-0169 – volume: 12 start-page: 4919 year: 2006 ident: D0CC02194F-(cit28l)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200600060 – volume: 14 start-page: 10408 year: 2008 ident: D0CC02194F-(cit60)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200801364 – volume: 12 start-page: 3493 year: 2006 ident: D0CC02194F-(cit28g)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200501168 – volume: 47 start-page: 8297 year: 2008 ident: D0CC02194F-(cit24a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803066 – volume: 31 start-page: 433 year: 2013 ident: D0CC02194F-(cit47b)/*[position()=1] publication-title: Stem Cells doi: 10.1002/stem.1298 – volume: 362 start-page: 784 year: 2009 ident: D0CC02194F-(cit67)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2008.02.050 – volume: 99 start-page: 5069 year: 2002 ident: D0CC02194F-(cit28h)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.062634499 – volume-title: Cancer Facts & Figures year: 2017 ident: D0CC02194F-(cit3)/*[position()=1] – volume: 2 start-page: 334 year: 1992 ident: D0CC02194F-(cit34)/*[position()=1] publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/0959-440X(92)90222-S – volume: 139 start-page: 16201 year: 2017 ident: D0CC02194F-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07490 – volume: 19 start-page: 1574 year: 2018 ident: D0CC02194F-(cit61b)/*[position()=1] publication-title: Chem. Bio. Chem. doi: 10.1002/cbic.201800182 – start-page: 1807 year: 1997 ident: D0CC02194F-(cit28a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/a703713i – volume: 36 start-page: 5695 year: 2008 ident: D0CC02194F-(cit37)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn569 – volume: 1130 start-page: 97 year: 2008 ident: D0CC02194F-(cit58a)/*[position()=1] publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1430.010 – volume: 47 start-page: 7628 year: 2018 ident: D0CC02194F-(cit62e)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT00887F – volume: 46 start-page: 6245 year: 2007 ident: D0CC02194F-(cit31b)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic062415c – volume: 4 start-page: 10 year: 2012 ident: D0CC02194F-(cit11)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1231 – volume: 39 start-page: 8113 year: 2010 ident: D0CC02194F-(cit8d)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c0dt00292e – volume: 46 start-page: 4374 year: 2007 ident: D0CC02194F-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200700656 – volume: 136 start-page: 11830 issue: 33 year: 2014 ident: D0CC02194F-(cit20c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506327c – volume: 10 start-page: 8547 year: 2019 ident: D0CC02194F-(cit46)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC02651G – volume: 135 start-page: 18786 year: 2013 ident: D0CC02194F-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410723r – start-page: 734 year: 2007 ident: D0CC02194F-(cit30b)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/B614093A – volume: 50 start-page: 11097 year: 2014 ident: D0CC02194F-(cit66)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03606A – volume: 131 start-page: 3621 issue: 10 year: 2009 ident: D0CC02194F-(cit20b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807780j – volume: 107 start-page: 1387 year: 2007 ident: D0CC02194F-(cit15)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr068207j – volume: 59 start-page: 6420 year: 2020 ident: D0CC02194F-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915281 – volume: 14 start-page: 3871 year: 2007 ident: D0CC02194F-(cit28k)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200700159 – volume: 9 start-page: 925 year: 2002 ident: D0CC02194F-(cit35)/*[position()=1] publication-title: Chem. Biol. doi: 10.1016/S1074-5521(02)00188-6 – volume: 108 start-page: 6799 year: 2011 ident: D0CC02194F-(cit4c)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1015271108 – start-page: 3451 year: 2007 ident: D0CC02194F-(cit18)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200700360 – volume: 58 start-page: 12879 year: 2019 ident: D0CC02194F-(cit21c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904181 – volume: 114 start-page: 4540 year: 2014 ident: D0CC02194F-(cit9)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400460s – volume: 46 start-page: 4374 year: 2007 ident: D0CC02194F-(cit28m)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200700656 – volume: 33 start-page: 469 year: 2009 ident: D0CC02194F-(cit40)/*[position()=1] publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2008.10.031 – volume: 10 start-page: 9708 year: 2019 ident: D0CC02194F-(cit43)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC03532J – volume: 6 start-page: 797 year: 2014 ident: D0CC02194F-(cit45)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2024 – volume: 97 start-page: 12032 year: 2000 ident: D0CC02194F-(cit29)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200221397 – volume: 6 start-page: 1106 year: 2007 ident: D0CC02194F-(cit55a)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b707313e – volume: 44 start-page: 1 year: 2005 ident: D0CC02194F-(cit28i)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200590000 – volume: 364 start-page: 86 year: 2018 ident: D0CC02194F-(cit65a)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.03.016 – volume: 11 start-page: 1750 year: 2005 ident: D0CC02194F-(cit28e)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200401054 – volume: 45 start-page: 4839 year: 2006 ident: D0CC02194F-(cit52)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601351 – volume: 41 start-page: 2086 year: 2002 ident: D0CC02194F-(cit20a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020617)41:12<2086::AID-ANIE2086>3.0.CO;2-0 – volume: 7 start-page: 397 year: 2002 ident: D0CC02194F-(cit10b)/*[position()=1] publication-title: Inorg. Chem. – start-page: 4868 year: 2009 ident: D0CC02194F-(cit28n)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b822039e – volume: 377 start-page: 649 year: 1995 ident: D0CC02194F-(cit32c)/*[position()=1] publication-title: Nature doi: 10.1038/377649a0 – volume: 10 start-page: 1285 year: 2019 ident: D0CC02194F-(cit62d)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04242J – volume: 4 start-page: 31 year: 2012 ident: D0CC02194F-(cit42)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1206 – volume: 363 start-page: 17 year: 2018 ident: D0CC02194F-(cit51b)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.03.002 – volume: 13 start-page: 3871 year: 2007 ident: D0CC02194F-(cit31c)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200700159 – volume: 118 start-page: 1770 year: 2018 ident: D0CC02194F-(cit16c)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00425 – volume: 83 start-page: 321 year: 2016 ident: D0CC02194F-(cit62f)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.014 – start-page: 4764 year: 2005 ident: D0CC02194F-(cit50f)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b508531b – volume: 11 start-page: 1041 year: 2019 ident: D0CC02194F-(cit62b)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0328-4 – volume: 226 start-page: 481 year: 1992 ident: D0CC02194F-(cit32b)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90962-J – volume: 138 start-page: 794 year: 2016 ident: D0CC02194F-(cit25b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12752 – volume: 46 start-page: 6245 year: 2007 ident: D0CC02194F-(cit28j)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic062415c – volume: 100 start-page: 14623 year: 2003 ident: D0CC02194F-(cit10a)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2434016100 – volume: 59 start-page: 7435 year: 2020 ident: D0CC02194F-(cit24b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001059 – volume: 9 start-page: 354 year: 2004 ident: D0CC02194F-(cit50e)/*[position()=1] publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-004-0531-6 – volume: 16 start-page: 7 year: 2004 ident: D0CC02194F-(cit28c)/*[position()=1] publication-title: Supramol. Chem. doi: 10.1080/10610270310001632386 – volume: 347 start-page: 226 year: 2015 ident: D0CC02194F-(cit48a)/*[position()=1] publication-title: Science doi: 10.1126/science.347.6219.226 – volume: 40 start-page: 103 year: 2007 ident: D0CC02194F-(cit23a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar068185n – volume-title: Nucleic Acid Structure and Recognition year: 2002 ident: D0CC02194F-(cit1b)/*[position()=1] doi: 10.1093/oso/9780198506355.001.0001 – volume: 8 start-page: 1753 year: 2016 ident: D0CC02194F-(cit4b)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc-2016-0095 – volume: 42 start-page: 202 year: 2013 ident: D0CC02194F-(cit8b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35259A – volume: 53 start-page: 12137 year: 2014 ident: D0CC02194F-(cit63b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407468 – volume: 36 start-page: 3630 year: 2008 ident: D0CC02194F-(cit30c)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn244 – volume: 2 start-page: 188 year: 2002 ident: D0CC02194F-(cit1a)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc749 – volume: 45 start-page: 6132 year: 2006 ident: D0CC02194F-(cit25a)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic060966x – volume: 84 start-page: 2565 year: 1987 ident: D0CC02194F-(cit17)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.84.9.2565 – volume: 42 start-page: 251 year: 2004 ident: D0CC02194F-(cit10c)/*[position()=1] publication-title: Met. Ions Biol. Syst. doi: 10.1201/b12414-8 – volume: 99 start-page: 5069 year: 2002 ident: D0CC02194F-(cit30a)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.062634499 – volume: 50 start-page: 320 year: 2017 ident: D0CC02194F-(cit64)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00586 – volume: 7 start-page: 1 year: 2015 ident: D0CC02194F-(cit12)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc.14.150 – volume: 134 start-page: 19334 year: 2012 ident: D0CC02194F-(cit65b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309031h – volume: 77 start-page: 464 year: 2007 ident: D0CC02194F-(cit48b)/*[position()=1] publication-title: Aust. N. Z. J. Surg. doi: 10.1111/j.1445-2197.2007.04096.x – volume: 47 start-page: 2063 year: 2014 ident: D0CC02194F-(cit23b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar5000924 – volume: 116 start-page: 3436 year: 2016 ident: D0CC02194F-(cit8a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00597 – volume: 24 start-page: 4607 year: 2018 ident: D0CC02194F-(cit62c)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201705362 |
SSID | ssj0000158 |
Score | 2.430871 |
SecondaryResourceType | review_article |
Snippet | The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7537 |
SubjectTerms | Animals antibacterial properties Antibiotics Anticancer properties Antineoplastic Agents - chemistry Antineoplastic Agents - therapeutic use Apexes Biological activity Cell Line, Tumor chemical reactions Chemotherapy Coordination Complexes - chemistry Coordination Complexes - therapeutic use Deoxyribonucleic acid Diagnostic systems DNA DNA - chemistry drug design Humans Lighting luminescence Luminescent Agents - chemistry Luminescent Agents - therapeutic use metal ions Metals, Heavy - chemistry motivation photochemotherapy Photochemotherapy - methods Photodynamic therapy Photosensitizing Agents - chemistry Photosensitizing Agents - therapeutic use Self-assembly singlet oxygen stereochemistry |
Title | Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32573609 https://www.proquest.com/docview/2421408935 https://www.proquest.com/docview/2416265310 https://www.proquest.com/docview/2985671311 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4AL4tcgYyAjuKAqw42duOFWdZsGKju1UsUlShxHnVSaaiSX_Q_7n_ee46QerdDgElW2U8V-z37v2X7fR8gniRMo0oWvZJb6yG3rp0poH0_EcoScGkpMTv5xGV3MxfdFuOj1bp1bS3WVnaibvXkl_yNVKAO5YpbsP0i2-1MogN8gX3iChOH5IBlPMbLGWL_eIBU0nqEv9cpMfQj0TebI6eV4kF2ZDBZ0M0FEv2zOVQO8tFmWVZk3tPSDyoEYaNELWkAB5WaSmK3aLt3LrKcNGYizsTA19wQWtb5ZpmW3kWM4hAc_lzWSBXUWoTbKBD2py52yVWmNq92bgEAUESeFs5zyMPYlbwAjT7Qti4QPcdLCXYMbcHGra2HorKgQTknHOsuwAebcWfkZR-DUUzaZgNcSi_OtfWvP9P8we91lRHMMz-Nk--4jchBA1BH0ycH4bPZt6uCRGcLXrlst3i2Pv2zfvu_h7IQt4MRct-QyxomZPSNPbfRBx40qPSc9vX5BHk9a0r-XZN6qFK039L5KfaWoUBQUilqFolVJXYWioADUVShqK16R-fnZbHLhW-YNX4koqvwCHGE54nnBuIzTDJx2LTUSLQxzprOUZUoL8HuLIdOMKyXTXIRBNgoKJXmgwaM-JP11udZvCM1iBMVTodYqFyLMRjzi6SjNw1QHQS4yj3xuRytRFpYe2VFWya5cPPKxa7tpwFj2tjpuBz2xk_V3gjcfBAPnPPTIh64aBhfPx9K1LmtsM4TwHowS-0ubeARDgxhVHnndCLT7FA7mj0cs9sghSLgrzplS5ssKjxztr0g2eXH0oM69JU-2E-2Y9KvrWr8Dt7jK3ltlvQPPDbT0 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lighting+up+metallohelices%3A+from+DNA+binders+to+chemotherapy+and+photodynamic+therapy&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Li%2C+Xuezhao&rft.au=Shi%2C+Zhuolin&rft.au=Wu%2C+Jinguo&rft.au=Wu%2C+Jinlong&rft.date=2020-07-14&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=56&rft.issue=55&rft.spage=7537&rft.epage=7548&rft_id=info:doi/10.1039%2FD0CC02194F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CC02194F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |