Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications

Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objective...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 32; no. 26; pp. 6034 - 6044
Main Authors McBane, Joanne E, Sharifpoor, Soroor, Cai, Kuihua, Labow, Rosalind S, Santerre, J. Paul
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo ) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo , D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant.
AbstractList Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo ) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo , D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant.
A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation (in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant.
A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation (in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (a arrow right 482%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 degree C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant.
A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate vascular graft tissue while eliciting a more wound-healing phenotype macrophage when compared to established materials. The objectives of this study were to characterize the biodegradation ( in vitro and in vivo) and assess the in vivo biocompatibility of D-PHI, comparing it to a well-established, commercially-available scaffold biomaterial, polylactic glycolic acid (PLGA), recognized as being degradable, non-cytotoxic, and showing good biocompatibility. PLGA and D-PHI were formed into 6 mm diameter disk-shaped scaffolds (2 mm thick) of similar porosity (∼82%) and implanted subcutaneously in rats. Both PLGA and D-PHI scaffolds were well-tolerated at the 7 d time point in vivo. In vitro D-PHI scaffolds degraded slowly (only 12 wt% in PBS in vitro after 120 d at 37 °C). In vivo, D-PHI scaffolds degraded at a more controlled rate (7 wt% loss over the acute 7 d implant phase and subsequently a linear profile of degradation leading to a 21 wt% mass loss by 100 d (chronic period)) than PLGA scaffolds which showed an initial more rapid degradation (14 wt% over 7 d), followed by minimal change between 7 and 30 d, and then a very rapid breakdown of the scaffold over the next 60 d. Histological examination of D-PHI scaffolds showed tissue ingrowth into the pores increased with time whereas PLGA scaffolds excluded cells/tissue from its porous structure as it degraded. The results of this study suggest that D-PHI has promising qualities for use as an elastomeric scaffold material for soft TE applications yielding well integrated tissue within the scaffold and a controlled rate of degradation stabilizing the form and shape of the implant.
Author McBane, Joanne E
Sharifpoor, Soroor
Cai, Kuihua
Labow, Rosalind S
Santerre, J. Paul
Author_xml – sequence: 1
  fullname: McBane, Joanne E
– sequence: 2
  fullname: Sharifpoor, Soroor
– sequence: 3
  fullname: Cai, Kuihua
– sequence: 4
  fullname: Labow, Rosalind S
– sequence: 5
  fullname: Santerre, J. Paul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21641638$$D View this record in MEDLINE/PubMed
BookMark eNqNUkuO1DAQtdAgpmfgCshiw4Z0247jOCyQYPhKI7EA1pZjV3e7SexgJy3lApyDs3AyHLpBiA1IJVkuv3qvyq-u0IUPHhB6RMmaEio2h3XrQq9HiE53ac0IpWvCc8g7aEVlLYuqIdUFWhHKWdEIyi7RVUoHku-Es3voklHBqSjlCn194YKFXdRWjy54rL3Fzn__dnTHgLOMCf2QX1rXuXHGYYs1PsPbDp7gIXQ6bvazjWHYh9aZTSZxZsnPU4Rxrz3gbYh4dClNgMHvnIfcuN9hPQydMz9l0310d5tngQfn8xp9ev3q483b4vb9m3c3z28Lw4UYC6hIW1PDDAhLNNeWtzrP0sq6YQ1oaRvbNiURrOLAGlJXrKlYWUprrSiNEeU1enziHWL4MkEaVe-Sga7LfYYpKSlLwhtWN_9G1hWRFZcsI5-ekCaGlCJs1RBdr-OsKFGLYeqg_jRMLYYpwnPIXPzwLDO1Pdjfpb8cyoCXJwDkbzk6iCoZB96AdRHMqGxw_6fz7C8a07nslO4-wwzpEKbolxqqElNEfVhWZ9kcSgnhNeHlD8Y-yKM
CitedBy_id crossref_primary_10_1177_0885328216681893
crossref_primary_10_1021_acsbiomaterials_7b00389
crossref_primary_10_1016_j_actbio_2019_03_014
crossref_primary_10_1016_j_msec_2019_109944
crossref_primary_10_1039_C9BM01775E
crossref_primary_10_1007_s00289_019_02891_z
crossref_primary_10_7763_IJCEA_2014_V5_353
crossref_primary_10_1016_j_ijpharm_2013_04_063
crossref_primary_10_1038_srep41808
crossref_primary_10_1016_j_actbio_2023_11_021
crossref_primary_10_1016_j_reactfunctpolym_2018_04_010
crossref_primary_10_3390_nano12020212
crossref_primary_10_1002_jbm_a_37428
crossref_primary_10_1002_btpr_2201
crossref_primary_10_1016_j_actbio_2017_02_041
crossref_primary_10_1016_j_addr_2016_03_012
crossref_primary_10_15407_polymerj_44_01_003
crossref_primary_10_1016_j_polymdegradstab_2016_01_003
crossref_primary_10_1002_jbm_a_35936
crossref_primary_10_1016_j_xcrp_2024_102053
crossref_primary_10_3390_molecules16108181
crossref_primary_10_1039_D1NR06591B
crossref_primary_10_1021_acs_biomac_7b00456
crossref_primary_10_3390_bioengineering11020156
crossref_primary_10_1016_j_apsusc_2012_10_043
crossref_primary_10_1007_s00289_022_04569_5
crossref_primary_10_1016_j_actbio_2019_06_046
crossref_primary_10_1002_adhm_202101389
crossref_primary_10_1016_j_biomaterials_2015_03_042
crossref_primary_10_1155_2015_798721
crossref_primary_10_1007_s10856_019_6261_7
crossref_primary_10_1002_jbm_a_34893
crossref_primary_10_3390_jfb14030168
crossref_primary_10_1016_j_cbi_2015_11_028
crossref_primary_10_3390_molecules17033243
crossref_primary_10_1016_j_actbio_2021_07_065
crossref_primary_10_1002_mame_201500038
crossref_primary_10_1039_C6RA15450F
crossref_primary_10_3390_polym8030058
crossref_primary_10_1002_app_55334
crossref_primary_10_1016_j_jmps_2024_105582
crossref_primary_10_1080_09205063_2017_1294041
crossref_primary_10_1016_j_msec_2017_04_061
crossref_primary_10_1016_j_actbio_2013_02_010
crossref_primary_10_3390_nano8120972
crossref_primary_10_1016_j_colsurfb_2023_113595
crossref_primary_10_1016_j_actbio_2023_05_024
crossref_primary_10_1002_app_51893
crossref_primary_10_1016_j_polymer_2017_08_065
crossref_primary_10_1021_acs_macromol_8b01922
crossref_primary_10_1080_09205063_2016_1239948
crossref_primary_10_1021_acs_biomac_5b01578
crossref_primary_10_1016_j_biomaterials_2014_09_001
crossref_primary_10_1016_j_msec_2015_03_027
crossref_primary_10_1021_acs_macromol_7b02367
crossref_primary_10_1002_admt_202300411
crossref_primary_10_1007_s10856_013_5117_9
crossref_primary_10_1002_anie_202210823
crossref_primary_10_1371_journal_pone_0097835
crossref_primary_10_1007_s10118_013_1315_7
crossref_primary_10_1016_j_polymdegradstab_2017_01_021
crossref_primary_10_1016_j_msec_2017_02_052
crossref_primary_10_1007_s10856_014_5164_x
crossref_primary_10_29254_2077_4214_2019_3_152_131_137
crossref_primary_10_1021_acsami_1c17868
crossref_primary_10_1111_jre_12481
crossref_primary_10_1007_s13726_018_0655_0
crossref_primary_10_3390_jfb14040212
crossref_primary_10_1016_j_actbio_2019_12_006
crossref_primary_10_1016_j_biomaterials_2020_120183
crossref_primary_10_3390_bioengineering10091016
crossref_primary_10_1016_j_biomaterials_2013_03_076
crossref_primary_10_1002_jbm_a_36428
crossref_primary_10_1002_jbm_a_36825
crossref_primary_10_1021_acsbiomaterials_0c00496
crossref_primary_10_1016_j_bioadv_2022_212961
crossref_primary_10_1016_j_msec_2017_05_041
crossref_primary_10_1016_j_polymer_2017_02_079
crossref_primary_10_1155_2013_146953
crossref_primary_10_1002_jcb_23307
crossref_primary_10_1371_journal_pone_0157894
crossref_primary_10_1021_acs_biomac_5b00625
crossref_primary_10_1021_acsapm_1c01298
crossref_primary_10_1016_j_msec_2019_109927
crossref_primary_10_1016_j_actbio_2015_05_038
crossref_primary_10_3390_ijms22157897
crossref_primary_10_1016_j_biomaterials_2015_03_005
crossref_primary_10_1016_j_actbio_2011_09_018
crossref_primary_10_1002_adhm_202203168
crossref_primary_10_1177_20417314221144714
crossref_primary_10_1016_j_actbio_2013_12_022
crossref_primary_10_1186_s13018_021_02368_8
crossref_primary_10_3390_polym15061337
crossref_primary_10_1016_j_polymdegradstab_2015_04_030
crossref_primary_10_3390_polym8010020
crossref_primary_10_2139_ssrn_3802820
crossref_primary_10_1021_acsbiomaterials_9b00861
crossref_primary_10_1088_1748_605X_aa6eb6
crossref_primary_10_1002_ange_202210823
crossref_primary_10_1016_j_cej_2019_03_270
crossref_primary_10_1002_pat_5903
Cites_doi 10.1016/S0142-9612(02)00137-0
10.1016/S0142-9612(00)00104-6
10.1080/10731190801932116
10.1016/S0142-9612(00)00047-8
10.1163/156856206777346340
10.1016/S0141-8130(99)00043-4
10.1016/j.smim.2007.11.004
10.1016/S0142-9612(02)00563-X
10.1002/1097-4636(20010915)56:4<516::AID-JBM1123>3.0.CO;2-B
10.1002/jbm.a.30771
10.1016/j.actbio.2010.08.014
10.1002/bit.21629
10.1016/S0142-9612(98)00019-2
10.33549/physiolres.931918
10.1002/jbm.a.30067
10.1016/S1003-6326(06)60194-5
10.1163/156856206774879126
10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E
10.1002/jbm.a.30138
10.1073/pnas.0911465107
10.1177/088532829901300302
10.1021/bm9004194
10.3109/10520298309066811
10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P
10.1016/j.biomaterials.2006.03.012
10.1016/j.actbio.2010.06.018
10.1093/jmicro/52.4.429
10.1002/jbm.820180917
10.1111/j.1600-0501.2009.01864.x
10.1002/jbm.a.31863
10.1016/S1369-7021(04)00233-0
10.1016/j.biomaterials.2011.01.069
10.1016/j.biomaterials.2007.12.005
10.1016/j.biomaterials.2008.09.026
10.1016/S0142-9612(00)00105-8
10.1021/bm701201w
10.1007/s10856-007-3292-2
10.1586/erm.09.15
10.1016/S0142-9612(98)00256-7
10.1089/teb.2007.0133
10.1002/1097-4636(20011215)57:4<597::AID-JBM1207>3.0.CO;2-T
10.1177/088532829500900402
10.1163/156856202320269148
10.1016/j.biomaterials.2009.07.010
10.1016/j.biomaterials.2006.12.032
10.1016/0141-3910(94)00114-N
10.1016/j.biomaterials.2008.04.011
10.1016/j.biomaterials.2005.05.079
10.1016/j.biomaterials.2010.02.005
10.2741/1184
10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8
10.1007/s10856-009-3953-4
10.1016/S0142-9612(02)00170-9
10.1016/S0006-3495(89)82788-2
10.1016/S0142-9612(02)00269-7
ContentType Journal Article
Copyright Elsevier Ltd
2011 Elsevier Ltd
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Elsevier Ltd
– notice: 2011 Elsevier Ltd
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
7T7
8FD
C1K
FR3
P64
DOI 10.1016/j.biomaterials.2011.04.048
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 6044
ExternalDocumentID 10_1016_j_biomaterials_2011_04_048
21641638
S0142961211004704
1_s2_0_S0142961211004704
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: 337246/83459
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ADNMO
CITATION
7X8
7QO
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c466t-e50b71c2ce6d0a4ad4ba216b87929ea8d9db9306254e290752952338ddd63cc63
IEDL.DBID .~1
ISSN 0142-9612
IngestDate Fri Oct 25 04:43:21 EDT 2024
Fri Oct 25 02:01:13 EDT 2024
Fri Dec 06 04:49:25 EST 2024
Sat Sep 28 07:49:13 EDT 2024
Fri Feb 23 02:23:04 EST 2024
Tue Oct 15 22:54:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Biodegradation
Rat subcutaneous implant
Biocompatibility
Porous scaffold
Polylactic glycolic acid
Polyurethane
Language English
License Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-e50b71c2ce6d0a4ad4ba216b87929ea8d9db9306254e290752952338ddd63cc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21641638
PQID 875085482
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_883049279
proquest_miscellaneous_875085482
crossref_primary_10_1016_j_biomaterials_2011_04_048
pubmed_primary_21641638
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_04_048
elsevier_clinicalkeyesjournals_1_s2_0_S0142961211004704
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shin, Lee, Cho, Kim, Lee, Kim (bib22) 2006; 17
Zhang, Zhou, Lu, Wei, Hu (bib55) 2008; 99
von Burkersroda, Schedl, Gopferich (bib27) 2002; 23
Moore, Jabbari, Ritman, Lu, Currier, Windebank (bib30) 2004; 71
Roh, Sawh-Martinez, Brennan, Jay, Devine, Rao (bib53) 2010; 107
Holy, Dang, Davies, Shoichet (bib26) 1999; 20
Cai, Guo, Pham, LaRonde, Santerre (bib41) May 2007
Labow, Meek, Santerre (bib32) 2001; 54
Labow, Meek, Santerre (bib8) 1999; 13
McBane, Ebadi, Sharifpoor, Labow, Santerre (bib19) 2011; 7
Guelcher (bib2) 2008; 14
Santerre, Woodhouse, Laroche, Labow (bib14) 2005; 26
Chlupac, Filova, Bacakova (bib1) 2009; 58
Tangpasuthadol, Pendharkar, Peterson, Kohn (bib43) 2000; 21
Christenson, Anderson, Hiltner (bib6) 2004; 70
Tang, Labow, Santerre (bib9) 2003; 24
Tang, Labow, Santerre (bib11) 2001; 56
Lu, Wang, Marin-Muller, Wang, Lin, Yao (bib20) 2009; 9
Anderson, Rodriguez, Chang (bib4) 2008; 20
Araujo, Teran, Oliveira, Nour, Montenegro, Campos (bib35) 2003; 52
McBane, Battiston, Wadhwani, Sharifpoor, Labow, Santerre (bib18) 2011; 32
Hong, Guan, Fujimoto, Hashizume, Pelinescu, Wagner (bib46) 2010; 31
Tangpasuthadol, Pendharkar, Kohn (bib42) 2000; 21
Gretzer, Emanuelsson, Liljensten, Thomsen (bib52) 2006; 17
Schutte, Xie, Klitzman, Reichert (bib51) 2009; 30
Schutte, Parisi-Amon, Reichert (bib50) 2009; 88
Emin, Koc, Durkut, Elcin, Elcin (bib21) 2008; 36
Nation (bib34) 1983; 58
Marchant, Miller, Anderson (bib5) 1984; 18
Schwach, Vert (bib57) 1999; 25
Bertoldi, Fare, Denegri, Rossi, Haugen, Parolini (bib54) 2010; 21
Ishaug-Riley, Crane, Gurlek, Miller, Yasko, Yaszemski (bib29) 1997; 36
Ennett, Kaigler, Mooney (bib33) 2006; 79
Araujo, Mendes, Chattopadhyay, Davies (bib31) 2010; 21
Diegelmann, Evans (bib49) 2004; 9
Sharifpoor, Labow, Santerre (bib16) 2009; 10
Duguay, Labow, Santerre, McLean (bib38) 1995; 47
Jahangir, McCloskey, McClung, Labow, Brash, Santerre (bib39) 2003; 24
Pamula, Menaszek (bib56) 2008; 19
Stokes, McVenes, Anderson (bib12) 1995; 9
Pan, Jiang, Chen (bib24) 2008; 29
Christenson, Patel, Anderson, Hiltner (bib7) 2006; 27
Huang, Qi, Zhang, Liu, Yang (bib47) 2006; 16
Labow, Tang, McCloskey, Santerre (bib36) 2002; 13
Battiston, Santerre (bib40) April 2011
Sharifpoor, Simmons, Labow, Santerre (bib17) 2010; 6
McBane, Matheson, Sharifpoor, Santerre, Labow (bib3) 2009; 30
Tang, Labow, Santerre (bib10) 2001; 57
Tanzi, Mantovani, Petrini, Guidoin, Laroche (bib13) 1997; 36
Ibim, Uhrich, Bronson, El-Amin, Langer, Laurencin (bib28) 1998; 19
Yoshioka, Kawazoe, Tateishi, Chen (bib45) 2008; 29
Ma (bib44) 2004; 7
Labow, Meek, Matheson, Santerre (bib15) 2002; 23
Lu, Peter, Lyman, Lai, Leite, Tamada (bib48) 2000; 21
Saltzman, Langer (bib37) 1989; 55
Hong, Fujimoto, Hashizume, Guan, Stankus, Tobita (bib23) 2008; 9
Rowlands, Lim, Martin, Cooper-White (bib25) 2007; 28
Tang (10.1016/j.biomaterials.2011.04.048_bib10) 2001; 57
Tanzi (10.1016/j.biomaterials.2011.04.048_bib13) 1997; 36
Emin (10.1016/j.biomaterials.2011.04.048_bib21) 2008; 36
Christenson (10.1016/j.biomaterials.2011.04.048_bib7) 2006; 27
Tangpasuthadol (10.1016/j.biomaterials.2011.04.048_bib43) 2000; 21
Marchant (10.1016/j.biomaterials.2011.04.048_bib5) 1984; 18
Yoshioka (10.1016/j.biomaterials.2011.04.048_bib45) 2008; 29
Anderson (10.1016/j.biomaterials.2011.04.048_bib4) 2008; 20
Roh (10.1016/j.biomaterials.2011.04.048_bib53) 2010; 107
McBane (10.1016/j.biomaterials.2011.04.048_bib19) 2011; 7
Moore (10.1016/j.biomaterials.2011.04.048_bib30) 2004; 71
Hong (10.1016/j.biomaterials.2011.04.048_bib46) 2010; 31
Jahangir (10.1016/j.biomaterials.2011.04.048_bib39) 2003; 24
Stokes (10.1016/j.biomaterials.2011.04.048_bib12) 1995; 9
Pan (10.1016/j.biomaterials.2011.04.048_bib24) 2008; 29
Ibim (10.1016/j.biomaterials.2011.04.048_bib28) 1998; 19
Ma (10.1016/j.biomaterials.2011.04.048_bib44) 2004; 7
Diegelmann (10.1016/j.biomaterials.2011.04.048_bib49) 2004; 9
Zhang (10.1016/j.biomaterials.2011.04.048_bib55) 2008; 99
Holy (10.1016/j.biomaterials.2011.04.048_bib26) 1999; 20
Tang (10.1016/j.biomaterials.2011.04.048_bib11) 2001; 56
Lu (10.1016/j.biomaterials.2011.04.048_bib20) 2009; 9
Santerre (10.1016/j.biomaterials.2011.04.048_bib14) 2005; 26
Schutte (10.1016/j.biomaterials.2011.04.048_bib51) 2009; 30
Ishaug-Riley (10.1016/j.biomaterials.2011.04.048_bib29) 1997; 36
Araujo (10.1016/j.biomaterials.2011.04.048_bib35) 2003; 52
McBane (10.1016/j.biomaterials.2011.04.048_bib18) 2011; 32
Schutte (10.1016/j.biomaterials.2011.04.048_bib50) 2009; 88
McBane (10.1016/j.biomaterials.2011.04.048_bib3) 2009; 30
Schwach (10.1016/j.biomaterials.2011.04.048_bib57) 1999; 25
Rowlands (10.1016/j.biomaterials.2011.04.048_bib25) 2007; 28
Pamula (10.1016/j.biomaterials.2011.04.048_bib56) 2008; 19
Shin (10.1016/j.biomaterials.2011.04.048_bib22) 2006; 17
Battiston (10.1016/j.biomaterials.2011.04.048_bib40) 2011
Labow (10.1016/j.biomaterials.2011.04.048_bib36) 2002; 13
Huang (10.1016/j.biomaterials.2011.04.048_bib47) 2006; 16
Nation (10.1016/j.biomaterials.2011.04.048_bib34) 1983; 58
von Burkersroda (10.1016/j.biomaterials.2011.04.048_bib27) 2002; 23
Tangpasuthadol (10.1016/j.biomaterials.2011.04.048_bib42) 2000; 21
Bertoldi (10.1016/j.biomaterials.2011.04.048_bib54) 2010; 21
Labow (10.1016/j.biomaterials.2011.04.048_bib8) 1999; 13
Guelcher (10.1016/j.biomaterials.2011.04.048_bib2) 2008; 14
Labow (10.1016/j.biomaterials.2011.04.048_bib15) 2002; 23
Saltzman (10.1016/j.biomaterials.2011.04.048_bib37) 1989; 55
Hong (10.1016/j.biomaterials.2011.04.048_bib23) 2008; 9
Chlupac (10.1016/j.biomaterials.2011.04.048_bib1) 2009; 58
Cai (10.1016/j.biomaterials.2011.04.048_bib41) 2007
Gretzer (10.1016/j.biomaterials.2011.04.048_bib52) 2006; 17
Lu (10.1016/j.biomaterials.2011.04.048_bib48) 2000; 21
Araujo (10.1016/j.biomaterials.2011.04.048_bib31) 2010; 21
Labow (10.1016/j.biomaterials.2011.04.048_bib32) 2001; 54
Ennett (10.1016/j.biomaterials.2011.04.048_bib33) 2006; 79
Sharifpoor (10.1016/j.biomaterials.2011.04.048_bib17) 2010; 6
Duguay (10.1016/j.biomaterials.2011.04.048_bib38) 1995; 47
Tang (10.1016/j.biomaterials.2011.04.048_bib9) 2003; 24
Sharifpoor (10.1016/j.biomaterials.2011.04.048_bib16) 2009; 10
Christenson (10.1016/j.biomaterials.2011.04.048_bib6) 2004; 70
References_xml – volume: 9
  start-page: 283
  year: 2004
  end-page: 289
  ident: bib49
  article-title: Wound healing: an overview of acute, fibrotic and delayed healing
  publication-title: Front Biosci
  contributor:
    fullname: Evans
– volume: 36
  start-page: 123
  year: 2008
  end-page: 137
  ident: bib21
  article-title: Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture
  publication-title: Artif Cells Blood Substit Immobil Biotechnol
  contributor:
    fullname: Elcin
– volume: 13
  start-page: 187
  year: 1999
  end-page: 205
  ident: bib8
  article-title: Synthesis of cholesterol esterase by monocyte-derived macrophages: a potential role in the biodegradation of poly(urethane)s
  publication-title: J Biomater Appl
  contributor:
    fullname: Santerre
– volume: 52
  start-page: 429
  year: 2003
  end-page: 433
  ident: bib35
  article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge
  publication-title: J Electron Microsc (Tokyo)
  contributor:
    fullname: Campos
– volume: 29
  start-page: 3438
  year: 2008
  end-page: 3443
  ident: bib45
  article-title: In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
  publication-title: Biomaterials
  contributor:
    fullname: Chen
– volume: 10
  start-page: 2729
  year: 2009
  end-page: 2739
  ident: bib16
  article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications
  publication-title: Biomacromolecules
  contributor:
    fullname: Santerre
– volume: 57
  start-page: 597
  year: 2001
  end-page: 611
  ident: bib10
  article-title: Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Santerre
– volume: 9
  start-page: 321
  year: 1995
  end-page: 354
  ident: bib12
  article-title: Polyurethane elastomer biostability
  publication-title: J Biomater Appl
  contributor:
    fullname: Anderson
– volume: 56
  start-page: 516
  year: 2001
  end-page: 528
  ident: bib11
  article-title: Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Santerre
– volume: 25
  start-page: 283
  year: 1999
  end-page: 291
  ident: bib57
  article-title: In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction
  publication-title: Int J Biol Macromol
  contributor:
    fullname: Vert
– volume: 32
  start-page: 3584
  year: 2011
  end-page: 3595
  ident: bib18
  article-title: The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells
  publication-title: Biomaterials
  contributor:
    fullname: Santerre
– year: April 2011
  ident: bib40
  article-title: Proteomic analysis of protein adsorption onto a degradable-polar/hydrophobic/ionic polyurethane
  contributor:
    fullname: Santerre
– volume: 9
  start-page: 1200
  year: 2008
  end-page: 1207
  ident: bib23
  article-title: Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning
  publication-title: Biomacromolecules
  contributor:
    fullname: Tobita
– volume: 24
  start-page: 2003
  year: 2003
  end-page: 2011
  ident: bib9
  article-title: Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase
  publication-title: Biomaterials
  contributor:
    fullname: Santerre
– volume: 58
  start-page: 347
  year: 1983
  end-page: 351
  ident: bib34
  article-title: A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy
  publication-title: Stain Technol
  contributor:
    fullname: Nation
– volume: 21
  start-page: 2371
  year: 2000
  end-page: 2378
  ident: bib42
  article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds
  publication-title: Biomaterials
  contributor:
    fullname: Kohn
– volume: 31
  start-page: 4249
  year: 2010
  end-page: 4258
  ident: bib46
  article-title: Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds
  publication-title: Biomaterials
  contributor:
    fullname: Wagner
– volume: 20
  start-page: 1177
  year: 1999
  end-page: 1185
  ident: bib26
  article-title: In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam
  publication-title: Biomaterials
  contributor:
    fullname: Shoichet
– volume: 47
  start-page: 229
  year: 1995
  end-page: 249
  ident: bib38
  article-title: Development of a mathematical model describing the enzymatic degradation of biomedical polyurethanes. 1. Background, rationale and model formulation
  publication-title: Polym Degrad Stab
  contributor:
    fullname: McLean
– volume: 7
  start-page: 115
  year: 2011
  end-page: 122
  ident: bib19
  article-title: Differentiation of monocytes on a degradable, polar-hydrophobic-ionic polyurethane: 2-dimensional films versus 3-dimensional scaffolds
  publication-title: Acta Biomater
  contributor:
    fullname: Santerre
– volume: 20
  start-page: 86
  year: 2008
  end-page: 100
  ident: bib4
  article-title: Foreign body reaction to biomaterials
  publication-title: Semin Immunol
  contributor:
    fullname: Chang
– volume: 23
  start-page: 4221
  year: 2002
  end-page: 4231
  ident: bib27
  article-title: Why degradable polymers undergo surface erosion or bulk erosion
  publication-title: Biomaterials
  contributor:
    fullname: Gopferich
– volume: 79
  start-page: 176
  year: 2006
  end-page: 184
  ident: bib33
  article-title: Temporally regulated delivery of VEGF in vitro and in vivo
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Mooney
– volume: 7
  start-page: 30
  year: 2004
  end-page: 40
  ident: bib44
  article-title: Scaffolds for tissue fabrication
  publication-title: Mater Today
  contributor:
    fullname: Ma
– volume: 27
  start-page: 3920
  year: 2006
  end-page: 3926
  ident: bib7
  article-title: Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase
  publication-title: Biomaterials
  contributor:
    fullname: Hiltner
– volume: 28
  start-page: 2109
  year: 2007
  end-page: 2121
  ident: bib25
  article-title: Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation
  publication-title: Biomaterials
  contributor:
    fullname: Cooper-White
– volume: 16
  start-page: s293
  year: 2006
  end-page: s297
  ident: bib47
  article-title: Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment
  publication-title: Trans Nonferrous Met Soc China
  contributor:
    fullname: Yang
– volume: 21
  start-page: 2379
  year: 2000
  end-page: 2387
  ident: bib43
  article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices
  publication-title: Biomaterials
  contributor:
    fullname: Kohn
– year: May 2007
  ident: bib41
  article-title: Ciprofloxacin release profile study: the effect of diisocyanate structure
  contributor:
    fullname: Santerre
– volume: 24
  start-page: 121
  year: 2003
  end-page: 130
  ident: bib39
  article-title: The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase
  publication-title: Biomaterials
  contributor:
    fullname: Santerre
– volume: 88
  start-page: 128
  year: 2009
  end-page: 139
  ident: bib50
  article-title: Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Reichert
– volume: 23
  start-page: 3969
  year: 2002
  end-page: 3975
  ident: bib15
  article-title: Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities
  publication-title: Biomaterials
  contributor:
    fullname: Santerre
– volume: 36
  start-page: 1
  year: 1997
  end-page: 8
  ident: bib29
  article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Yaszemski
– volume: 21
  start-page: 632
  year: 2010
  end-page: 641
  ident: bib31
  article-title: Low-temperature particulate calcium phosphates for bone regeneration
  publication-title: Clin Oral Implants Res
  contributor:
    fullname: Davies
– volume: 30
  start-page: 160
  year: 2009
  end-page: 168
  ident: bib51
  article-title: In vivo cytokine-associated responses to biomaterials
  publication-title: Biomaterials
  contributor:
    fullname: Reichert
– volume: 13
  start-page: 651
  year: 2002
  end-page: 665
  ident: bib36
  article-title: The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s
  publication-title: J Biomater Sci Polym Ed
  contributor:
    fullname: Santerre
– volume: 29
  start-page: 1583
  year: 2008
  end-page: 1592
  ident: bib24
  article-title: The biodegradability of electrospun Dextran/PLGA scaffold in a fibroblast/macrophage co-culture
  publication-title: Biomaterials
  contributor:
    fullname: Chen
– volume: 18
  start-page: 1169
  year: 1984
  end-page: 1190
  ident: bib5
  article-title: In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Anderson
– volume: 36
  start-page: 550
  year: 1997
  end-page: 559
  ident: bib13
  article-title: Chemical stability of polyether urethanes versus polycarbonate urethanes
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Laroche
– volume: 99
  start-page: 1007
  year: 2008
  end-page: 1015
  ident: bib55
  article-title: A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Hu
– volume: 71
  start-page: 258
  year: 2004
  end-page: 267
  ident: bib30
  article-title: Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Windebank
– volume: 70
  start-page: 245
  year: 2004
  end-page: 255
  ident: bib6
  article-title: Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Hiltner
– volume: 30
  start-page: 5497
  year: 2009
  end-page: 5504
  ident: bib3
  article-title: Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage
  publication-title: Biomaterials
  contributor:
    fullname: Labow
– volume: 58
  start-page: S119
  year: 2009
  end-page: S139
  ident: bib1
  article-title: Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery
  publication-title: Physiol Res
  contributor:
    fullname: Bacakova
– volume: 107
  start-page: 4669
  year: 2010
  end-page: 4674
  ident: bib53
  article-title: Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Rao
– volume: 6
  start-page: 4218
  year: 2010
  end-page: 4228
  ident: bib17
  article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity
  publication-title: Acta Biomater
  contributor:
    fullname: Santerre
– volume: 17
  start-page: 669
  year: 2006
  end-page: 687
  ident: bib52
  article-title: The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials
  publication-title: J Biomater Sci Polym Ed
  contributor:
    fullname: Thomsen
– volume: 21
  start-page: 1837
  year: 2000
  end-page: 1845
  ident: bib48
  article-title: In vitro and in vivo degradation of porous poly(
  publication-title: Biomaterials
  contributor:
    fullname: Tamada
– volume: 19
  start-page: 941
  year: 1998
  end-page: 951
  ident: bib28
  article-title: Poly(anhydride-co-imides): in vivo biocompatibility in a rat model
  publication-title: Biomaterials
  contributor:
    fullname: Laurencin
– volume: 14
  start-page: 3
  year: 2008
  end-page: 17
  ident: bib2
  article-title: Biodegradable polyurethanes: synthesis and applications in regenerative medicine
  publication-title: Tissue Eng Part B Rev
  contributor:
    fullname: Guelcher
– volume: 55
  start-page: 163
  year: 1989
  end-page: 171
  ident: bib37
  article-title: Transport rates of proteins in porous materials with known microgeometry
  publication-title: Biophys J
  contributor:
    fullname: Langer
– volume: 21
  start-page: 1005
  year: 2010
  end-page: 1011
  ident: bib54
  article-title: Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results
  publication-title: J Mater Sci Mater Med
  contributor:
    fullname: Parolini
– volume: 54
  start-page: 189
  year: 2001
  end-page: 197
  ident: bib32
  article-title: Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Santerre
– volume: 17
  start-page: 103
  year: 2006
  end-page: 119
  ident: bib22
  article-title: Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro
  publication-title: J Biomater Sci Polym Ed
  contributor:
    fullname: Kim
– volume: 26
  start-page: 7457
  year: 2005
  end-page: 7470
  ident: bib14
  article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials
  publication-title: Biomaterials
  contributor:
    fullname: Labow
– volume: 9
  start-page: 325
  year: 2009
  end-page: 341
  ident: bib20
  article-title: Current advances in research and clinical applications of PLGA-based nanotechnology
  publication-title: Expert Rev Mol Diagn
  contributor:
    fullname: Yao
– volume: 19
  start-page: 2063
  year: 2008
  end-page: 2070
  ident: bib56
  article-title: In vitro and in vivo degradation of poly(
  publication-title: J Mater Sci Mater Med
  contributor:
    fullname: Menaszek
– volume: 23
  start-page: 3969
  issue: 19
  year: 2002
  ident: 10.1016/j.biomaterials.2011.04.048_bib15
  article-title: Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00137-0
  contributor:
    fullname: Labow
– volume: 21
  start-page: 2371
  issue: 23
  year: 2000
  ident: 10.1016/j.biomaterials.2011.04.048_bib42
  article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00104-6
  contributor:
    fullname: Tangpasuthadol
– volume: 36
  start-page: 123
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib21
  article-title: Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture
  publication-title: Artif Cells Blood Substit Immobil Biotechnol
  doi: 10.1080/10731190801932116
  contributor:
    fullname: Emin
– volume: 21
  start-page: 1837
  issue: 18
  year: 2000
  ident: 10.1016/j.biomaterials.2011.04.048_bib48
  article-title: In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00047-8
  contributor:
    fullname: Lu
– volume: 17
  start-page: 669
  issue: 6
  year: 2006
  ident: 10.1016/j.biomaterials.2011.04.048_bib52
  article-title: The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856206777346340
  contributor:
    fullname: Gretzer
– volume: 25
  start-page: 283
  year: 1999
  ident: 10.1016/j.biomaterials.2011.04.048_bib57
  article-title: In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction
  publication-title: Int J Biol Macromol
  doi: 10.1016/S0141-8130(99)00043-4
  contributor:
    fullname: Schwach
– volume: 20
  start-page: 86
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib4
  article-title: Foreign body reaction to biomaterials
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2007.11.004
  contributor:
    fullname: Anderson
– volume: 24
  start-page: 2003
  issue: 12
  year: 2003
  ident: 10.1016/j.biomaterials.2011.04.048_bib9
  article-title: Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00563-X
  contributor:
    fullname: Tang
– volume: 56
  start-page: 516
  issue: 4
  year: 2001
  ident: 10.1016/j.biomaterials.2011.04.048_bib11
  article-title: Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(20010915)56:4<516::AID-JBM1123>3.0.CO;2-B
  contributor:
    fullname: Tang
– volume: 79
  start-page: 176
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2011.04.048_bib33
  article-title: Temporally regulated delivery of VEGF in vitro and in vivo
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30771
  contributor:
    fullname: Ennett
– volume: 7
  start-page: 115
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2011.04.048_bib19
  article-title: Differentiation of monocytes on a degradable, polar-hydrophobic-ionic polyurethane: 2-dimensional films versus 3-dimensional scaffolds
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.08.014
  contributor:
    fullname: McBane
– year: 2011
  ident: 10.1016/j.biomaterials.2011.04.048_bib40
  contributor:
    fullname: Battiston
– volume: 99
  start-page: 1007
  issue: 4
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib55
  article-title: A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21629
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 941
  issue: 10
  year: 1998
  ident: 10.1016/j.biomaterials.2011.04.048_bib28
  article-title: Poly(anhydride-co-imides): in vivo biocompatibility in a rat model
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00019-2
  contributor:
    fullname: Ibim
– volume: 58
  start-page: S119
  issue: Suppl. 2
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib1
  article-title: Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery
  publication-title: Physiol Res
  doi: 10.33549/physiolres.931918
  contributor:
    fullname: Chlupac
– volume: 70
  start-page: 245
  issue: 2
  year: 2004
  ident: 10.1016/j.biomaterials.2011.04.048_bib6
  article-title: Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30067
  contributor:
    fullname: Christenson
– volume: 16
  start-page: s293
  year: 2006
  ident: 10.1016/j.biomaterials.2011.04.048_bib47
  article-title: Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(06)60194-5
  contributor:
    fullname: Huang
– volume: 17
  start-page: 103
  issue: 1–2
  year: 2006
  ident: 10.1016/j.biomaterials.2011.04.048_bib22
  article-title: Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856206774879126
  contributor:
    fullname: Shin
– year: 2007
  ident: 10.1016/j.biomaterials.2011.04.048_bib41
  contributor:
    fullname: Cai
– volume: 36
  start-page: 550
  issue: 4
  year: 1997
  ident: 10.1016/j.biomaterials.2011.04.048_bib13
  article-title: Chemical stability of polyether urethanes versus polycarbonate urethanes
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E
  contributor:
    fullname: Tanzi
– volume: 71
  start-page: 258
  issue: 2
  year: 2004
  ident: 10.1016/j.biomaterials.2011.04.048_bib30
  article-title: Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30138
  contributor:
    fullname: Moore
– volume: 107
  start-page: 4669
  issue: 10
  year: 2010
  ident: 10.1016/j.biomaterials.2011.04.048_bib53
  article-title: Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0911465107
  contributor:
    fullname: Roh
– volume: 13
  start-page: 187
  issue: 3
  year: 1999
  ident: 10.1016/j.biomaterials.2011.04.048_bib8
  article-title: Synthesis of cholesterol esterase by monocyte-derived macrophages: a potential role in the biodegradation of poly(urethane)s
  publication-title: J Biomater Appl
  doi: 10.1177/088532829901300302
  contributor:
    fullname: Labow
– volume: 10
  start-page: 2729
  issue: 10
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib16
  article-title: Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/bm9004194
  contributor:
    fullname: Sharifpoor
– volume: 58
  start-page: 347
  issue: 6
  year: 1983
  ident: 10.1016/j.biomaterials.2011.04.048_bib34
  article-title: A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy
  publication-title: Stain Technol
  doi: 10.3109/10520298309066811
  contributor:
    fullname: Nation
– volume: 36
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2011.04.048_bib29
  article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(dl-lactic-co-glycolic acid) foams implanted into the rat mesentery
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P
  contributor:
    fullname: Ishaug-Riley
– volume: 27
  start-page: 3920
  issue: 21
  year: 2006
  ident: 10.1016/j.biomaterials.2011.04.048_bib7
  article-title: Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.03.012
  contributor:
    fullname: Christenson
– volume: 6
  start-page: 4218
  issue: 11
  year: 2010
  ident: 10.1016/j.biomaterials.2011.04.048_bib17
  article-title: A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.06.018
  contributor:
    fullname: Sharifpoor
– volume: 52
  start-page: 429
  issue: 4
  year: 2003
  ident: 10.1016/j.biomaterials.2011.04.048_bib35
  article-title: Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge
  publication-title: J Electron Microsc (Tokyo)
  doi: 10.1093/jmicro/52.4.429
  contributor:
    fullname: Araujo
– volume: 18
  start-page: 1169
  issue: 9
  year: 1984
  ident: 10.1016/j.biomaterials.2011.04.048_bib5
  article-title: In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.820180917
  contributor:
    fullname: Marchant
– volume: 21
  start-page: 632
  issue: 6
  year: 2010
  ident: 10.1016/j.biomaterials.2011.04.048_bib31
  article-title: Low-temperature particulate calcium phosphates for bone regeneration
  publication-title: Clin Oral Implants Res
  doi: 10.1111/j.1600-0501.2009.01864.x
  contributor:
    fullname: Araujo
– volume: 88
  start-page: 128
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib50
  article-title: Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31863
  contributor:
    fullname: Schutte
– volume: 7
  start-page: 30
  issue: 5
  year: 2004
  ident: 10.1016/j.biomaterials.2011.04.048_bib44
  article-title: Scaffolds for tissue fabrication
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(04)00233-0
  contributor:
    fullname: Ma
– volume: 32
  start-page: 3584
  year: 2011
  ident: 10.1016/j.biomaterials.2011.04.048_bib18
  article-title: The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.069
  contributor:
    fullname: McBane
– volume: 29
  start-page: 1583
  issue: 11
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib24
  article-title: The biodegradability of electrospun Dextran/PLGA scaffold in a fibroblast/macrophage co-culture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.005
  contributor:
    fullname: Pan
– volume: 30
  start-page: 160
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib51
  article-title: In vivo cytokine-associated responses to biomaterials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.026
  contributor:
    fullname: Schutte
– volume: 21
  start-page: 2379
  issue: 23
  year: 2000
  ident: 10.1016/j.biomaterials.2011.04.048_bib43
  article-title: Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00105-8
  contributor:
    fullname: Tangpasuthadol
– volume: 9
  start-page: 1200
  issue: 4
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib23
  article-title: Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning
  publication-title: Biomacromolecules
  doi: 10.1021/bm701201w
  contributor:
    fullname: Hong
– volume: 19
  start-page: 2063
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib56
  article-title: In vitro and in vivo degradation of poly(l-lactide-co-glycolide) films and scaffolds
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-007-3292-2
  contributor:
    fullname: Pamula
– volume: 9
  start-page: 325
  issue: 4
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib20
  article-title: Current advances in research and clinical applications of PLGA-based nanotechnology
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/erm.09.15
  contributor:
    fullname: Lu
– volume: 20
  start-page: 1177
  issue: 13
  year: 1999
  ident: 10.1016/j.biomaterials.2011.04.048_bib26
  article-title: In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00256-7
  contributor:
    fullname: Holy
– volume: 14
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib2
  article-title: Biodegradable polyurethanes: synthesis and applications in regenerative medicine
  publication-title: Tissue Eng Part B Rev
  doi: 10.1089/teb.2007.0133
  contributor:
    fullname: Guelcher
– volume: 57
  start-page: 597
  issue: 4
  year: 2001
  ident: 10.1016/j.biomaterials.2011.04.048_bib10
  article-title: Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(20011215)57:4<597::AID-JBM1207>3.0.CO;2-T
  contributor:
    fullname: Tang
– volume: 9
  start-page: 321
  issue: 4
  year: 1995
  ident: 10.1016/j.biomaterials.2011.04.048_bib12
  article-title: Polyurethane elastomer biostability
  publication-title: J Biomater Appl
  doi: 10.1177/088532829500900402
  contributor:
    fullname: Stokes
– volume: 13
  start-page: 651
  issue: 6
  year: 2002
  ident: 10.1016/j.biomaterials.2011.04.048_bib36
  article-title: The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856202320269148
  contributor:
    fullname: Labow
– volume: 30
  start-page: 5497
  issue: 29
  year: 2009
  ident: 10.1016/j.biomaterials.2011.04.048_bib3
  article-title: Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.010
  contributor:
    fullname: McBane
– volume: 28
  start-page: 2109
  issue: 12
  year: 2007
  ident: 10.1016/j.biomaterials.2011.04.048_bib25
  article-title: Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.12.032
  contributor:
    fullname: Rowlands
– volume: 47
  start-page: 229
  issue: 2
  year: 1995
  ident: 10.1016/j.biomaterials.2011.04.048_bib38
  article-title: Development of a mathematical model describing the enzymatic degradation of biomedical polyurethanes. 1. Background, rationale and model formulation
  publication-title: Polym Degrad Stab
  doi: 10.1016/0141-3910(94)00114-N
  contributor:
    fullname: Duguay
– volume: 29
  start-page: 3438
  issue: 24–25
  year: 2008
  ident: 10.1016/j.biomaterials.2011.04.048_bib45
  article-title: In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.04.011
  contributor:
    fullname: Yoshioka
– volume: 26
  start-page: 7457
  issue: 35
  year: 2005
  ident: 10.1016/j.biomaterials.2011.04.048_bib14
  article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.079
  contributor:
    fullname: Santerre
– volume: 31
  start-page: 4249
  issue: 15
  year: 2010
  ident: 10.1016/j.biomaterials.2011.04.048_bib46
  article-title: Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.005
  contributor:
    fullname: Hong
– volume: 9
  start-page: 283
  year: 2004
  ident: 10.1016/j.biomaterials.2011.04.048_bib49
  article-title: Wound healing: an overview of acute, fibrotic and delayed healing
  publication-title: Front Biosci
  doi: 10.2741/1184
  contributor:
    fullname: Diegelmann
– volume: 54
  start-page: 189
  issue: 2
  year: 2001
  ident: 10.1016/j.biomaterials.2011.04.048_bib32
  article-title: Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(200102)54:2<189::AID-JBM5>3.0.CO;2-8
  contributor:
    fullname: Labow
– volume: 21
  start-page: 1005
  year: 2010
  ident: 10.1016/j.biomaterials.2011.04.048_bib54
  article-title: Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-009-3953-4
  contributor:
    fullname: Bertoldi
– volume: 23
  start-page: 4221
  issue: 21
  year: 2002
  ident: 10.1016/j.biomaterials.2011.04.048_bib27
  article-title: Why degradable polymers undergo surface erosion or bulk erosion
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00170-9
  contributor:
    fullname: von Burkersroda
– volume: 55
  start-page: 163
  issue: 1
  year: 1989
  ident: 10.1016/j.biomaterials.2011.04.048_bib37
  article-title: Transport rates of proteins in porous materials with known microgeometry
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(89)82788-2
  contributor:
    fullname: Saltzman
– volume: 24
  start-page: 121
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2011.04.048_bib39
  article-title: The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00269-7
  contributor:
    fullname: Jahangir
SSID ssj0014042
Score 2.4466498
Snippet Abstract A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to...
A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate...
A degradable, polar/hydrophobic/ionic polyurethane (D-PHI) scaffold was optimized in in vitro studies to yield mechanical properties appropriate to replicate...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 6034
SubjectTerms Advanced Basic Science
Animals
Biocompatibility
Biocompatible Materials - adverse effects
Biocompatible Materials - metabolism
Biodegradation
Dentistry
Male
Microscopy, Electron, Scanning
Polylactic glycolic acid
Polyurethane
Polyurethanes - adverse effects
Polyurethanes - metabolism
Porosity
Porous scaffold
Rat subcutaneous implant
Rats
Rats, Wistar
Tissue Engineering - methods
Title Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211004704
https://dx.doi.org/10.1016/j.biomaterials.2011.04.048
https://www.ncbi.nlm.nih.gov/pubmed/21641638
https://search.proquest.com/docview/875085482
https://search.proquest.com/docview/883049279
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIiE4ICh_y0_lA0dCEsdxnAOHUlEtoPZEpd4sx3bUoCpZ7WYr7YUjz8Gz8GTM2M6yCBUhIeVkOcrEMx7PeD5_JuRVVrSyzSsw3rKFBIWVNtGl1kldNKIyWWuYJ9M5PRPzc_7xorzYI8fTWRiEVUbfH3y699axJY2jmS66LkVYEquRAAtJzyrPCcrLDG8xePN1C_NA9hgWYIwswd4T8ajHeOERdz0GVUc6Tw6PvGmRuikI9YvRyX1yL0aR9CgI-oDsuf6A3N3hFjwgt09j1fwh-fauGyySQoT7k6juLe36H9-vu-uBgnAehz4GmOyGDi3VNHZvrtxrusDsN73c2OWwuByazqS4h2uwfbNeOtx7dxRiXzp6JVL3Swy6Wx9_RM5P3n8-nifx_oXEcCHGxJVZU-WGGSdsprm2vNEsF42sIKZyWtraNjWkHJBjOgZJNtYMGaS81lpRGCOKx2S_H3r3lNBWSlvmTjMuGC9sWcuCNxC5CVsYvGliRoppwNUi0GyoCX_2Re2qSaGaVMbhkTNSTbpR00FScH1uFefhSuVqxVSm_rCVGXm7ffM3c1OwkvzTl-lkCgrmIxZZYKyH9UpB_gdRLJfsL10k1jZZVc_Ik2BF23-G4fUR8rP_lO85uRM2vxEM94Lsj8u1ewnR09gc-ulxSG4dffg0P_sJOdEdhw
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIvFxQFCgXT594EhI4jiOc-gBKqoFuj21Um-WYztqEEpWu9lKe-HI7-C38Ms6EzvLIlSEhJST5SiOZ2y_8Tw_E_I6yWpZpwU4b15DgMJyG-lc66jMKlGYpDZsENOZnYrpOf90kV_skKPxLAzSKsPc7-f0YbYOJXHozXjeNDHSkliJAlgoelagJugtngP6Bad--23D80D5GOZ5jCzC6qPy6EDywjPuuve2DnqeHB550yp1EwodVqPjB-R-gJH0nW_pQ7Lj2j1yb0tccI_cnoW0-SPy_X3TWVSF8BcoUd1a2rQ_f1w1Vx2Fxg1E9N7zZNe0q6mmoXr11b2hcwx_48u1XXTzy65qTIybuAbL16uFw813RwH80n6wInW_mkG3E-SPyfnxh7OjaRQuYIgMF6KPXJ5URWqYccImmmvLK81SUckCQJXT0pa2KiHmgCDTMYiyMWnIIOa11orMGJE9Ibtt17oDQmspbZ46zbhgPLN5KTNeAXQTNjN41cSEZGOHq7nX2VAjAe2L2jaTQjOphMMjJ6QYbaPGk6Qw97llGIhLlaolU4n6w1km5HDz5m_-pmAp-acv09EVFAxIzLJAX3erpYIAEGAsl-wvVSQmN1lRTsi-96LNP0P3DhD56X-27xW5Mz2bnaiTj6efn5G7ficcmXHPyW6_WLkXAKX66uUwVK4BuOgfJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+and+in%C2%A0vivo+biocompatibility+of+a+degradable%2C+polar%2Fhydrophobic%2Fionic+polyurethane+for+tissue+engineering+applications&rft.jtitle=Biomaterials&rft.au=McBane%2C+Joanne+E.&rft.au=Sharifpoor%2C+Soroor&rft.au=Cai%2C+Kuihua&rft.au=Labow%2C+Rosalind+S.&rft.date=2011-09-01&rft.issn=0142-9612&rft.volume=32&rft.issue=26&rft.spage=6034&rft.epage=6044&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.04.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2011_04_048
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00200%2Fcov150h.gif