Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1
Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight g...
Saved in:
Published in | Cell metabolism Vol. 27; no. 4; pp. 740 - 756 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.
Glucagon-like peptide-1 (GLP-1) has emerged as a gut-derived peptide with pleiotropic actions and has demonstrated therapeutic efficacy for cardiometabolic disorders, principally diabetes and obesity. Herein, Drucker provides an updated perspective on the physiological importance, mechanisms, and pathways underlying the efficacy and safety of native GLP-1 and GLP-1R agonists. |
---|---|
AbstractList | Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease. Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease. Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease. Glucagon-like peptide-1 (GLP-1) has emerged as a gut-derived peptide with pleiotropic actions and has demonstrated therapeutic efficacy for cardiometabolic disorders, principally diabetes and obesity. Herein, Drucker provides an updated perspective on the physiological importance, mechanisms, and pathways underlying the efficacy and safety of native GLP-1 and GLP-1R agonists. |
Author | Drucker, Daniel J. |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Drucker fullname: Drucker, Daniel J. email: drucker@lunenfeld.ca organization: Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Mailbox 39, Toronto, ON M5G 1X5, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29617641$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtO3TAQQC1EVV79gS5Qlt0k9diJ40hsrlBLEVTtAtaWM56AL3nVdir175vLpSy6YDUjzTmzOCfscJxGYuwj8AI4qM_bAgdKheCgCy4LzuGAHUMjRV6Xgh-ue1XxvAQJR-wkxi3nUslGvmdHolFQqxKO2c13wkc7-jjEbOqyDSY_jZkdXXb3SMHOtCSP2Waee4_2-bZSV_2C9mEa894_UfaT5uQd5XDG3nW2j_ThZZ6y-69f7i6_5bc_rq4vN7c5lkql3LlKVK5B12ptUei2da0C29a11mVpSWpA4lXLQXZgVd2i5F2nbeMqKhuB8pR92v-dw_RroZjM4CNS39uRpiUawYUAybWSK3r-gi7tQM7MwQ82_DH_AqyA2AMYphgDda8IcLOrbLZmV9nsKhsuzVp5lfR_Evr0XCcF6_u31Yu9Smug356CiehpRHI-ECbjJv-W_hceTZd2 |
CitedBy_id | crossref_primary_10_3389_fendo_2020_577650 crossref_primary_10_1177_00048674221106678 crossref_primary_10_1016_j_jcmgh_2019_04_007 crossref_primary_10_1016_j_lfs_2024_122801 crossref_primary_10_1038_s41467_019_08793_y crossref_primary_10_1111_apt_16794 crossref_primary_10_1038_s41467_022_35716_1 crossref_primary_10_1016_j_mce_2021_111455 crossref_primary_10_1111_cns_13791 crossref_primary_10_21518_2079_701X_2021_7_18_30 crossref_primary_10_3389_fendo_2023_1137604 crossref_primary_10_1210_endrev_bnaa004 crossref_primary_10_1007_s44162_024_00065_8 crossref_primary_10_29328_journal_jccm_1001173 crossref_primary_10_1111_dom_16191 crossref_primary_10_1021_acsptsci_1c00167 crossref_primary_10_1111_dom_13911 crossref_primary_10_3390_metabo11110712 crossref_primary_10_3389_fnins_2022_824054 crossref_primary_10_1073_pnas_1904943116 crossref_primary_10_1021_acs_jmedchem_4c01177 crossref_primary_10_1038_s41598_024_68227_8 crossref_primary_10_1007_s00595_021_02317_2 crossref_primary_10_1080_13697137_2025_2455177 crossref_primary_10_1016_j_isci_2021_103382 crossref_primary_10_3389_fnut_2021_688540 crossref_primary_10_1016_j_bcp_2021_114656 crossref_primary_10_7759_cureus_49053 crossref_primary_10_1016_j_diabres_2021_108800 crossref_primary_10_3389_fendo_2024_1309118 crossref_primary_10_7759_cureus_72080 crossref_primary_10_1016_j_molmet_2024_101918 crossref_primary_10_15212_AMM_2023_0041 crossref_primary_10_1186_s12958_024_01202_0 crossref_primary_10_1515_mr_2024_0007 crossref_primary_10_3389_fendo_2023_1081500 crossref_primary_10_1186_s10194_023_01631_z crossref_primary_10_1289_EHP13855 crossref_primary_10_1016_j_cmet_2023_12_022 crossref_primary_10_3390_ijms23031272 crossref_primary_10_1530_EJE_21_1187 crossref_primary_10_3389_fimmu_2022_997578 crossref_primary_10_1016_j_cmet_2020_05_001 crossref_primary_10_21615_cesmedicina_34_COVID_19_13 crossref_primary_10_3390_ijms252212464 crossref_primary_10_1007_s00508_023_02270_9 crossref_primary_10_1080_02770903_2024_2372600 crossref_primary_10_2147_DDDT_S484531 crossref_primary_10_3389_fnins_2020_00785 crossref_primary_10_3390_microorganisms13010067 crossref_primary_10_1210_clinem_dgab722 crossref_primary_10_1007_s00059_020_04946_8 crossref_primary_10_1124_pharmrev_120_000160 crossref_primary_10_1016_j_jphs_2020_11_005 crossref_primary_10_1016_j_physbeh_2019_03_026 crossref_primary_10_1556_650_2024_33177 crossref_primary_10_3389_fmed_2025_1509884 crossref_primary_10_7759_cureus_43773 crossref_primary_10_1210_endrev_bnaa011 crossref_primary_10_1016_j_celrep_2022_111008 crossref_primary_10_1016_j_jdiacomp_2020_107723 crossref_primary_10_1038_s41598_021_87539_7 crossref_primary_10_3389_fpubh_2022_996179 crossref_primary_10_1002_jcla_24604 crossref_primary_10_1016_j_peptides_2020_170342 crossref_primary_10_1002_oby_24190 crossref_primary_10_1016_j_cmet_2023_11_009 crossref_primary_10_2147_JEP_S458705 crossref_primary_10_1016_j_oto_2024_101128 crossref_primary_10_2147_TCRM_S328056 crossref_primary_10_1016_j_smrv_2021_101473 crossref_primary_10_1016_j_tem_2024_07_012 crossref_primary_10_1038_s41467_022_34270_0 crossref_primary_10_1111_apt_17848 crossref_primary_10_3390_jcdd8110143 crossref_primary_10_6065_apem_2244196_098 crossref_primary_10_1186_s12933_023_01765_z crossref_primary_10_1007_s40124_024_00326_6 crossref_primary_10_3389_fendo_2021_721135 crossref_primary_10_1007_s11357_024_01116_0 crossref_primary_10_1016_j_phrs_2023_106860 crossref_primary_10_1016_j_nucmedbio_2021_10_001 crossref_primary_10_1007_s40265_020_01393_x crossref_primary_10_1039_D2CS00395C crossref_primary_10_1016_j_ejphar_2023_176104 crossref_primary_10_1016_j_jdiacomp_2022_108390 crossref_primary_10_1001_jamapsychiatry_2024_2412 crossref_primary_10_1016_j_cell_2024_06_032 crossref_primary_10_3389_fendo_2023_1170881 crossref_primary_10_1186_s12933_021_01431_2 crossref_primary_10_1155_2023_9363576 crossref_primary_10_1210_endrev_bnaa032 crossref_primary_10_1016_j_therap_2020_05_006 crossref_primary_10_1016_j_molmet_2025_102097 crossref_primary_10_1053_j_ackd_2021_04_002 crossref_primary_10_1016_j_actbio_2024_04_029 crossref_primary_10_1093_ejendo_lvae151 crossref_primary_10_1155_cjid_6675676 crossref_primary_10_1038_s41581_024_00827_z crossref_primary_10_1152_ajpendo_00050_2022 crossref_primary_10_1016_j_jdiacomp_2023_108416 crossref_primary_10_1080_19382014_2021_1889941 crossref_primary_10_1002_oby_23080 crossref_primary_10_1016_j_jmb_2019_08_009 crossref_primary_10_1155_2024_8056440 crossref_primary_10_1080_13543776_2020_1811851 crossref_primary_10_2174_1574885518666230516150404 crossref_primary_10_3389_fphar_2024_1235639 crossref_primary_10_3390_cells12232691 crossref_primary_10_1016_j_peptides_2024_171179 crossref_primary_10_1002_jsfa_10927 crossref_primary_10_1093_eurheartj_ehz868 crossref_primary_10_3389_fendo_2023_1303238 crossref_primary_10_1021_acs_jmedchem_0c00736 crossref_primary_10_1016_j_intimp_2021_107518 crossref_primary_10_1016_j_cell_2022_02_011 crossref_primary_10_3390_nu16111691 crossref_primary_10_22141_2224_0721_19_7_2023_1330 crossref_primary_10_1016_j_tem_2024_08_001 crossref_primary_10_1007_s41030_022_00211_x crossref_primary_10_1007_s13668_019_00281_5 crossref_primary_10_1186_s12893_025_02773_4 crossref_primary_10_3390_medicina59020388 crossref_primary_10_3389_fphar_2024_1416985 crossref_primary_10_3390_ijms232012428 crossref_primary_10_2147_JIR_S465203 crossref_primary_10_1530_JME_18_0129 crossref_primary_10_1113_JP280890 crossref_primary_10_1016_j_soard_2024_10_008 crossref_primary_10_1016_j_ejphar_2018_06_026 crossref_primary_10_1097_MCG_0000000000001931 crossref_primary_10_20945_2359_4292_2023_0174 crossref_primary_10_1016_j_clim_2022_109118 crossref_primary_10_12677_acm_2025_153617 crossref_primary_10_1016_j_molmet_2024_101960 crossref_primary_10_3389_fneur_2024_1462240 crossref_primary_10_1021_acschembio_0c00722 crossref_primary_10_1360_SSV_2024_0261 crossref_primary_10_1016_j_coemr_2022_100360 crossref_primary_10_1021_acs_jmedchem_1c01856 crossref_primary_10_1111_dom_13744 crossref_primary_10_1016_j_atherosclerosis_2023_03_016 crossref_primary_10_1002_14651858_CD015849_pub2 crossref_primary_10_3389_fendo_2021_694284 crossref_primary_10_1016_j_mce_2023_112029 crossref_primary_10_1111_dom_14831 crossref_primary_10_3390_metabo12020147 crossref_primary_10_1016_j_celrep_2019_05_055 crossref_primary_10_1016_j_trsl_2020_07_008 crossref_primary_10_1038_s41598_024_68234_9 crossref_primary_10_1186_s13578_024_01267_9 crossref_primary_10_1016_j_jdiacomp_2020_107774 crossref_primary_10_1042_CS20220890 crossref_primary_10_1016_j_cub_2024_10_039 crossref_primary_10_3389_fphar_2023_1125858 crossref_primary_10_1016_j_molstruc_2022_134328 crossref_primary_10_1016_j_phrs_2022_106320 crossref_primary_10_1161_CIRCHEARTFAILURE_124_011518 crossref_primary_10_1080_19490976_2022_2068365 crossref_primary_10_1097_MCG_0000000000001556 crossref_primary_10_4103_1673_5374_389626 crossref_primary_10_1016_j_cellsig_2024_111153 crossref_primary_10_1124_pharmrev_123_001015 crossref_primary_10_1111_dom_14843 crossref_primary_10_1016_j_jbc_2022_102682 crossref_primary_10_1210_endrev_bnac018 crossref_primary_10_1042_CS20190579 crossref_primary_10_1097_ANA_0000000000000985 crossref_primary_10_1002_mco2_283 crossref_primary_10_1007_s00228_024_03646_0 crossref_primary_10_1126_scitranslmed_adg3456 crossref_primary_10_3389_fendo_2021_609470 crossref_primary_10_4103_bc_bc_21_21 crossref_primary_10_1161_HYPERTENSIONAHA_120_14791 crossref_primary_10_1007_s13340_023_00681_7 crossref_primary_10_1016_j_cmet_2022_08_003 crossref_primary_10_1016_j_ejphar_2024_176476 crossref_primary_10_3390_ph14010042 crossref_primary_10_1016_j_cmet_2018_11_012 crossref_primary_10_1212_WNL_0000000000209781 crossref_primary_10_1080_16089677_2022_2113206 crossref_primary_10_1016_j_ejphar_2021_174482 crossref_primary_10_1016_j_mmm_2020_05_005 crossref_primary_10_1097_JXX_0000000000000661 crossref_primary_10_1172_jci_insight_93382 crossref_primary_10_14336_AD_2021_0422 crossref_primary_10_1016_j_fshw_2023_03_026 crossref_primary_10_1016_j_fertnstert_2022_03_020 crossref_primary_10_1016_j_appet_2022_106022 crossref_primary_10_1080_14656566_2024_2391524 crossref_primary_10_2337_dc18_0680 crossref_primary_10_1038_s41586_024_08207_0 crossref_primary_10_1016_j_jtbi_2024_111756 crossref_primary_10_1016_j_ebiom_2023_104906 crossref_primary_10_1016_j_biopha_2022_113517 crossref_primary_10_1080_03007995_2024_2386047 crossref_primary_10_3390_biom14121520 crossref_primary_10_3390_biomedicines12030473 crossref_primary_10_1038_s41598_024_74000_8 crossref_primary_10_3389_fcvm_2020_593061 crossref_primary_10_3390_medicina57010066 crossref_primary_10_1038_s41598_019_53356_2 crossref_primary_10_2106_JBJS_JOPA_24_00005 crossref_primary_10_3389_fphar_2019_00789 crossref_primary_10_1021_acs_jmedchem_4c02616 crossref_primary_10_1038_s41467_020_17556_z crossref_primary_10_1111_dom_14637 crossref_primary_10_3390_molecules28186501 crossref_primary_10_1016_j_crfs_2024_100810 crossref_primary_10_1016_j_intimp_2024_113499 crossref_primary_10_1155_2021_9951463 crossref_primary_10_1016_j_bcp_2020_114150 crossref_primary_10_1164_rccm_202303_0491OC crossref_primary_10_1007_s00404_024_07849_9 crossref_primary_10_1111_dom_14634 crossref_primary_10_1038_s41467_023_38778_x crossref_primary_10_1016_j_artd_2024_101327 crossref_primary_10_1016_j_tem_2019_07_004 crossref_primary_10_2147_POR_S471476 crossref_primary_10_3390_life12081187 crossref_primary_10_1016_j_jconrel_2023_09_040 crossref_primary_10_1016_j_metabol_2022_155346 crossref_primary_10_1038_s41366_024_01529_z crossref_primary_10_1016_j_ejphar_2023_175901 crossref_primary_10_3389_fendo_2021_665345 crossref_primary_10_3390_ijms25073812 crossref_primary_10_3389_fendo_2025_1532587 crossref_primary_10_3390_diagnostics11112053 crossref_primary_10_3390_biomedicines11113035 crossref_primary_10_1016_j_ejmech_2024_116342 crossref_primary_10_2337_dbi18_0024 crossref_primary_10_1097_MNH_0000000000000559 crossref_primary_10_3390_ph15050607 crossref_primary_10_1172_JCI126309 crossref_primary_10_2147_DMSO_S380577 crossref_primary_10_3389_fendo_2023_1166756 crossref_primary_10_1016_j_phrs_2020_104861 crossref_primary_10_1017_S0007114524000321 crossref_primary_10_1016_j_jnrt_2024_100107 crossref_primary_10_47671_TVG_78_22_068 crossref_primary_10_1016_j_dsx_2023_102849 crossref_primary_10_1080_17425247_2024_2305110 crossref_primary_10_3390_cells9071621 crossref_primary_10_2174_2210303112666220318155445 crossref_primary_10_1021_acs_jmedchem_4c00417 crossref_primary_10_1016_j_pep_2024_106477 crossref_primary_10_2174_1389450122666210901125420 crossref_primary_10_1016_j_dsx_2022_102562 crossref_primary_10_3389_fendo_2022_780663 crossref_primary_10_3389_fbioe_2021_729057 crossref_primary_10_1038_s41366_024_01460_3 crossref_primary_10_4103_ajoim_ajoim_28_24 crossref_primary_10_1016_j_biopha_2021_112341 crossref_primary_10_4093_dmj_2021_0314 crossref_primary_10_1530_JOE_21_0399 crossref_primary_10_3390_antiox13101246 crossref_primary_10_1007_s11418_024_01791_5 crossref_primary_10_51847_ChNOtMbUUT crossref_primary_10_1021_acs_jafc_1c01388 crossref_primary_10_3390_ijms25052914 crossref_primary_10_1152_ajpendo_00298_2019 crossref_primary_10_15406_ogij_2023_14_00708 crossref_primary_10_3390_nu12082485 crossref_primary_10_3389_fcdhc_2021_731574 crossref_primary_10_1210_endocr_bqad153 crossref_primary_10_1097_JXX_0000000000000480 crossref_primary_10_1111_ejn_15502 crossref_primary_10_1016_j_fsi_2022_01_035 crossref_primary_10_3390_microorganisms9030565 crossref_primary_10_1080_19382014_2021_2011550 crossref_primary_10_1016_j_phrs_2024_107367 crossref_primary_10_1002_jbt_23258 crossref_primary_10_1016_j_molmet_2020_101014 crossref_primary_10_1038_s42255_021_00458_9 crossref_primary_10_1007_s40267_021_00856_9 crossref_primary_10_1152_ajpendo_00236_2023 crossref_primary_10_3389_fphar_2023_1248757 crossref_primary_10_31083_j_fbl2811315 crossref_primary_10_3390_biom15030408 crossref_primary_10_1038_s41598_021_84355_x crossref_primary_10_1016_j_jcjd_2019_08_011 crossref_primary_10_3748_wjg_v30_i40_4339 crossref_primary_10_1038_s41573_024_01083_3 crossref_primary_10_1016_j_cmet_2021_12_005 crossref_primary_10_1016_j_jmb_2020_01_004 crossref_primary_10_1016_j_jpha_2024_100968 crossref_primary_10_1093_nutrit_nuad099 crossref_primary_10_1126_sciadv_aaw4176 crossref_primary_10_1016_j_fbio_2022_101685 crossref_primary_10_1210_en_2019_00398 crossref_primary_10_3390_ijms24098283 crossref_primary_10_1016_j_jbc_2024_107294 crossref_primary_10_1038_s41598_020_61112_0 crossref_primary_10_1055_a_1608_0345 crossref_primary_10_1016_j_bbalip_2023_159363 crossref_primary_10_1080_00325481_2022_2149005 crossref_primary_10_2337_db21_0923 crossref_primary_10_2147_DMSO_S443115 crossref_primary_10_1210_endrev_bnaf006 crossref_primary_10_1002_oby_22521 crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_1007_s13300_021_01182_z crossref_primary_10_1111_apha_13915 crossref_primary_10_1111_dom_13591 crossref_primary_10_1080_17446651_2023_2187375 crossref_primary_10_1016_j_ijbiomac_2024_133434 crossref_primary_10_1111_dom_14651 crossref_primary_10_1038_s41574_022_00783_3 crossref_primary_10_1016_j_diabres_2019_107785 crossref_primary_10_1210_er_2018_00280 crossref_primary_10_1038_s41422_023_00782_7 crossref_primary_10_3390_healthcare11202749 crossref_primary_10_1002_jsfa_11541 crossref_primary_10_1186_s40824_023_00421_7 crossref_primary_10_1093_cvr_cvz323 crossref_primary_10_1177_15353702231214270 crossref_primary_10_1002_adhm_202100965 crossref_primary_10_3390_nu16010063 crossref_primary_10_1016_j_suc_2020_12_006 crossref_primary_10_1111_bph_15682 crossref_primary_10_1007_s11101_024_09920_4 crossref_primary_10_1016_j_molmet_2018_06_006 crossref_primary_10_1161_HYPERTENSIONAHA_124_22999 crossref_primary_10_1002_14651858_CD015092 crossref_primary_10_1007_s13346_024_01576_z crossref_primary_10_1016_j_cmet_2023_01_001 crossref_primary_10_1016_j_jcjd_2019_07_003 crossref_primary_10_1016_j_bbagen_2021_129917 crossref_primary_10_1155_2021_6623379 crossref_primary_10_1097_MOG_0000000000000884 crossref_primary_10_1016_j_eclinm_2024_102689 crossref_primary_10_1111_eci_13519 crossref_primary_10_1002_mnfr_202100564 crossref_primary_10_3390_pharmaceutics14061180 crossref_primary_10_1111_bph_70003 crossref_primary_10_1016_j_nbd_2024_106485 crossref_primary_10_3390_livers3040042 crossref_primary_10_3389_fphar_2021_701446 crossref_primary_10_3390_ijms22115830 crossref_primary_10_1016_j_cell_2022_05_007 crossref_primary_10_1097_MD_0000000000038568 crossref_primary_10_1080_13543784_2020_1764534 crossref_primary_10_1249_MSS_0000000000002903 crossref_primary_10_1016_j_gassur_2024_04_028 crossref_primary_10_1038_s42003_022_03170_w crossref_primary_10_3390_ijms25126331 crossref_primary_10_1016_j_phrs_2024_107574 crossref_primary_10_1016_j_phrs_2023_107031 crossref_primary_10_3389_fphar_2023_1176206 crossref_primary_10_3390_app12189271 crossref_primary_10_1007_s12602_023_10156_5 crossref_primary_10_1016_j_ejca_2024_115170 crossref_primary_10_1016_j_cnd_2024_09_003 crossref_primary_10_1111_bph_15462 crossref_primary_10_7759_cureus_77387 crossref_primary_10_1016_j_cld_2023_01_010 crossref_primary_10_1016_j_cytogfr_2023_12_005 crossref_primary_10_5694_mja2_51871 crossref_primary_10_1016_j_mce_2018_10_011 crossref_primary_10_1111_jdi_13896 crossref_primary_10_1152_ajpendo_00547_2020 crossref_primary_10_1038_s41467_024_55050_y crossref_primary_10_1093_ckj_sfae018 crossref_primary_10_1080_01443615_2021_1959534 crossref_primary_10_1007_s10571_021_01079_2 crossref_primary_10_1210_clinem_dgad438 crossref_primary_10_2478_fzm_2022_0030 crossref_primary_10_3390_antiox9080765 crossref_primary_10_1038_s41574_023_00855_y crossref_primary_10_1093_sleep_zsae280 crossref_primary_10_1002_oby_22794 crossref_primary_10_4236_jdm_2023_132017 crossref_primary_10_1073_pnas_2200155119 crossref_primary_10_3390_jcm10132968 crossref_primary_10_1007_s11154_020_09558_5 crossref_primary_10_1016_j_diabres_2022_109806 crossref_primary_10_5937_mp74_40304 crossref_primary_10_1016_j_ajog_2024_08_024 crossref_primary_10_3390_ijms24021703 crossref_primary_10_1111_1753_0407_13516 crossref_primary_10_1111_dme_14154 crossref_primary_10_1136_bmjdrc_2020_001540 crossref_primary_10_1016_j_conb_2024_102963 crossref_primary_10_1097_HEP_0000000000000323 crossref_primary_10_17116_profmed20232612195 crossref_primary_10_1016_j_biopha_2024_116755 crossref_primary_10_1007_s11938_024_00452_6 crossref_primary_10_1021_acsmedchemlett_0c00435 crossref_primary_10_1001_jamanetworkopen_2023_14493 crossref_primary_10_1016_j_toxrep_2025_101895 crossref_primary_10_3390_medicina60010050 crossref_primary_10_3389_fphys_2023_1239278 crossref_primary_10_1016_j_pharmthera_2025_108824 crossref_primary_10_1038_s41401_022_00962_y crossref_primary_10_1093_ckj_sfac069 crossref_primary_10_3390_ijms21155252 crossref_primary_10_1007_s11695_024_07378_z crossref_primary_10_51847_fu8WdCo3DU crossref_primary_10_1002_ueg2_12150 crossref_primary_10_2147_DMSO_S438618 crossref_primary_10_1016_j_peptides_2021_170704 crossref_primary_10_14341_probl13400 crossref_primary_10_1016_j_cell_2024_06_003 crossref_primary_10_1038_s41598_021_95065_9 crossref_primary_10_1016_S2213_8587_20_30075_9 crossref_primary_10_1039_D2CB00049K crossref_primary_10_1038_d41586_019_00235_5 crossref_primary_10_3390_ijms22020660 crossref_primary_10_1002_jcp_28214 crossref_primary_10_1210_endocr_bqaa039 crossref_primary_10_1016_j_tcm_2024_03_007 crossref_primary_10_3390_ijms231710101 crossref_primary_10_1097_MD_0000000000031334 crossref_primary_10_1093_oxfmat_itaf001 crossref_primary_10_1016_S2213_8587_18_30263_8 crossref_primary_10_1210_clinem_dgab428 crossref_primary_10_3390_ijms232113320 crossref_primary_10_1016_j_ejmech_2019_111773 crossref_primary_10_1007_s12630_023_02549_5 crossref_primary_10_1111_dom_14280 crossref_primary_10_1016_j_obpill_2024_100104 crossref_primary_10_1016_j_heliyon_2024_e39865 crossref_primary_10_1016_j_tem_2020_10_002 crossref_primary_10_1016_j_physbeh_2024_114565 crossref_primary_10_3389_fimmu_2020_576818 crossref_primary_10_1038_s42255_022_00625_6 crossref_primary_10_3390_ijms23063339 crossref_primary_10_3390_pharmaceutics15071858 crossref_primary_10_1002_phar_2688 crossref_primary_10_1302_2048_0105_133_360143 crossref_primary_10_1016_j_psychres_2021_113830 crossref_primary_10_1016_j_peptides_2020_170444 crossref_primary_10_1002_hep4_1942 crossref_primary_10_4103_jod_jod_71_22 crossref_primary_10_3390_jcm9123962 crossref_primary_10_1007_s12274_022_4963_5 crossref_primary_10_3389_fendo_2023_1250487 crossref_primary_10_3390_jcm13185627 crossref_primary_10_1007_s13300_020_00986_9 crossref_primary_10_3390_biom14030264 crossref_primary_10_1038_s41581_020_00367_2 crossref_primary_10_3390_antiox10081175 crossref_primary_10_1016_j_heliyon_2024_e25459 crossref_primary_10_1111_nyas_14211 crossref_primary_10_1016_j_neuropharm_2023_109637 crossref_primary_10_3389_fcdhc_2024_1399410 crossref_primary_10_1007_s11154_023_09823_3 crossref_primary_10_1111_dom_15359 crossref_primary_10_2174_0115748855276929231218053337 crossref_primary_10_1038_s41467_021_24058_z crossref_primary_10_1007_s40256_024_00695_9 crossref_primary_10_1016_j_neuron_2023_12_012 crossref_primary_10_1172_jci_insight_127994 crossref_primary_10_19163_2307_9266_2023_11_4_347_380 crossref_primary_10_2147_PGPM_S329787 crossref_primary_10_1021_acs_jmedchem_0c02050 crossref_primary_10_20517_mtod_2024_12 crossref_primary_10_1002_mnfr_202300610 crossref_primary_10_2147_DMSO_S415934 crossref_primary_10_1016_j_tox_2023_153515 crossref_primary_10_3389_fendo_2024_1330936 crossref_primary_10_1007_s10620_021_07206_9 crossref_primary_10_1016_j_jep_2023_117571 crossref_primary_10_3390_app9235041 crossref_primary_10_1111_dom_15168 crossref_primary_10_3389_fendo_2022_1057905 crossref_primary_10_1016_j_peptides_2019_170213 crossref_primary_10_3390_nu15173737 crossref_primary_10_3389_fendo_2023_1267503 crossref_primary_10_1007_s13668_023_00454_3 crossref_primary_10_1016_j_nefro_2022_07_008 crossref_primary_10_1152_ajpcell_00765_2024 crossref_primary_10_1016_j_clnu_2025_02_007 crossref_primary_10_3390_cells13151244 crossref_primary_10_1007_s40618_024_02466_4 crossref_primary_10_3390_biom11020286 crossref_primary_10_1186_s12890_024_02959_1 crossref_primary_10_1002_der2_70003 crossref_primary_10_3390_ijms221910796 crossref_primary_10_3390_biomedicines12061320 crossref_primary_10_32947_ajps_v23i1_991 crossref_primary_10_1002_ncp_11279 crossref_primary_10_1016_j_bmcl_2020_127524 crossref_primary_10_1111_dom_14089 crossref_primary_10_1016_j_tem_2023_09_006 crossref_primary_10_1097_MED_0000000000000835 crossref_primary_10_1016_j_metabol_2020_154343 crossref_primary_10_1530_JOE_19_0007 crossref_primary_10_1080_14656566_2022_2104636 crossref_primary_10_1093_jpp_rgae035 crossref_primary_10_1186_s13098_024_01497_4 crossref_primary_10_1002_2211_5463_13499 crossref_primary_10_3390_life12111906 crossref_primary_10_3389_fphar_2023_1194026 crossref_primary_10_1016_j_ygcen_2023_114292 crossref_primary_10_7759_cureus_69704 crossref_primary_10_3390_ijms24065333 crossref_primary_10_1002_adtp_202400028 crossref_primary_10_1016_j_chroma_2022_463239 crossref_primary_10_1080_10408398_2022_2164244 crossref_primary_10_1093_advances_nmaa080 crossref_primary_10_3389_fendo_2023_1076343 crossref_primary_10_1016_j_jconrel_2023_03_012 crossref_primary_10_1111_bph_15647 crossref_primary_10_1016_S2213_8587_21_00019_X crossref_primary_10_1111_dom_15383 crossref_primary_10_1016_j_phytol_2020_11_008 crossref_primary_10_20517_cdr_2024_116 crossref_primary_10_1016_j_ejphar_2019_172782 crossref_primary_10_1038_s41392_022_00955_7 crossref_primary_10_1016_j_micpath_2020_104645 crossref_primary_10_4239_wjd_v15_i11_2167 crossref_primary_10_7759_cureus_24829 crossref_primary_10_1016_j_soard_2021_12_017 crossref_primary_10_3350_cmh_2022_0015 crossref_primary_10_1111_dom_15398 crossref_primary_10_3389_fcell_2024_1421191 crossref_primary_10_1038_s42255_023_00942_4 crossref_primary_10_1016_j_molmet_2020_100990 crossref_primary_10_1080_17446651_2023_2204976 crossref_primary_10_3390_futurepharmacol3010021 crossref_primary_10_1093_nutrit_nuab021 crossref_primary_10_3390_metabo11120869 crossref_primary_10_3390_nu14183775 crossref_primary_10_1016_j_biopha_2020_110857 crossref_primary_10_1177_2047487319880040 crossref_primary_10_1038_s42255_024_01068_x crossref_primary_10_3389_fphar_2023_1215150 crossref_primary_10_1080_14740338_2020_1806234 crossref_primary_10_1021_acs_jmedchem_2c02073 crossref_primary_10_1093_eurheartj_ehz728 crossref_primary_10_1016_j_jhep_2023_04_003 crossref_primary_10_1113_EP091815 crossref_primary_10_3389_fphar_2022_935823 crossref_primary_10_3389_fendo_2021_814770 crossref_primary_10_1080_19382014_2023_2223327 crossref_primary_10_3390_biomedicines9091165 crossref_primary_10_1007_s13300_020_00882_2 crossref_primary_10_2337_dbi21_0002 crossref_primary_10_3390_nu17010013 crossref_primary_10_2337_dci24_0029 crossref_primary_10_1111_dom_16070 crossref_primary_10_3389_fphar_2024_1414268 crossref_primary_10_1038_s41392_022_01149_x crossref_primary_10_3390_ijms25168572 crossref_primary_10_1016_j_ocarto_2025_100572 crossref_primary_10_1038_s41574_024_00957_1 crossref_primary_10_1016_j_peptides_2024_171243 crossref_primary_10_1038_s41574_018_0132_z crossref_primary_10_1007_s00125_018_4639_6 crossref_primary_10_1016_j_cmet_2019_11_017 crossref_primary_10_1016_j_nefroe_2023_09_003 crossref_primary_10_1016_j_tem_2021_02_005 crossref_primary_10_1097_XCE_0000000000000321 crossref_primary_10_1126_sciadv_abi4379 crossref_primary_10_1371_journal_pone_0290043 crossref_primary_10_1021_acsptsci_1c00013 crossref_primary_10_3389_fmed_2024_1376115 crossref_primary_10_1210_endocr_bqz029 crossref_primary_10_1093_ibd_izae250 crossref_primary_10_1172_JCI182325 crossref_primary_10_1016_j_ejphar_2022_174800 crossref_primary_10_1007_s10787_024_01556_2 crossref_primary_10_1016_j_gendis_2021_12_011 crossref_primary_10_1007_s11695_020_05176_x crossref_primary_10_3389_fnins_2022_970925 crossref_primary_10_1016_j_addr_2021_01_004 crossref_primary_10_3389_fragi_2022_931331 crossref_primary_10_1016_j_diabet_2025_101613 crossref_primary_10_1007_s00213_022_06107_7 crossref_primary_10_1016_j_lfs_2022_121045 crossref_primary_10_12677_ACM_2022_124430 crossref_primary_10_1016_j_peptides_2022_170811 crossref_primary_10_1016_j_cger_2020_08_002 crossref_primary_10_2337_dci24_0003 crossref_primary_10_20945_2359_3997000000355 crossref_primary_10_1038_s42255_022_00657_y crossref_primary_10_3389_fendo_2022_1007944 crossref_primary_10_1016_j_cell_2020_12_007 crossref_primary_10_1016_j_ebiom_2021_103739 crossref_primary_10_3390_medicina60030357 crossref_primary_10_3390_diseases12090224 crossref_primary_10_1080_14656566_2021_1939679 crossref_primary_10_1111_dom_16047 crossref_primary_10_1021_jacsau_2c00130 crossref_primary_10_3390_pathogens12020184 crossref_primary_10_1016_j_cgh_2023_08_034 crossref_primary_10_1016_j_cmet_2022_10_001 crossref_primary_10_1016_j_cmet_2024_05_001 crossref_primary_10_1016_j_hlc_2024_11_025 crossref_primary_10_4239_wjd_v15_i8_1663 crossref_primary_10_1038_s42255_024_01175_9 crossref_primary_10_3390_microorganisms12091760 crossref_primary_10_1111_dom_16285 crossref_primary_10_3389_fendo_2022_958218 crossref_primary_10_1007_s40200_024_01512_5 crossref_primary_10_1016_j_jdiacomp_2023_108515 crossref_primary_10_1016_j_obmed_2020_100312 crossref_primary_10_1152_ajpendo_00192_2023 crossref_primary_10_3389_fendo_2021_622901 crossref_primary_10_2174_1573399816666191230113446 crossref_primary_10_1038_s41581_022_00621_9 crossref_primary_10_1016_j_clim_2023_109744 crossref_primary_10_3390_cells10092297 crossref_primary_10_1016_j_aquaculture_2024_741549 crossref_primary_10_1016_j_molmet_2021_101175 crossref_primary_10_1186_s12916_024_03483_z crossref_primary_10_1111_cob_12546 crossref_primary_10_1007_s00125_023_05980_x crossref_primary_10_3389_fnbeh_2021_724030 crossref_primary_10_17925_EE_2023_19_1_38 crossref_primary_10_1039_D4FO00489B crossref_primary_10_1016_j_addr_2020_05_008 crossref_primary_10_1016_j_metabol_2020_154190 crossref_primary_10_3389_fendo_2022_910256 crossref_primary_10_3390_jcm13216336 crossref_primary_10_1021_acs_jmedchem_1c00032 crossref_primary_10_1016_j_diabres_2024_111905 crossref_primary_10_1039_C9SC02079A crossref_primary_10_1016_j_ajpc_2025_100928 crossref_primary_10_1016_j_ejphar_2020_173101 crossref_primary_10_1016_j_ocarto_2024_100472 crossref_primary_10_1007_s11010_024_05118_6 crossref_primary_10_1007_s12325_021_01710_0 crossref_primary_10_1136_bjophthalmol_2021_319232 crossref_primary_10_1016_j_lfs_2020_118592 crossref_primary_10_1016_j_molmet_2021_101163 crossref_primary_10_1097_MED_0000000000000555 crossref_primary_10_62210_ClinSciNutr_2024_98 crossref_primary_10_1016_j_domaniend_2019_07_001 crossref_primary_10_12677_tcm_2024_139361 crossref_primary_10_1016_j_metabol_2024_156042 crossref_primary_10_2147_IJWH_S326417 crossref_primary_10_2147_IJN_S492651 crossref_primary_10_1002_14651858_CD015849 crossref_primary_10_3390_nu12113304 crossref_primary_10_1038_s41387_024_00343_w crossref_primary_10_3389_fnmol_2019_00101 crossref_primary_10_1073_pnas_2206098119 crossref_primary_10_1111_febs_17249 crossref_primary_10_1016_j_molmet_2018_09_009 crossref_primary_10_1038_s41584_024_01143_3 crossref_primary_10_1021_acsptsci_9b00108 crossref_primary_10_1111_dom_16077 crossref_primary_10_3390_jcm10112233 crossref_primary_10_1161_JAHA_122_026586 crossref_primary_10_3390_biomedicines11071875 crossref_primary_10_1038_s44319_023_00031_3 crossref_primary_10_3389_fendo_2021_671946 crossref_primary_10_1016_j_diabres_2024_111927 crossref_primary_10_3390_ijms24108836 crossref_primary_10_3390_ph17070828 crossref_primary_10_1007_s10989_020_10123_6 crossref_primary_10_1016_j_athplu_2024_03_001 crossref_primary_10_1016_j_arth_2024_10_099 crossref_primary_10_1177_03000605231177191 crossref_primary_10_3390_pharmaceutics16111353 crossref_primary_10_3390_ph17040525 crossref_primary_10_1002_edm2_392 crossref_primary_10_1016_j_metabol_2020_154167 crossref_primary_10_1016_j_molmet_2021_101180 crossref_primary_10_1083_jcb_201810097 crossref_primary_10_11005_jbm_2024_31_3_169 crossref_primary_10_1186_s40348_023_00170_6 crossref_primary_10_3390_ijms232415938 crossref_primary_10_3389_fphar_2022_1043828 crossref_primary_10_1093_milmed_usaf029 crossref_primary_10_1016_j_celrep_2022_111170 crossref_primary_10_1172_jci_insight_154314 crossref_primary_10_1172_JCI178239 crossref_primary_10_12677_ACM_2023_1361396 crossref_primary_10_1016_j_arr_2023_102134 crossref_primary_10_1155_2020_1626484 crossref_primary_10_1186_s13098_021_00645_4 crossref_primary_10_1016_j_mce_2019_110584 crossref_primary_10_1016_j_biopha_2024_117540 crossref_primary_10_1016_j_jcjd_2021_08_012 crossref_primary_10_31146_1682_8658_ecg_220_12_77_85 crossref_primary_10_3389_fcimb_2023_1303899 crossref_primary_10_7570_jomes23032 crossref_primary_10_1007_s11154_021_09669_7 crossref_primary_10_1007_s11912_022_01344_7 crossref_primary_10_3390_biom10101404 crossref_primary_10_1021_acs_biochem_4c00867 crossref_primary_10_1152_ajpregu_00288_2018 crossref_primary_10_1016_j_jdiacomp_2024_108874 crossref_primary_10_1155_2018_8380192 crossref_primary_10_3390_jcm13247732 crossref_primary_10_3389_fnins_2018_00962 crossref_primary_10_22141_2224_0721_17_8_2021_246799 crossref_primary_10_3389_fcimb_2021_595575 crossref_primary_10_4239_wjd_v12_i11_1832 crossref_primary_10_1016_j_neuropharm_2024_110269 crossref_primary_10_1186_s12933_024_02145_x crossref_primary_10_1007_s11096_023_01556_2 crossref_primary_10_1016_j_obmed_2025_100591 crossref_primary_10_1089_thy_2023_0530 crossref_primary_10_1016_j_carbpol_2023_121694 crossref_primary_10_1016_j_molmet_2021_101392 crossref_primary_10_1007_s40261_023_01319_x crossref_primary_10_1016_j_cardfail_2025_01_008 crossref_primary_10_1016_j_medj_2021_09_001 crossref_primary_10_1016_j_molmet_2019_05_004 crossref_primary_10_1016_j_ygcen_2024_114602 crossref_primary_10_3389_fendo_2024_1520313 crossref_primary_10_3390_jcm13164674 crossref_primary_10_1016_j_eprac_2024_11_013 crossref_primary_10_1016_j_mehy_2021_110739 crossref_primary_10_1152_ajpgi_00308_2020 crossref_primary_10_1155_2021_7765623 crossref_primary_10_1249_MSS_0000000000003489 crossref_primary_10_1002_ptr_7387 crossref_primary_10_1016_j_eclinm_2024_102782 crossref_primary_10_4239_wjd_v15_i3_361 crossref_primary_10_1080_03007995_2024_2333440 crossref_primary_10_1002_jcsm_13677 crossref_primary_10_1097_HC9_0000000000000561 crossref_primary_10_1016_j_biopha_2024_116245 crossref_primary_10_1016_j_biopha_2024_116485 crossref_primary_10_1016_j_ccc_2021_03_007 crossref_primary_10_1016_j_neubiorev_2021_10_026 crossref_primary_10_1016_j_cmet_2024_11_003 crossref_primary_10_1186_s40001_022_00892_9 crossref_primary_10_1523_JNEUROSCI_2032_23_2024 crossref_primary_10_3389_fendo_2022_818537 crossref_primary_10_1007_s40266_024_01165_2 crossref_primary_10_3389_fendo_2022_922640 crossref_primary_10_1016_j_thromres_2019_06_010 crossref_primary_10_1002_jpen_2286 crossref_primary_10_1016_j_cmet_2024_05_010 crossref_primary_10_1080_17460441_2024_2324918 crossref_primary_10_3389_fphar_2022_786767 crossref_primary_10_3897_pharmacia_71_e120141 crossref_primary_10_1016_j_molmet_2019_11_018 crossref_primary_10_3389_fendo_2019_00029 crossref_primary_10_3389_fnagi_2022_899389 crossref_primary_10_1016_j_peptides_2023_170974 crossref_primary_10_1172_jci_insight_130770 crossref_primary_10_1007_s40619_024_01436_5 crossref_primary_10_1210_en_2019_00356 crossref_primary_10_1155_2022_5013622 crossref_primary_10_1111_obr_13038 crossref_primary_10_3389_fimmu_2021_793588 crossref_primary_10_1016_j_pharmr_2024_100018 crossref_primary_10_1055_a_2407_9360 crossref_primary_10_1152_ajpheart_00031_2022 crossref_primary_10_1016_j_ejmech_2019_07_045 crossref_primary_10_1016_j_molmet_2019_11_004 crossref_primary_10_1016_j_eclinm_2024_102726 crossref_primary_10_1002_edm2_330 crossref_primary_10_1186_s12933_020_01014_7 crossref_primary_10_1038_s41392_024_01951_9 crossref_primary_10_1146_annurev_pharmtox_030220_121042 crossref_primary_10_1016_j_molmet_2022_101633 crossref_primary_10_1210_endocr_bqac193 crossref_primary_10_1051_bioconf_20236101006 crossref_primary_10_1126_sciadv_abn5345 crossref_primary_10_3390_biomedicines11020496 crossref_primary_10_1186_s12950_023_00330_5 crossref_primary_10_3389_fendo_2020_00178 crossref_primary_10_1002_cbic_202300504 crossref_primary_10_1016_j_jff_2019_05_013 crossref_primary_10_1210_clinem_dgad395 crossref_primary_10_3390_ijms24119324 crossref_primary_10_4239_wjd_v15_i3_331 crossref_primary_10_1016_j_molmet_2021_101352 crossref_primary_10_1016_j_coph_2021_11_010 crossref_primary_10_1021_acs_jmedchem_3c00320 crossref_primary_10_3389_fendo_2022_808956 crossref_primary_10_1016_j_hfc_2024_12_006 crossref_primary_10_1007_s00592_020_01635_0 crossref_primary_10_1016_j_ygyno_2024_07_008 crossref_primary_10_3390_biomedicines9070800 crossref_primary_10_2139_ssrn_4126596 crossref_primary_10_1002_mnfr_202000303 crossref_primary_10_3389_fendo_2022_951186 crossref_primary_10_1038_s41598_019_39380_2 crossref_primary_10_1111_1751_7915_14196 crossref_primary_10_1161_STROKEAHA_121_037775 crossref_primary_10_3390_jcdd10090386 crossref_primary_10_3390_metabo13080954 crossref_primary_10_1113_EP087118 crossref_primary_10_26508_lsa_202402603 crossref_primary_10_1210_jc_2019_00515 crossref_primary_10_3389_fphys_2020_568632 crossref_primary_10_1016_j_bioorg_2019_103538 crossref_primary_10_1016_j_molmet_2021_101340 crossref_primary_10_58647_DRUGREPO_24_2_0018 crossref_primary_10_1007_s11033_024_09793_y crossref_primary_10_1038_s42255_024_01040_9 crossref_primary_10_1016_j_molmet_2022_101641 crossref_primary_10_1007_s11096_022_01428_1 crossref_primary_10_1016_j_nbd_2018_11_023 crossref_primary_10_2174_1570161116666180828155622 crossref_primary_10_1016_j_apsb_2023_11_020 crossref_primary_10_1016_j_lfs_2024_123339 crossref_primary_10_1007_s00592_023_02217_6 crossref_primary_10_2478_ahem_2021_0037 crossref_primary_10_3390_ijms23084334 crossref_primary_10_1055_a_2303_8558 crossref_primary_10_3389_fendo_2022_1092431 crossref_primary_10_5694_mja2_50472 crossref_primary_10_1161_CIRCULATIONAHA_122_059595 crossref_primary_10_1007_s00394_019_02092_4 crossref_primary_10_1093_eurjpc_zwaa081 crossref_primary_10_1093_humrep_dead126 crossref_primary_10_1007_s00421_020_04431_4 crossref_primary_10_1093_jbcr_irae189 crossref_primary_10_7759_cureus_73705 crossref_primary_10_1016_j_lfs_2024_123327 crossref_primary_10_1016_j_jafr_2024_101100 crossref_primary_10_1016_j_mcna_2024_04_007 crossref_primary_10_46332_aemj_859981 crossref_primary_10_1016_j_biopha_2021_111778 crossref_primary_10_1111_dom_14328 crossref_primary_10_3892_ijmm_2025_5497 crossref_primary_10_1016_j_molmet_2021_101407 crossref_primary_10_3390_ijms26052320 crossref_primary_10_1002_ctm2_575 crossref_primary_10_1016_j_ijbiomac_2024_130062 crossref_primary_10_1016_j_prerep_2024_100019 crossref_primary_10_1016_j_jhep_2023_01_024 crossref_primary_10_1093_nutrit_nuae074 crossref_primary_10_1089_dia_2024_0122 crossref_primary_10_1038_s41413_021_00142_4 crossref_primary_10_3389_fendo_2023_1256514 crossref_primary_10_1111_dom_15869 crossref_primary_10_1016_j_bbalip_2022_159195 crossref_primary_10_1016_j_bmcl_2023_129454 crossref_primary_10_1016_j_lfs_2021_119374 crossref_primary_10_3389_fendo_2019_00155 crossref_primary_10_3390_ijms252011299 crossref_primary_10_3389_fcell_2022_950623 crossref_primary_10_3389_fendo_2021_731974 crossref_primary_10_1007_s13340_024_00751_4 crossref_primary_10_3389_fendo_2022_1033479 crossref_primary_10_1007_s11428_023_01109_1 crossref_primary_10_1016_j_tins_2024_04_003 crossref_primary_10_1021_acs_jmedchem_9b00835 crossref_primary_10_1111_jnc_15314 crossref_primary_10_1161_HYPERTENSIONAHA_119_13778 crossref_primary_10_1016_j_celrep_2020_108271 crossref_primary_10_3390_ijms26041651 crossref_primary_10_3389_fcell_2021_777026 crossref_primary_10_2106_JBJS_RVW_23_00167 crossref_primary_10_1038_s41467_020_18249_3 crossref_primary_10_1111_jne_12664 crossref_primary_10_18553_jmcp_2023_29_3_276 crossref_primary_10_7326_ANNALS_24_01590 crossref_primary_10_1210_clinem_dgab163 crossref_primary_10_3389_fendo_2022_1047883 crossref_primary_10_3390_receptors4010002 crossref_primary_10_1002_oby_23719 crossref_primary_10_3389_fchem_2021_711242 crossref_primary_10_1016_j_ebiom_2019_03_012 crossref_primary_10_2337_dbi18_0008 crossref_primary_10_32948_ajpt_2024_11_22 crossref_primary_10_1038_s41387_024_00281_7 crossref_primary_10_1080_00325481_2020_1798099 crossref_primary_10_18787_jr_2023_00010 crossref_primary_10_4093_jkd_2021_22_2_126 crossref_primary_10_2147_DMSO_S474196 crossref_primary_10_1210_jendso_bvae200 crossref_primary_10_1515_biol_2022_0909 crossref_primary_10_1007_s11695_023_06975_8 crossref_primary_10_1177_20406223221108064 crossref_primary_10_1039_D4TB02261K crossref_primary_10_1186_s12944_023_01880_6 crossref_primary_10_1007_s13300_023_01515_0 crossref_primary_10_1016_j_smim_2022_101699 crossref_primary_10_2174_0929867330666230416153301 crossref_primary_10_1177_13872877241304673 crossref_primary_10_3389_fendo_2023_1085799 crossref_primary_10_3389_fphar_2022_1016635 crossref_primary_10_1007_s00125_019_05021_6 crossref_primary_10_3390_nu11071517 crossref_primary_10_1021_acs_jcim_3c00564 crossref_primary_10_1111_dom_15219 crossref_primary_10_26599_FMH_2025_9420074 crossref_primary_10_1111_dom_14121 crossref_primary_10_1002_oby_23772 crossref_primary_10_1016_j_intimp_2020_106715 crossref_primary_10_1111_jdi_13533 crossref_primary_10_3390_cimb45060288 crossref_primary_10_3390_nu15030556 crossref_primary_10_2337_dbi20_0028 crossref_primary_10_1016_j_molmet_2019_07_008 crossref_primary_10_3390_nu14224886 crossref_primary_10_1111_obr_13792 crossref_primary_10_21215_kjfp_2025_15_1_2 crossref_primary_10_1039_D3RA05677E crossref_primary_10_1155_2020_6138438 crossref_primary_10_1016_j_mayocp_2020_10_002 crossref_primary_10_1016_j_ejps_2022_106218 crossref_primary_10_1096_fj_202402546R crossref_primary_10_1051_medsci_2024153 crossref_primary_10_1007_s00383_024_05957_w crossref_primary_10_1007_s11655_024_3915_1 crossref_primary_10_1016_j_ejps_2024_106818 crossref_primary_10_3389_fphar_2021_781856 crossref_primary_10_37349_eds_2023_00015 crossref_primary_10_1126_science_adj2537 crossref_primary_10_1089_dia_2024_0533 crossref_primary_10_1111_dom_14572 crossref_primary_10_1210_clinem_dgaa285 crossref_primary_10_1055_a_2463_9784 crossref_primary_10_1007_s40610_023_00156_3 crossref_primary_10_1126_scitranslmed_aaw9996 crossref_primary_10_1007_s11886_023_02016_z crossref_primary_10_1038_s41598_021_03283_y crossref_primary_10_1007_s00198_018_4649_8 crossref_primary_10_1016_j_amjmed_2025_01_021 crossref_primary_10_1155_2022_7563281 crossref_primary_10_1080_14656566_2022_2108702 crossref_primary_10_1111_1753_0407_70044 crossref_primary_10_1186_s12902_023_01500_5 crossref_primary_10_1126_sciadv_aaz4988 crossref_primary_10_1016_j_bbadis_2021_166211 crossref_primary_10_1007_s13181_024_00999_x crossref_primary_10_1038_s41392_020_00435_w crossref_primary_10_1007_s40261_024_01351_5 crossref_primary_10_2337_db20_0262 crossref_primary_10_1038_s41374_018_0170_0 crossref_primary_10_1016_j_physbeh_2020_113039 crossref_primary_10_1159_000529438 crossref_primary_10_3390_ijms23020739 crossref_primary_10_1186_s12872_024_04427_4 crossref_primary_10_1038_s41467_022_34258_w crossref_primary_10_1016_j_jff_2022_105321 crossref_primary_10_1080_09637486_2023_2262780 crossref_primary_10_1007_s12630_024_02810_5 crossref_primary_10_21518_2079_701X_2019_21_189_197 crossref_primary_10_1186_s13020_021_00486_3 crossref_primary_10_1016_j_lpm_2023_104178 crossref_primary_10_1097_MOP_0000000000001379 crossref_primary_10_1007_s12609_024_00550_5 crossref_primary_10_3390_ijerph20032122 crossref_primary_10_1016_j_jhep_2022_04_002 crossref_primary_10_1002_btm2_10351 crossref_primary_10_3390_ijms25084358 crossref_primary_10_17925_EE_2022_18_1_43 crossref_primary_10_1155_2022_4554996 crossref_primary_10_1038_s41392_023_01619_w crossref_primary_10_3390_diseases12010014 crossref_primary_10_1007_s00125_023_05906_7 crossref_primary_10_1039_D3TB01202F crossref_primary_10_1016_j_bmc_2019_01_001 crossref_primary_10_1056_NEJMra2216691 crossref_primary_10_3390_ijms22020775 crossref_primary_10_1096_fj_202100126R crossref_primary_10_3390_diseases11010050 crossref_primary_10_7759_cureus_69844 crossref_primary_10_1111_dom_16106 crossref_primary_10_3389_fendo_2022_1012904 crossref_primary_10_1038_s41589_024_01714_1 crossref_primary_10_1007_s13679_020_00409_7 crossref_primary_10_1016_j_ebiom_2023_104684 crossref_primary_10_1007_s12325_022_02128_y crossref_primary_10_1016_j_phymed_2023_154982 crossref_primary_10_1111_jre_13242 crossref_primary_10_1016_j_diabres_2023_110605 crossref_primary_10_3389_fneur_2022_844697 crossref_primary_10_1507_endocrj_EJ24_0286 crossref_primary_10_3390_biom12010104 crossref_primary_10_3390_diseases12090195 crossref_primary_10_1021_acs_jcim_3c00752 crossref_primary_10_1038_s41575_023_00888_8 crossref_primary_10_1002_ehf2_12937 crossref_primary_10_3389_fnut_2022_992682 crossref_primary_10_1016_j_phrs_2021_105649 crossref_primary_10_1002_oby_23563 crossref_primary_10_1111_jdi_13764 crossref_primary_10_1093_advances_nmz038 crossref_primary_10_1016_j_medj_2021_10_004 crossref_primary_10_1038_s41573_025_01139_y crossref_primary_10_1055_a_2505_5330 crossref_primary_10_3389_fendo_2024_1486793 crossref_primary_10_1016_j_apsb_2022_06_003 crossref_primary_10_3389_fphys_2023_1231621 crossref_primary_10_3390_ijms23179583 crossref_primary_10_1210_clinem_dgac418 crossref_primary_10_1038_s42255_021_00344_4 crossref_primary_10_1038_s41598_022_22511_7 crossref_primary_10_1192_j_eurpsy_2023_2474 crossref_primary_10_1038_s41598_023_42665_2 crossref_primary_10_1002_phar_70009 crossref_primary_10_1111_dom_15235 crossref_primary_10_1016_j_ejphar_2024_176903 crossref_primary_10_1002_hep_31856 crossref_primary_10_1001_jama_2024_10816 crossref_primary_10_1080_13543784_2021_1951701 crossref_primary_10_3389_fphar_2024_1463187 crossref_primary_10_1371_journal_pone_0241651 crossref_primary_10_1080_10408398_2023_2240886 crossref_primary_10_1017_S0029665122002695 crossref_primary_10_12677_ACM_2023_134905 crossref_primary_10_3390_gastroent15010014 crossref_primary_10_3390_ijms23042336 crossref_primary_10_1186_s10020_022_00574_6 crossref_primary_10_3389_fendo_2022_991397 crossref_primary_10_58931_cdet_2023_1318 crossref_primary_10_1111_tri_13883 crossref_primary_10_1016_j_soard_2024_01_005 crossref_primary_10_1016_j_ejmech_2022_114214 crossref_primary_10_1016_j_phrs_2018_09_025 crossref_primary_10_1016_j_jacc_2021_02_057 crossref_primary_10_3389_fendo_2024_1340625 crossref_primary_10_1096_fj_202402269RR crossref_primary_10_1002_oby_23374 crossref_primary_10_1177_11795514211042023 crossref_primary_10_1016_j_neuroscience_2024_11_022 crossref_primary_10_1080_17446651_2023_2187215 crossref_primary_10_1016_j_mcna_2024_03_002 crossref_primary_10_1007_s11695_021_05877_x crossref_primary_10_1080_14740338_2025_2468860 crossref_primary_10_3390_bios13010048 crossref_primary_10_1016_j_ajcnut_2023_05_003 crossref_primary_10_1016_j_ophtha_2024_10_030 crossref_primary_10_1210_jc_2019_00296 crossref_primary_10_1021_acs_bioconjchem_0c00291 crossref_primary_10_1016_j_cmet_2021_03_014 crossref_primary_10_1016_j_molmet_2019_09_010 crossref_primary_10_3390_pharmaceutics13060816 crossref_primary_10_1038_s41366_023_01414_1 crossref_primary_10_3389_fphar_2024_1372399 crossref_primary_10_1097_MS9_0000000000002592 crossref_primary_10_3389_fendo_2021_649525 crossref_primary_10_3803_EnM_2024_1942 crossref_primary_10_3390_medicina60122067 crossref_primary_10_3803_EnM_2024_1940 crossref_primary_10_1016_j_biochi_2018_11_009 crossref_primary_10_3390_jcm13010201 crossref_primary_10_3389_fcell_2020_602574 crossref_primary_10_1038_s41392_022_01070_3 crossref_primary_10_1007_s00125_021_05505_4 crossref_primary_10_1016_j_xcrm_2021_100387 crossref_primary_10_1186_s12944_024_02416_2 crossref_primary_10_1111_dom_14174 crossref_primary_10_1111_dom_14173 crossref_primary_10_1016_j_yfrne_2023_101081 crossref_primary_10_1111_cpr_12785 crossref_primary_10_1002_jpen_1608 crossref_primary_10_1016_j_cpha_2022_10_007 crossref_primary_10_1038_s41467_020_17363_6 crossref_primary_10_3389_fnins_2022_977374 crossref_primary_10_1002_jcph_2371 crossref_primary_10_1210_jendso_bvab128 crossref_primary_10_3803_EnM_2024_1951 crossref_primary_10_1002_1873_3468_14282 crossref_primary_10_1016_j_peptides_2019_170100 crossref_primary_10_1111_dom_16126 crossref_primary_10_7759_cureus_66311 crossref_primary_10_3389_fnmol_2024_1479876 crossref_primary_10_3389_fphar_2021_768023 crossref_primary_10_1111_jnc_15765 |
Cites_doi | 10.1038/nm.3761 10.1016/S0140-6736(15)00803-X 10.2337/db14-0883 10.1210/en.2018-00004 10.7554/eLife.06253 10.2337/dc14-2690 10.1016/S0140-6736(06)69705-5 10.2337/dc17-1638 10.2337/dc16-0690 10.1152/ajpregu.00491.2013 10.1007/s00125-016-3992-6 10.1371/journal.pone.0100778 10.1210/en.2008-1479 10.1523/JNEUROSCI.22-23-10470.2002 10.1371/journal.pone.0142352 10.1016/j.cmet.2014.04.005 10.1016/j.molmet.2013.11.010 10.1038/nature23874 10.1016/S0140-6736(09)61375-1 10.1152/ajpendo.00283.2013 10.1038/nature22378 10.1210/en.2007-1292 10.1016/j.amjmed.2017.03.010 10.1002/ejhf.657 10.1007/s00125-008-1149-y 10.1210/endo.140.1.6421 10.1523/JNEUROSCI.5977-08.2009 10.1016/j.yjmcc.2015.09.018 10.2337/db16-1102 10.1016/S2213-8587(13)70218-3 10.2337/diacare.21.11.1925 10.2337/db12-1498 10.1056/NEJMoa1603827 10.1038/ijo.2013.162 10.1016/j.chom.2013.09.012 10.1016/j.cmet.2016.08.003 10.1016/j.cmet.2017.07.011 10.2337/dc16-2113 10.2337/diabetes.48.1.86 10.1038/nature22800 10.2337/db10-0474 10.1016/j.molmet.2017.03.006 10.2337/dc16-0691 10.2337/dc11-0291 10.1038/sj.ijo.0803344 10.1523/JNEUROSCI.3579-15.2016 10.1124/pr.115.011395 10.1172/JCI97233 10.1001/jama.2016.10260 10.1152/ajpregu.00123.2015 10.1001/jamainternmed.2016.1531 10.1111/dom.12748 10.1210/en.2009-1272 10.1210/jc.2010-2318 10.1016/S0140-6736(17)31585-4 10.1056/NEJMp1001578 10.1172/JCI81335 10.1056/NEJMoa1612917 10.1161/CIRCULATIONAHA.116.024279 10.1007/s00125-015-3754-x 10.1210/en.2016-1302 10.1172/JCI68295 10.1210/en.2013-1934 10.1016/j.cmet.2016.08.020 10.1038/s41467-017-02488-y 10.1038/clpt.2010.184 10.2337/db13-1268 10.1152/ajpgi.00035.2013 10.2337/dc14-0893 10.1007/s00125-010-1937-z 10.2337/db13-0954 10.1038/nm.2513 10.1056/NEJMoa1607141 10.1016/j.cels.2016.09.002 10.1126/scitranslmed.aad3744 10.1210/jc.2015-3449 10.2337/db07-1824 10.1210/en.2014-1717 10.2337/db13-1440 10.1172/JCI72434 10.1016/j.neuron.2017.09.042 10.2337/dc16-2684 10.1056/NEJMoa1509225 10.1111/dom.12826 10.1152/ajpgi.00453.2006 10.1038/ncomms9918 10.1016/j.celrep.2014.10.032 10.1172/JCI25483 10.2337/db15-0973 10.1016/S2213-8587(17)30412-6 10.1056/NEJMp1314078 10.1152/ajpgi.00293.2015 10.1038/modpathol.2014.113 10.1053/j.gastro.2013.11.044 10.1001/jama.2017.14752 10.1038/nm.4345 10.1111/dom.12879 10.1038/nrendo.2013.47 10.2337/db13-0822 10.1016/j.cmet.2016.06.009 10.1038/nm.3128 10.2337/diabetes.54.8.2390 10.2337/db11-1732 10.1016/j.celrep.2017.10.008 10.2337/dc09-0773 10.1161/ATVBAHA.116.307930 10.1016/j.celrep.2015.06.062 10.1016/j.cmet.2017.04.013 10.1021/cb1002015 10.1016/j.cmet.2015.10.017 10.1172/JCI75276 10.1210/me.2011-1119 10.1016/j.cmet.2013.04.008 10.1038/nature22394 10.1016/j.cell.2016.05.023 10.1096/fj.14-265983 10.1016/j.cmet.2006.10.001 10.1124/pr.55.1.6 10.1172/JCI91761 10.1016/j.cmet.2016.06.016 10.1007/s00125-009-1611-5 10.1038/nm1196-1254 10.1002/jcph.940 10.2337/db07-0697 10.1172/JCI42497 10.1161/ATVBAHA.112.246207 10.1146/annurev-physiol-021113-170317 10.2337/db14-0558 10.1016/j.cell.2016.05.011 10.1016/j.cmet.2015.02.005 10.1038/ncomms6897 10.1152/ajpendo.00412.2015 10.2337/db13-0903 10.1210/en.2012-1937 10.2337/db08-1198 10.1016/j.cmet.2011.02.001 10.2337/db14-1577 10.1126/scitranslmed.3007218 10.1016/j.regpep.2012.08.005 10.1161/CIRCRESAHA.114.301958 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2018.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 756 |
ExternalDocumentID | 29617641 10_1016_j_cmet_2018_03_001 S1550413118301797 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR grantid: 154321 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-dd525d9cdb88ac28bbdb61ab778844ae381ce05b013f1a67bc30ff8a9d5e492c3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Fri Jul 11 12:25:23 EDT 2025 Thu Apr 03 07:07:52 EDT 2025 Tue Jul 01 03:58:17 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 Fri Feb 23 02:27:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | G protein-coupled receptor body weight cardiovascular disease inflammation incretin metabolism diabetes hypertension obesity drug |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-dd525d9cdb88ac28bbdb61ab778844ae381ce05b013f1a67bc30ff8a9d5e492c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413118301797 |
PMID | 29617641 |
PQID | 2022130863 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2022130863 pubmed_primary_29617641 crossref_primary_10_1016_j_cmet_2018_03_001 crossref_citationtrail_10_1016_j_cmet_2018_03_001 elsevier_sciencedirect_doi_10_1016_j_cmet_2018_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-03 |
PublicationDateYYYYMMDD | 2018-04-03 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Keller, Trautmann, Haber, Tham, Hunt, Mace, Linnebjerg (bib51) 2012; 179 Plamboeck, Veedfald, Deacon, Hartmann, Wettergren, Svendsen, Meisner, Hovendal, Vilsbøll, Knop, Holst (bib87) 2013; 304 Parks, Rosebraugh (bib83) 2010; 362 Vetter, Wadden, Teff, Khan, Carvajal, Ritter, Moore, Chittams, Iagnocco, Murayama (bib122) 2015; 64 Mathieu, Zinman, Hemmingsson, Woo, Colman, Christiansen, Linder, Bode (bib70) 2016; 39 Nogueiras, Pérez-Tilve, Veyrat-Durebex, Morgan, Varela, Haynes, Patterson, Disse, Pfluger, Lopez (bib81) 2009; 29 Sandoval, Bagnol, Woods, D'Alessio, Seeley (bib98) 2008; 57 Finan, Yang, Ottaway, Smiley, Ma, Clemmensen, Chabenne, Zhang, Habegger, Fischer (bib32) 2015; 21 Breton, Tennoune, Lucas, Francois, Legrand, Jacquemot, Goichon, Guérin, Peltier, Pestel-Caron (bib9) 2016; 23 Patterson, Ottaway, Gelfanov, Smiley, Perez-Tilve, Pfluger, Tschöp, Dimarchi (bib84) 2011; 6 Maida, Lamont, Cao, Drucker (bib66) 2011; 54 Drucker, Habener, Holst (bib24) 2017; 127 Koehler, Baggio, Cao, Abdulla, Campbell, Secher, Jelsing, Larsen, Drucker (bib55) 2015; 64 Scott, Freitag, Li, Chu, Surendran, Young, Grarup, Stancáková, Chen, Varga (bib99) 2016; 8 Muraro, Dharmadhikari, Grun, Groen, Dielen, Jansen, van Gurp, Engelse, Carlotti, de Koning, van Oudenaarden (bib76) 2016; 3 Baggio, Yusta, Mulvihill, Cao, Streutker, Butany, Cappola, Margulies, Drucker (bib6) 2018; 159 Nauck, Kemmeries, Holst, Meier (bib78) 2011; 60 Tschen, Georgia, Dhawan, Bhushan (bib118) 2011; 25 Yusta, Matthews, Flock, Ussher, Lavoie, Mawe, Drucker (bib139) 2017; 6 Aviles-Olmos, Dickson, Kefalopoulou, Djamshidian, Ell, Soderlund, Whitton, Wyse, Isaacs, Lees (bib5) 2013; 123 Simonsen, Pilgaard, Orskov, Rosenkilde, Hartmann, Holst, Deacon (bib107) 2007; 293 Ahrén, Hirsch, Pieber, Mathieu, Gomez-Peralta, Hansen, Philotheou, Birch, Christiansen, Jensen (bib1) 2016; 39 Williams, Chang, Strochlic, Umans, Lowell, Liberles (bib128) 2016; 166 Napolitano, Miller, Nicholls, Baker, Van Horn, Thomas, Rajpal, Spivak, Brown, Nunez (bib77) 2014; 9 Hou, Ernst, Heidenreich, Williams (bib44) 2016; 310 Madsbad, Dirksen, Holst (bib65) 2014; 2 Yusta, Baggio, Estall, Koehler, Holland, Li, Pipeleers, Ling, Drucker (bib137) 2006; 4 Pyke, Heller, Kirk, Ørskov, Reedtz-Runge, Kaastrup, Hvelplund, Bardram, Calatayud, Knudsen (bib89) 2014; 155 Bethel, Patel, Merrill, Lokhnygina, Buse, Mentz, Pagidipati, Chan, Gustavson, Iqbal (bib7) 2018; 6 Lynch, Hogan, Duquette, Lester, Banks, LeClair, Cohen, Ghosh, Lu, Corrigan (bib64) 2016; 24 Lebrun, Lenaerts, Kiers, Pais de Barros, Le Guern, Plesnik, Thomas, Bourgeois, Dejong, Kox (bib61) 2017; 21 Graaf, Donnelly, Wootten, Lau, Sexton, Miller, Ahn, Liao, Fletcher, Yang (bib37) 2016; 68 Retnakaran, Kramer, Choi, Swaminathan, Zinman (bib93) 2014; 37 Drucker (bib21) 2013; 62 Wang, Liu, Xia, Liu, Mirabella, Pang (bib124) 2015; 12 Preiss, Dawed, Welsh, Heggie, Jones, Dekker, Koivula, Hansen, Stewart, Holman (bib88) 2017; 19 Waser, Blank, Karamitopoulou, Perren, Reubi (bib125) 2015; 28 Zhang, Sun, Feng, Hu, Chu, Qu, Tarrasch, Li, Sun Kobilka, Kobilka, Skiniotis (bib141) 2017; 546 Gaykema, Newmyer, Ottolini, Raje, Warthen, Lambeth, Niccum, Yao, Huang, Schulman (bib36) 2017; 127 Hyltén-Cavallius, Iepsen, Wewer Albrechtsen, Svendstrup, Lubberding, Hartmann, Jespersen, Linneberg, Christiansen, Vestergaard (bib47) 2017; 135 Iwasaki, Sendo, Dezaki, Hira, Sato, Nakata, Goswami, Aoki, Arai, Kumari (bib48) 2018; 9 Margulies, Hernandez, Redfield, Givertz, Oliveira, Cole, Mann, Whellan, Kiernan, Felker (bib67) 2016; 316 Frias, Bastyr, Vignati, Tschop, Schmitt, Owen, Christensen, DiMarchi (bib34) 2017; 26 Faillie, Yu, Yin, Hillaire-Buys, Barkun, Azoulay (bib30) 2016; 176 Chadwick, Fletcher, Parrula, Bonner-Weir, Mangipudy, Janovitz, Graziano, Roy, Reilly (bib14) 2014; 63 Campbell, Drucker (bib12) 2013; 17 Jorsal, Kistorp, Holmager, Tougaard, Nielsen, Hänselmann, Nilsson, Møller, Hjort, Rasmussen (bib50) 2017; 19 Wu, Esteve, Tremaroli, Khan, Caesar, Mannerås-Holm, Stahlman, Olsson, Serino, Planas-Fèlix (bib131) 2017; 23 Hwang, Park, Kim, Kim, Ka, Lee, Seong, Seok, Kim (bib46) 2015; 29 Athauda, Maclagan, Skene, Bajwa-Joseph, Letchford, Chowdhury, Hibbert, Budnik, Zampedri, Dickson (bib4) 2017; 390 Lamont, Li, Kwan, Brown, Gaisano, Drucker (bib58) 2012; 122 Plamboeck, Veedfald, Deacon, Hartmann, Vilsbøll, Knop, Holst (bib86) 2015; 309 Wichmann, Allahyar, Greiner, Plovier, Lundén, Larsson, Drucker, Delzenne, Cani, Bäckhed (bib127) 2013; 14 Yamada, Yamada, Tsukiyama, Yamada, Udagawa, Takahashi, Tanaka, Drucker, Seino, Inagaki (bib135) 2008; 149 Panjwani, Mulvihill, Longuet, Yusta, Campbell, Brown, Streutker, Holland, Cao, Baggio, Drucker (bib82) 2013; 154 Ye, Hao, Mumphrey, Townsend, Patterson, Stylopoulos, Munzberg, Morrison, Drucker, Berthoud (bib136) 2014; 306 Wynne, Park, Small, Patterson, Ellis, Murphy, Wren, Frost, Meeran, Ghatei, Bloom (bib133) 2005; 54 Nguyen, Mandard, Dray, Deckert, Valet, Besnard, Drucker, Lagrost, Grober (bib80) 2014; 63 Steinberg, Rosenstock, Wadden, Donsmark, Jensen, DeVries (bib115) 2017; 40 van Can, Sloth, Jensen, Flint, Blaak, Saris (bib121) 2014; 38 Armstrong, Gaunt, Aithal, Barton, Hull, Parker, Hazlehurst, Guo, Abouda, Aldersley (bib2) 2016; 387 Flock, Baggio, Longuet, Drucker (bib33) 2007; 56 Mikkelsen, Frost, Bahl, Licht, Jensen, Rosenberg, Pedersen, Hansen, Rehfeld, Holst (bib74) 2015; 10 Hayes, Bradley, Grill (bib40) 2009; 150 Reiner, Mietlicki-Baase, McGrath, Zimmer, Bence, Sousa, Konanur, Krawczyk, Burk, Kanoski (bib92) 2016; 36 Wilson-Pérez, Chambers, Ryan, Li, Sandoval, Stoffers, Drucker, Pérez-Tilve, Seeley (bib129) 2013; 62 Mokadem, Zechner, Margolskee, Drucker, Aguirre (bib75) 2014; 3 DeFronzo, Buse, Kim, Burns, Skare, Baron, Fineman (bib20) 2016; 59 Rankin, Kushner (bib90) 2009; 58 Salehi, Gastaldelli, D'Alessio (bib97) 2014; 146 Finan, Ma, Ottaway, Muller, Habegger, Heppner, Kirchner, Holland, Hembree, Raver (bib31) 2013; 5 Holman, Bethel, Mentz, Thompson, Lokhnygina, Buse, Chan, Choi, Gustavson, Iqbal (bib43) 2017; 377 Smits, Tonneijck, Muskiet, Hoekstra, Kramer, Diamant, Serne, van Raalte (bib112) 2016; 36 Davies, Pieber, Hartoft-Nielsen, Hansen, Jabbour, Rosenstock (bib18) 2017; 318 Nauck, Sauerwald, Ritzel, Holst, Schmiegel (bib79) 1998; 21 Kinzig, D'Alessio, Seeley (bib53) 2002; 22 Drucker (bib23) 2016; 101 Burmeister, Ayala, Smouse, Landivar-Rocha, Brown, Drucker, Stoffers, Sandoval, Seeley, Ayala (bib11) 2017; 66 Sjoberg, Holst, Rattigan, Richter, Kiens (bib109) 2014; 306 Kim, Platt, Shibasaki, Quaggin, Backx, Seino, Simpson, Drucker (bib52) 2013; 19 Sadry, Drucker (bib96) 2013; 9 Bjerre Knudsen, Madsen, Andersen, Almholt, de Boer, Drucker, Gotfredsen, Egerod, Hegelund, Jacobsen (bib8) 2010; 151 Smits, Tonneijck, Muskiet, Hoekstra, Kramer, Diamant, Nieuwdorp, Groen, Cahen, van Raalte (bib111) 2016; 18 Xiao, Bandsma, Dash, Szeto, Lewis (bib134) 2012; 32 Zhang, Sturchler, Zhu, Nieto, Cistrone, Xie, He, Yea, Jones, Turn (bib140) 2015; 6 Drucker (bib22) 2016; 24 Simon, Strassburger, Nowotny, Kolb, Nowotny, Burkart, Zivehe, Hwang, Stehle, Pacini (bib106) 2015; 38 Ten Kulve, Veltman, Gerdes, van Bloemendaal, Barkhof, Deacon, Holst, Drent, Diamant, IJzerman (bib117) 2017; 40 Liu, Conde, Zhang, Lilascharoen, Xu, Lim, Seeley, Zhu, Scott, Pang (bib62) 2017; 96 Marso, Bain, Consoli, Eliaschewitz, Jodar, Leiter, Lingvay, Rosenstock, Seufert, Warren (bib68) 2016; 375 Secher, Jelsing, Baquero, Hecksher-Sørensen, Cowley, Dalbøge, Hansen, Grove, Pyke, Raun (bib101) 2014; 124 Smushkin, Sathananthan, Sathananthan, Dalla Man, Micheletto, Zinsmeister, Cobelli, Vella (bib113) 2012; 61 Hansotia, Maida, Flock, Yamada, Tsukiyama, Seino, Drucker (bib39) 2007; 117 Smith, An, Wagner, Lewis, Cohen, Li, Mahbod, Sandoval, Perez-Tilve, Tamarina (bib110) 2014; 19 Grasset, Puel, Charpentier, Collet, Christensen, Tercé, Burcelin (bib38) 2017; 25 Koehler, Baggio, Yusta, Longuet, Rowland, Cao, Holland, Brubaker, Drucker (bib56) 2015; 21 Drucker, Nauck (bib25) 2006; 368 Scrocchi, Brown, MacLusky, Brubaker, Auerbach, Joyner, Drucker (bib100) 1996; 2 Wynne, Park, Small, Meeran, Ghatei, Frost, Bloom (bib132) 2006; 30 Jazayeri, Rappas, Brown, Kean, Errey, Robertson, Fiez-Vandal, Andrews, Congreve, Bortolato (bib49) 2017; 546 Marso, Daniels, Brown-Frandsen, Kristensen, Mann, Nauck, Nissen, Pocock, Poulter, Ravn (bib69) 2016; 375 Meeran, O'Shea, Edwards, Turton, Heath, Gunn, Abusnana, Rossi, Small, Goldstone (bib72) 1999; 140 Migoya, Bergeron, Miller, Snyder, Tanen, Hilliard, Weiss, Larson, Gutierrez, Jiang (bib73) 2010; 88 Vahle, Byrd, Blackbourne, Martin, Sorden, Ryan, Pienkowski, Wijsman, Smith, Rosol (bib120) 2015; 156 Edwards, Todd, Mahmoudi, Wang, Wang, Ghatei, Bloom (bib27) 1999; 48 Dai, Hang, Shostak, Poffenberger, Hart, Prasad, Phillips, Levy, Greiner, Shultz (bib17) 2017; 127 Landgraf, Tsang, Leliavski, Koch, Barclay, Drucker, Oster (bib59) 2015; 4 Sisley, Gutierrez-Aguilar, Scott, D'Alessio, Sandoval, Seeley (bib108) 2014; 124 Song, Yang, Wang, de Graaf, Zhou, Jiang, Liu, Cai, Dai, Lin (bib114) 2017; 546 Cohen, Esterhazy, Kim, Lemetre, Aguilar, Gordon, Pickard, Cross, Emiliano, Han (bib16) 2017; 549 Wootten, Reynolds, Smith, Mobarec, Koole, Savage, Pabreja, Simms, Sridhar, Furness (bib130) 2016; 165 Kirk, Pyke, von Herrath, Hasselby, Pedersen, Mortensen, Knudsen, Coppieters (bib54) 2017; 19 Pfeffer, Claggett, Diaz, Dickstein, Gerstein, Kober, Lawson, Ping, Wei, Lewis (bib85) 2015; 373 Astrup, Rössner, Van Gaal, Rissanen, Niskanen, Al Hakim, Madsen, Rasmussen, Lean (bib3) 2009; 374 Shah, Morieri, Marcovina, Sigal, Gerstein, Wagner, Motsinger-Reif, Buse, Kraft, Mychaleckyj, Doria (bib104) 2018; 41 Drucker, Yusta (bib26) 2014; 76 Carmody, Muñoz, Yin, Kaplan (bib13) 2016; 310 Egan, Blind, Dunder, de Graeff, Hummer, Bourcier, Rosebraugh (bib28) 2014; 370 Garibay, McGavigan, Lee, Ficorilli, Cox, Michael, Sloop, Cummings (bib35) 2016; 157 Hayes, Leichner, Zhao, Lee, Chowansky, Zimmer, De Jonghe, Kanoski, Grill, Bence (bib41) 2011; 13 Shaddinger, Young, Billiard, Collins, Hussaini, Nino (bib103) 2017; 57 ten Kulve, Veltman, van Bloemendaal, Barkhof, Deacon, Holst, Ko Wynne (10.1016/j.cmet.2018.03.001_bib132) 2006; 30 Nogueiras (10.1016/j.cmet.2018.03.001_bib81) 2009; 29 Carmody (10.1016/j.cmet.2018.03.001_bib13) 2016; 310 Koehler (10.1016/j.cmet.2018.03.001_bib56) 2015; 21 Sisley (10.1016/j.cmet.2018.03.001_bib108) 2014; 124 Meeran (10.1016/j.cmet.2018.03.001_bib72) 1999; 140 Grasset (10.1016/j.cmet.2018.03.001_bib38) 2017; 25 Mikkelsen (10.1016/j.cmet.2018.03.001_bib74) 2015; 10 Sandoval (10.1016/j.cmet.2018.03.001_bib98) 2008; 57 Wallner (10.1016/j.cmet.2018.03.001_bib123) 2015; 89 Lynch (10.1016/j.cmet.2018.03.001_bib64) 2016; 24 Krieger (10.1016/j.cmet.2018.03.001_bib57) 2016; 65 Egan (10.1016/j.cmet.2018.03.001_bib28) 2014; 370 Parks (10.1016/j.cmet.2018.03.001_bib83) 2010; 362 Smith (10.1016/j.cmet.2018.03.001_bib110) 2014; 19 Chimerel (10.1016/j.cmet.2018.03.001_bib15) 2014; 9 Kim (10.1016/j.cmet.2018.03.001_bib52) 2013; 19 Iwasaki (10.1016/j.cmet.2018.03.001_bib48) 2018; 9 Margulies (10.1016/j.cmet.2018.03.001_bib67) 2016; 316 Shah (10.1016/j.cmet.2018.03.001_bib104) 2018; 41 Kinzig (10.1016/j.cmet.2018.03.001_bib53) 2002; 22 Sjoberg (10.1016/j.cmet.2018.03.001_bib109) 2014; 306 Steinberg (10.1016/j.cmet.2018.03.001_bib115) 2017; 40 DeFronzo (10.1016/j.cmet.2018.03.001_bib20) 2016; 59 Landgraf (10.1016/j.cmet.2018.03.001_bib59) 2015; 4 Jorsal (10.1016/j.cmet.2018.03.001_bib50) 2017; 19 Wu (10.1016/j.cmet.2018.03.001_bib131) 2017; 23 Scott (10.1016/j.cmet.2018.03.001_bib99) 2016; 8 Smushkin (10.1016/j.cmet.2018.03.001_bib113) 2012; 61 van Can (10.1016/j.cmet.2018.03.001_bib121) 2014; 38 Migoya (10.1016/j.cmet.2018.03.001_bib73) 2010; 88 Vahle (10.1016/j.cmet.2018.03.001_bib120) 2015; 156 Mathieu (10.1016/j.cmet.2018.03.001_bib70) 2016; 39 Pfeffer (10.1016/j.cmet.2018.03.001_bib85) 2015; 373 Yusta (10.1016/j.cmet.2018.03.001_bib137) 2006; 4 Baggio (10.1016/j.cmet.2018.03.001_bib6) 2018; 159 Plamboeck (10.1016/j.cmet.2018.03.001_bib87) 2013; 304 Wang (10.1016/j.cmet.2018.03.001_bib124) 2015; 12 Burmeister (10.1016/j.cmet.2018.03.001_bib11) 2017; 66 Garibay (10.1016/j.cmet.2018.03.001_bib35) 2016; 157 de Heer (10.1016/j.cmet.2018.03.001_bib19) 2008; 51 Holman (10.1016/j.cmet.2018.03.001_bib43) 2017; 377 Rother (10.1016/j.cmet.2018.03.001_bib95) 2009; 32 Hyltén-Cavallius (10.1016/j.cmet.2018.03.001_bib47) 2017; 135 Reijnders (10.1016/j.cmet.2018.03.001_bib91) 2016; 24 Faillie (10.1016/j.cmet.2018.03.001_bib30) 2016; 176 Simonsen (10.1016/j.cmet.2018.03.001_bib107) 2007; 293 Williams (10.1016/j.cmet.2018.03.001_bib128) 2016; 166 Song (10.1016/j.cmet.2018.03.001_bib114) 2017; 546 Hansotia (10.1016/j.cmet.2018.03.001_bib39) 2007; 117 Armstrong (10.1016/j.cmet.2018.03.001_bib2) 2016; 387 Ahrén (10.1016/j.cmet.2018.03.001_bib1) 2016; 39 Hwang (10.1016/j.cmet.2018.03.001_bib46) 2015; 29 Panjwani (10.1016/j.cmet.2018.03.001_bib82) 2013; 154 Breton (10.1016/j.cmet.2018.03.001_bib9) 2016; 23 Scrocchi (10.1016/j.cmet.2018.03.001_bib100) 1996; 2 Nauck (10.1016/j.cmet.2018.03.001_bib79) 1998; 21 Ussher (10.1016/j.cmet.2018.03.001_bib119) 2014; 114 Muraro (10.1016/j.cmet.2018.03.001_bib76) 2016; 3 Napolitano (10.1016/j.cmet.2018.03.001_bib77) 2014; 9 López-Ferreras (10.1016/j.cmet.2018.03.001_bib63) 2017 Campbell (10.1016/j.cmet.2018.03.001_bib12) 2013; 17 Preiss (10.1016/j.cmet.2018.03.001_bib88) 2017; 19 Smits (10.1016/j.cmet.2018.03.001_bib112) 2016; 36 Salehi (10.1016/j.cmet.2018.03.001_bib97) 2014; 146 Yusta (10.1016/j.cmet.2018.03.001_bib138) 2015; 64 Hayes (10.1016/j.cmet.2018.03.001_bib40) 2009; 150 Waser (10.1016/j.cmet.2018.03.001_bib125) 2015; 28 Maida (10.1016/j.cmet.2018.03.001_bib66) 2011; 54 Drucker (10.1016/j.cmet.2018.03.001_bib21) 2013; 62 Frias (10.1016/j.cmet.2018.03.001_bib34) 2017; 26 Ten Kulve (10.1016/j.cmet.2018.03.001_bib117) 2017; 40 Kirk (10.1016/j.cmet.2018.03.001_bib54) 2017; 19 Gaykema (10.1016/j.cmet.2018.03.001_bib36) 2017; 127 Drucker (10.1016/j.cmet.2018.03.001_bib23) 2016; 101 Nguyen (10.1016/j.cmet.2018.03.001_bib80) 2014; 63 Lebrun (10.1016/j.cmet.2018.03.001_bib61) 2017; 21 Flock (10.1016/j.cmet.2018.03.001_bib33) 2007; 56 Smits (10.1016/j.cmet.2018.03.001_bib111) 2016; 18 Mayo (10.1016/j.cmet.2018.03.001_bib71) 2003; 55 Wootten (10.1016/j.cmet.2018.03.001_bib130) 2016; 165 Athauda (10.1016/j.cmet.2018.03.001_bib4) 2017; 390 Hegedüs (10.1016/j.cmet.2018.03.001_bib42) 2011; 96 Wichmann (10.1016/j.cmet.2018.03.001_bib127) 2013; 14 Bunck (10.1016/j.cmet.2018.03.001_bib10) 2011; 34 Finan (10.1016/j.cmet.2018.03.001_bib32) 2015; 21 Edwards (10.1016/j.cmet.2018.03.001_bib27) 1999; 48 Zhang (10.1016/j.cmet.2018.03.001_bib140) 2015; 6 Drucker (10.1016/j.cmet.2018.03.001_bib24) 2017; 127 Koehler (10.1016/j.cmet.2018.03.001_bib55) 2015; 64 Hayes (10.1016/j.cmet.2018.03.001_bib41) 2011; 13 Jazayeri (10.1016/j.cmet.2018.03.001_bib49) 2017; 546 Yamada (10.1016/j.cmet.2018.03.001_bib135) 2008; 149 Reiner (10.1016/j.cmet.2018.03.001_bib92) 2016; 36 Retnakaran (10.1016/j.cmet.2018.03.001_bib93) 2014; 37 Sadry (10.1016/j.cmet.2018.03.001_bib96) 2013; 9 Ellingsgaard (10.1016/j.cmet.2018.03.001_bib29) 2011; 17 Ye (10.1016/j.cmet.2018.03.001_bib136) 2014; 306 Liu (10.1016/j.cmet.2018.03.001_bib62) 2017; 96 Bjerre Knudsen (10.1016/j.cmet.2018.03.001_bib8) 2010; 151 Keller (10.1016/j.cmet.2018.03.001_bib51) 2012; 179 Madsbad (10.1016/j.cmet.2018.03.001_bib65) 2014; 2 Hou (10.1016/j.cmet.2018.03.001_bib44) 2016; 310 Aviles-Olmos (10.1016/j.cmet.2018.03.001_bib5) 2013; 123 Marso (10.1016/j.cmet.2018.03.001_bib68) 2016; 375 Shah (10.1016/j.cmet.2018.03.001_bib105) 2014; 63 Astrup (10.1016/j.cmet.2018.03.001_bib3) 2009; 374 Wessel (10.1016/j.cmet.2018.03.001_bib126) 2015; 6 Yusta (10.1016/j.cmet.2018.03.001_bib139) 2017; 6 Davies (10.1016/j.cmet.2018.03.001_bib18) 2017; 318 Drucker (10.1016/j.cmet.2018.03.001_bib25) 2006; 368 Simon (10.1016/j.cmet.2018.03.001_bib106) 2015; 38 Bethel (10.1016/j.cmet.2018.03.001_bib7) 2018; 6 Rankin (10.1016/j.cmet.2018.03.001_bib90) 2009; 58 Drucker (10.1016/j.cmet.2018.03.001_bib26) 2014; 76 Lebherz (10.1016/j.cmet.2018.03.001_bib60) 2017; 130 Nauck (10.1016/j.cmet.2018.03.001_bib78) 2011; 60 Richards (10.1016/j.cmet.2018.03.001_bib94) 2014; 63 Plamboeck (10.1016/j.cmet.2018.03.001_bib86) 2015; 309 Patterson (10.1016/j.cmet.2018.03.001_bib84) 2011; 6 Finan (10.1016/j.cmet.2018.03.001_bib31) 2013; 5 Shaddinger (10.1016/j.cmet.2018.03.001_bib103) 2017; 57 Dai (10.1016/j.cmet.2018.03.001_bib17) 2017; 127 Vetter (10.1016/j.cmet.2018.03.001_bib122) 2015; 64 Wynne (10.1016/j.cmet.2018.03.001_bib133) 2005; 54 Zhang (10.1016/j.cmet.2018.03.001_bib141) 2017; 546 Drucker (10.1016/j.cmet.2018.03.001_bib22) 2016; 24 Pyke (10.1016/j.cmet.2018.03.001_bib89) 2014; 155 Segerstolpe (10.1016/j.cmet.2018.03.001_bib102) 2016; 24 Graaf (10.1016/j.cmet.2018.03.001_bib37) 2016; 68 Hsieh (10.1016/j.cmet.2018.03.001_bib45) 2010; 53 Marso (10.1016/j.cmet.2018.03.001_bib69) 2016; 375 Mokadem (10.1016/j.cmet.2018.03.001_bib75) 2014; 3 Chadwick (10.1016/j.cmet.2018.03.001_bib14) 2014; 63 Lamont (10.1016/j.cmet.2018.03.001_bib58) 2012; 122 Tschen (10.1016/j.cmet.2018.03.001_bib118) 2011; 25 Secher (10.1016/j.cmet.2018.03.001_bib101) 2014; 124 Cohen (10.1016/j.cmet.2018.03.001_bib16) 2017; 549 Wilson-Pérez (10.1016/j.cmet.2018.03.001_bib129) 2013; 62 ten Kulve (10.1016/j.cmet.2018.03.001_bib116) 2015; 58 Xiao (10.1016/j.cmet.2018.03.001_bib134) 2012; 32 |
References_xml | – volume: 32 start-page: 1513 year: 2012 end-page: 1519 ident: bib134 article-title: Exenatide, a glucagon-like peptide receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 21 start-page: 27 year: 2015 end-page: 36 ident: bib32 article-title: A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents publication-title: Nat. Med. – volume: 32 start-page: 2251 year: 2009 end-page: 2257 ident: bib95 article-title: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes publication-title: Diabetes Care – volume: 76 start-page: 561 year: 2014 end-page: 583 ident: bib26 article-title: Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2 publication-title: Annu. Rev. Physiol. – volume: 64 start-page: 434 year: 2015 end-page: 446 ident: bib122 article-title: GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification publication-title: Diabetes – volume: 19 start-page: 567 year: 2013 end-page: 575 ident: bib52 article-title: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure publication-title: Nat. Med. – volume: 63 start-page: 1303 year: 2014 end-page: 1314 ident: bib14 article-title: Occurrence of spontaneous pancreatic lesions in normal and diabetic rats: a potential confounding factor in the nonclinical assessment of GLP-1-based therapies publication-title: Diabetes – volume: 36 start-page: 2125 year: 2016 end-page: 2132 ident: bib112 article-title: GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus: an acute and 12-week randomized, double-blind, placebo-controlled trial publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 6 start-page: 135 year: 2011 end-page: 145 ident: bib84 article-title: A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1 publication-title: ACS Chem. Biol. – volume: 309 start-page: R544 year: 2015 end-page: R551 ident: bib86 article-title: The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 127 start-page: 1031 year: 2017 end-page: 1045 ident: bib36 article-title: Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight publication-title: J. Clin. Invest. – volume: 4 start-page: 391 year: 2006 end-page: 406 ident: bib137 article-title: GLP-1 receptor activation improves β-cell function and survival following induction of endoplasmic reticulum stress publication-title: Cell Metab. – volume: 3 start-page: 191 year: 2014 end-page: 201 ident: bib75 article-title: Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency publication-title: Mol. Metab. – volume: 124 start-page: 4473 year: 2014 end-page: 4488 ident: bib101 article-title: The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss publication-title: J. Clin. Invest. – volume: 28 start-page: 391 year: 2015 end-page: 402 ident: bib125 article-title: Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas publication-title: Mod. Pathol. – volume: 39 start-page: 1702 year: 2016 end-page: 1710 ident: bib70 article-title: Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial publication-title: Diabetes Care – volume: 40 start-page: 839 year: 2017 end-page: 848 ident: bib115 article-title: Impact of liraglutide on amylase, lipase, and acute pancreatitis in participants with overweight/obesity and normoglycemia, prediabetes, or type 2 diabetes: secondary analyses of pooled data from the SCALE clinical development program publication-title: Diabetes Care – volume: 24 start-page: 593 year: 2016 end-page: 607 ident: bib102 article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes publication-title: Cell Metab. – volume: 155 start-page: 1280 year: 2014 end-page: 1290 ident: bib89 article-title: GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody publication-title: Endocrinology – volume: 57 start-page: 2046 year: 2008 end-page: 2054 ident: bib98 article-title: Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake publication-title: Diabetes – volume: 57 start-page: 1322 year: 2017 end-page: 1329 ident: bib103 article-title: Effect of albiglutide on cholecystokinin-induced gallbladder emptying in healthy individuals: a randomized crossover study publication-title: J. Clin. Pharmacol. – volume: 30 start-page: 1729 year: 2006 end-page: 1736 ident: bib132 article-title: Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial publication-title: Int. J. Obes. (Lond) – volume: 64 start-page: 1046 year: 2015 end-page: 1056 ident: bib55 article-title: Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis publication-title: Diabetes – volume: 3 start-page: 385 year: 2016 end-page: 394.e3 ident: bib76 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst. – volume: 387 start-page: 679 year: 2016 end-page: 690 ident: bib2 article-title: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study publication-title: Lancet – volume: 63 start-page: 483 year: 2014 end-page: 493 ident: bib105 article-title: Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass publication-title: Diabetes – volume: 24 start-page: 510 year: 2016 end-page: 519 ident: bib64 article-title: iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy publication-title: Cell Metab. – volume: 48 start-page: 86 year: 1999 end-page: 93 ident: bib27 article-title: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39 publication-title: Diabetes – volume: 549 start-page: 48 year: 2017 end-page: 53 ident: bib16 article-title: Commensal bacteria make GPCR ligands that mimic human signalling molecules publication-title: Nature – volume: 6 start-page: 105 year: 2018 end-page: 113 ident: bib7 article-title: Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis publication-title: Lancet Diabetes Endocrinol. – volume: 88 start-page: 801 year: 2010 end-page: 808 ident: bib73 article-title: Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1 publication-title: Clin. Pharmacol. Ther. – volume: 176 start-page: 1474 year: 2016 end-page: 1481 ident: bib30 article-title: Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus publication-title: JAMA Intern. Med. – volume: 157 start-page: 3405 year: 2016 end-page: 3409 ident: bib35 article-title: Beta-cell glucagon-like peptide-1 receptor contributes to improved glucose tolerance after vertical sleeve gastrectomy publication-title: Endocrinology – volume: 8 start-page: 341ra376 year: 2016 ident: bib99 article-title: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease publication-title: Sci. Transl. Med. – volume: 304 start-page: G1117 year: 2013 end-page: G1127 ident: bib87 article-title: The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 60 start-page: 1561 year: 2011 end-page: 1565 ident: bib78 article-title: Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans publication-title: Diabetes – volume: 362 start-page: 774 year: 2010 end-page: 777 ident: bib83 article-title: Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy publication-title: N. Engl. J. Med. – volume: 22 start-page: 10470 year: 2002 end-page: 10476 ident: bib53 article-title: The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness publication-title: J. Neurosci. – volume: 24 start-page: 15 year: 2016 end-page: 30 ident: bib22 article-title: The cardiovascular biology of glucagon-like peptide-1 publication-title: Cell Metab. – volume: 63 start-page: 1224 year: 2014 end-page: 1233 ident: bib94 article-title: Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model publication-title: Diabetes – volume: 53 start-page: 552 year: 2010 end-page: 561 ident: bib45 article-title: The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice publication-title: Diabetologia – volume: 14 start-page: 582 year: 2013 end-page: 590 ident: bib127 article-title: Microbial modulation of energy availability in the colon regulates intestinal transit publication-title: Cell Host Microbe – volume: 4 start-page: e06253 year: 2015 ident: bib59 article-title: Oxyntomodulin regulates resetting of the liver circadian clock by food publication-title: Elife – volume: 18 start-page: 1217 year: 2016 end-page: 1225 ident: bib111 article-title: Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients publication-title: Diabetes Obes. Metab. – volume: 58 start-page: 2688 year: 2015 end-page: 2698 ident: bib116 article-title: Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes publication-title: Diabetologia – volume: 21 start-page: 1160 year: 2017 end-page: 1168 ident: bib61 article-title: Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion publication-title: Cell Rep. – volume: 117 start-page: 143 year: 2007 end-page: 152 ident: bib39 article-title: Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure publication-title: J. Clin. Invest. – volume: 306 start-page: E355 year: 2014 end-page: E362 ident: bib109 article-title: GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 6 start-page: 5897 year: 2015 ident: bib126 article-title: Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility publication-title: Nat. Commun. – volume: 51 start-page: 2263 year: 2008 end-page: 2270 ident: bib19 article-title: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas publication-title: Diabetologia – volume: 38 start-page: 1827 year: 2015 end-page: 1834 ident: bib106 article-title: Intake of publication-title: Diabetes Care – volume: 13 start-page: 320 year: 2011 end-page: 330 ident: bib41 article-title: Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation publication-title: Cell Metab. – volume: 68 start-page: 954 year: 2016 end-page: 1013 ident: bib37 article-title: Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes publication-title: Pharmacol. Rev. – volume: 2 start-page: 152 year: 2014 end-page: 164 ident: bib65 article-title: Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery publication-title: Lancet Diabetes Endocrinol. – volume: 123 start-page: 2730 year: 2013 end-page: 2736 ident: bib5 article-title: Exenatide and the treatment of patients with Parkinson's disease publication-title: J. Clin. Invest. – volume: 130 start-page: 833 year: 2017 end-page: 841.e3 ident: bib60 article-title: GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease publication-title: Am. J. Med. – volume: 377 start-page: 1228 year: 2017 end-page: 1239 ident: bib43 article-title: Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes publication-title: N. Engl. J. Med. – volume: 34 start-page: 2041 year: 2011 end-page: 2047 ident: bib10 article-title: Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes publication-title: Diabetes Care – volume: 370 start-page: 794 year: 2014 end-page: 797 ident: bib28 article-title: Pancreatic safety of incretin-based drugs—FDA and EMA assessment publication-title: N. Engl. J. Med. – volume: 41 start-page: 348 year: 2018 end-page: 355 ident: bib104 article-title: Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD publication-title: Diabetes Care – volume: 310 start-page: G26 year: 2016 end-page: G33 ident: bib44 article-title: Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 23 start-page: 850 year: 2017 end-page: 858 ident: bib131 article-title: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug publication-title: Nat. Med. – volume: 9 start-page: 113 year: 2018 ident: bib48 article-title: GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose publication-title: Nat. Commun. – volume: 21 start-page: 379 year: 2015 end-page: 391 ident: bib56 article-title: GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7 publication-title: Cell Metab. – volume: 146 start-page: 669 year: 2014 end-page: 680.e2 ident: bib97 article-title: Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass publication-title: Gastroenterology – volume: 26 start-page: 343 year: 2017 end-page: 352.e2 ident: bib34 article-title: The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes publication-title: Cell Metab. – volume: 19 start-page: 69 year: 2017 end-page: 77 ident: bib50 article-title: Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial publication-title: Eur. J. Heart Fail. – volume: 66 start-page: 372 year: 2017 end-page: 384 ident: bib11 article-title: The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice publication-title: Diabetes – volume: 122 start-page: 388 year: 2012 end-page: 402 ident: bib58 article-title: Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice publication-title: J. Clin. Invest. – volume: 23 start-page: 324 year: 2016 end-page: 334 ident: bib9 article-title: Gut commensal publication-title: Cell Metab. – volume: 375 start-page: 1834 year: 2016 end-page: 1844 ident: bib68 article-title: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes publication-title: N. Engl. J. Med. – volume: 17 start-page: 1481 year: 2011 end-page: 1489 ident: bib29 article-title: Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells publication-title: Nat. Med. – year: 2017 ident: bib63 article-title: Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight publication-title: Mol. Psychiatry – volume: 96 start-page: 897 year: 2017 end-page: 909.e5 ident: bib62 article-title: Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus publication-title: Neuron – volume: 9 start-page: 425 year: 2013 end-page: 433 ident: bib96 article-title: Emerging combinatorial hormone therapies for the treatment of obesity and T2DM publication-title: Nat. Rev. Endocrinol. – volume: 12 start-page: 726 year: 2015 end-page: 733 ident: bib124 article-title: Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons publication-title: Cell Rep. – volume: 40 start-page: 1522 year: 2017 end-page: 1529 ident: bib117 article-title: Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues publication-title: Diabetes Care – volume: 39 start-page: 1693 year: 2016 end-page: 1701 ident: bib1 article-title: Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial publication-title: Diabetes Care – volume: 6 start-page: 8918 year: 2015 ident: bib140 article-title: Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects publication-title: Nat. Commun. – volume: 19 start-page: 356 year: 2017 end-page: 363 ident: bib88 article-title: Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes publication-title: Diabetes Obes. Metab. – volume: 149 start-page: 574 year: 2008 end-page: 579 ident: bib135 article-title: The murine glucagon-like peptide-1 receptor is essential for control of bone resorption publication-title: Endocrinology – volume: 19 start-page: 1050 year: 2014 end-page: 1057 ident: bib110 article-title: The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs publication-title: Cell Metab. – volume: 306 start-page: R352 year: 2014 end-page: R362 ident: bib136 article-title: GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 140 start-page: 244 year: 1999 end-page: 250 ident: bib72 article-title: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat publication-title: Endocrinology – volume: 316 start-page: 500 year: 2016 end-page: 508 ident: bib67 article-title: Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial publication-title: JAMA – volume: 154 start-page: 127 year: 2013 end-page: 139 ident: bib82 article-title: GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice publication-title: Endocrinology – volume: 165 start-page: 1632 year: 2016 end-page: 1643 ident: bib130 article-title: The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism publication-title: Cell – volume: 62 start-page: 3316 year: 2013 end-page: 3323 ident: bib21 article-title: Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls publication-title: Diabetes – volume: 373 start-page: 2247 year: 2015 end-page: 2257 ident: bib85 article-title: Lixisenatide in patients with type 2 diabetes and acute coronary syndrome publication-title: N. Engl. J. Med. – volume: 61 start-page: 1082 year: 2012 end-page: 1089 ident: bib113 article-title: Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1 publication-title: Diabetes – volume: 62 start-page: 2380 year: 2013 end-page: 2385 ident: bib129 article-title: Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency publication-title: Diabetes – volume: 390 start-page: 1664 year: 2017 end-page: 1675 ident: bib4 article-title: Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial publication-title: Lancet – volume: 55 start-page: 167 year: 2003 end-page: 194 ident: bib71 article-title: International union of pharmacology. XXXV. The glucagon receptor family publication-title: Pharmacol. Rev. – volume: 21 start-page: 1925 year: 1998 end-page: 1931 ident: bib79 article-title: Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure publication-title: Diabetes Care – volume: 29 start-page: 2397 year: 2015 end-page: 2411 ident: bib46 article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity publication-title: FASEB J. – volume: 54 start-page: 339 year: 2011 end-page: 349 ident: bib66 article-title: Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice publication-title: Diabetologia – volume: 127 start-page: 4217 year: 2017 end-page: 4227 ident: bib24 article-title: Discovery, characterization, and clinical development of the glucagon-like peptides publication-title: J. Clin. Invest. – volume: 17 start-page: 819 year: 2013 end-page: 837 ident: bib12 article-title: Pharmacology, physiology, and mechanisms of incretin hormone action publication-title: Cell Metab. – volume: 166 start-page: 209 year: 2016 end-page: 221 ident: bib128 article-title: Sensory neurons that detect stretch and nutrients in the digestive system publication-title: Cell – volume: 293 start-page: G288 year: 2007 end-page: G295 ident: bib107 article-title: Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 96 start-page: 853 year: 2011 end-page: 860 ident: bib42 article-title: GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide publication-title: J. Clin. Endocrinol. Metab. – volume: 10 start-page: e0142352 year: 2015 ident: bib74 article-title: Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism publication-title: PLoS One – volume: 124 start-page: 2456 year: 2014 end-page: 2463 ident: bib108 article-title: Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect publication-title: J. Clin. Invest. – volume: 58 start-page: 1365 year: 2009 end-page: 1372 ident: bib90 article-title: Adaptive beta cell proliferation is severely restricted with advanced age publication-title: Diabetes – volume: 374 start-page: 1606 year: 2009 end-page: 1616 ident: bib3 article-title: Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study publication-title: Lancet – volume: 56 start-page: 3006 year: 2007 end-page: 3013 ident: bib33 article-title: Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice publication-title: Diabetes – volume: 546 start-page: 254 year: 2017 end-page: 258 ident: bib49 article-title: Crystal structure of the GLP-1 receptor bound to a peptide agonist publication-title: Nature – volume: 19 start-page: 705 year: 2017 end-page: 712 ident: bib54 article-title: Immunohistochemical assessment of glucagon-like peptide 1 receptor (GLP-1R) expression in the pancreas of patients with type 2 diabetes publication-title: Diabetes Obes. Metab. – volume: 310 start-page: E855 year: 2016 end-page: E861 ident: bib13 article-title: Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 24 start-page: 63 year: 2016 end-page: 74 ident: bib91 article-title: Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial publication-title: Cell Metab. – volume: 6 start-page: 503 year: 2017 end-page: 511 ident: bib139 article-title: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway publication-title: Mol. Metab. – volume: 59 start-page: 1645 year: 2016 end-page: 1654 ident: bib20 article-title: Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials publication-title: Diabetologia – volume: 101 start-page: 778 year: 2016 end-page: 786 ident: bib23 article-title: Evolving concepts and translational relevance of enteroendocrine cell biology publication-title: J. Clin. Endocrinol. Metab. – volume: 25 start-page: 2134 year: 2011 end-page: 2143 ident: bib118 article-title: Skp2 is required for incretin hormone-mediated beta-cell proliferation publication-title: Mol. Endocrinol. – volume: 63 start-page: 471 year: 2014 end-page: 482 ident: bib80 article-title: Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway publication-title: Diabetes – volume: 368 start-page: 1696 year: 2006 end-page: 1705 ident: bib25 article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes publication-title: Lancet – volume: 54 start-page: 2390 year: 2005 end-page: 2395 ident: bib133 article-title: Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial publication-title: Diabetes – volume: 318 start-page: 1460 year: 2017 end-page: 1470 ident: bib18 article-title: Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial publication-title: JAMA – volume: 150 start-page: 2654 year: 2009 end-page: 2659 ident: bib40 article-title: Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling publication-title: Endocrinology – volume: 135 start-page: 1705 year: 2017 end-page: 1719 ident: bib47 article-title: Patients with long-QT syndrome caused by impaired hERG-encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia publication-title: Circulation – volume: 29 start-page: 5916 year: 2009 end-page: 5925 ident: bib81 article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity publication-title: J. Neurosci. – volume: 151 start-page: 1473 year: 2010 end-page: 1486 ident: bib8 article-title: Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation publication-title: Endocrinology – volume: 546 start-page: 248 year: 2017 end-page: 253 ident: bib141 article-title: Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein publication-title: Nature – volume: 5 start-page: 209ra151 year: 2013 ident: bib31 article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans publication-title: Sci. Transl. Med. – volume: 375 start-page: 311 year: 2016 end-page: 322 ident: bib69 article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes publication-title: N. Engl. J. Med. – volume: 159 start-page: 1570 year: 2018 end-page: 1584 ident: bib6 article-title: GLP-1 receptor expression within the human heart publication-title: Endocrinology – volume: 2 start-page: 1254 year: 1996 end-page: 1258 ident: bib100 article-title: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene publication-title: Nat. Med. – volume: 36 start-page: 3531 year: 2016 end-page: 3540 ident: bib92 article-title: Astrocytes regulate GLP-1 receptor-mediated effects on energy balance publication-title: J. Neurosci. – volume: 546 start-page: 312 year: 2017 end-page: 315 ident: bib114 article-title: Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators publication-title: Nature – volume: 156 start-page: 2409 year: 2015 end-page: 2416 ident: bib120 article-title: Effects of dulaglutide on thyroid C cells and serum calcitonin in male monkeys publication-title: Endocrinology – volume: 9 start-page: e100778 year: 2014 ident: bib77 article-title: Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus publication-title: PLoS One – volume: 127 start-page: 3835 year: 2017 end-page: 3844 ident: bib17 article-title: Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling publication-title: J. Clin. Invest. – volume: 25 start-page: 1075 year: 2017 end-page: 1090.e5 ident: bib38 article-title: A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism publication-title: Cell Metab. – volume: 65 start-page: 34 year: 2016 end-page: 43 ident: bib57 article-title: Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia publication-title: Diabetes – volume: 37 start-page: 3270 year: 2014 end-page: 3278 ident: bib93 article-title: Liraglutide and the preservation of pancreatic beta-cell function in early type 2 diabetes: the LIBRA trial publication-title: Diabetes Care – volume: 179 start-page: 77 year: 2012 end-page: 83 ident: bib51 article-title: Effect of exenatide on cholecystokinin-induced gallbladder emptying in fasting healthy subjects publication-title: Regul. Pept. – volume: 114 start-page: 1788 year: 2014 end-page: 1803 ident: bib119 article-title: Cardiovascular actions of incretin-based therapies publication-title: Circ. Res. – volume: 64 start-page: 2537 year: 2015 end-page: 2549 ident: bib138 article-title: GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte (IEL) GLP-1R publication-title: Diabetes – volume: 9 start-page: 1202 year: 2014 end-page: 1208 ident: bib15 article-title: Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells publication-title: Cell Rep. – volume: 38 start-page: 784 year: 2014 end-page: 793 ident: bib121 article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults publication-title: Int. J. Obes. (Lond.) – volume: 89 start-page: 365 year: 2015 end-page: 375 ident: bib123 article-title: Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium publication-title: J. Mol. Cell. Cardiol. – volume: 21 start-page: 27 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib32 article-title: A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents publication-title: Nat. Med. doi: 10.1038/nm.3761 – volume: 387 start-page: 679 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib2 article-title: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study publication-title: Lancet doi: 10.1016/S0140-6736(15)00803-X – volume: 64 start-page: 1046 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib55 article-title: Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis publication-title: Diabetes doi: 10.2337/db14-0883 – volume: 159 start-page: 1570 year: 2018 ident: 10.1016/j.cmet.2018.03.001_bib6 article-title: GLP-1 receptor expression within the human heart publication-title: Endocrinology doi: 10.1210/en.2018-00004 – volume: 4 start-page: e06253 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib59 article-title: Oxyntomodulin regulates resetting of the liver circadian clock by food publication-title: Elife doi: 10.7554/eLife.06253 – volume: 38 start-page: 1827 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib106 article-title: Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept publication-title: Diabetes Care doi: 10.2337/dc14-2690 – volume: 368 start-page: 1696 year: 2006 ident: 10.1016/j.cmet.2018.03.001_bib25 article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes publication-title: Lancet doi: 10.1016/S0140-6736(06)69705-5 – volume: 41 start-page: 348 year: 2018 ident: 10.1016/j.cmet.2018.03.001_bib104 article-title: Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD publication-title: Diabetes Care doi: 10.2337/dc17-1638 – volume: 39 start-page: 1693 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib1 article-title: Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial publication-title: Diabetes Care doi: 10.2337/dc16-0690 – volume: 306 start-page: R352 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib136 article-title: GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00491.2013 – volume: 59 start-page: 1645 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib20 article-title: Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials publication-title: Diabetologia doi: 10.1007/s00125-016-3992-6 – volume: 9 start-page: e100778 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib77 article-title: Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus publication-title: PLoS One doi: 10.1371/journal.pone.0100778 – volume: 150 start-page: 2654 year: 2009 ident: 10.1016/j.cmet.2018.03.001_bib40 article-title: Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling publication-title: Endocrinology doi: 10.1210/en.2008-1479 – volume: 22 start-page: 10470 year: 2002 ident: 10.1016/j.cmet.2018.03.001_bib53 article-title: The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-23-10470.2002 – volume: 10 start-page: e0142352 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib74 article-title: Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0142352 – volume: 19 start-page: 1050 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib110 article-title: The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.04.005 – volume: 3 start-page: 191 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib75 article-title: Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency publication-title: Mol. Metab. doi: 10.1016/j.molmet.2013.11.010 – volume: 549 start-page: 48 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib16 article-title: Commensal bacteria make GPCR ligands that mimic human signalling molecules publication-title: Nature doi: 10.1038/nature23874 – volume: 374 start-page: 1606 year: 2009 ident: 10.1016/j.cmet.2018.03.001_bib3 article-title: Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study publication-title: Lancet doi: 10.1016/S0140-6736(09)61375-1 – volume: 306 start-page: E355 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib109 article-title: GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00283.2013 – volume: 546 start-page: 312 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib114 article-title: Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators publication-title: Nature doi: 10.1038/nature22378 – volume: 149 start-page: 574 year: 2008 ident: 10.1016/j.cmet.2018.03.001_bib135 article-title: The murine glucagon-like peptide-1 receptor is essential for control of bone resorption publication-title: Endocrinology doi: 10.1210/en.2007-1292 – volume: 130 start-page: 833 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib60 article-title: GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2017.03.010 – volume: 19 start-page: 69 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib50 article-title: Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.657 – volume: 51 start-page: 2263 year: 2008 ident: 10.1016/j.cmet.2018.03.001_bib19 article-title: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas publication-title: Diabetologia doi: 10.1007/s00125-008-1149-y – volume: 140 start-page: 244 year: 1999 ident: 10.1016/j.cmet.2018.03.001_bib72 article-title: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat publication-title: Endocrinology doi: 10.1210/endo.140.1.6421 – volume: 29 start-page: 5916 year: 2009 ident: 10.1016/j.cmet.2018.03.001_bib81 article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5977-08.2009 – volume: 89 start-page: 365 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib123 article-title: Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.09.018 – volume: 66 start-page: 372 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib11 article-title: The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice publication-title: Diabetes doi: 10.2337/db16-1102 – volume: 2 start-page: 152 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib65 article-title: Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(13)70218-3 – volume: 21 start-page: 1925 year: 1998 ident: 10.1016/j.cmet.2018.03.001_bib79 article-title: Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure publication-title: Diabetes Care doi: 10.2337/diacare.21.11.1925 – volume: 62 start-page: 2380 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib129 article-title: Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency publication-title: Diabetes doi: 10.2337/db12-1498 – volume: 375 start-page: 311 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib69 article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1603827 – volume: 38 start-page: 784 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib121 article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults publication-title: Int. J. Obes. (Lond.) doi: 10.1038/ijo.2013.162 – volume: 14 start-page: 582 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib127 article-title: Microbial modulation of energy availability in the colon regulates intestinal transit publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.09.012 – volume: 24 start-page: 510 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib64 article-title: iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.003 – volume: 26 start-page: 343 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib34 article-title: The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.07.011 – volume: 40 start-page: 1522 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib117 article-title: Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues publication-title: Diabetes Care doi: 10.2337/dc16-2113 – volume: 48 start-page: 86 year: 1999 ident: 10.1016/j.cmet.2018.03.001_bib27 article-title: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39 publication-title: Diabetes doi: 10.2337/diabetes.48.1.86 – volume: 546 start-page: 254 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib49 article-title: Crystal structure of the GLP-1 receptor bound to a peptide agonist publication-title: Nature doi: 10.1038/nature22800 – volume: 60 start-page: 1561 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib78 article-title: Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans publication-title: Diabetes doi: 10.2337/db10-0474 – volume: 6 start-page: 503 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib139 article-title: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.03.006 – volume: 39 start-page: 1702 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib70 article-title: Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial publication-title: Diabetes Care doi: 10.2337/dc16-0691 – volume: 34 start-page: 2041 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib10 article-title: Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc11-0291 – volume: 30 start-page: 1729 year: 2006 ident: 10.1016/j.cmet.2018.03.001_bib132 article-title: Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial publication-title: Int. J. Obes. (Lond) doi: 10.1038/sj.ijo.0803344 – volume: 36 start-page: 3531 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib92 article-title: Astrocytes regulate GLP-1 receptor-mediated effects on energy balance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3579-15.2016 – volume: 68 start-page: 954 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib37 article-title: Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes publication-title: Pharmacol. Rev. doi: 10.1124/pr.115.011395 – volume: 127 start-page: 4217 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib24 article-title: Discovery, characterization, and clinical development of the glucagon-like peptides publication-title: J. Clin. Invest. doi: 10.1172/JCI97233 – volume: 316 start-page: 500 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib67 article-title: Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2016.10260 – volume: 309 start-page: R544 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib86 article-title: The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00123.2015 – volume: 176 start-page: 1474 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib30 article-title: Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2016.1531 – volume: 18 start-page: 1217 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib111 article-title: Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12748 – volume: 151 start-page: 1473 year: 2010 ident: 10.1016/j.cmet.2018.03.001_bib8 article-title: Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation publication-title: Endocrinology doi: 10.1210/en.2009-1272 – volume: 96 start-page: 853 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib42 article-title: GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2010-2318 – volume: 390 start-page: 1664 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib4 article-title: Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(17)31585-4 – volume: 362 start-page: 774 year: 2010 ident: 10.1016/j.cmet.2018.03.001_bib83 article-title: Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1001578 – volume: 127 start-page: 1031 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib36 article-title: Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight publication-title: J. Clin. Invest. doi: 10.1172/JCI81335 – volume: 377 start-page: 1228 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib43 article-title: Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1612917 – volume: 135 start-page: 1705 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib47 article-title: Patients with long-QT syndrome caused by impaired hERG-encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.024279 – volume: 58 start-page: 2688 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib116 article-title: Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-015-3754-x – volume: 157 start-page: 3405 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib35 article-title: Beta-cell glucagon-like peptide-1 receptor contributes to improved glucose tolerance after vertical sleeve gastrectomy publication-title: Endocrinology doi: 10.1210/en.2016-1302 – volume: 123 start-page: 2730 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib5 article-title: Exenatide and the treatment of patients with Parkinson's disease publication-title: J. Clin. Invest. doi: 10.1172/JCI68295 – volume: 155 start-page: 1280 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib89 article-title: GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody publication-title: Endocrinology doi: 10.1210/en.2013-1934 – volume: 24 start-page: 593 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib102 article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.020 – volume: 9 start-page: 113 year: 2018 ident: 10.1016/j.cmet.2018.03.001_bib48 article-title: GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose publication-title: Nat. Commun. doi: 10.1038/s41467-017-02488-y – volume: 88 start-page: 801 year: 2010 ident: 10.1016/j.cmet.2018.03.001_bib73 article-title: Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1 publication-title: Clin. Pharmacol. Ther. doi: 10.1038/clpt.2010.184 – volume: 63 start-page: 1303 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib14 article-title: Occurrence of spontaneous pancreatic lesions in normal and diabetic rats: a potential confounding factor in the nonclinical assessment of GLP-1-based therapies publication-title: Diabetes doi: 10.2337/db13-1268 – volume: 304 start-page: G1117 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib87 article-title: The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00035.2013 – volume: 37 start-page: 3270 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib93 article-title: Liraglutide and the preservation of pancreatic beta-cell function in early type 2 diabetes: the LIBRA trial publication-title: Diabetes Care doi: 10.2337/dc14-0893 – volume: 54 start-page: 339 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib66 article-title: Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice publication-title: Diabetologia doi: 10.1007/s00125-010-1937-z – volume: 63 start-page: 483 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib105 article-title: Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass publication-title: Diabetes doi: 10.2337/db13-0954 – volume: 17 start-page: 1481 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib29 article-title: Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells publication-title: Nat. Med. doi: 10.1038/nm.2513 – volume: 375 start-page: 1834 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib68 article-title: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1607141 – volume: 3 start-page: 385 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib76 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst. doi: 10.1016/j.cels.2016.09.002 – volume: 8 start-page: 341ra376 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib99 article-title: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad3744 – volume: 101 start-page: 778 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib23 article-title: Evolving concepts and translational relevance of enteroendocrine cell biology publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-3449 – volume: 57 start-page: 2046 year: 2008 ident: 10.1016/j.cmet.2018.03.001_bib98 article-title: Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake publication-title: Diabetes doi: 10.2337/db07-1824 – volume: 156 start-page: 2409 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib120 article-title: Effects of dulaglutide on thyroid C cells and serum calcitonin in male monkeys publication-title: Endocrinology doi: 10.1210/en.2014-1717 – volume: 63 start-page: 1224 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib94 article-title: Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model publication-title: Diabetes doi: 10.2337/db13-1440 – volume: 124 start-page: 2456 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib108 article-title: Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect publication-title: J. Clin. Invest. doi: 10.1172/JCI72434 – volume: 96 start-page: 897 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib62 article-title: Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus publication-title: Neuron doi: 10.1016/j.neuron.2017.09.042 – volume: 40 start-page: 839 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib115 article-title: Impact of liraglutide on amylase, lipase, and acute pancreatitis in participants with overweight/obesity and normoglycemia, prediabetes, or type 2 diabetes: secondary analyses of pooled data from the SCALE clinical development program publication-title: Diabetes Care doi: 10.2337/dc16-2684 – year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib63 article-title: Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight publication-title: Mol. Psychiatry – volume: 373 start-page: 2247 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib85 article-title: Lixisenatide in patients with type 2 diabetes and acute coronary syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1509225 – volume: 19 start-page: 356 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib88 article-title: Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12826 – volume: 293 start-page: G288 year: 2007 ident: 10.1016/j.cmet.2018.03.001_bib107 article-title: Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00453.2006 – volume: 6 start-page: 8918 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib140 article-title: Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects publication-title: Nat. Commun. doi: 10.1038/ncomms9918 – volume: 9 start-page: 1202 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib15 article-title: Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.032 – volume: 117 start-page: 143 year: 2007 ident: 10.1016/j.cmet.2018.03.001_bib39 article-title: Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure publication-title: J. Clin. Invest. doi: 10.1172/JCI25483 – volume: 65 start-page: 34 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib57 article-title: Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia publication-title: Diabetes doi: 10.2337/db15-0973 – volume: 6 start-page: 105 year: 2018 ident: 10.1016/j.cmet.2018.03.001_bib7 article-title: Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(17)30412-6 – volume: 370 start-page: 794 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib28 article-title: Pancreatic safety of incretin-based drugs—FDA and EMA assessment publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1314078 – volume: 310 start-page: G26 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib44 article-title: Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00293.2015 – volume: 28 start-page: 391 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib125 article-title: Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas publication-title: Mod. Pathol. doi: 10.1038/modpathol.2014.113 – volume: 146 start-page: 669 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib97 article-title: Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.11.044 – volume: 318 start-page: 1460 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib18 article-title: Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2017.14752 – volume: 23 start-page: 850 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib131 article-title: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug publication-title: Nat. Med. doi: 10.1038/nm.4345 – volume: 19 start-page: 705 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib54 article-title: Immunohistochemical assessment of glucagon-like peptide 1 receptor (GLP-1R) expression in the pancreas of patients with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12879 – volume: 9 start-page: 425 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib96 article-title: Emerging combinatorial hormone therapies for the treatment of obesity and T2DM publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2013.47 – volume: 62 start-page: 3316 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib21 article-title: Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls publication-title: Diabetes doi: 10.2337/db13-0822 – volume: 24 start-page: 15 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib22 article-title: The cardiovascular biology of glucagon-like peptide-1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.009 – volume: 19 start-page: 567 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib52 article-title: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure publication-title: Nat. Med. doi: 10.1038/nm.3128 – volume: 54 start-page: 2390 year: 2005 ident: 10.1016/j.cmet.2018.03.001_bib133 article-title: Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial publication-title: Diabetes doi: 10.2337/diabetes.54.8.2390 – volume: 61 start-page: 1082 year: 2012 ident: 10.1016/j.cmet.2018.03.001_bib113 article-title: Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1 publication-title: Diabetes doi: 10.2337/db11-1732 – volume: 21 start-page: 1160 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib61 article-title: Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.008 – volume: 32 start-page: 2251 year: 2009 ident: 10.1016/j.cmet.2018.03.001_bib95 article-title: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes publication-title: Diabetes Care doi: 10.2337/dc09-0773 – volume: 36 start-page: 2125 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib112 article-title: GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus: an acute and 12-week randomized, double-blind, placebo-controlled trial publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.116.307930 – volume: 12 start-page: 726 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib124 article-title: Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.062 – volume: 25 start-page: 1075 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib38 article-title: A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.04.013 – volume: 6 start-page: 135 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib84 article-title: A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1 publication-title: ACS Chem. Biol. doi: 10.1021/cb1002015 – volume: 23 start-page: 324 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib9 article-title: Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.10.017 – volume: 124 start-page: 4473 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib101 article-title: The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss publication-title: J. Clin. Invest. doi: 10.1172/JCI75276 – volume: 25 start-page: 2134 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib118 article-title: Skp2 is required for incretin hormone-mediated beta-cell proliferation publication-title: Mol. Endocrinol. doi: 10.1210/me.2011-1119 – volume: 17 start-page: 819 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib12 article-title: Pharmacology, physiology, and mechanisms of incretin hormone action publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.04.008 – volume: 546 start-page: 248 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib141 article-title: Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein publication-title: Nature doi: 10.1038/nature22394 – volume: 165 start-page: 1632 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib130 article-title: The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism publication-title: Cell doi: 10.1016/j.cell.2016.05.023 – volume: 29 start-page: 2397 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib46 article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity publication-title: FASEB J. doi: 10.1096/fj.14-265983 – volume: 4 start-page: 391 year: 2006 ident: 10.1016/j.cmet.2018.03.001_bib137 article-title: GLP-1 receptor activation improves β-cell function and survival following induction of endoplasmic reticulum stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.10.001 – volume: 55 start-page: 167 year: 2003 ident: 10.1016/j.cmet.2018.03.001_bib71 article-title: International union of pharmacology. XXXV. The glucagon receptor family publication-title: Pharmacol. Rev. doi: 10.1124/pr.55.1.6 – volume: 127 start-page: 3835 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib17 article-title: Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI91761 – volume: 24 start-page: 63 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib91 article-title: Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.016 – volume: 53 start-page: 552 year: 2010 ident: 10.1016/j.cmet.2018.03.001_bib45 article-title: The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice publication-title: Diabetologia doi: 10.1007/s00125-009-1611-5 – volume: 2 start-page: 1254 year: 1996 ident: 10.1016/j.cmet.2018.03.001_bib100 article-title: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene publication-title: Nat. Med. doi: 10.1038/nm1196-1254 – volume: 57 start-page: 1322 year: 2017 ident: 10.1016/j.cmet.2018.03.001_bib103 article-title: Effect of albiglutide on cholecystokinin-induced gallbladder emptying in healthy individuals: a randomized crossover study publication-title: J. Clin. Pharmacol. doi: 10.1002/jcph.940 – volume: 56 start-page: 3006 year: 2007 ident: 10.1016/j.cmet.2018.03.001_bib33 article-title: Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice publication-title: Diabetes doi: 10.2337/db07-0697 – volume: 122 start-page: 388 year: 2012 ident: 10.1016/j.cmet.2018.03.001_bib58 article-title: Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI42497 – volume: 32 start-page: 1513 year: 2012 ident: 10.1016/j.cmet.2018.03.001_bib134 article-title: Exenatide, a glucagon-like peptide receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.112.246207 – volume: 76 start-page: 561 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib26 article-title: Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021113-170317 – volume: 64 start-page: 434 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib122 article-title: GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification publication-title: Diabetes doi: 10.2337/db14-0558 – volume: 166 start-page: 209 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib128 article-title: Sensory neurons that detect stretch and nutrients in the digestive system publication-title: Cell doi: 10.1016/j.cell.2016.05.011 – volume: 21 start-page: 379 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib56 article-title: GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7 publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.02.005 – volume: 6 start-page: 5897 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib126 article-title: Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility publication-title: Nat. Commun. doi: 10.1038/ncomms6897 – volume: 310 start-page: E855 year: 2016 ident: 10.1016/j.cmet.2018.03.001_bib13 article-title: Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00412.2015 – volume: 63 start-page: 471 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib80 article-title: Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway publication-title: Diabetes doi: 10.2337/db13-0903 – volume: 154 start-page: 127 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib82 article-title: GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice publication-title: Endocrinology doi: 10.1210/en.2012-1937 – volume: 58 start-page: 1365 year: 2009 ident: 10.1016/j.cmet.2018.03.001_bib90 article-title: Adaptive beta cell proliferation is severely restricted with advanced age publication-title: Diabetes doi: 10.2337/db08-1198 – volume: 13 start-page: 320 year: 2011 ident: 10.1016/j.cmet.2018.03.001_bib41 article-title: Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.02.001 – volume: 64 start-page: 2537 year: 2015 ident: 10.1016/j.cmet.2018.03.001_bib138 article-title: GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte (IEL) GLP-1R publication-title: Diabetes doi: 10.2337/db14-1577 – volume: 5 start-page: 209ra151 year: 2013 ident: 10.1016/j.cmet.2018.03.001_bib31 article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007218 – volume: 179 start-page: 77 year: 2012 ident: 10.1016/j.cmet.2018.03.001_bib51 article-title: Effect of exenatide on cholecystokinin-induced gallbladder emptying in fasting healthy subjects publication-title: Regul. Pept. doi: 10.1016/j.regpep.2012.08.005 – volume: 114 start-page: 1788 year: 2014 ident: 10.1016/j.cmet.2018.03.001_bib119 article-title: Cardiovascular actions of incretin-based therapies publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.301958 |
SSID | ssj0036393 |
Score | 2.6986487 |
SecondaryResourceType | review_article |
Snippet | Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 740 |
SubjectTerms | Animals Blood Glucose - drug effects body weight cardiovascular disease diabetes Diabetes Mellitus, Type 1 - therapy Diabetes Mellitus, Type 2 - therapy drug Eating - drug effects G protein-coupled receptor Glucagon-Like Peptide 1 - adverse effects Glucagon-Like Peptide 1 - pharmacology Glucagon-Like Peptide 1 - therapeutic use Glucagon-Like Peptide-1 Receptor - agonists Glucagon-Like Peptide-1 Receptor - physiology Humans hypertension Hypoglycemic Agents - therapeutic use incretin inflammation Insulin - metabolism metabolism Mice obesity Obesity - therapy Rats Weight Gain - drug effects |
Title | Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1 |
URI | https://dx.doi.org/10.1016/j.cmet.2018.03.001 https://www.ncbi.nlm.nih.gov/pubmed/29617641 https://www.proquest.com/docview/2022130863 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KQfAivq0vIniTpcm-snusRS1KRVCht7DZh1RrKrY9-O_dyaPFgx48JsySZXYz3yT7fTMInUuhFPexx1aaFDPhDda58ViJlPAAyNKXdQuG92LwzG5HfNRC_UYLA7TKOvZXMb2M1vWdbu3N7sd43H2E5JpBtRhJYVuBopwyWYr4RpdNNKYBgUuSfTDGYF0LZyqOl3l3wKdMZFXoNPkNnH5LPksQut5EG3X2GPWqCW6hliu20VrVT_JrB90NHQh5x7P3WTT1Ua_ULES6sNHTSmYV9VZn1mB1A33PXqYFnozfXPQALBfrcLKLnq-vnvoDXHdLwIYJMcfWcsKtMjaXUhsi89zmItF5Gj5yGdMuQLNxMYf_nj7RIs0Njb2XWlnumCKG7qF2MS3cAYpMQjRVPo2tT5mJhVQytrEyhPtUeC86KGnclJm6lDh0tJhkDWfsNQPXZuDaLKZAnOugi-WYj6qQxp_WvPF-9mM7ZCHS_znurFmqLLwncPihCzddzIIRIQGvpaAdtF-t4XIeRIU8TrDk8J9PPULrcFUSeugxas8_F-4k5Crz_LTcjN_UkeVV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMsTyPBCVmbOH4eOCyPsst2KyS20t6C4wdaaLMVuxXq7-IP4smjFYf2gNRrYifWZ3vmS_zNDMArLY0RMYvUa6col9FRW7lIjVRMJIesY5O3YLYvxwf880IstuBPHwuDssrO9rc2vbHW3ZVhh-bweLkcfkVyzTFbjC5wWalOWTkNp7_Td9v67eRDmuTXjO1-nL8f0660AHVcyg31XjDhjfOV1tYxXVW-krmtVPoi5NyG5MdcyAT-JIy5lapyRRajtsaLwA1zRXruNbie2IdCazBZvOvNf5FcfqPqT6OjOLwuUqcVlbmjgALOXLeZVfOLvOFFbLfxert34HZHV8moReQubIX6HtxoC1ie3ofpLGDk8HJ9tCarSEZNkASxtSfz87guMjo_JMdWn7DQ2vdVTQ-XPwP5grIaH2j-AA6uBMOHsF2v6vAIiMuZLUxUmY-Ku0xqozOfGcdEVDJGOYC8h6l0Xe5yLKFxWPYitR8lQlsitGVWoFJvAG_O-hy3mTsubS169Mt_1l-ZXMul_V72U1WmjYmnLbYOq5N1asRYIghaFgPYaefwbBzMJOIoef74P9_6Am6O57O9cm-yP30Ct_BOoyYqnsL25tdJeJaI0qZ63ixMAt-ueif8Bd8OJD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Action+and+Therapeutic+Application+of+Glucagon-like+Peptide-1&rft.jtitle=Cell+metabolism&rft.au=Drucker%2C+Daniel+J.&rft.date=2018-04-03&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=27&rft.issue=4&rft.spage=740&rft.epage=756&rft_id=info:doi/10.1016%2Fj.cmet.2018.03.001&rft.externalDocID=S1550413118301797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |