Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications
Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objective...
Saved in:
Published in | Biomaterials Vol. 32; no. 26; pp. 6034 - 6044 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo ) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo , D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant. |
---|---|
AbstractList | Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo ) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo , D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant. A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation (in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant. A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation (in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (a arrow right 482%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 degree C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant. A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant. |
Author | McBane, Joanne E Sharifpoor, Soroor Cai, Kuihua Labow, Rosalind S Santerre, J. Paul |
Author_xml | – sequence: 1 fullname: McBane, Joanne E – sequence: 2 fullname: Sharifpoor, Soroor – sequence: 3 fullname: Cai, Kuihua – sequence: 4 fullname: Labow, Rosalind S – sequence: 5 fullname: Santerre, J. Paul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21641638$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUkuO1DAQtdAgpmfgCshiw4Z0247jOCyQYPhKI7EA1pZjV3e7SexgJy3lApyDs3AyHLpBiA1IJVkuv3qvyq-u0IUPHhB6RMmaEio2h3XrQq9HiE53ac0IpWvCc8g7aEVlLYuqIdUFWhHKWdEIyi7RVUoHku-Es3voklHBqSjlCn194YKFXdRWjy54rL3Fzn__dnTHgLOMCf2QX1rXuXHGYYs1PsPbDp7gIXQ6bvazjWHYh9aZTSZxZsnPU4Rxrz3gbYh4dClNgMHvnIfcuN9hPQydMz9l0310d5tngQfn8xp9ev3q483b4vb9m3c3z28Lw4UYC6hIW1PDDAhLNNeWtzrP0sq6YQ1oaRvbNiURrOLAGlJXrKlYWUprrSiNEeU1enziHWL4MkEaVe-Sga7LfYYpKSlLwhtWN_9G1hWRFZcsI5-ekCaGlCJs1RBdr-OsKFGLYeqg_jRMLYYpwnPIXPzwLDO1Pdjfpb8cyoCXJwDkbzk6iCoZB96AdRHMqGxw_6fz7C8a07nslO4-wwzpEKbolxqqElNEfVhWZ9kcSgnhNeHlD8Y-yKM |
CitedBy_id | crossref_primary_10_1177_0885328216681893 crossref_primary_10_1021_acsbiomaterials_7b00389 crossref_primary_10_1016_j_actbio_2019_03_014 crossref_primary_10_1016_j_msec_2019_109944 crossref_primary_10_1039_C9BM01775E crossref_primary_10_1007_s00289_019_02891_z crossref_primary_10_7763_IJCEA_2014_V5_353 crossref_primary_10_1016_j_ijpharm_2013_04_063 crossref_primary_10_1038_srep41808 crossref_primary_10_1016_j_actbio_2023_11_021 crossref_primary_10_1016_j_reactfunctpolym_2018_04_010 crossref_primary_10_3390_nano12020212 crossref_primary_10_1002_jbm_a_37428 crossref_primary_10_1002_btpr_2201 crossref_primary_10_1016_j_actbio_2017_02_041 crossref_primary_10_1016_j_addr_2016_03_012 crossref_primary_10_15407_polymerj_44_01_003 crossref_primary_10_1016_j_polymdegradstab_2016_01_003 crossref_primary_10_1002_jbm_a_35936 crossref_primary_10_1016_j_xcrp_2024_102053 crossref_primary_10_3390_molecules16108181 crossref_primary_10_1039_D1NR06591B crossref_primary_10_1021_acs_biomac_7b00456 crossref_primary_10_3390_bioengineering11020156 crossref_primary_10_1016_j_apsusc_2012_10_043 crossref_primary_10_1007_s00289_022_04569_5 crossref_primary_10_1016_j_actbio_2019_06_046 crossref_primary_10_1002_adhm_202101389 crossref_primary_10_1016_j_biomaterials_2015_03_042 crossref_primary_10_1155_2015_798721 crossref_primary_10_1007_s10856_019_6261_7 crossref_primary_10_1002_jbm_a_34893 crossref_primary_10_3390_jfb14030168 crossref_primary_10_1016_j_cbi_2015_11_028 crossref_primary_10_3390_molecules17033243 crossref_primary_10_1016_j_actbio_2021_07_065 crossref_primary_10_1002_mame_201500038 crossref_primary_10_1039_C6RA15450F crossref_primary_10_3390_polym8030058 crossref_primary_10_1002_app_55334 crossref_primary_10_1016_j_jmps_2024_105582 crossref_primary_10_1080_09205063_2017_1294041 crossref_primary_10_1016_j_msec_2017_04_061 crossref_primary_10_1016_j_actbio_2013_02_010 crossref_primary_10_3390_nano8120972 crossref_primary_10_1016_j_colsurfb_2023_113595 crossref_primary_10_1016_j_actbio_2023_05_024 crossref_primary_10_1002_app_51893 crossref_primary_10_1016_j_polymer_2017_08_065 crossref_primary_10_1021_acs_macromol_8b01922 crossref_primary_10_1080_09205063_2016_1239948 crossref_primary_10_1021_acs_biomac_5b01578 crossref_primary_10_1016_j_biomaterials_2014_09_001 crossref_primary_10_1016_j_msec_2015_03_027 crossref_primary_10_1021_acs_macromol_7b02367 crossref_primary_10_1002_admt_202300411 crossref_primary_10_1007_s10856_013_5117_9 crossref_primary_10_1002_anie_202210823 crossref_primary_10_1371_journal_pone_0097835 crossref_primary_10_1007_s10118_013_1315_7 crossref_primary_10_1016_j_polymdegradstab_2017_01_021 crossref_primary_10_1016_j_msec_2017_02_052 crossref_primary_10_1007_s10856_014_5164_x crossref_primary_10_29254_2077_4214_2019_3_152_131_137 crossref_primary_10_1021_acsami_1c17868 crossref_primary_10_1111_jre_12481 crossref_primary_10_1007_s13726_018_0655_0 crossref_primary_10_3390_jfb14040212 crossref_primary_10_1016_j_actbio_2019_12_006 crossref_primary_10_1016_j_biomaterials_2020_120183 crossref_primary_10_3390_bioengineering10091016 crossref_primary_10_1016_j_biomaterials_2013_03_076 crossref_primary_10_1002_jbm_a_36428 crossref_primary_10_1002_jbm_a_36825 crossref_primary_10_1021_acsbiomaterials_0c00496 crossref_primary_10_1016_j_bioadv_2022_212961 crossref_primary_10_1016_j_msec_2017_05_041 crossref_primary_10_1016_j_polymer_2017_02_079 crossref_primary_10_1155_2013_146953 crossref_primary_10_1002_jcb_23307 crossref_primary_10_1371_journal_pone_0157894 crossref_primary_10_1021_acs_biomac_5b00625 crossref_primary_10_1021_acsapm_1c01298 crossref_primary_10_1016_j_msec_2019_109927 crossref_primary_10_1016_j_actbio_2015_05_038 crossref_primary_10_3390_ijms22157897 crossref_primary_10_1016_j_biomaterials_2015_03_005 crossref_primary_10_1016_j_actbio_2011_09_018 crossref_primary_10_1002_adhm_202203168 crossref_primary_10_1177_20417314221144714 crossref_primary_10_1016_j_actbio_2013_12_022 crossref_primary_10_1186_s13018_021_02368_8 crossref_primary_10_3390_polym15061337 crossref_primary_10_1016_j_polymdegradstab_2015_04_030 crossref_primary_10_3390_polym8010020 crossref_primary_10_2139_ssrn_3802820 crossref_primary_10_1021_acsbiomaterials_9b00861 crossref_primary_10_1088_1748_605X_aa6eb6 crossref_primary_10_1002_ange_202210823 crossref_primary_10_1016_j_cej_2019_03_270 crossref_primary_10_1002_pat_5903 |
Cites_doi | 10.1016/S0142-9612(02)00137-0 10.1016/S0142-9612(00)00104-6 10.1080/10731190801932116 10.1016/S0142-9612(00)00047-8 10.1163/156856206777346340 10.1016/S0141-8130(99)00043-4 10.1016/j.smim.2007.11.004 10.1016/S0142-9612(02)00563-X 10.1002/1097-4636(20010915)56:4<516::AID-JBM1123>3.0.CO;2-B 10.1002/jbm.a.30771 10.1016/j.actbio.2010.08.014 10.1002/bit.21629 10.1016/S0142-9612(98)00019-2 10.33549/physiolres.931918 10.1002/jbm.a.30067 10.1016/S1003-6326(06)60194-5 10.1163/156856206774879126 10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E 10.1002/jbm.a.30138 10.1073/pnas.0911465107 10.1177/088532829901300302 10.1021/bm9004194 10.3109/10520298309066811 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P 10.1016/j.biomaterials.2006.03.012 10.1016/j.actbio.2010.06.018 10.1093/jmicro/52.4.429 10.1002/jbm.820180917 10.1111/j.1600-0501.2009.01864.x 10.1002/jbm.a.31863 10.1016/S1369-7021(04)00233-0 10.1016/j.biomaterials.2011.01.069 10.1016/j.biomaterials.2007.12.005 10.1016/j.biomaterials.2008.09.026 10.1016/S0142-9612(00)00105-8 10.1021/bm701201w 10.1007/s10856-007-3292-2 10.1586/erm.09.15 10.1016/S0142-9612(98)00256-7 10.1089/teb.2007.0133 10.1002/1097-4636(20011215)57:4<597::AID-JBM1207>3.0.CO;2-T 10.1177/088532829500900402 10.1163/156856202320269148 10.1016/j.biomaterials.2009.07.010 10.1016/j.biomaterials.2006.12.032 10.1016/0141-3910(94)00114-N 10.1016/j.biomaterials.2008.04.011 10.1016/j.biomaterials.2005.05.079 10.1016/j.biomaterials.2010.02.005 10.2741/1184 10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8 10.1007/s10856-009-3953-4 10.1016/S0142-9612(02)00170-9 10.1016/S0006-3495(89)82788-2 10.1016/S0142-9612(02)00269-7 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2011 Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Elsevier Ltd – notice: 2011 Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 7T7 8FD C1K FR3 P64 |
DOI | 10.1016/j.biomaterials.2011.04.048 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 6044 |
ExternalDocumentID | 10_1016_j_biomaterials_2011_04_048 21641638 S0142961211004704 1_s2_0_S0142961211004704 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: 337246/83459 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX ACRPL ADNMO CITATION 7X8 7QO 7T7 8FD C1K FR3 P64 |
ID | FETCH-LOGICAL-c466t-e50b71c2ce6d0a4ad4ba216b87929ea8d9db9306254e290752952338ddd63cc63 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 04:43:21 EDT 2024 Fri Oct 25 02:01:13 EDT 2024 Fri Dec 06 04:49:25 EST 2024 Sat Sep 28 07:49:13 EDT 2024 Fri Feb 23 02:23:04 EST 2024 Tue Oct 15 22:54:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Biodegradation Rat subcutaneous implant Biocompatibility Porous scaffold Polylactic glycolic acid Polyurethane |
Language | English |
License | Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-e50b71c2ce6d0a4ad4ba216b87929ea8d9db9306254e290752952338ddd63cc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21641638 |
PQID | 875085482 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_883049279 proquest_miscellaneous_875085482 crossref_primary_10_1016_j_biomaterials_2011_04_048 pubmed_primary_21641638 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_04_048 elsevier_clinicalkeyesjournals_1_s2_0_S0142961211004704 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shin, Lee, Cho, Kim, Lee, Kim (bib22) 2006; 17 Zhang, Zhou, Lu, Wei, Hu (bib55) 2008; 99 von Burkersroda, Schedl, Gopferich (bib27) 2002; 23 Moore, Jabbari, Ritman, Lu, Currier, Windebank (bib30) 2004; 71 Roh, Sawh-Martinez, Brennan, Jay, Devine, Rao (bib53) 2010; 107 Holy, Dang, Davies, Shoichet (bib26) 1999; 20 Cai, Guo, Pham, LaRonde, Santerre (bib41) May 2007 Labow, Meek, Santerre (bib32) 2001; 54 Labow, Meek, Santerre (bib8) 1999; 13 McBane, Ebadi, Sharifpoor, Labow, Santerre (bib19) 2011; 7 Guelcher (bib2) 2008; 14 Santerre, Woodhouse, Laroche, Labow (bib14) 2005; 26 Chlupac, Filova, Bacakova (bib1) 2009; 58 Tangpasuthadol, Pendharkar, Peterson, Kohn (bib43) 2000; 21 Christenson, Anderson, Hiltner (bib6) 2004; 70 Tang, Labow, Santerre (bib9) 2003; 24 Tang, Labow, Santerre (bib11) 2001; 56 Lu, Wang, Marin-Muller, Wang, Lin, Yao (bib20) 2009; 9 Anderson, Rodriguez, Chang (bib4) 2008; 20 Araujo, Teran, Oliveira, Nour, Montenegro, Campos (bib35) 2003; 52 McBane, Battiston, Wadhwani, Sharifpoor, Labow, Santerre (bib18) 2011; 32 Hong, Guan, Fujimoto, Hashizume, Pelinescu, Wagner (bib46) 2010; 31 Tangpasuthadol, Pendharkar, Kohn (bib42) 2000; 21 Gretzer, Emanuelsson, Liljensten, Thomsen (bib52) 2006; 17 Schutte, Xie, Klitzman, Reichert (bib51) 2009; 30 Schutte, Parisi-Amon, Reichert (bib50) 2009; 88 Emin, Koc, Durkut, Elcin, Elcin (bib21) 2008; 36 Nation (bib34) 1983; 58 Marchant, Miller, Anderson (bib5) 1984; 18 Schwach, Vert (bib57) 1999; 25 Bertoldi, Fare, Denegri, Rossi, Haugen, Parolini (bib54) 2010; 21 Ishaug-Riley, Crane, Gurlek, Miller, Yasko, Yaszemski (bib29) 1997; 36 Ennett, Kaigler, Mooney (bib33) 2006; 79 Araujo, Mendes, Chattopadhyay, Davies (bib31) 2010; 21 Diegelmann, Evans (bib49) 2004; 9 Sharifpoor, Labow, Santerre (bib16) 2009; 10 Duguay, Labow, Santerre, McLean (bib38) 1995; 47 Jahangir, McCloskey, McClung, Labow, Brash, Santerre (bib39) 2003; 24 Pamula, Menaszek (bib56) 2008; 19 Stokes, McVenes, Anderson (bib12) 1995; 9 Pan, Jiang, Chen (bib24) 2008; 29 Christenson, Patel, Anderson, Hiltner (bib7) 2006; 27 Huang, Qi, Zhang, Liu, Yang (bib47) 2006; 16 Labow, Tang, McCloskey, Santerre (bib36) 2002; 13 Battiston, Santerre (bib40) April 2011 Sharifpoor, Simmons, Labow, Santerre (bib17) 2010; 6 McBane, Matheson, Sharifpoor, Santerre, Labow (bib3) 2009; 30 Tang, Labow, Santerre (bib10) 2001; 57 Tanzi, Mantovani, Petrini, Guidoin, Laroche (bib13) 1997; 36 Ibim, Uhrich, Bronson, El-Amin, Langer, Laurencin (bib28) 1998; 19 Yoshioka, Kawazoe, Tateishi, Chen (bib45) 2008; 29 Ma (bib44) 2004; 7 Labow, Meek, Matheson, Santerre (bib15) 2002; 23 Lu, Peter, Lyman, Lai, Leite, Tamada (bib48) 2000; 21 Saltzman, Langer (bib37) 1989; 55 Hong, Fujimoto, Hashizume, Guan, Stankus, Tobita (bib23) 2008; 9 Rowlands, Lim, Martin, Cooper-White (bib25) 2007; 28 Tang (10.1016/j.biomaterials.2011.04.048_bib10) 2001; 57 Tanzi (10.1016/j.biomaterials.2011.04.048_bib13) 1997; 36 Emin (10.1016/j.biomaterials.2011.04.048_bib21) 2008; 36 Christenson (10.1016/j.biomaterials.2011.04.048_bib7) 2006; 27 Tangpasuthadol (10.1016/j.biomaterials.2011.04.048_bib43) 2000; 21 Marchant (10.1016/j.biomaterials.2011.04.048_bib5) 1984; 18 Yoshioka (10.1016/j.biomaterials.2011.04.048_bib45) 2008; 29 Anderson (10.1016/j.biomaterials.2011.04.048_bib4) 2008; 20 Roh (10.1016/j.biomaterials.2011.04.048_bib53) 2010; 107 McBane (10.1016/j.biomaterials.2011.04.048_bib19) 2011; 7 Moore (10.1016/j.biomaterials.2011.04.048_bib30) 2004; 71 Hong (10.1016/j.biomaterials.2011.04.048_bib46) 2010; 31 Jahangir (10.1016/j.biomaterials.2011.04.048_bib39) 2003; 24 Stokes (10.1016/j.biomaterials.2011.04.048_bib12) 1995; 9 Pan (10.1016/j.biomaterials.2011.04.048_bib24) 2008; 29 Ibim (10.1016/j.biomaterials.2011.04.048_bib28) 1998; 19 Ma (10.1016/j.biomaterials.2011.04.048_bib44) 2004; 7 Diegelmann (10.1016/j.biomaterials.2011.04.048_bib49) 2004; 9 Zhang (10.1016/j.biomaterials.2011.04.048_bib55) 2008; 99 Holy (10.1016/j.biomaterials.2011.04.048_bib26) 1999; 20 Tang (10.1016/j.biomaterials.2011.04.048_bib11) 2001; 56 Lu (10.1016/j.biomaterials.2011.04.048_bib20) 2009; 9 Santerre (10.1016/j.biomaterials.2011.04.048_bib14) 2005; 26 Schutte (10.1016/j.biomaterials.2011.04.048_bib51) 2009; 30 Ishaug-Riley (10.1016/j.biomaterials.2011.04.048_bib29) 1997; 36 Araujo (10.1016/j.biomaterials.2011.04.048_bib35) 2003; 52 McBane (10.1016/j.biomaterials.2011.04.048_bib18) 2011; 32 Schutte (10.1016/j.biomaterials.2011.04.048_bib50) 2009; 88 McBane (10.1016/j.biomaterials.2011.04.048_bib3) 2009; 30 Schwach (10.1016/j.biomaterials.2011.04.048_bib57) 1999; 25 Rowlands (10.1016/j.biomaterials.2011.04.048_bib25) 2007; 28 Pamula (10.1016/j.biomaterials.2011.04.048_bib56) 2008; 19 Shin (10.1016/j.biomaterials.2011.04.048_bib22) 2006; 17 Battiston (10.1016/j.biomaterials.2011.04.048_bib40) 2011 Labow (10.1016/j.biomaterials.2011.04.048_bib36) 2002; 13 Huang (10.1016/j.biomaterials.2011.04.048_bib47) 2006; 16 Nation (10.1016/j.biomaterials.2011.04.048_bib34) 1983; 58 von Burkersroda (10.1016/j.biomaterials.2011.04.048_bib27) 2002; 23 Tangpasuthadol (10.1016/j.biomaterials.2011.04.048_bib42) 2000; 21 Bertoldi (10.1016/j.biomaterials.2011.04.048_bib54) 2010; 21 Labow (10.1016/j.biomaterials.2011.04.048_bib8) 1999; 13 Guelcher (10.1016/j.biomaterials.2011.04.048_bib2) 2008; 14 Labow (10.1016/j.biomaterials.2011.04.048_bib15) 2002; 23 Saltzman (10.1016/j.biomaterials.2011.04.048_bib37) 1989; 55 Hong (10.1016/j.biomaterials.2011.04.048_bib23) 2008; 9 Chlupac (10.1016/j.biomaterials.2011.04.048_bib1) 2009; 58 Cai (10.1016/j.biomaterials.2011.04.048_bib41) 2007 Gretzer (10.1016/j.biomaterials.2011.04.048_bib52) 2006; 17 Lu (10.1016/j.biomaterials.2011.04.048_bib48) 2000; 21 Araujo (10.1016/j.biomaterials.2011.04.048_bib31) 2010; 21 Labow (10.1016/j.biomaterials.2011.04.048_bib32) 2001; 54 Ennett (10.1016/j.biomaterials.2011.04.048_bib33) 2006; 79 Sharifpoor (10.1016/j.biomaterials.2011.04.048_bib17) 2010; 6 Duguay (10.1016/j.biomaterials.2011.04.048_bib38) 1995; 47 Tang (10.1016/j.biomaterials.2011.04.048_bib9) 2003; 24 Sharifpoor (10.1016/j.biomaterials.2011.04.048_bib16) 2009; 10 Christenson (10.1016/j.biomaterials.2011.04.048_bib6) 2004; 70 |
References_xml | – volume: 9 start-page: 283 year: 2004 end-page: 289 ident: bib49 article-title: Wound healing: an overview of acute, fibrotic and delayed healing publication-title: Front Biosci contributor: fullname: Evans – volume: 36 start-page: 123 year: 2008 end-page: 137 ident: bib21 article-title: Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture publication-title: Artif Cells Blood Substit Immobil Biotechnol contributor: fullname: Elcin – volume: 13 start-page: 187 year: 1999 end-page: 205 ident: bib8 article-title: Synthesis of cholesterol esterase by monocyte-derived macrophages: a potential role in the biodegradation of poly(urethane)s publication-title: J Biomater Appl contributor: fullname: Santerre – volume: 52 start-page: 429 year: 2003 end-page: 433 ident: bib35 article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge publication-title: J Electron Microsc (Tokyo) contributor: fullname: Campos – volume: 29 start-page: 3438 year: 2008 end-page: 3443 ident: bib45 article-title: In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges publication-title: Biomaterials contributor: fullname: Chen – volume: 10 start-page: 2729 year: 2009 end-page: 2739 ident: bib16 article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications publication-title: Biomacromolecules contributor: fullname: Santerre – volume: 57 start-page: 597 year: 2001 end-page: 611 ident: bib10 article-title: Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry publication-title: J Biomed Mater Res contributor: fullname: Santerre – volume: 9 start-page: 321 year: 1995 end-page: 354 ident: bib12 article-title: Polyurethane elastomer biostability publication-title: J Biomater Appl contributor: fullname: Anderson – volume: 56 start-page: 516 year: 2001 end-page: 528 ident: bib11 article-title: Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration publication-title: J Biomed Mater Res contributor: fullname: Santerre – volume: 25 start-page: 283 year: 1999 end-page: 291 ident: bib57 article-title: In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction publication-title: Int J Biol Macromol contributor: fullname: Vert – volume: 32 start-page: 3584 year: 2011 end-page: 3595 ident: bib18 article-title: The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells publication-title: Biomaterials contributor: fullname: Santerre – year: April 2011 ident: bib40 article-title: Proteomic analysis of protein adsorption onto a degradable-polar/hydrophobic/ionic polyurethane contributor: fullname: Santerre – volume: 9 start-page: 1200 year: 2008 end-page: 1207 ident: bib23 article-title: Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning publication-title: Biomacromolecules contributor: fullname: Tobita – volume: 24 start-page: 2003 year: 2003 end-page: 2011 ident: bib9 article-title: Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase publication-title: Biomaterials contributor: fullname: Santerre – volume: 58 start-page: 347 year: 1983 end-page: 351 ident: bib34 article-title: A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy publication-title: Stain Technol contributor: fullname: Nation – volume: 21 start-page: 2371 year: 2000 end-page: 2378 ident: bib42 article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds publication-title: Biomaterials contributor: fullname: Kohn – volume: 31 start-page: 4249 year: 2010 end-page: 4258 ident: bib46 article-title: Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds publication-title: Biomaterials contributor: fullname: Wagner – volume: 20 start-page: 1177 year: 1999 end-page: 1185 ident: bib26 article-title: In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam publication-title: Biomaterials contributor: fullname: Shoichet – volume: 47 start-page: 229 year: 1995 end-page: 249 ident: bib38 article-title: Development of a mathematical model describing the enzymatic degradation of biomedical polyurethanes. 1. Background, rationale and model formulation publication-title: Polym Degrad Stab contributor: fullname: McLean – volume: 7 start-page: 115 year: 2011 end-page: 122 ident: bib19 article-title: Differentiation of monocytes on a degradable, polar-hydrophobic-ionic polyurethane: 2-dimensional films versus 3-dimensional scaffolds publication-title: Acta Biomater contributor: fullname: Santerre – volume: 20 start-page: 86 year: 2008 end-page: 100 ident: bib4 article-title: Foreign body reaction to biomaterials publication-title: Semin Immunol contributor: fullname: Chang – volume: 23 start-page: 4221 year: 2002 end-page: 4231 ident: bib27 article-title: Why degradable polymers undergo surface erosion or bulk erosion publication-title: Biomaterials contributor: fullname: Gopferich – volume: 79 start-page: 176 year: 2006 end-page: 184 ident: bib33 article-title: Temporally regulated delivery of VEGF in vitro and in vivo publication-title: J Biomed Mater Res A contributor: fullname: Mooney – volume: 7 start-page: 30 year: 2004 end-page: 40 ident: bib44 article-title: Scaffolds for tissue fabrication publication-title: Mater Today contributor: fullname: Ma – volume: 27 start-page: 3920 year: 2006 end-page: 3926 ident: bib7 article-title: Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase publication-title: Biomaterials contributor: fullname: Hiltner – volume: 28 start-page: 2109 year: 2007 end-page: 2121 ident: bib25 article-title: Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation publication-title: Biomaterials contributor: fullname: Cooper-White – volume: 16 start-page: s293 year: 2006 end-page: s297 ident: bib47 article-title: Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment publication-title: Trans Nonferrous Met Soc China contributor: fullname: Yang – volume: 21 start-page: 2379 year: 2000 end-page: 2387 ident: bib43 article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices publication-title: Biomaterials contributor: fullname: Kohn – year: May 2007 ident: bib41 article-title: Ciprofloxacin release profile study: the effect of diisocyanate structure contributor: fullname: Santerre – volume: 24 start-page: 121 year: 2003 end-page: 130 ident: bib39 article-title: The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase publication-title: Biomaterials contributor: fullname: Santerre – volume: 88 start-page: 128 year: 2009 end-page: 139 ident: bib50 article-title: Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries publication-title: J Biomed Mater Res A contributor: fullname: Reichert – volume: 23 start-page: 3969 year: 2002 end-page: 3975 ident: bib15 article-title: Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities publication-title: Biomaterials contributor: fullname: Santerre – volume: 36 start-page: 1 year: 1997 end-page: 8 ident: bib29 article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly( publication-title: J Biomed Mater Res contributor: fullname: Yaszemski – volume: 21 start-page: 632 year: 2010 end-page: 641 ident: bib31 article-title: Low-temperature particulate calcium phosphates for bone regeneration publication-title: Clin Oral Implants Res contributor: fullname: Davies – volume: 30 start-page: 160 year: 2009 end-page: 168 ident: bib51 article-title: In vivo cytokine-associated responses to biomaterials publication-title: Biomaterials contributor: fullname: Reichert – volume: 13 start-page: 651 year: 2002 end-page: 665 ident: bib36 article-title: The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s publication-title: J Biomater Sci Polym Ed contributor: fullname: Santerre – volume: 29 start-page: 1583 year: 2008 end-page: 1592 ident: bib24 article-title: The biodegradability of electrospun Dextran/PLGA scaffold in a fibroblast/macrophage co-culture publication-title: Biomaterials contributor: fullname: Chen – volume: 18 start-page: 1169 year: 1984 end-page: 1190 ident: bib5 article-title: In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer publication-title: J Biomed Mater Res contributor: fullname: Anderson – volume: 36 start-page: 550 year: 1997 end-page: 559 ident: bib13 article-title: Chemical stability of polyether urethanes versus polycarbonate urethanes publication-title: J Biomed Mater Res contributor: fullname: Laroche – volume: 99 start-page: 1007 year: 2008 end-page: 1015 ident: bib55 article-title: A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds publication-title: Biotechnol Bioeng contributor: fullname: Hu – volume: 71 start-page: 258 year: 2004 end-page: 267 ident: bib30 article-title: Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography publication-title: J Biomed Mater Res A contributor: fullname: Windebank – volume: 70 start-page: 245 year: 2004 end-page: 255 ident: bib6 article-title: Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations publication-title: J Biomed Mater Res A contributor: fullname: Hiltner – volume: 30 start-page: 5497 year: 2009 end-page: 5504 ident: bib3 article-title: Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage publication-title: Biomaterials contributor: fullname: Labow – volume: 58 start-page: S119 year: 2009 end-page: S139 ident: bib1 article-title: Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery publication-title: Physiol Res contributor: fullname: Bacakova – volume: 107 start-page: 4669 year: 2010 end-page: 4674 ident: bib53 article-title: Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling publication-title: Proc Natl Acad Sci U S A contributor: fullname: Rao – volume: 6 start-page: 4218 year: 2010 end-page: 4228 ident: bib17 article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity publication-title: Acta Biomater contributor: fullname: Santerre – volume: 17 start-page: 669 year: 2006 end-page: 687 ident: bib52 article-title: The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials publication-title: J Biomater Sci Polym Ed contributor: fullname: Thomsen – volume: 21 start-page: 1837 year: 2000 end-page: 1845 ident: bib48 article-title: In vitro and in vivo degradation of porous poly( publication-title: Biomaterials contributor: fullname: Tamada – volume: 19 start-page: 941 year: 1998 end-page: 951 ident: bib28 article-title: Poly(anhydride-co-imides): in vivo biocompatibility in a rat model publication-title: Biomaterials contributor: fullname: Laurencin – volume: 14 start-page: 3 year: 2008 end-page: 17 ident: bib2 article-title: Biodegradable polyurethanes: synthesis and applications in regenerative medicine publication-title: Tissue Eng Part B Rev contributor: fullname: Guelcher – volume: 55 start-page: 163 year: 1989 end-page: 171 ident: bib37 article-title: Transport rates of proteins in porous materials with known microgeometry publication-title: Biophys J contributor: fullname: Langer – volume: 21 start-page: 1005 year: 2010 end-page: 1011 ident: bib54 article-title: Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results publication-title: J Mater Sci Mater Med contributor: fullname: Parolini – volume: 54 start-page: 189 year: 2001 end-page: 197 ident: bib32 article-title: Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation publication-title: J Biomed Mater Res contributor: fullname: Santerre – volume: 17 start-page: 103 year: 2006 end-page: 119 ident: bib22 article-title: Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro publication-title: J Biomater Sci Polym Ed contributor: fullname: Kim – volume: 26 start-page: 7457 year: 2005 end-page: 7470 ident: bib14 article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials publication-title: Biomaterials contributor: fullname: Labow – volume: 9 start-page: 325 year: 2009 end-page: 341 ident: bib20 article-title: Current advances in research and clinical applications of PLGA-based nanotechnology publication-title: Expert Rev Mol Diagn contributor: fullname: Yao – volume: 19 start-page: 2063 year: 2008 end-page: 2070 ident: bib56 article-title: In vitro and in vivo degradation of poly( publication-title: J Mater Sci Mater Med contributor: fullname: Menaszek – volume: 23 start-page: 3969 issue: 19 year: 2002 ident: 10.1016/j.biomaterials.2011.04.048_bib15 article-title: Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00137-0 contributor: fullname: Labow – volume: 21 start-page: 2371 issue: 23 year: 2000 ident: 10.1016/j.biomaterials.2011.04.048_bib42 article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00104-6 contributor: fullname: Tangpasuthadol – volume: 36 start-page: 123 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib21 article-title: Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture publication-title: Artif Cells Blood Substit Immobil Biotechnol doi: 10.1080/10731190801932116 contributor: fullname: Emin – volume: 21 start-page: 1837 issue: 18 year: 2000 ident: 10.1016/j.biomaterials.2011.04.048_bib48 article-title: In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00047-8 contributor: fullname: Lu – volume: 17 start-page: 669 issue: 6 year: 2006 ident: 10.1016/j.biomaterials.2011.04.048_bib52 article-title: The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856206777346340 contributor: fullname: Gretzer – volume: 25 start-page: 283 year: 1999 ident: 10.1016/j.biomaterials.2011.04.048_bib57 article-title: In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction publication-title: Int J Biol Macromol doi: 10.1016/S0141-8130(99)00043-4 contributor: fullname: Schwach – volume: 20 start-page: 86 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib4 article-title: Foreign body reaction to biomaterials publication-title: Semin Immunol doi: 10.1016/j.smim.2007.11.004 contributor: fullname: Anderson – volume: 24 start-page: 2003 issue: 12 year: 2003 ident: 10.1016/j.biomaterials.2011.04.048_bib9 article-title: Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00563-X contributor: fullname: Tang – volume: 56 start-page: 516 issue: 4 year: 2001 ident: 10.1016/j.biomaterials.2011.04.048_bib11 article-title: Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(20010915)56:4<516::AID-JBM1123>3.0.CO;2-B contributor: fullname: Tang – volume: 79 start-page: 176 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2011.04.048_bib33 article-title: Temporally regulated delivery of VEGF in vitro and in vivo publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30771 contributor: fullname: Ennett – volume: 7 start-page: 115 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2011.04.048_bib19 article-title: Differentiation of monocytes on a degradable, polar-hydrophobic-ionic polyurethane: 2-dimensional films versus 3-dimensional scaffolds publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.08.014 contributor: fullname: McBane – year: 2011 ident: 10.1016/j.biomaterials.2011.04.048_bib40 contributor: fullname: Battiston – volume: 99 start-page: 1007 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib55 article-title: A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds publication-title: Biotechnol Bioeng doi: 10.1002/bit.21629 contributor: fullname: Zhang – volume: 19 start-page: 941 issue: 10 year: 1998 ident: 10.1016/j.biomaterials.2011.04.048_bib28 article-title: Poly(anhydride-co-imides): in vivo biocompatibility in a rat model publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00019-2 contributor: fullname: Ibim – volume: 58 start-page: S119 issue: Suppl. 2 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib1 article-title: Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery publication-title: Physiol Res doi: 10.33549/physiolres.931918 contributor: fullname: Chlupac – volume: 70 start-page: 245 issue: 2 year: 2004 ident: 10.1016/j.biomaterials.2011.04.048_bib6 article-title: Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30067 contributor: fullname: Christenson – volume: 16 start-page: s293 year: 2006 ident: 10.1016/j.biomaterials.2011.04.048_bib47 article-title: Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(06)60194-5 contributor: fullname: Huang – volume: 17 start-page: 103 issue: 1–2 year: 2006 ident: 10.1016/j.biomaterials.2011.04.048_bib22 article-title: Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856206774879126 contributor: fullname: Shin – year: 2007 ident: 10.1016/j.biomaterials.2011.04.048_bib41 contributor: fullname: Cai – volume: 36 start-page: 550 issue: 4 year: 1997 ident: 10.1016/j.biomaterials.2011.04.048_bib13 article-title: Chemical stability of polyether urethanes versus polycarbonate urethanes publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E contributor: fullname: Tanzi – volume: 71 start-page: 258 issue: 2 year: 2004 ident: 10.1016/j.biomaterials.2011.04.048_bib30 article-title: Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30138 contributor: fullname: Moore – volume: 107 start-page: 4669 issue: 10 year: 2010 ident: 10.1016/j.biomaterials.2011.04.048_bib53 article-title: Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0911465107 contributor: fullname: Roh – volume: 13 start-page: 187 issue: 3 year: 1999 ident: 10.1016/j.biomaterials.2011.04.048_bib8 article-title: Synthesis of cholesterol esterase by monocyte-derived macrophages: a potential role in the biodegradation of poly(urethane)s publication-title: J Biomater Appl doi: 10.1177/088532829901300302 contributor: fullname: Labow – volume: 10 start-page: 2729 issue: 10 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib16 article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/bm9004194 contributor: fullname: Sharifpoor – volume: 58 start-page: 347 issue: 6 year: 1983 ident: 10.1016/j.biomaterials.2011.04.048_bib34 article-title: A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy publication-title: Stain Technol doi: 10.3109/10520298309066811 contributor: fullname: Nation – volume: 36 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2011.04.048_bib29 article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(dl-lactic-co-glycolic acid) foams implanted into the rat mesentery publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P contributor: fullname: Ishaug-Riley – volume: 27 start-page: 3920 issue: 21 year: 2006 ident: 10.1016/j.biomaterials.2011.04.048_bib7 article-title: Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.03.012 contributor: fullname: Christenson – volume: 6 start-page: 4218 issue: 11 year: 2010 ident: 10.1016/j.biomaterials.2011.04.048_bib17 article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.06.018 contributor: fullname: Sharifpoor – volume: 52 start-page: 429 issue: 4 year: 2003 ident: 10.1016/j.biomaterials.2011.04.048_bib35 article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge publication-title: J Electron Microsc (Tokyo) doi: 10.1093/jmicro/52.4.429 contributor: fullname: Araujo – volume: 18 start-page: 1169 issue: 9 year: 1984 ident: 10.1016/j.biomaterials.2011.04.048_bib5 article-title: In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer publication-title: J Biomed Mater Res doi: 10.1002/jbm.820180917 contributor: fullname: Marchant – volume: 21 start-page: 632 issue: 6 year: 2010 ident: 10.1016/j.biomaterials.2011.04.048_bib31 article-title: Low-temperature particulate calcium phosphates for bone regeneration publication-title: Clin Oral Implants Res doi: 10.1111/j.1600-0501.2009.01864.x contributor: fullname: Araujo – volume: 88 start-page: 128 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib50 article-title: Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.31863 contributor: fullname: Schutte – volume: 7 start-page: 30 issue: 5 year: 2004 ident: 10.1016/j.biomaterials.2011.04.048_bib44 article-title: Scaffolds for tissue fabrication publication-title: Mater Today doi: 10.1016/S1369-7021(04)00233-0 contributor: fullname: Ma – volume: 32 start-page: 3584 year: 2011 ident: 10.1016/j.biomaterials.2011.04.048_bib18 article-title: The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.069 contributor: fullname: McBane – volume: 29 start-page: 1583 issue: 11 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib24 article-title: The biodegradability of electrospun Dextran/PLGA scaffold in a fibroblast/macrophage co-culture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.005 contributor: fullname: Pan – volume: 30 start-page: 160 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib51 article-title: In vivo cytokine-associated responses to biomaterials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.026 contributor: fullname: Schutte – volume: 21 start-page: 2379 issue: 23 year: 2000 ident: 10.1016/j.biomaterials.2011.04.048_bib43 article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00105-8 contributor: fullname: Tangpasuthadol – volume: 9 start-page: 1200 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib23 article-title: Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning publication-title: Biomacromolecules doi: 10.1021/bm701201w contributor: fullname: Hong – volume: 19 start-page: 2063 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib56 article-title: In vitro and in vivo degradation of poly(l-lactide-co-glycolide) films and scaffolds publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-007-3292-2 contributor: fullname: Pamula – volume: 9 start-page: 325 issue: 4 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib20 article-title: Current advances in research and clinical applications of PLGA-based nanotechnology publication-title: Expert Rev Mol Diagn doi: 10.1586/erm.09.15 contributor: fullname: Lu – volume: 20 start-page: 1177 issue: 13 year: 1999 ident: 10.1016/j.biomaterials.2011.04.048_bib26 article-title: In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00256-7 contributor: fullname: Holy – volume: 14 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib2 article-title: Biodegradable polyurethanes: synthesis and applications in regenerative medicine publication-title: Tissue Eng Part B Rev doi: 10.1089/teb.2007.0133 contributor: fullname: Guelcher – volume: 57 start-page: 597 issue: 4 year: 2001 ident: 10.1016/j.biomaterials.2011.04.048_bib10 article-title: Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(20011215)57:4<597::AID-JBM1207>3.0.CO;2-T contributor: fullname: Tang – volume: 9 start-page: 321 issue: 4 year: 1995 ident: 10.1016/j.biomaterials.2011.04.048_bib12 article-title: Polyurethane elastomer biostability publication-title: J Biomater Appl doi: 10.1177/088532829500900402 contributor: fullname: Stokes – volume: 13 start-page: 651 issue: 6 year: 2002 ident: 10.1016/j.biomaterials.2011.04.048_bib36 article-title: The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856202320269148 contributor: fullname: Labow – volume: 30 start-page: 5497 issue: 29 year: 2009 ident: 10.1016/j.biomaterials.2011.04.048_bib3 article-title: Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.010 contributor: fullname: McBane – volume: 28 start-page: 2109 issue: 12 year: 2007 ident: 10.1016/j.biomaterials.2011.04.048_bib25 article-title: Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.12.032 contributor: fullname: Rowlands – volume: 47 start-page: 229 issue: 2 year: 1995 ident: 10.1016/j.biomaterials.2011.04.048_bib38 article-title: Development of a mathematical model describing the enzymatic degradation of biomedical polyurethanes. 1. Background, rationale and model formulation publication-title: Polym Degrad Stab doi: 10.1016/0141-3910(94)00114-N contributor: fullname: Duguay – volume: 29 start-page: 3438 issue: 24–25 year: 2008 ident: 10.1016/j.biomaterials.2011.04.048_bib45 article-title: In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.04.011 contributor: fullname: Yoshioka – volume: 26 start-page: 7457 issue: 35 year: 2005 ident: 10.1016/j.biomaterials.2011.04.048_bib14 article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.079 contributor: fullname: Santerre – volume: 31 start-page: 4249 issue: 15 year: 2010 ident: 10.1016/j.biomaterials.2011.04.048_bib46 article-title: Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.005 contributor: fullname: Hong – volume: 9 start-page: 283 year: 2004 ident: 10.1016/j.biomaterials.2011.04.048_bib49 article-title: Wound healing: an overview of acute, fibrotic and delayed healing publication-title: Front Biosci doi: 10.2741/1184 contributor: fullname: Diegelmann – volume: 54 start-page: 189 issue: 2 year: 2001 ident: 10.1016/j.biomaterials.2011.04.048_bib32 article-title: Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8 contributor: fullname: Labow – volume: 21 start-page: 1005 year: 2010 ident: 10.1016/j.biomaterials.2011.04.048_bib54 article-title: Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-009-3953-4 contributor: fullname: Bertoldi – volume: 23 start-page: 4221 issue: 21 year: 2002 ident: 10.1016/j.biomaterials.2011.04.048_bib27 article-title: Why degradable polymers undergo surface erosion or bulk erosion publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00170-9 contributor: fullname: von Burkersroda – volume: 55 start-page: 163 issue: 1 year: 1989 ident: 10.1016/j.biomaterials.2011.04.048_bib37 article-title: Transport rates of proteins in porous materials with known microgeometry publication-title: Biophys J doi: 10.1016/S0006-3495(89)82788-2 contributor: fullname: Saltzman – volume: 24 start-page: 121 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2011.04.048_bib39 article-title: The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00269-7 contributor: fullname: Jahangir |
SSID | ssj0014042 |
Score | 2.4466498 |
Snippet | Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to... A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate... A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6034 |
SubjectTerms | Advanced Basic Science Animals Biocompatibility Biocompatible Materials - adverse effects Biocompatible Materials - metabolism Biodegradation Dentistry Male Microscopy, Electron, Scanning Polylactic glycolic acid Polyurethane Polyurethanes - adverse effects Polyurethanes - metabolism Porosity Porous scaffold Rat subcutaneous implant Rats Rats, Wistar Tissue Engineering - methods |
Title | Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211004704 https://dx.doi.org/10.1016/j.biomaterials.2011.04.048 https://www.ncbi.nlm.nih.gov/pubmed/21641638 https://search.proquest.com/docview/875085482 https://search.proquest.com/docview/883049279 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIiE4ICh_y0_lA0dCEsdxnAOHUlEtoPZEpd4sx3bUoCpZ7WYr7YUjz8Gz8GTM2M6yCBUhIeVkOcrEMx7PeD5_JuRVVrSyzSsw3rKFBIWVNtGl1kldNKIyWWuYJ9M5PRPzc_7xorzYI8fTWRiEVUbfH3y699axJY2jmS66LkVYEquRAAtJzyrPCcrLDG8xePN1C_NA9hgWYIwswd4T8ajHeOERdz0GVUc6Tw6PvGmRuikI9YvRyX1yL0aR9CgI-oDsuf6A3N3hFjwgt09j1fwh-fauGyySQoT7k6juLe36H9-vu-uBgnAehz4GmOyGDi3VNHZvrtxrusDsN73c2OWwuByazqS4h2uwfbNeOtx7dxRiXzp6JVL3Swy6Wx9_RM5P3n8-nifx_oXEcCHGxJVZU-WGGSdsprm2vNEsF42sIKZyWtraNjWkHJBjOgZJNtYMGaS81lpRGCOKx2S_H3r3lNBWSlvmTjMuGC9sWcuCNxC5CVsYvGliRoppwNUi0GyoCX_2Re2qSaGaVMbhkTNSTbpR00FScH1uFefhSuVqxVSm_rCVGXm7ffM3c1OwkvzTl-lkCgrmIxZZYKyH9UpB_gdRLJfsL10k1jZZVc_Ik2BF23-G4fUR8rP_lO85uRM2vxEM94Lsj8u1ewnR09gc-ulxSG4dffg0P_sJOdEdhw |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIvFxQFCgXT594EhI4jiOc-gBKqoFuj21Um-WYztqEEpWu9lKe-HI7-C38Ms6EzvLIlSEhJST5SiOZ2y_8Tw_E_I6yWpZpwU4b15DgMJyG-lc66jMKlGYpDZsENOZnYrpOf90kV_skKPxLAzSKsPc7-f0YbYOJXHozXjeNDHSkliJAlgoelagJugtngP6Bad--23D80D5GOZ5jCzC6qPy6EDywjPuuve2DnqeHB550yp1EwodVqPjB-R-gJH0nW_pQ7Lj2j1yb0tccI_cnoW0-SPy_X3TWVSF8BcoUd1a2rQ_f1w1Vx2Fxg1E9N7zZNe0q6mmoXr11b2hcwx_48u1XXTzy65qTIybuAbL16uFw813RwH80n6wInW_mkG3E-SPyfnxh7OjaRQuYIgMF6KPXJ5URWqYccImmmvLK81SUckCQJXT0pa2KiHmgCDTMYiyMWnIIOa11orMGJE9Ibtt17oDQmspbZ46zbhgPLN5KTNeAXQTNjN41cSEZGOHq7nX2VAjAe2L2jaTQjOphMMjJ6QYbaPGk6Qw97llGIhLlaolU4n6w1km5HDz5m_-pmAp-acv09EVFAxIzLJAX3erpYIAEGAsl-wvVSQmN1lRTsi-96LNP0P3DhD56X-27xW5Mz2bnaiTj6efn5G7ficcmXHPyW6_WLkXAKX66uUwVK4BuOgfJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+and+in%C2%A0vivo+biocompatibility+of+a+degradable%2C+polar%2Fhydrophobic%2Fionic+polyurethane+for+tissue+engineering+applications&rft.jtitle=Biomaterials&rft.au=McBane%2C+Joanne+E.&rft.au=Sharifpoor%2C+Soroor&rft.au=Cai%2C+Kuihua&rft.au=Labow%2C+Rosalind+S.&rft.date=2011-09-01&rft.issn=0142-9612&rft.volume=32&rft.issue=26&rft.spage=6034&rft.epage=6044&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.04.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2011_04_048 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00200%2Fcov150h.gif |