Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1

Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight g...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 27; no. 4; pp. 740 - 756
Main Author Drucker, Daniel J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease. Glucagon-like peptide-1 (GLP-1) has emerged as a gut-derived peptide with pleiotropic actions and has demonstrated therapeutic efficacy for cardiometabolic disorders, principally diabetes and obesity. Herein, Drucker provides an updated perspective on the physiological importance, mechanisms, and pathways underlying the efficacy and safety of native GLP-1 and GLP-1R agonists.
AbstractList Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.
Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.
Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease. Glucagon-like peptide-1 (GLP-1) has emerged as a gut-derived peptide with pleiotropic actions and has demonstrated therapeutic efficacy for cardiometabolic disorders, principally diabetes and obesity. Herein, Drucker provides an updated perspective on the physiological importance, mechanisms, and pathways underlying the efficacy and safety of native GLP-1 and GLP-1R agonists.
Author Drucker, Daniel J.
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Drucker
  fullname: Drucker, Daniel J.
  email: drucker@lunenfeld.ca
  organization: Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Mailbox 39, Toronto, ON M5G 1X5, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29617641$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtO3TAQQC1EVV79gS5Qlt0k9diJ40hsrlBLEVTtAtaWM56AL3nVdir175vLpSy6YDUjzTmzOCfscJxGYuwj8AI4qM_bAgdKheCgCy4LzuGAHUMjRV6Xgh-ue1XxvAQJR-wkxi3nUslGvmdHolFQqxKO2c13wkc7-jjEbOqyDSY_jZkdXXb3SMHOtCSP2Waee4_2-bZSV_2C9mEa894_UfaT5uQd5XDG3nW2j_ThZZ6y-69f7i6_5bc_rq4vN7c5lkql3LlKVK5B12ptUei2da0C29a11mVpSWpA4lXLQXZgVd2i5F2nbeMqKhuB8pR92v-dw_RroZjM4CNS39uRpiUawYUAybWSK3r-gi7tQM7MwQ82_DH_AqyA2AMYphgDda8IcLOrbLZmV9nsKhsuzVp5lfR_Evr0XCcF6_u31Yu9Smug356CiehpRHI-ECbjJv-W_hceTZd2
CitedBy_id crossref_primary_10_3389_fendo_2020_577650
crossref_primary_10_1177_00048674221106678
crossref_primary_10_1016_j_jcmgh_2019_04_007
crossref_primary_10_1016_j_lfs_2024_122801
crossref_primary_10_1038_s41467_019_08793_y
crossref_primary_10_1111_apt_16794
crossref_primary_10_1038_s41467_022_35716_1
crossref_primary_10_1016_j_mce_2021_111455
crossref_primary_10_1111_cns_13791
crossref_primary_10_21518_2079_701X_2021_7_18_30
crossref_primary_10_3389_fendo_2023_1137604
crossref_primary_10_1210_endrev_bnaa004
crossref_primary_10_1007_s44162_024_00065_8
crossref_primary_10_29328_journal_jccm_1001173
crossref_primary_10_1111_dom_16191
crossref_primary_10_1021_acsptsci_1c00167
crossref_primary_10_1111_dom_13911
crossref_primary_10_3390_metabo11110712
crossref_primary_10_3389_fnins_2022_824054
crossref_primary_10_1073_pnas_1904943116
crossref_primary_10_1021_acs_jmedchem_4c01177
crossref_primary_10_1038_s41598_024_68227_8
crossref_primary_10_1007_s00595_021_02317_2
crossref_primary_10_1080_13697137_2025_2455177
crossref_primary_10_1016_j_isci_2021_103382
crossref_primary_10_3389_fnut_2021_688540
crossref_primary_10_1016_j_bcp_2021_114656
crossref_primary_10_7759_cureus_49053
crossref_primary_10_1016_j_diabres_2021_108800
crossref_primary_10_3389_fendo_2024_1309118
crossref_primary_10_7759_cureus_72080
crossref_primary_10_1016_j_molmet_2024_101918
crossref_primary_10_15212_AMM_2023_0041
crossref_primary_10_1186_s12958_024_01202_0
crossref_primary_10_1515_mr_2024_0007
crossref_primary_10_3389_fendo_2023_1081500
crossref_primary_10_1186_s10194_023_01631_z
crossref_primary_10_1289_EHP13855
crossref_primary_10_1016_j_cmet_2023_12_022
crossref_primary_10_3390_ijms23031272
crossref_primary_10_1530_EJE_21_1187
crossref_primary_10_3389_fimmu_2022_997578
crossref_primary_10_1016_j_cmet_2020_05_001
crossref_primary_10_21615_cesmedicina_34_COVID_19_13
crossref_primary_10_3390_ijms252212464
crossref_primary_10_1007_s00508_023_02270_9
crossref_primary_10_1080_02770903_2024_2372600
crossref_primary_10_2147_DDDT_S484531
crossref_primary_10_3389_fnins_2020_00785
crossref_primary_10_3390_microorganisms13010067
crossref_primary_10_1210_clinem_dgab722
crossref_primary_10_1007_s00059_020_04946_8
crossref_primary_10_1124_pharmrev_120_000160
crossref_primary_10_1016_j_jphs_2020_11_005
crossref_primary_10_1016_j_physbeh_2019_03_026
crossref_primary_10_1556_650_2024_33177
crossref_primary_10_3389_fmed_2025_1509884
crossref_primary_10_7759_cureus_43773
crossref_primary_10_1210_endrev_bnaa011
crossref_primary_10_1016_j_celrep_2022_111008
crossref_primary_10_1016_j_jdiacomp_2020_107723
crossref_primary_10_1038_s41598_021_87539_7
crossref_primary_10_3389_fpubh_2022_996179
crossref_primary_10_1002_jcla_24604
crossref_primary_10_1016_j_peptides_2020_170342
crossref_primary_10_1002_oby_24190
crossref_primary_10_1016_j_cmet_2023_11_009
crossref_primary_10_2147_JEP_S458705
crossref_primary_10_1016_j_oto_2024_101128
crossref_primary_10_2147_TCRM_S328056
crossref_primary_10_1016_j_smrv_2021_101473
crossref_primary_10_1016_j_tem_2024_07_012
crossref_primary_10_1038_s41467_022_34270_0
crossref_primary_10_1111_apt_17848
crossref_primary_10_3390_jcdd8110143
crossref_primary_10_6065_apem_2244196_098
crossref_primary_10_1186_s12933_023_01765_z
crossref_primary_10_1007_s40124_024_00326_6
crossref_primary_10_3389_fendo_2021_721135
crossref_primary_10_1007_s11357_024_01116_0
crossref_primary_10_1016_j_phrs_2023_106860
crossref_primary_10_1016_j_nucmedbio_2021_10_001
crossref_primary_10_1007_s40265_020_01393_x
crossref_primary_10_1039_D2CS00395C
crossref_primary_10_1016_j_ejphar_2023_176104
crossref_primary_10_1016_j_jdiacomp_2022_108390
crossref_primary_10_1001_jamapsychiatry_2024_2412
crossref_primary_10_1016_j_cell_2024_06_032
crossref_primary_10_3389_fendo_2023_1170881
crossref_primary_10_1186_s12933_021_01431_2
crossref_primary_10_1155_2023_9363576
crossref_primary_10_1210_endrev_bnaa032
crossref_primary_10_1016_j_therap_2020_05_006
crossref_primary_10_1016_j_molmet_2025_102097
crossref_primary_10_1053_j_ackd_2021_04_002
crossref_primary_10_1016_j_actbio_2024_04_029
crossref_primary_10_1093_ejendo_lvae151
crossref_primary_10_1155_cjid_6675676
crossref_primary_10_1038_s41581_024_00827_z
crossref_primary_10_1152_ajpendo_00050_2022
crossref_primary_10_1016_j_jdiacomp_2023_108416
crossref_primary_10_1080_19382014_2021_1889941
crossref_primary_10_1002_oby_23080
crossref_primary_10_1016_j_jmb_2019_08_009
crossref_primary_10_1155_2024_8056440
crossref_primary_10_1080_13543776_2020_1811851
crossref_primary_10_2174_1574885518666230516150404
crossref_primary_10_3389_fphar_2024_1235639
crossref_primary_10_3390_cells12232691
crossref_primary_10_1016_j_peptides_2024_171179
crossref_primary_10_1002_jsfa_10927
crossref_primary_10_1093_eurheartj_ehz868
crossref_primary_10_3389_fendo_2023_1303238
crossref_primary_10_1021_acs_jmedchem_0c00736
crossref_primary_10_1016_j_intimp_2021_107518
crossref_primary_10_1016_j_cell_2022_02_011
crossref_primary_10_3390_nu16111691
crossref_primary_10_22141_2224_0721_19_7_2023_1330
crossref_primary_10_1016_j_tem_2024_08_001
crossref_primary_10_1007_s41030_022_00211_x
crossref_primary_10_1007_s13668_019_00281_5
crossref_primary_10_1186_s12893_025_02773_4
crossref_primary_10_3390_medicina59020388
crossref_primary_10_3389_fphar_2024_1416985
crossref_primary_10_3390_ijms232012428
crossref_primary_10_2147_JIR_S465203
crossref_primary_10_1530_JME_18_0129
crossref_primary_10_1113_JP280890
crossref_primary_10_1016_j_soard_2024_10_008
crossref_primary_10_1016_j_ejphar_2018_06_026
crossref_primary_10_1097_MCG_0000000000001931
crossref_primary_10_20945_2359_4292_2023_0174
crossref_primary_10_1016_j_clim_2022_109118
crossref_primary_10_12677_acm_2025_153617
crossref_primary_10_1016_j_molmet_2024_101960
crossref_primary_10_3389_fneur_2024_1462240
crossref_primary_10_1021_acschembio_0c00722
crossref_primary_10_1360_SSV_2024_0261
crossref_primary_10_1016_j_coemr_2022_100360
crossref_primary_10_1021_acs_jmedchem_1c01856
crossref_primary_10_1111_dom_13744
crossref_primary_10_1016_j_atherosclerosis_2023_03_016
crossref_primary_10_1002_14651858_CD015849_pub2
crossref_primary_10_3389_fendo_2021_694284
crossref_primary_10_1016_j_mce_2023_112029
crossref_primary_10_1111_dom_14831
crossref_primary_10_3390_metabo12020147
crossref_primary_10_1016_j_celrep_2019_05_055
crossref_primary_10_1016_j_trsl_2020_07_008
crossref_primary_10_1038_s41598_024_68234_9
crossref_primary_10_1186_s13578_024_01267_9
crossref_primary_10_1016_j_jdiacomp_2020_107774
crossref_primary_10_1042_CS20220890
crossref_primary_10_1016_j_cub_2024_10_039
crossref_primary_10_3389_fphar_2023_1125858
crossref_primary_10_1016_j_molstruc_2022_134328
crossref_primary_10_1016_j_phrs_2022_106320
crossref_primary_10_1161_CIRCHEARTFAILURE_124_011518
crossref_primary_10_1080_19490976_2022_2068365
crossref_primary_10_1097_MCG_0000000000001556
crossref_primary_10_4103_1673_5374_389626
crossref_primary_10_1016_j_cellsig_2024_111153
crossref_primary_10_1124_pharmrev_123_001015
crossref_primary_10_1111_dom_14843
crossref_primary_10_1016_j_jbc_2022_102682
crossref_primary_10_1210_endrev_bnac018
crossref_primary_10_1042_CS20190579
crossref_primary_10_1097_ANA_0000000000000985
crossref_primary_10_1002_mco2_283
crossref_primary_10_1007_s00228_024_03646_0
crossref_primary_10_1126_scitranslmed_adg3456
crossref_primary_10_3389_fendo_2021_609470
crossref_primary_10_4103_bc_bc_21_21
crossref_primary_10_1161_HYPERTENSIONAHA_120_14791
crossref_primary_10_1007_s13340_023_00681_7
crossref_primary_10_1016_j_cmet_2022_08_003
crossref_primary_10_1016_j_ejphar_2024_176476
crossref_primary_10_3390_ph14010042
crossref_primary_10_1016_j_cmet_2018_11_012
crossref_primary_10_1212_WNL_0000000000209781
crossref_primary_10_1080_16089677_2022_2113206
crossref_primary_10_1016_j_ejphar_2021_174482
crossref_primary_10_1016_j_mmm_2020_05_005
crossref_primary_10_1097_JXX_0000000000000661
crossref_primary_10_1172_jci_insight_93382
crossref_primary_10_14336_AD_2021_0422
crossref_primary_10_1016_j_fshw_2023_03_026
crossref_primary_10_1016_j_fertnstert_2022_03_020
crossref_primary_10_1016_j_appet_2022_106022
crossref_primary_10_1080_14656566_2024_2391524
crossref_primary_10_2337_dc18_0680
crossref_primary_10_1038_s41586_024_08207_0
crossref_primary_10_1016_j_jtbi_2024_111756
crossref_primary_10_1016_j_ebiom_2023_104906
crossref_primary_10_1016_j_biopha_2022_113517
crossref_primary_10_1080_03007995_2024_2386047
crossref_primary_10_3390_biom14121520
crossref_primary_10_3390_biomedicines12030473
crossref_primary_10_1038_s41598_024_74000_8
crossref_primary_10_3389_fcvm_2020_593061
crossref_primary_10_3390_medicina57010066
crossref_primary_10_1038_s41598_019_53356_2
crossref_primary_10_2106_JBJS_JOPA_24_00005
crossref_primary_10_3389_fphar_2019_00789
crossref_primary_10_1021_acs_jmedchem_4c02616
crossref_primary_10_1038_s41467_020_17556_z
crossref_primary_10_1111_dom_14637
crossref_primary_10_3390_molecules28186501
crossref_primary_10_1016_j_crfs_2024_100810
crossref_primary_10_1016_j_intimp_2024_113499
crossref_primary_10_1155_2021_9951463
crossref_primary_10_1016_j_bcp_2020_114150
crossref_primary_10_1164_rccm_202303_0491OC
crossref_primary_10_1007_s00404_024_07849_9
crossref_primary_10_1111_dom_14634
crossref_primary_10_1038_s41467_023_38778_x
crossref_primary_10_1016_j_artd_2024_101327
crossref_primary_10_1016_j_tem_2019_07_004
crossref_primary_10_2147_POR_S471476
crossref_primary_10_3390_life12081187
crossref_primary_10_1016_j_jconrel_2023_09_040
crossref_primary_10_1016_j_metabol_2022_155346
crossref_primary_10_1038_s41366_024_01529_z
crossref_primary_10_1016_j_ejphar_2023_175901
crossref_primary_10_3389_fendo_2021_665345
crossref_primary_10_3390_ijms25073812
crossref_primary_10_3389_fendo_2025_1532587
crossref_primary_10_3390_diagnostics11112053
crossref_primary_10_3390_biomedicines11113035
crossref_primary_10_1016_j_ejmech_2024_116342
crossref_primary_10_2337_dbi18_0024
crossref_primary_10_1097_MNH_0000000000000559
crossref_primary_10_3390_ph15050607
crossref_primary_10_1172_JCI126309
crossref_primary_10_2147_DMSO_S380577
crossref_primary_10_3389_fendo_2023_1166756
crossref_primary_10_1016_j_phrs_2020_104861
crossref_primary_10_1017_S0007114524000321
crossref_primary_10_1016_j_jnrt_2024_100107
crossref_primary_10_47671_TVG_78_22_068
crossref_primary_10_1016_j_dsx_2023_102849
crossref_primary_10_1080_17425247_2024_2305110
crossref_primary_10_3390_cells9071621
crossref_primary_10_2174_2210303112666220318155445
crossref_primary_10_1021_acs_jmedchem_4c00417
crossref_primary_10_1016_j_pep_2024_106477
crossref_primary_10_2174_1389450122666210901125420
crossref_primary_10_1016_j_dsx_2022_102562
crossref_primary_10_3389_fendo_2022_780663
crossref_primary_10_3389_fbioe_2021_729057
crossref_primary_10_1038_s41366_024_01460_3
crossref_primary_10_4103_ajoim_ajoim_28_24
crossref_primary_10_1016_j_biopha_2021_112341
crossref_primary_10_4093_dmj_2021_0314
crossref_primary_10_1530_JOE_21_0399
crossref_primary_10_3390_antiox13101246
crossref_primary_10_1007_s11418_024_01791_5
crossref_primary_10_51847_ChNOtMbUUT
crossref_primary_10_1021_acs_jafc_1c01388
crossref_primary_10_3390_ijms25052914
crossref_primary_10_1152_ajpendo_00298_2019
crossref_primary_10_15406_ogij_2023_14_00708
crossref_primary_10_3390_nu12082485
crossref_primary_10_3389_fcdhc_2021_731574
crossref_primary_10_1210_endocr_bqad153
crossref_primary_10_1097_JXX_0000000000000480
crossref_primary_10_1111_ejn_15502
crossref_primary_10_1016_j_fsi_2022_01_035
crossref_primary_10_3390_microorganisms9030565
crossref_primary_10_1080_19382014_2021_2011550
crossref_primary_10_1016_j_phrs_2024_107367
crossref_primary_10_1002_jbt_23258
crossref_primary_10_1016_j_molmet_2020_101014
crossref_primary_10_1038_s42255_021_00458_9
crossref_primary_10_1007_s40267_021_00856_9
crossref_primary_10_1152_ajpendo_00236_2023
crossref_primary_10_3389_fphar_2023_1248757
crossref_primary_10_31083_j_fbl2811315
crossref_primary_10_3390_biom15030408
crossref_primary_10_1038_s41598_021_84355_x
crossref_primary_10_1016_j_jcjd_2019_08_011
crossref_primary_10_3748_wjg_v30_i40_4339
crossref_primary_10_1038_s41573_024_01083_3
crossref_primary_10_1016_j_cmet_2021_12_005
crossref_primary_10_1016_j_jmb_2020_01_004
crossref_primary_10_1016_j_jpha_2024_100968
crossref_primary_10_1093_nutrit_nuad099
crossref_primary_10_1126_sciadv_aaw4176
crossref_primary_10_1016_j_fbio_2022_101685
crossref_primary_10_1210_en_2019_00398
crossref_primary_10_3390_ijms24098283
crossref_primary_10_1016_j_jbc_2024_107294
crossref_primary_10_1038_s41598_020_61112_0
crossref_primary_10_1055_a_1608_0345
crossref_primary_10_1016_j_bbalip_2023_159363
crossref_primary_10_1080_00325481_2022_2149005
crossref_primary_10_2337_db21_0923
crossref_primary_10_2147_DMSO_S443115
crossref_primary_10_1210_endrev_bnaf006
crossref_primary_10_1002_oby_22521
crossref_primary_10_1038_s41568_024_00743_1
crossref_primary_10_1007_s13300_021_01182_z
crossref_primary_10_1111_apha_13915
crossref_primary_10_1111_dom_13591
crossref_primary_10_1080_17446651_2023_2187375
crossref_primary_10_1016_j_ijbiomac_2024_133434
crossref_primary_10_1111_dom_14651
crossref_primary_10_1038_s41574_022_00783_3
crossref_primary_10_1016_j_diabres_2019_107785
crossref_primary_10_1210_er_2018_00280
crossref_primary_10_1038_s41422_023_00782_7
crossref_primary_10_3390_healthcare11202749
crossref_primary_10_1002_jsfa_11541
crossref_primary_10_1186_s40824_023_00421_7
crossref_primary_10_1093_cvr_cvz323
crossref_primary_10_1177_15353702231214270
crossref_primary_10_1002_adhm_202100965
crossref_primary_10_3390_nu16010063
crossref_primary_10_1016_j_suc_2020_12_006
crossref_primary_10_1111_bph_15682
crossref_primary_10_1007_s11101_024_09920_4
crossref_primary_10_1016_j_molmet_2018_06_006
crossref_primary_10_1161_HYPERTENSIONAHA_124_22999
crossref_primary_10_1002_14651858_CD015092
crossref_primary_10_1007_s13346_024_01576_z
crossref_primary_10_1016_j_cmet_2023_01_001
crossref_primary_10_1016_j_jcjd_2019_07_003
crossref_primary_10_1016_j_bbagen_2021_129917
crossref_primary_10_1155_2021_6623379
crossref_primary_10_1097_MOG_0000000000000884
crossref_primary_10_1016_j_eclinm_2024_102689
crossref_primary_10_1111_eci_13519
crossref_primary_10_1002_mnfr_202100564
crossref_primary_10_3390_pharmaceutics14061180
crossref_primary_10_1111_bph_70003
crossref_primary_10_1016_j_nbd_2024_106485
crossref_primary_10_3390_livers3040042
crossref_primary_10_3389_fphar_2021_701446
crossref_primary_10_3390_ijms22115830
crossref_primary_10_1016_j_cell_2022_05_007
crossref_primary_10_1097_MD_0000000000038568
crossref_primary_10_1080_13543784_2020_1764534
crossref_primary_10_1249_MSS_0000000000002903
crossref_primary_10_1016_j_gassur_2024_04_028
crossref_primary_10_1038_s42003_022_03170_w
crossref_primary_10_3390_ijms25126331
crossref_primary_10_1016_j_phrs_2024_107574
crossref_primary_10_1016_j_phrs_2023_107031
crossref_primary_10_3389_fphar_2023_1176206
crossref_primary_10_3390_app12189271
crossref_primary_10_1007_s12602_023_10156_5
crossref_primary_10_1016_j_ejca_2024_115170
crossref_primary_10_1016_j_cnd_2024_09_003
crossref_primary_10_1111_bph_15462
crossref_primary_10_7759_cureus_77387
crossref_primary_10_1016_j_cld_2023_01_010
crossref_primary_10_1016_j_cytogfr_2023_12_005
crossref_primary_10_5694_mja2_51871
crossref_primary_10_1016_j_mce_2018_10_011
crossref_primary_10_1111_jdi_13896
crossref_primary_10_1152_ajpendo_00547_2020
crossref_primary_10_1038_s41467_024_55050_y
crossref_primary_10_1093_ckj_sfae018
crossref_primary_10_1080_01443615_2021_1959534
crossref_primary_10_1007_s10571_021_01079_2
crossref_primary_10_1210_clinem_dgad438
crossref_primary_10_2478_fzm_2022_0030
crossref_primary_10_3390_antiox9080765
crossref_primary_10_1038_s41574_023_00855_y
crossref_primary_10_1093_sleep_zsae280
crossref_primary_10_1002_oby_22794
crossref_primary_10_4236_jdm_2023_132017
crossref_primary_10_1073_pnas_2200155119
crossref_primary_10_3390_jcm10132968
crossref_primary_10_1007_s11154_020_09558_5
crossref_primary_10_1016_j_diabres_2022_109806
crossref_primary_10_5937_mp74_40304
crossref_primary_10_1016_j_ajog_2024_08_024
crossref_primary_10_3390_ijms24021703
crossref_primary_10_1111_1753_0407_13516
crossref_primary_10_1111_dme_14154
crossref_primary_10_1136_bmjdrc_2020_001540
crossref_primary_10_1016_j_conb_2024_102963
crossref_primary_10_1097_HEP_0000000000000323
crossref_primary_10_17116_profmed20232612195
crossref_primary_10_1016_j_biopha_2024_116755
crossref_primary_10_1007_s11938_024_00452_6
crossref_primary_10_1021_acsmedchemlett_0c00435
crossref_primary_10_1001_jamanetworkopen_2023_14493
crossref_primary_10_1016_j_toxrep_2025_101895
crossref_primary_10_3390_medicina60010050
crossref_primary_10_3389_fphys_2023_1239278
crossref_primary_10_1016_j_pharmthera_2025_108824
crossref_primary_10_1038_s41401_022_00962_y
crossref_primary_10_1093_ckj_sfac069
crossref_primary_10_3390_ijms21155252
crossref_primary_10_1007_s11695_024_07378_z
crossref_primary_10_51847_fu8WdCo3DU
crossref_primary_10_1002_ueg2_12150
crossref_primary_10_2147_DMSO_S438618
crossref_primary_10_1016_j_peptides_2021_170704
crossref_primary_10_14341_probl13400
crossref_primary_10_1016_j_cell_2024_06_003
crossref_primary_10_1038_s41598_021_95065_9
crossref_primary_10_1016_S2213_8587_20_30075_9
crossref_primary_10_1039_D2CB00049K
crossref_primary_10_1038_d41586_019_00235_5
crossref_primary_10_3390_ijms22020660
crossref_primary_10_1002_jcp_28214
crossref_primary_10_1210_endocr_bqaa039
crossref_primary_10_1016_j_tcm_2024_03_007
crossref_primary_10_3390_ijms231710101
crossref_primary_10_1097_MD_0000000000031334
crossref_primary_10_1093_oxfmat_itaf001
crossref_primary_10_1016_S2213_8587_18_30263_8
crossref_primary_10_1210_clinem_dgab428
crossref_primary_10_3390_ijms232113320
crossref_primary_10_1016_j_ejmech_2019_111773
crossref_primary_10_1007_s12630_023_02549_5
crossref_primary_10_1111_dom_14280
crossref_primary_10_1016_j_obpill_2024_100104
crossref_primary_10_1016_j_heliyon_2024_e39865
crossref_primary_10_1016_j_tem_2020_10_002
crossref_primary_10_1016_j_physbeh_2024_114565
crossref_primary_10_3389_fimmu_2020_576818
crossref_primary_10_1038_s42255_022_00625_6
crossref_primary_10_3390_ijms23063339
crossref_primary_10_3390_pharmaceutics15071858
crossref_primary_10_1002_phar_2688
crossref_primary_10_1302_2048_0105_133_360143
crossref_primary_10_1016_j_psychres_2021_113830
crossref_primary_10_1016_j_peptides_2020_170444
crossref_primary_10_1002_hep4_1942
crossref_primary_10_4103_jod_jod_71_22
crossref_primary_10_3390_jcm9123962
crossref_primary_10_1007_s12274_022_4963_5
crossref_primary_10_3389_fendo_2023_1250487
crossref_primary_10_3390_jcm13185627
crossref_primary_10_1007_s13300_020_00986_9
crossref_primary_10_3390_biom14030264
crossref_primary_10_1038_s41581_020_00367_2
crossref_primary_10_3390_antiox10081175
crossref_primary_10_1016_j_heliyon_2024_e25459
crossref_primary_10_1111_nyas_14211
crossref_primary_10_1016_j_neuropharm_2023_109637
crossref_primary_10_3389_fcdhc_2024_1399410
crossref_primary_10_1007_s11154_023_09823_3
crossref_primary_10_1111_dom_15359
crossref_primary_10_2174_0115748855276929231218053337
crossref_primary_10_1038_s41467_021_24058_z
crossref_primary_10_1007_s40256_024_00695_9
crossref_primary_10_1016_j_neuron_2023_12_012
crossref_primary_10_1172_jci_insight_127994
crossref_primary_10_19163_2307_9266_2023_11_4_347_380
crossref_primary_10_2147_PGPM_S329787
crossref_primary_10_1021_acs_jmedchem_0c02050
crossref_primary_10_20517_mtod_2024_12
crossref_primary_10_1002_mnfr_202300610
crossref_primary_10_2147_DMSO_S415934
crossref_primary_10_1016_j_tox_2023_153515
crossref_primary_10_3389_fendo_2024_1330936
crossref_primary_10_1007_s10620_021_07206_9
crossref_primary_10_1016_j_jep_2023_117571
crossref_primary_10_3390_app9235041
crossref_primary_10_1111_dom_15168
crossref_primary_10_3389_fendo_2022_1057905
crossref_primary_10_1016_j_peptides_2019_170213
crossref_primary_10_3390_nu15173737
crossref_primary_10_3389_fendo_2023_1267503
crossref_primary_10_1007_s13668_023_00454_3
crossref_primary_10_1016_j_nefro_2022_07_008
crossref_primary_10_1152_ajpcell_00765_2024
crossref_primary_10_1016_j_clnu_2025_02_007
crossref_primary_10_3390_cells13151244
crossref_primary_10_1007_s40618_024_02466_4
crossref_primary_10_3390_biom11020286
crossref_primary_10_1186_s12890_024_02959_1
crossref_primary_10_1002_der2_70003
crossref_primary_10_3390_ijms221910796
crossref_primary_10_3390_biomedicines12061320
crossref_primary_10_32947_ajps_v23i1_991
crossref_primary_10_1002_ncp_11279
crossref_primary_10_1016_j_bmcl_2020_127524
crossref_primary_10_1111_dom_14089
crossref_primary_10_1016_j_tem_2023_09_006
crossref_primary_10_1097_MED_0000000000000835
crossref_primary_10_1016_j_metabol_2020_154343
crossref_primary_10_1530_JOE_19_0007
crossref_primary_10_1080_14656566_2022_2104636
crossref_primary_10_1093_jpp_rgae035
crossref_primary_10_1186_s13098_024_01497_4
crossref_primary_10_1002_2211_5463_13499
crossref_primary_10_3390_life12111906
crossref_primary_10_3389_fphar_2023_1194026
crossref_primary_10_1016_j_ygcen_2023_114292
crossref_primary_10_7759_cureus_69704
crossref_primary_10_3390_ijms24065333
crossref_primary_10_1002_adtp_202400028
crossref_primary_10_1016_j_chroma_2022_463239
crossref_primary_10_1080_10408398_2022_2164244
crossref_primary_10_1093_advances_nmaa080
crossref_primary_10_3389_fendo_2023_1076343
crossref_primary_10_1016_j_jconrel_2023_03_012
crossref_primary_10_1111_bph_15647
crossref_primary_10_1016_S2213_8587_21_00019_X
crossref_primary_10_1111_dom_15383
crossref_primary_10_1016_j_phytol_2020_11_008
crossref_primary_10_20517_cdr_2024_116
crossref_primary_10_1016_j_ejphar_2019_172782
crossref_primary_10_1038_s41392_022_00955_7
crossref_primary_10_1016_j_micpath_2020_104645
crossref_primary_10_4239_wjd_v15_i11_2167
crossref_primary_10_7759_cureus_24829
crossref_primary_10_1016_j_soard_2021_12_017
crossref_primary_10_3350_cmh_2022_0015
crossref_primary_10_1111_dom_15398
crossref_primary_10_3389_fcell_2024_1421191
crossref_primary_10_1038_s42255_023_00942_4
crossref_primary_10_1016_j_molmet_2020_100990
crossref_primary_10_1080_17446651_2023_2204976
crossref_primary_10_3390_futurepharmacol3010021
crossref_primary_10_1093_nutrit_nuab021
crossref_primary_10_3390_metabo11120869
crossref_primary_10_3390_nu14183775
crossref_primary_10_1016_j_biopha_2020_110857
crossref_primary_10_1177_2047487319880040
crossref_primary_10_1038_s42255_024_01068_x
crossref_primary_10_3389_fphar_2023_1215150
crossref_primary_10_1080_14740338_2020_1806234
crossref_primary_10_1021_acs_jmedchem_2c02073
crossref_primary_10_1093_eurheartj_ehz728
crossref_primary_10_1016_j_jhep_2023_04_003
crossref_primary_10_1113_EP091815
crossref_primary_10_3389_fphar_2022_935823
crossref_primary_10_3389_fendo_2021_814770
crossref_primary_10_1080_19382014_2023_2223327
crossref_primary_10_3390_biomedicines9091165
crossref_primary_10_1007_s13300_020_00882_2
crossref_primary_10_2337_dbi21_0002
crossref_primary_10_3390_nu17010013
crossref_primary_10_2337_dci24_0029
crossref_primary_10_1111_dom_16070
crossref_primary_10_3389_fphar_2024_1414268
crossref_primary_10_1038_s41392_022_01149_x
crossref_primary_10_3390_ijms25168572
crossref_primary_10_1016_j_ocarto_2025_100572
crossref_primary_10_1038_s41574_024_00957_1
crossref_primary_10_1016_j_peptides_2024_171243
crossref_primary_10_1038_s41574_018_0132_z
crossref_primary_10_1007_s00125_018_4639_6
crossref_primary_10_1016_j_cmet_2019_11_017
crossref_primary_10_1016_j_nefroe_2023_09_003
crossref_primary_10_1016_j_tem_2021_02_005
crossref_primary_10_1097_XCE_0000000000000321
crossref_primary_10_1126_sciadv_abi4379
crossref_primary_10_1371_journal_pone_0290043
crossref_primary_10_1021_acsptsci_1c00013
crossref_primary_10_3389_fmed_2024_1376115
crossref_primary_10_1210_endocr_bqz029
crossref_primary_10_1093_ibd_izae250
crossref_primary_10_1172_JCI182325
crossref_primary_10_1016_j_ejphar_2022_174800
crossref_primary_10_1007_s10787_024_01556_2
crossref_primary_10_1016_j_gendis_2021_12_011
crossref_primary_10_1007_s11695_020_05176_x
crossref_primary_10_3389_fnins_2022_970925
crossref_primary_10_1016_j_addr_2021_01_004
crossref_primary_10_3389_fragi_2022_931331
crossref_primary_10_1016_j_diabet_2025_101613
crossref_primary_10_1007_s00213_022_06107_7
crossref_primary_10_1016_j_lfs_2022_121045
crossref_primary_10_12677_ACM_2022_124430
crossref_primary_10_1016_j_peptides_2022_170811
crossref_primary_10_1016_j_cger_2020_08_002
crossref_primary_10_2337_dci24_0003
crossref_primary_10_20945_2359_3997000000355
crossref_primary_10_1038_s42255_022_00657_y
crossref_primary_10_3389_fendo_2022_1007944
crossref_primary_10_1016_j_cell_2020_12_007
crossref_primary_10_1016_j_ebiom_2021_103739
crossref_primary_10_3390_medicina60030357
crossref_primary_10_3390_diseases12090224
crossref_primary_10_1080_14656566_2021_1939679
crossref_primary_10_1111_dom_16047
crossref_primary_10_1021_jacsau_2c00130
crossref_primary_10_3390_pathogens12020184
crossref_primary_10_1016_j_cgh_2023_08_034
crossref_primary_10_1016_j_cmet_2022_10_001
crossref_primary_10_1016_j_cmet_2024_05_001
crossref_primary_10_1016_j_hlc_2024_11_025
crossref_primary_10_4239_wjd_v15_i8_1663
crossref_primary_10_1038_s42255_024_01175_9
crossref_primary_10_3390_microorganisms12091760
crossref_primary_10_1111_dom_16285
crossref_primary_10_3389_fendo_2022_958218
crossref_primary_10_1007_s40200_024_01512_5
crossref_primary_10_1016_j_jdiacomp_2023_108515
crossref_primary_10_1016_j_obmed_2020_100312
crossref_primary_10_1152_ajpendo_00192_2023
crossref_primary_10_3389_fendo_2021_622901
crossref_primary_10_2174_1573399816666191230113446
crossref_primary_10_1038_s41581_022_00621_9
crossref_primary_10_1016_j_clim_2023_109744
crossref_primary_10_3390_cells10092297
crossref_primary_10_1016_j_aquaculture_2024_741549
crossref_primary_10_1016_j_molmet_2021_101175
crossref_primary_10_1186_s12916_024_03483_z
crossref_primary_10_1111_cob_12546
crossref_primary_10_1007_s00125_023_05980_x
crossref_primary_10_3389_fnbeh_2021_724030
crossref_primary_10_17925_EE_2023_19_1_38
crossref_primary_10_1039_D4FO00489B
crossref_primary_10_1016_j_addr_2020_05_008
crossref_primary_10_1016_j_metabol_2020_154190
crossref_primary_10_3389_fendo_2022_910256
crossref_primary_10_3390_jcm13216336
crossref_primary_10_1021_acs_jmedchem_1c00032
crossref_primary_10_1016_j_diabres_2024_111905
crossref_primary_10_1039_C9SC02079A
crossref_primary_10_1016_j_ajpc_2025_100928
crossref_primary_10_1016_j_ejphar_2020_173101
crossref_primary_10_1016_j_ocarto_2024_100472
crossref_primary_10_1007_s11010_024_05118_6
crossref_primary_10_1007_s12325_021_01710_0
crossref_primary_10_1136_bjophthalmol_2021_319232
crossref_primary_10_1016_j_lfs_2020_118592
crossref_primary_10_1016_j_molmet_2021_101163
crossref_primary_10_1097_MED_0000000000000555
crossref_primary_10_62210_ClinSciNutr_2024_98
crossref_primary_10_1016_j_domaniend_2019_07_001
crossref_primary_10_12677_tcm_2024_139361
crossref_primary_10_1016_j_metabol_2024_156042
crossref_primary_10_2147_IJWH_S326417
crossref_primary_10_2147_IJN_S492651
crossref_primary_10_1002_14651858_CD015849
crossref_primary_10_3390_nu12113304
crossref_primary_10_1038_s41387_024_00343_w
crossref_primary_10_3389_fnmol_2019_00101
crossref_primary_10_1073_pnas_2206098119
crossref_primary_10_1111_febs_17249
crossref_primary_10_1016_j_molmet_2018_09_009
crossref_primary_10_1038_s41584_024_01143_3
crossref_primary_10_1021_acsptsci_9b00108
crossref_primary_10_1111_dom_16077
crossref_primary_10_3390_jcm10112233
crossref_primary_10_1161_JAHA_122_026586
crossref_primary_10_3390_biomedicines11071875
crossref_primary_10_1038_s44319_023_00031_3
crossref_primary_10_3389_fendo_2021_671946
crossref_primary_10_1016_j_diabres_2024_111927
crossref_primary_10_3390_ijms24108836
crossref_primary_10_3390_ph17070828
crossref_primary_10_1007_s10989_020_10123_6
crossref_primary_10_1016_j_athplu_2024_03_001
crossref_primary_10_1016_j_arth_2024_10_099
crossref_primary_10_1177_03000605231177191
crossref_primary_10_3390_pharmaceutics16111353
crossref_primary_10_3390_ph17040525
crossref_primary_10_1002_edm2_392
crossref_primary_10_1016_j_metabol_2020_154167
crossref_primary_10_1016_j_molmet_2021_101180
crossref_primary_10_1083_jcb_201810097
crossref_primary_10_11005_jbm_2024_31_3_169
crossref_primary_10_1186_s40348_023_00170_6
crossref_primary_10_3390_ijms232415938
crossref_primary_10_3389_fphar_2022_1043828
crossref_primary_10_1093_milmed_usaf029
crossref_primary_10_1016_j_celrep_2022_111170
crossref_primary_10_1172_jci_insight_154314
crossref_primary_10_1172_JCI178239
crossref_primary_10_12677_ACM_2023_1361396
crossref_primary_10_1016_j_arr_2023_102134
crossref_primary_10_1155_2020_1626484
crossref_primary_10_1186_s13098_021_00645_4
crossref_primary_10_1016_j_mce_2019_110584
crossref_primary_10_1016_j_biopha_2024_117540
crossref_primary_10_1016_j_jcjd_2021_08_012
crossref_primary_10_31146_1682_8658_ecg_220_12_77_85
crossref_primary_10_3389_fcimb_2023_1303899
crossref_primary_10_7570_jomes23032
crossref_primary_10_1007_s11154_021_09669_7
crossref_primary_10_1007_s11912_022_01344_7
crossref_primary_10_3390_biom10101404
crossref_primary_10_1021_acs_biochem_4c00867
crossref_primary_10_1152_ajpregu_00288_2018
crossref_primary_10_1016_j_jdiacomp_2024_108874
crossref_primary_10_1155_2018_8380192
crossref_primary_10_3390_jcm13247732
crossref_primary_10_3389_fnins_2018_00962
crossref_primary_10_22141_2224_0721_17_8_2021_246799
crossref_primary_10_3389_fcimb_2021_595575
crossref_primary_10_4239_wjd_v12_i11_1832
crossref_primary_10_1016_j_neuropharm_2024_110269
crossref_primary_10_1186_s12933_024_02145_x
crossref_primary_10_1007_s11096_023_01556_2
crossref_primary_10_1016_j_obmed_2025_100591
crossref_primary_10_1089_thy_2023_0530
crossref_primary_10_1016_j_carbpol_2023_121694
crossref_primary_10_1016_j_molmet_2021_101392
crossref_primary_10_1007_s40261_023_01319_x
crossref_primary_10_1016_j_cardfail_2025_01_008
crossref_primary_10_1016_j_medj_2021_09_001
crossref_primary_10_1016_j_molmet_2019_05_004
crossref_primary_10_1016_j_ygcen_2024_114602
crossref_primary_10_3389_fendo_2024_1520313
crossref_primary_10_3390_jcm13164674
crossref_primary_10_1016_j_eprac_2024_11_013
crossref_primary_10_1016_j_mehy_2021_110739
crossref_primary_10_1152_ajpgi_00308_2020
crossref_primary_10_1155_2021_7765623
crossref_primary_10_1249_MSS_0000000000003489
crossref_primary_10_1002_ptr_7387
crossref_primary_10_1016_j_eclinm_2024_102782
crossref_primary_10_4239_wjd_v15_i3_361
crossref_primary_10_1080_03007995_2024_2333440
crossref_primary_10_1002_jcsm_13677
crossref_primary_10_1097_HC9_0000000000000561
crossref_primary_10_1016_j_biopha_2024_116245
crossref_primary_10_1016_j_biopha_2024_116485
crossref_primary_10_1016_j_ccc_2021_03_007
crossref_primary_10_1016_j_neubiorev_2021_10_026
crossref_primary_10_1016_j_cmet_2024_11_003
crossref_primary_10_1186_s40001_022_00892_9
crossref_primary_10_1523_JNEUROSCI_2032_23_2024
crossref_primary_10_3389_fendo_2022_818537
crossref_primary_10_1007_s40266_024_01165_2
crossref_primary_10_3389_fendo_2022_922640
crossref_primary_10_1016_j_thromres_2019_06_010
crossref_primary_10_1002_jpen_2286
crossref_primary_10_1016_j_cmet_2024_05_010
crossref_primary_10_1080_17460441_2024_2324918
crossref_primary_10_3389_fphar_2022_786767
crossref_primary_10_3897_pharmacia_71_e120141
crossref_primary_10_1016_j_molmet_2019_11_018
crossref_primary_10_3389_fendo_2019_00029
crossref_primary_10_3389_fnagi_2022_899389
crossref_primary_10_1016_j_peptides_2023_170974
crossref_primary_10_1172_jci_insight_130770
crossref_primary_10_1007_s40619_024_01436_5
crossref_primary_10_1210_en_2019_00356
crossref_primary_10_1155_2022_5013622
crossref_primary_10_1111_obr_13038
crossref_primary_10_3389_fimmu_2021_793588
crossref_primary_10_1016_j_pharmr_2024_100018
crossref_primary_10_1055_a_2407_9360
crossref_primary_10_1152_ajpheart_00031_2022
crossref_primary_10_1016_j_ejmech_2019_07_045
crossref_primary_10_1016_j_molmet_2019_11_004
crossref_primary_10_1016_j_eclinm_2024_102726
crossref_primary_10_1002_edm2_330
crossref_primary_10_1186_s12933_020_01014_7
crossref_primary_10_1038_s41392_024_01951_9
crossref_primary_10_1146_annurev_pharmtox_030220_121042
crossref_primary_10_1016_j_molmet_2022_101633
crossref_primary_10_1210_endocr_bqac193
crossref_primary_10_1051_bioconf_20236101006
crossref_primary_10_1126_sciadv_abn5345
crossref_primary_10_3390_biomedicines11020496
crossref_primary_10_1186_s12950_023_00330_5
crossref_primary_10_3389_fendo_2020_00178
crossref_primary_10_1002_cbic_202300504
crossref_primary_10_1016_j_jff_2019_05_013
crossref_primary_10_1210_clinem_dgad395
crossref_primary_10_3390_ijms24119324
crossref_primary_10_4239_wjd_v15_i3_331
crossref_primary_10_1016_j_molmet_2021_101352
crossref_primary_10_1016_j_coph_2021_11_010
crossref_primary_10_1021_acs_jmedchem_3c00320
crossref_primary_10_3389_fendo_2022_808956
crossref_primary_10_1016_j_hfc_2024_12_006
crossref_primary_10_1007_s00592_020_01635_0
crossref_primary_10_1016_j_ygyno_2024_07_008
crossref_primary_10_3390_biomedicines9070800
crossref_primary_10_2139_ssrn_4126596
crossref_primary_10_1002_mnfr_202000303
crossref_primary_10_3389_fendo_2022_951186
crossref_primary_10_1038_s41598_019_39380_2
crossref_primary_10_1111_1751_7915_14196
crossref_primary_10_1161_STROKEAHA_121_037775
crossref_primary_10_3390_jcdd10090386
crossref_primary_10_3390_metabo13080954
crossref_primary_10_1113_EP087118
crossref_primary_10_26508_lsa_202402603
crossref_primary_10_1210_jc_2019_00515
crossref_primary_10_3389_fphys_2020_568632
crossref_primary_10_1016_j_bioorg_2019_103538
crossref_primary_10_1016_j_molmet_2021_101340
crossref_primary_10_58647_DRUGREPO_24_2_0018
crossref_primary_10_1007_s11033_024_09793_y
crossref_primary_10_1038_s42255_024_01040_9
crossref_primary_10_1016_j_molmet_2022_101641
crossref_primary_10_1007_s11096_022_01428_1
crossref_primary_10_1016_j_nbd_2018_11_023
crossref_primary_10_2174_1570161116666180828155622
crossref_primary_10_1016_j_apsb_2023_11_020
crossref_primary_10_1016_j_lfs_2024_123339
crossref_primary_10_1007_s00592_023_02217_6
crossref_primary_10_2478_ahem_2021_0037
crossref_primary_10_3390_ijms23084334
crossref_primary_10_1055_a_2303_8558
crossref_primary_10_3389_fendo_2022_1092431
crossref_primary_10_5694_mja2_50472
crossref_primary_10_1161_CIRCULATIONAHA_122_059595
crossref_primary_10_1007_s00394_019_02092_4
crossref_primary_10_1093_eurjpc_zwaa081
crossref_primary_10_1093_humrep_dead126
crossref_primary_10_1007_s00421_020_04431_4
crossref_primary_10_1093_jbcr_irae189
crossref_primary_10_7759_cureus_73705
crossref_primary_10_1016_j_lfs_2024_123327
crossref_primary_10_1016_j_jafr_2024_101100
crossref_primary_10_1016_j_mcna_2024_04_007
crossref_primary_10_46332_aemj_859981
crossref_primary_10_1016_j_biopha_2021_111778
crossref_primary_10_1111_dom_14328
crossref_primary_10_3892_ijmm_2025_5497
crossref_primary_10_1016_j_molmet_2021_101407
crossref_primary_10_3390_ijms26052320
crossref_primary_10_1002_ctm2_575
crossref_primary_10_1016_j_ijbiomac_2024_130062
crossref_primary_10_1016_j_prerep_2024_100019
crossref_primary_10_1016_j_jhep_2023_01_024
crossref_primary_10_1093_nutrit_nuae074
crossref_primary_10_1089_dia_2024_0122
crossref_primary_10_1038_s41413_021_00142_4
crossref_primary_10_3389_fendo_2023_1256514
crossref_primary_10_1111_dom_15869
crossref_primary_10_1016_j_bbalip_2022_159195
crossref_primary_10_1016_j_bmcl_2023_129454
crossref_primary_10_1016_j_lfs_2021_119374
crossref_primary_10_3389_fendo_2019_00155
crossref_primary_10_3390_ijms252011299
crossref_primary_10_3389_fcell_2022_950623
crossref_primary_10_3389_fendo_2021_731974
crossref_primary_10_1007_s13340_024_00751_4
crossref_primary_10_3389_fendo_2022_1033479
crossref_primary_10_1007_s11428_023_01109_1
crossref_primary_10_1016_j_tins_2024_04_003
crossref_primary_10_1021_acs_jmedchem_9b00835
crossref_primary_10_1111_jnc_15314
crossref_primary_10_1161_HYPERTENSIONAHA_119_13778
crossref_primary_10_1016_j_celrep_2020_108271
crossref_primary_10_3390_ijms26041651
crossref_primary_10_3389_fcell_2021_777026
crossref_primary_10_2106_JBJS_RVW_23_00167
crossref_primary_10_1038_s41467_020_18249_3
crossref_primary_10_1111_jne_12664
crossref_primary_10_18553_jmcp_2023_29_3_276
crossref_primary_10_7326_ANNALS_24_01590
crossref_primary_10_1210_clinem_dgab163
crossref_primary_10_3389_fendo_2022_1047883
crossref_primary_10_3390_receptors4010002
crossref_primary_10_1002_oby_23719
crossref_primary_10_3389_fchem_2021_711242
crossref_primary_10_1016_j_ebiom_2019_03_012
crossref_primary_10_2337_dbi18_0008
crossref_primary_10_32948_ajpt_2024_11_22
crossref_primary_10_1038_s41387_024_00281_7
crossref_primary_10_1080_00325481_2020_1798099
crossref_primary_10_18787_jr_2023_00010
crossref_primary_10_4093_jkd_2021_22_2_126
crossref_primary_10_2147_DMSO_S474196
crossref_primary_10_1210_jendso_bvae200
crossref_primary_10_1515_biol_2022_0909
crossref_primary_10_1007_s11695_023_06975_8
crossref_primary_10_1177_20406223221108064
crossref_primary_10_1039_D4TB02261K
crossref_primary_10_1186_s12944_023_01880_6
crossref_primary_10_1007_s13300_023_01515_0
crossref_primary_10_1016_j_smim_2022_101699
crossref_primary_10_2174_0929867330666230416153301
crossref_primary_10_1177_13872877241304673
crossref_primary_10_3389_fendo_2023_1085799
crossref_primary_10_3389_fphar_2022_1016635
crossref_primary_10_1007_s00125_019_05021_6
crossref_primary_10_3390_nu11071517
crossref_primary_10_1021_acs_jcim_3c00564
crossref_primary_10_1111_dom_15219
crossref_primary_10_26599_FMH_2025_9420074
crossref_primary_10_1111_dom_14121
crossref_primary_10_1002_oby_23772
crossref_primary_10_1016_j_intimp_2020_106715
crossref_primary_10_1111_jdi_13533
crossref_primary_10_3390_cimb45060288
crossref_primary_10_3390_nu15030556
crossref_primary_10_2337_dbi20_0028
crossref_primary_10_1016_j_molmet_2019_07_008
crossref_primary_10_3390_nu14224886
crossref_primary_10_1111_obr_13792
crossref_primary_10_21215_kjfp_2025_15_1_2
crossref_primary_10_1039_D3RA05677E
crossref_primary_10_1155_2020_6138438
crossref_primary_10_1016_j_mayocp_2020_10_002
crossref_primary_10_1016_j_ejps_2022_106218
crossref_primary_10_1096_fj_202402546R
crossref_primary_10_1051_medsci_2024153
crossref_primary_10_1007_s00383_024_05957_w
crossref_primary_10_1007_s11655_024_3915_1
crossref_primary_10_1016_j_ejps_2024_106818
crossref_primary_10_3389_fphar_2021_781856
crossref_primary_10_37349_eds_2023_00015
crossref_primary_10_1126_science_adj2537
crossref_primary_10_1089_dia_2024_0533
crossref_primary_10_1111_dom_14572
crossref_primary_10_1210_clinem_dgaa285
crossref_primary_10_1055_a_2463_9784
crossref_primary_10_1007_s40610_023_00156_3
crossref_primary_10_1126_scitranslmed_aaw9996
crossref_primary_10_1007_s11886_023_02016_z
crossref_primary_10_1038_s41598_021_03283_y
crossref_primary_10_1007_s00198_018_4649_8
crossref_primary_10_1016_j_amjmed_2025_01_021
crossref_primary_10_1155_2022_7563281
crossref_primary_10_1080_14656566_2022_2108702
crossref_primary_10_1111_1753_0407_70044
crossref_primary_10_1186_s12902_023_01500_5
crossref_primary_10_1126_sciadv_aaz4988
crossref_primary_10_1016_j_bbadis_2021_166211
crossref_primary_10_1007_s13181_024_00999_x
crossref_primary_10_1038_s41392_020_00435_w
crossref_primary_10_1007_s40261_024_01351_5
crossref_primary_10_2337_db20_0262
crossref_primary_10_1038_s41374_018_0170_0
crossref_primary_10_1016_j_physbeh_2020_113039
crossref_primary_10_1159_000529438
crossref_primary_10_3390_ijms23020739
crossref_primary_10_1186_s12872_024_04427_4
crossref_primary_10_1038_s41467_022_34258_w
crossref_primary_10_1016_j_jff_2022_105321
crossref_primary_10_1080_09637486_2023_2262780
crossref_primary_10_1007_s12630_024_02810_5
crossref_primary_10_21518_2079_701X_2019_21_189_197
crossref_primary_10_1186_s13020_021_00486_3
crossref_primary_10_1016_j_lpm_2023_104178
crossref_primary_10_1097_MOP_0000000000001379
crossref_primary_10_1007_s12609_024_00550_5
crossref_primary_10_3390_ijerph20032122
crossref_primary_10_1016_j_jhep_2022_04_002
crossref_primary_10_1002_btm2_10351
crossref_primary_10_3390_ijms25084358
crossref_primary_10_17925_EE_2022_18_1_43
crossref_primary_10_1155_2022_4554996
crossref_primary_10_1038_s41392_023_01619_w
crossref_primary_10_3390_diseases12010014
crossref_primary_10_1007_s00125_023_05906_7
crossref_primary_10_1039_D3TB01202F
crossref_primary_10_1016_j_bmc_2019_01_001
crossref_primary_10_1056_NEJMra2216691
crossref_primary_10_3390_ijms22020775
crossref_primary_10_1096_fj_202100126R
crossref_primary_10_3390_diseases11010050
crossref_primary_10_7759_cureus_69844
crossref_primary_10_1111_dom_16106
crossref_primary_10_3389_fendo_2022_1012904
crossref_primary_10_1038_s41589_024_01714_1
crossref_primary_10_1007_s13679_020_00409_7
crossref_primary_10_1016_j_ebiom_2023_104684
crossref_primary_10_1007_s12325_022_02128_y
crossref_primary_10_1016_j_phymed_2023_154982
crossref_primary_10_1111_jre_13242
crossref_primary_10_1016_j_diabres_2023_110605
crossref_primary_10_3389_fneur_2022_844697
crossref_primary_10_1507_endocrj_EJ24_0286
crossref_primary_10_3390_biom12010104
crossref_primary_10_3390_diseases12090195
crossref_primary_10_1021_acs_jcim_3c00752
crossref_primary_10_1038_s41575_023_00888_8
crossref_primary_10_1002_ehf2_12937
crossref_primary_10_3389_fnut_2022_992682
crossref_primary_10_1016_j_phrs_2021_105649
crossref_primary_10_1002_oby_23563
crossref_primary_10_1111_jdi_13764
crossref_primary_10_1093_advances_nmz038
crossref_primary_10_1016_j_medj_2021_10_004
crossref_primary_10_1038_s41573_025_01139_y
crossref_primary_10_1055_a_2505_5330
crossref_primary_10_3389_fendo_2024_1486793
crossref_primary_10_1016_j_apsb_2022_06_003
crossref_primary_10_3389_fphys_2023_1231621
crossref_primary_10_3390_ijms23179583
crossref_primary_10_1210_clinem_dgac418
crossref_primary_10_1038_s42255_021_00344_4
crossref_primary_10_1038_s41598_022_22511_7
crossref_primary_10_1192_j_eurpsy_2023_2474
crossref_primary_10_1038_s41598_023_42665_2
crossref_primary_10_1002_phar_70009
crossref_primary_10_1111_dom_15235
crossref_primary_10_1016_j_ejphar_2024_176903
crossref_primary_10_1002_hep_31856
crossref_primary_10_1001_jama_2024_10816
crossref_primary_10_1080_13543784_2021_1951701
crossref_primary_10_3389_fphar_2024_1463187
crossref_primary_10_1371_journal_pone_0241651
crossref_primary_10_1080_10408398_2023_2240886
crossref_primary_10_1017_S0029665122002695
crossref_primary_10_12677_ACM_2023_134905
crossref_primary_10_3390_gastroent15010014
crossref_primary_10_3390_ijms23042336
crossref_primary_10_1186_s10020_022_00574_6
crossref_primary_10_3389_fendo_2022_991397
crossref_primary_10_58931_cdet_2023_1318
crossref_primary_10_1111_tri_13883
crossref_primary_10_1016_j_soard_2024_01_005
crossref_primary_10_1016_j_ejmech_2022_114214
crossref_primary_10_1016_j_phrs_2018_09_025
crossref_primary_10_1016_j_jacc_2021_02_057
crossref_primary_10_3389_fendo_2024_1340625
crossref_primary_10_1096_fj_202402269RR
crossref_primary_10_1002_oby_23374
crossref_primary_10_1177_11795514211042023
crossref_primary_10_1016_j_neuroscience_2024_11_022
crossref_primary_10_1080_17446651_2023_2187215
crossref_primary_10_1016_j_mcna_2024_03_002
crossref_primary_10_1007_s11695_021_05877_x
crossref_primary_10_1080_14740338_2025_2468860
crossref_primary_10_3390_bios13010048
crossref_primary_10_1016_j_ajcnut_2023_05_003
crossref_primary_10_1016_j_ophtha_2024_10_030
crossref_primary_10_1210_jc_2019_00296
crossref_primary_10_1021_acs_bioconjchem_0c00291
crossref_primary_10_1016_j_cmet_2021_03_014
crossref_primary_10_1016_j_molmet_2019_09_010
crossref_primary_10_3390_pharmaceutics13060816
crossref_primary_10_1038_s41366_023_01414_1
crossref_primary_10_3389_fphar_2024_1372399
crossref_primary_10_1097_MS9_0000000000002592
crossref_primary_10_3389_fendo_2021_649525
crossref_primary_10_3803_EnM_2024_1942
crossref_primary_10_3390_medicina60122067
crossref_primary_10_3803_EnM_2024_1940
crossref_primary_10_1016_j_biochi_2018_11_009
crossref_primary_10_3390_jcm13010201
crossref_primary_10_3389_fcell_2020_602574
crossref_primary_10_1038_s41392_022_01070_3
crossref_primary_10_1007_s00125_021_05505_4
crossref_primary_10_1016_j_xcrm_2021_100387
crossref_primary_10_1186_s12944_024_02416_2
crossref_primary_10_1111_dom_14174
crossref_primary_10_1111_dom_14173
crossref_primary_10_1016_j_yfrne_2023_101081
crossref_primary_10_1111_cpr_12785
crossref_primary_10_1002_jpen_1608
crossref_primary_10_1016_j_cpha_2022_10_007
crossref_primary_10_1038_s41467_020_17363_6
crossref_primary_10_3389_fnins_2022_977374
crossref_primary_10_1002_jcph_2371
crossref_primary_10_1210_jendso_bvab128
crossref_primary_10_3803_EnM_2024_1951
crossref_primary_10_1002_1873_3468_14282
crossref_primary_10_1016_j_peptides_2019_170100
crossref_primary_10_1111_dom_16126
crossref_primary_10_7759_cureus_66311
crossref_primary_10_3389_fnmol_2024_1479876
crossref_primary_10_3389_fphar_2021_768023
crossref_primary_10_1111_jnc_15765
Cites_doi 10.1038/nm.3761
10.1016/S0140-6736(15)00803-X
10.2337/db14-0883
10.1210/en.2018-00004
10.7554/eLife.06253
10.2337/dc14-2690
10.1016/S0140-6736(06)69705-5
10.2337/dc17-1638
10.2337/dc16-0690
10.1152/ajpregu.00491.2013
10.1007/s00125-016-3992-6
10.1371/journal.pone.0100778
10.1210/en.2008-1479
10.1523/JNEUROSCI.22-23-10470.2002
10.1371/journal.pone.0142352
10.1016/j.cmet.2014.04.005
10.1016/j.molmet.2013.11.010
10.1038/nature23874
10.1016/S0140-6736(09)61375-1
10.1152/ajpendo.00283.2013
10.1038/nature22378
10.1210/en.2007-1292
10.1016/j.amjmed.2017.03.010
10.1002/ejhf.657
10.1007/s00125-008-1149-y
10.1210/endo.140.1.6421
10.1523/JNEUROSCI.5977-08.2009
10.1016/j.yjmcc.2015.09.018
10.2337/db16-1102
10.1016/S2213-8587(13)70218-3
10.2337/diacare.21.11.1925
10.2337/db12-1498
10.1056/NEJMoa1603827
10.1038/ijo.2013.162
10.1016/j.chom.2013.09.012
10.1016/j.cmet.2016.08.003
10.1016/j.cmet.2017.07.011
10.2337/dc16-2113
10.2337/diabetes.48.1.86
10.1038/nature22800
10.2337/db10-0474
10.1016/j.molmet.2017.03.006
10.2337/dc16-0691
10.2337/dc11-0291
10.1038/sj.ijo.0803344
10.1523/JNEUROSCI.3579-15.2016
10.1124/pr.115.011395
10.1172/JCI97233
10.1001/jama.2016.10260
10.1152/ajpregu.00123.2015
10.1001/jamainternmed.2016.1531
10.1111/dom.12748
10.1210/en.2009-1272
10.1210/jc.2010-2318
10.1016/S0140-6736(17)31585-4
10.1056/NEJMp1001578
10.1172/JCI81335
10.1056/NEJMoa1612917
10.1161/CIRCULATIONAHA.116.024279
10.1007/s00125-015-3754-x
10.1210/en.2016-1302
10.1172/JCI68295
10.1210/en.2013-1934
10.1016/j.cmet.2016.08.020
10.1038/s41467-017-02488-y
10.1038/clpt.2010.184
10.2337/db13-1268
10.1152/ajpgi.00035.2013
10.2337/dc14-0893
10.1007/s00125-010-1937-z
10.2337/db13-0954
10.1038/nm.2513
10.1056/NEJMoa1607141
10.1016/j.cels.2016.09.002
10.1126/scitranslmed.aad3744
10.1210/jc.2015-3449
10.2337/db07-1824
10.1210/en.2014-1717
10.2337/db13-1440
10.1172/JCI72434
10.1016/j.neuron.2017.09.042
10.2337/dc16-2684
10.1056/NEJMoa1509225
10.1111/dom.12826
10.1152/ajpgi.00453.2006
10.1038/ncomms9918
10.1016/j.celrep.2014.10.032
10.1172/JCI25483
10.2337/db15-0973
10.1016/S2213-8587(17)30412-6
10.1056/NEJMp1314078
10.1152/ajpgi.00293.2015
10.1038/modpathol.2014.113
10.1053/j.gastro.2013.11.044
10.1001/jama.2017.14752
10.1038/nm.4345
10.1111/dom.12879
10.1038/nrendo.2013.47
10.2337/db13-0822
10.1016/j.cmet.2016.06.009
10.1038/nm.3128
10.2337/diabetes.54.8.2390
10.2337/db11-1732
10.1016/j.celrep.2017.10.008
10.2337/dc09-0773
10.1161/ATVBAHA.116.307930
10.1016/j.celrep.2015.06.062
10.1016/j.cmet.2017.04.013
10.1021/cb1002015
10.1016/j.cmet.2015.10.017
10.1172/JCI75276
10.1210/me.2011-1119
10.1016/j.cmet.2013.04.008
10.1038/nature22394
10.1016/j.cell.2016.05.023
10.1096/fj.14-265983
10.1016/j.cmet.2006.10.001
10.1124/pr.55.1.6
10.1172/JCI91761
10.1016/j.cmet.2016.06.016
10.1007/s00125-009-1611-5
10.1038/nm1196-1254
10.1002/jcph.940
10.2337/db07-0697
10.1172/JCI42497
10.1161/ATVBAHA.112.246207
10.1146/annurev-physiol-021113-170317
10.2337/db14-0558
10.1016/j.cell.2016.05.011
10.1016/j.cmet.2015.02.005
10.1038/ncomms6897
10.1152/ajpendo.00412.2015
10.2337/db13-0903
10.1210/en.2012-1937
10.2337/db08-1198
10.1016/j.cmet.2011.02.001
10.2337/db14-1577
10.1126/scitranslmed.3007218
10.1016/j.regpep.2012.08.005
10.1161/CIRCRESAHA.114.301958
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2018.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 756
ExternalDocumentID 29617641
10_1016_j_cmet_2018_03_001
S1550413118301797
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
  grantid: 154321
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-dd525d9cdb88ac28bbdb61ab778844ae381ce05b013f1a67bc30ff8a9d5e492c3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Fri Jul 11 12:25:23 EDT 2025
Thu Apr 03 07:07:52 EDT 2025
Tue Jul 01 03:58:17 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
Fri Feb 23 02:27:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords G protein-coupled receptor
body weight
cardiovascular disease
inflammation
incretin
metabolism
diabetes
hypertension
obesity
drug
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-dd525d9cdb88ac28bbdb61ab778844ae381ce05b013f1a67bc30ff8a9d5e492c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413118301797
PMID 29617641
PQID 2022130863
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2022130863
pubmed_primary_29617641
crossref_primary_10_1016_j_cmet_2018_03_001
crossref_citationtrail_10_1016_j_cmet_2018_03_001
elsevier_sciencedirect_doi_10_1016_j_cmet_2018_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-03
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Keller, Trautmann, Haber, Tham, Hunt, Mace, Linnebjerg (bib51) 2012; 179
Plamboeck, Veedfald, Deacon, Hartmann, Wettergren, Svendsen, Meisner, Hovendal, Vilsbøll, Knop, Holst (bib87) 2013; 304
Parks, Rosebraugh (bib83) 2010; 362
Vetter, Wadden, Teff, Khan, Carvajal, Ritter, Moore, Chittams, Iagnocco, Murayama (bib122) 2015; 64
Mathieu, Zinman, Hemmingsson, Woo, Colman, Christiansen, Linder, Bode (bib70) 2016; 39
Nogueiras, Pérez-Tilve, Veyrat-Durebex, Morgan, Varela, Haynes, Patterson, Disse, Pfluger, Lopez (bib81) 2009; 29
Sandoval, Bagnol, Woods, D'Alessio, Seeley (bib98) 2008; 57
Finan, Yang, Ottaway, Smiley, Ma, Clemmensen, Chabenne, Zhang, Habegger, Fischer (bib32) 2015; 21
Breton, Tennoune, Lucas, Francois, Legrand, Jacquemot, Goichon, Guérin, Peltier, Pestel-Caron (bib9) 2016; 23
Patterson, Ottaway, Gelfanov, Smiley, Perez-Tilve, Pfluger, Tschöp, Dimarchi (bib84) 2011; 6
Maida, Lamont, Cao, Drucker (bib66) 2011; 54
Drucker, Habener, Holst (bib24) 2017; 127
Koehler, Baggio, Cao, Abdulla, Campbell, Secher, Jelsing, Larsen, Drucker (bib55) 2015; 64
Scott, Freitag, Li, Chu, Surendran, Young, Grarup, Stancáková, Chen, Varga (bib99) 2016; 8
Muraro, Dharmadhikari, Grun, Groen, Dielen, Jansen, van Gurp, Engelse, Carlotti, de Koning, van Oudenaarden (bib76) 2016; 3
Baggio, Yusta, Mulvihill, Cao, Streutker, Butany, Cappola, Margulies, Drucker (bib6) 2018; 159
Nauck, Kemmeries, Holst, Meier (bib78) 2011; 60
Tschen, Georgia, Dhawan, Bhushan (bib118) 2011; 25
Yusta, Matthews, Flock, Ussher, Lavoie, Mawe, Drucker (bib139) 2017; 6
Aviles-Olmos, Dickson, Kefalopoulou, Djamshidian, Ell, Soderlund, Whitton, Wyse, Isaacs, Lees (bib5) 2013; 123
Simonsen, Pilgaard, Orskov, Rosenkilde, Hartmann, Holst, Deacon (bib107) 2007; 293
Ahrén, Hirsch, Pieber, Mathieu, Gomez-Peralta, Hansen, Philotheou, Birch, Christiansen, Jensen (bib1) 2016; 39
Williams, Chang, Strochlic, Umans, Lowell, Liberles (bib128) 2016; 166
Napolitano, Miller, Nicholls, Baker, Van Horn, Thomas, Rajpal, Spivak, Brown, Nunez (bib77) 2014; 9
Hou, Ernst, Heidenreich, Williams (bib44) 2016; 310
Madsbad, Dirksen, Holst (bib65) 2014; 2
Yusta, Baggio, Estall, Koehler, Holland, Li, Pipeleers, Ling, Drucker (bib137) 2006; 4
Pyke, Heller, Kirk, Ørskov, Reedtz-Runge, Kaastrup, Hvelplund, Bardram, Calatayud, Knudsen (bib89) 2014; 155
Bethel, Patel, Merrill, Lokhnygina, Buse, Mentz, Pagidipati, Chan, Gustavson, Iqbal (bib7) 2018; 6
Lynch, Hogan, Duquette, Lester, Banks, LeClair, Cohen, Ghosh, Lu, Corrigan (bib64) 2016; 24
Lebrun, Lenaerts, Kiers, Pais de Barros, Le Guern, Plesnik, Thomas, Bourgeois, Dejong, Kox (bib61) 2017; 21
Graaf, Donnelly, Wootten, Lau, Sexton, Miller, Ahn, Liao, Fletcher, Yang (bib37) 2016; 68
Retnakaran, Kramer, Choi, Swaminathan, Zinman (bib93) 2014; 37
Drucker (bib21) 2013; 62
Wang, Liu, Xia, Liu, Mirabella, Pang (bib124) 2015; 12
Preiss, Dawed, Welsh, Heggie, Jones, Dekker, Koivula, Hansen, Stewart, Holman (bib88) 2017; 19
Waser, Blank, Karamitopoulou, Perren, Reubi (bib125) 2015; 28
Zhang, Sun, Feng, Hu, Chu, Qu, Tarrasch, Li, Sun Kobilka, Kobilka, Skiniotis (bib141) 2017; 546
Gaykema, Newmyer, Ottolini, Raje, Warthen, Lambeth, Niccum, Yao, Huang, Schulman (bib36) 2017; 127
Hyltén-Cavallius, Iepsen, Wewer Albrechtsen, Svendstrup, Lubberding, Hartmann, Jespersen, Linneberg, Christiansen, Vestergaard (bib47) 2017; 135
Iwasaki, Sendo, Dezaki, Hira, Sato, Nakata, Goswami, Aoki, Arai, Kumari (bib48) 2018; 9
Margulies, Hernandez, Redfield, Givertz, Oliveira, Cole, Mann, Whellan, Kiernan, Felker (bib67) 2016; 316
Frias, Bastyr, Vignati, Tschop, Schmitt, Owen, Christensen, DiMarchi (bib34) 2017; 26
Faillie, Yu, Yin, Hillaire-Buys, Barkun, Azoulay (bib30) 2016; 176
Chadwick, Fletcher, Parrula, Bonner-Weir, Mangipudy, Janovitz, Graziano, Roy, Reilly (bib14) 2014; 63
Campbell, Drucker (bib12) 2013; 17
Jorsal, Kistorp, Holmager, Tougaard, Nielsen, Hänselmann, Nilsson, Møller, Hjort, Rasmussen (bib50) 2017; 19
Wu, Esteve, Tremaroli, Khan, Caesar, Mannerås-Holm, Stahlman, Olsson, Serino, Planas-Fèlix (bib131) 2017; 23
Hwang, Park, Kim, Kim, Ka, Lee, Seong, Seok, Kim (bib46) 2015; 29
Athauda, Maclagan, Skene, Bajwa-Joseph, Letchford, Chowdhury, Hibbert, Budnik, Zampedri, Dickson (bib4) 2017; 390
Lamont, Li, Kwan, Brown, Gaisano, Drucker (bib58) 2012; 122
Plamboeck, Veedfald, Deacon, Hartmann, Vilsbøll, Knop, Holst (bib86) 2015; 309
Wichmann, Allahyar, Greiner, Plovier, Lundén, Larsson, Drucker, Delzenne, Cani, Bäckhed (bib127) 2013; 14
Yamada, Yamada, Tsukiyama, Yamada, Udagawa, Takahashi, Tanaka, Drucker, Seino, Inagaki (bib135) 2008; 149
Panjwani, Mulvihill, Longuet, Yusta, Campbell, Brown, Streutker, Holland, Cao, Baggio, Drucker (bib82) 2013; 154
Ye, Hao, Mumphrey, Townsend, Patterson, Stylopoulos, Munzberg, Morrison, Drucker, Berthoud (bib136) 2014; 306
Wynne, Park, Small, Patterson, Ellis, Murphy, Wren, Frost, Meeran, Ghatei, Bloom (bib133) 2005; 54
Nguyen, Mandard, Dray, Deckert, Valet, Besnard, Drucker, Lagrost, Grober (bib80) 2014; 63
Steinberg, Rosenstock, Wadden, Donsmark, Jensen, DeVries (bib115) 2017; 40
van Can, Sloth, Jensen, Flint, Blaak, Saris (bib121) 2014; 38
Armstrong, Gaunt, Aithal, Barton, Hull, Parker, Hazlehurst, Guo, Abouda, Aldersley (bib2) 2016; 387
Flock, Baggio, Longuet, Drucker (bib33) 2007; 56
Mikkelsen, Frost, Bahl, Licht, Jensen, Rosenberg, Pedersen, Hansen, Rehfeld, Holst (bib74) 2015; 10
Hayes, Bradley, Grill (bib40) 2009; 150
Reiner, Mietlicki-Baase, McGrath, Zimmer, Bence, Sousa, Konanur, Krawczyk, Burk, Kanoski (bib92) 2016; 36
Wilson-Pérez, Chambers, Ryan, Li, Sandoval, Stoffers, Drucker, Pérez-Tilve, Seeley (bib129) 2013; 62
Mokadem, Zechner, Margolskee, Drucker, Aguirre (bib75) 2014; 3
DeFronzo, Buse, Kim, Burns, Skare, Baron, Fineman (bib20) 2016; 59
Rankin, Kushner (bib90) 2009; 58
Salehi, Gastaldelli, D'Alessio (bib97) 2014; 146
Finan, Ma, Ottaway, Muller, Habegger, Heppner, Kirchner, Holland, Hembree, Raver (bib31) 2013; 5
Holman, Bethel, Mentz, Thompson, Lokhnygina, Buse, Chan, Choi, Gustavson, Iqbal (bib43) 2017; 377
Smits, Tonneijck, Muskiet, Hoekstra, Kramer, Diamant, Serne, van Raalte (bib112) 2016; 36
Davies, Pieber, Hartoft-Nielsen, Hansen, Jabbour, Rosenstock (bib18) 2017; 318
Nauck, Sauerwald, Ritzel, Holst, Schmiegel (bib79) 1998; 21
Kinzig, D'Alessio, Seeley (bib53) 2002; 22
Drucker (bib23) 2016; 101
Burmeister, Ayala, Smouse, Landivar-Rocha, Brown, Drucker, Stoffers, Sandoval, Seeley, Ayala (bib11) 2017; 66
Sjoberg, Holst, Rattigan, Richter, Kiens (bib109) 2014; 306
Kim, Platt, Shibasaki, Quaggin, Backx, Seino, Simpson, Drucker (bib52) 2013; 19
Sadry, Drucker (bib96) 2013; 9
Bjerre Knudsen, Madsen, Andersen, Almholt, de Boer, Drucker, Gotfredsen, Egerod, Hegelund, Jacobsen (bib8) 2010; 151
Smits, Tonneijck, Muskiet, Hoekstra, Kramer, Diamant, Nieuwdorp, Groen, Cahen, van Raalte (bib111) 2016; 18
Xiao, Bandsma, Dash, Szeto, Lewis (bib134) 2012; 32
Zhang, Sturchler, Zhu, Nieto, Cistrone, Xie, He, Yea, Jones, Turn (bib140) 2015; 6
Drucker (bib22) 2016; 24
Simon, Strassburger, Nowotny, Kolb, Nowotny, Burkart, Zivehe, Hwang, Stehle, Pacini (bib106) 2015; 38
Ten Kulve, Veltman, Gerdes, van Bloemendaal, Barkhof, Deacon, Holst, Drent, Diamant, IJzerman (bib117) 2017; 40
Liu, Conde, Zhang, Lilascharoen, Xu, Lim, Seeley, Zhu, Scott, Pang (bib62) 2017; 96
Marso, Bain, Consoli, Eliaschewitz, Jodar, Leiter, Lingvay, Rosenstock, Seufert, Warren (bib68) 2016; 375
Secher, Jelsing, Baquero, Hecksher-Sørensen, Cowley, Dalbøge, Hansen, Grove, Pyke, Raun (bib101) 2014; 124
Smushkin, Sathananthan, Sathananthan, Dalla Man, Micheletto, Zinsmeister, Cobelli, Vella (bib113) 2012; 61
Hansotia, Maida, Flock, Yamada, Tsukiyama, Seino, Drucker (bib39) 2007; 117
Smith, An, Wagner, Lewis, Cohen, Li, Mahbod, Sandoval, Perez-Tilve, Tamarina (bib110) 2014; 19
Grasset, Puel, Charpentier, Collet, Christensen, Tercé, Burcelin (bib38) 2017; 25
Koehler, Baggio, Yusta, Longuet, Rowland, Cao, Holland, Brubaker, Drucker (bib56) 2015; 21
Drucker, Nauck (bib25) 2006; 368
Scrocchi, Brown, MacLusky, Brubaker, Auerbach, Joyner, Drucker (bib100) 1996; 2
Wynne, Park, Small, Meeran, Ghatei, Frost, Bloom (bib132) 2006; 30
Jazayeri, Rappas, Brown, Kean, Errey, Robertson, Fiez-Vandal, Andrews, Congreve, Bortolato (bib49) 2017; 546
Marso, Daniels, Brown-Frandsen, Kristensen, Mann, Nauck, Nissen, Pocock, Poulter, Ravn (bib69) 2016; 375
Meeran, O'Shea, Edwards, Turton, Heath, Gunn, Abusnana, Rossi, Small, Goldstone (bib72) 1999; 140
Migoya, Bergeron, Miller, Snyder, Tanen, Hilliard, Weiss, Larson, Gutierrez, Jiang (bib73) 2010; 88
Vahle, Byrd, Blackbourne, Martin, Sorden, Ryan, Pienkowski, Wijsman, Smith, Rosol (bib120) 2015; 156
Edwards, Todd, Mahmoudi, Wang, Wang, Ghatei, Bloom (bib27) 1999; 48
Dai, Hang, Shostak, Poffenberger, Hart, Prasad, Phillips, Levy, Greiner, Shultz (bib17) 2017; 127
Landgraf, Tsang, Leliavski, Koch, Barclay, Drucker, Oster (bib59) 2015; 4
Sisley, Gutierrez-Aguilar, Scott, D'Alessio, Sandoval, Seeley (bib108) 2014; 124
Song, Yang, Wang, de Graaf, Zhou, Jiang, Liu, Cai, Dai, Lin (bib114) 2017; 546
Cohen, Esterhazy, Kim, Lemetre, Aguilar, Gordon, Pickard, Cross, Emiliano, Han (bib16) 2017; 549
Wootten, Reynolds, Smith, Mobarec, Koole, Savage, Pabreja, Simms, Sridhar, Furness (bib130) 2016; 165
Kirk, Pyke, von Herrath, Hasselby, Pedersen, Mortensen, Knudsen, Coppieters (bib54) 2017; 19
Pfeffer, Claggett, Diaz, Dickstein, Gerstein, Kober, Lawson, Ping, Wei, Lewis (bib85) 2015; 373
Astrup, Rössner, Van Gaal, Rissanen, Niskanen, Al Hakim, Madsen, Rasmussen, Lean (bib3) 2009; 374
Shah, Morieri, Marcovina, Sigal, Gerstein, Wagner, Motsinger-Reif, Buse, Kraft, Mychaleckyj, Doria (bib104) 2018; 41
Drucker, Yusta (bib26) 2014; 76
Carmody, Muñoz, Yin, Kaplan (bib13) 2016; 310
Egan, Blind, Dunder, de Graeff, Hummer, Bourcier, Rosebraugh (bib28) 2014; 370
Garibay, McGavigan, Lee, Ficorilli, Cox, Michael, Sloop, Cummings (bib35) 2016; 157
Hayes, Leichner, Zhao, Lee, Chowansky, Zimmer, De Jonghe, Kanoski, Grill, Bence (bib41) 2011; 13
Shaddinger, Young, Billiard, Collins, Hussaini, Nino (bib103) 2017; 57
ten Kulve, Veltman, van Bloemendaal, Barkhof, Deacon, Holst, Ko
Wynne (10.1016/j.cmet.2018.03.001_bib132) 2006; 30
Nogueiras (10.1016/j.cmet.2018.03.001_bib81) 2009; 29
Carmody (10.1016/j.cmet.2018.03.001_bib13) 2016; 310
Koehler (10.1016/j.cmet.2018.03.001_bib56) 2015; 21
Sisley (10.1016/j.cmet.2018.03.001_bib108) 2014; 124
Meeran (10.1016/j.cmet.2018.03.001_bib72) 1999; 140
Grasset (10.1016/j.cmet.2018.03.001_bib38) 2017; 25
Mikkelsen (10.1016/j.cmet.2018.03.001_bib74) 2015; 10
Sandoval (10.1016/j.cmet.2018.03.001_bib98) 2008; 57
Wallner (10.1016/j.cmet.2018.03.001_bib123) 2015; 89
Lynch (10.1016/j.cmet.2018.03.001_bib64) 2016; 24
Krieger (10.1016/j.cmet.2018.03.001_bib57) 2016; 65
Egan (10.1016/j.cmet.2018.03.001_bib28) 2014; 370
Parks (10.1016/j.cmet.2018.03.001_bib83) 2010; 362
Smith (10.1016/j.cmet.2018.03.001_bib110) 2014; 19
Chimerel (10.1016/j.cmet.2018.03.001_bib15) 2014; 9
Kim (10.1016/j.cmet.2018.03.001_bib52) 2013; 19
Iwasaki (10.1016/j.cmet.2018.03.001_bib48) 2018; 9
Margulies (10.1016/j.cmet.2018.03.001_bib67) 2016; 316
Shah (10.1016/j.cmet.2018.03.001_bib104) 2018; 41
Kinzig (10.1016/j.cmet.2018.03.001_bib53) 2002; 22
Sjoberg (10.1016/j.cmet.2018.03.001_bib109) 2014; 306
Steinberg (10.1016/j.cmet.2018.03.001_bib115) 2017; 40
DeFronzo (10.1016/j.cmet.2018.03.001_bib20) 2016; 59
Landgraf (10.1016/j.cmet.2018.03.001_bib59) 2015; 4
Jorsal (10.1016/j.cmet.2018.03.001_bib50) 2017; 19
Wu (10.1016/j.cmet.2018.03.001_bib131) 2017; 23
Scott (10.1016/j.cmet.2018.03.001_bib99) 2016; 8
Smushkin (10.1016/j.cmet.2018.03.001_bib113) 2012; 61
van Can (10.1016/j.cmet.2018.03.001_bib121) 2014; 38
Migoya (10.1016/j.cmet.2018.03.001_bib73) 2010; 88
Vahle (10.1016/j.cmet.2018.03.001_bib120) 2015; 156
Mathieu (10.1016/j.cmet.2018.03.001_bib70) 2016; 39
Pfeffer (10.1016/j.cmet.2018.03.001_bib85) 2015; 373
Yusta (10.1016/j.cmet.2018.03.001_bib137) 2006; 4
Baggio (10.1016/j.cmet.2018.03.001_bib6) 2018; 159
Plamboeck (10.1016/j.cmet.2018.03.001_bib87) 2013; 304
Wang (10.1016/j.cmet.2018.03.001_bib124) 2015; 12
Burmeister (10.1016/j.cmet.2018.03.001_bib11) 2017; 66
Garibay (10.1016/j.cmet.2018.03.001_bib35) 2016; 157
de Heer (10.1016/j.cmet.2018.03.001_bib19) 2008; 51
Holman (10.1016/j.cmet.2018.03.001_bib43) 2017; 377
Rother (10.1016/j.cmet.2018.03.001_bib95) 2009; 32
Hyltén-Cavallius (10.1016/j.cmet.2018.03.001_bib47) 2017; 135
Reijnders (10.1016/j.cmet.2018.03.001_bib91) 2016; 24
Faillie (10.1016/j.cmet.2018.03.001_bib30) 2016; 176
Simonsen (10.1016/j.cmet.2018.03.001_bib107) 2007; 293
Williams (10.1016/j.cmet.2018.03.001_bib128) 2016; 166
Song (10.1016/j.cmet.2018.03.001_bib114) 2017; 546
Hansotia (10.1016/j.cmet.2018.03.001_bib39) 2007; 117
Armstrong (10.1016/j.cmet.2018.03.001_bib2) 2016; 387
Ahrén (10.1016/j.cmet.2018.03.001_bib1) 2016; 39
Hwang (10.1016/j.cmet.2018.03.001_bib46) 2015; 29
Panjwani (10.1016/j.cmet.2018.03.001_bib82) 2013; 154
Breton (10.1016/j.cmet.2018.03.001_bib9) 2016; 23
Scrocchi (10.1016/j.cmet.2018.03.001_bib100) 1996; 2
Nauck (10.1016/j.cmet.2018.03.001_bib79) 1998; 21
Ussher (10.1016/j.cmet.2018.03.001_bib119) 2014; 114
Muraro (10.1016/j.cmet.2018.03.001_bib76) 2016; 3
Napolitano (10.1016/j.cmet.2018.03.001_bib77) 2014; 9
López-Ferreras (10.1016/j.cmet.2018.03.001_bib63) 2017
Campbell (10.1016/j.cmet.2018.03.001_bib12) 2013; 17
Preiss (10.1016/j.cmet.2018.03.001_bib88) 2017; 19
Smits (10.1016/j.cmet.2018.03.001_bib112) 2016; 36
Salehi (10.1016/j.cmet.2018.03.001_bib97) 2014; 146
Yusta (10.1016/j.cmet.2018.03.001_bib138) 2015; 64
Hayes (10.1016/j.cmet.2018.03.001_bib40) 2009; 150
Waser (10.1016/j.cmet.2018.03.001_bib125) 2015; 28
Maida (10.1016/j.cmet.2018.03.001_bib66) 2011; 54
Drucker (10.1016/j.cmet.2018.03.001_bib21) 2013; 62
Frias (10.1016/j.cmet.2018.03.001_bib34) 2017; 26
Ten Kulve (10.1016/j.cmet.2018.03.001_bib117) 2017; 40
Kirk (10.1016/j.cmet.2018.03.001_bib54) 2017; 19
Gaykema (10.1016/j.cmet.2018.03.001_bib36) 2017; 127
Drucker (10.1016/j.cmet.2018.03.001_bib23) 2016; 101
Nguyen (10.1016/j.cmet.2018.03.001_bib80) 2014; 63
Lebrun (10.1016/j.cmet.2018.03.001_bib61) 2017; 21
Flock (10.1016/j.cmet.2018.03.001_bib33) 2007; 56
Smits (10.1016/j.cmet.2018.03.001_bib111) 2016; 18
Mayo (10.1016/j.cmet.2018.03.001_bib71) 2003; 55
Wootten (10.1016/j.cmet.2018.03.001_bib130) 2016; 165
Athauda (10.1016/j.cmet.2018.03.001_bib4) 2017; 390
Hegedüs (10.1016/j.cmet.2018.03.001_bib42) 2011; 96
Wichmann (10.1016/j.cmet.2018.03.001_bib127) 2013; 14
Bunck (10.1016/j.cmet.2018.03.001_bib10) 2011; 34
Finan (10.1016/j.cmet.2018.03.001_bib32) 2015; 21
Edwards (10.1016/j.cmet.2018.03.001_bib27) 1999; 48
Zhang (10.1016/j.cmet.2018.03.001_bib140) 2015; 6
Drucker (10.1016/j.cmet.2018.03.001_bib24) 2017; 127
Koehler (10.1016/j.cmet.2018.03.001_bib55) 2015; 64
Hayes (10.1016/j.cmet.2018.03.001_bib41) 2011; 13
Jazayeri (10.1016/j.cmet.2018.03.001_bib49) 2017; 546
Yamada (10.1016/j.cmet.2018.03.001_bib135) 2008; 149
Reiner (10.1016/j.cmet.2018.03.001_bib92) 2016; 36
Retnakaran (10.1016/j.cmet.2018.03.001_bib93) 2014; 37
Sadry (10.1016/j.cmet.2018.03.001_bib96) 2013; 9
Ellingsgaard (10.1016/j.cmet.2018.03.001_bib29) 2011; 17
Ye (10.1016/j.cmet.2018.03.001_bib136) 2014; 306
Liu (10.1016/j.cmet.2018.03.001_bib62) 2017; 96
Bjerre Knudsen (10.1016/j.cmet.2018.03.001_bib8) 2010; 151
Keller (10.1016/j.cmet.2018.03.001_bib51) 2012; 179
Madsbad (10.1016/j.cmet.2018.03.001_bib65) 2014; 2
Hou (10.1016/j.cmet.2018.03.001_bib44) 2016; 310
Aviles-Olmos (10.1016/j.cmet.2018.03.001_bib5) 2013; 123
Marso (10.1016/j.cmet.2018.03.001_bib68) 2016; 375
Shah (10.1016/j.cmet.2018.03.001_bib105) 2014; 63
Astrup (10.1016/j.cmet.2018.03.001_bib3) 2009; 374
Wessel (10.1016/j.cmet.2018.03.001_bib126) 2015; 6
Yusta (10.1016/j.cmet.2018.03.001_bib139) 2017; 6
Davies (10.1016/j.cmet.2018.03.001_bib18) 2017; 318
Drucker (10.1016/j.cmet.2018.03.001_bib25) 2006; 368
Simon (10.1016/j.cmet.2018.03.001_bib106) 2015; 38
Bethel (10.1016/j.cmet.2018.03.001_bib7) 2018; 6
Rankin (10.1016/j.cmet.2018.03.001_bib90) 2009; 58
Drucker (10.1016/j.cmet.2018.03.001_bib26) 2014; 76
Lebherz (10.1016/j.cmet.2018.03.001_bib60) 2017; 130
Nauck (10.1016/j.cmet.2018.03.001_bib78) 2011; 60
Richards (10.1016/j.cmet.2018.03.001_bib94) 2014; 63
Plamboeck (10.1016/j.cmet.2018.03.001_bib86) 2015; 309
Patterson (10.1016/j.cmet.2018.03.001_bib84) 2011; 6
Finan (10.1016/j.cmet.2018.03.001_bib31) 2013; 5
Shaddinger (10.1016/j.cmet.2018.03.001_bib103) 2017; 57
Dai (10.1016/j.cmet.2018.03.001_bib17) 2017; 127
Vetter (10.1016/j.cmet.2018.03.001_bib122) 2015; 64
Wynne (10.1016/j.cmet.2018.03.001_bib133) 2005; 54
Zhang (10.1016/j.cmet.2018.03.001_bib141) 2017; 546
Drucker (10.1016/j.cmet.2018.03.001_bib22) 2016; 24
Pyke (10.1016/j.cmet.2018.03.001_bib89) 2014; 155
Segerstolpe (10.1016/j.cmet.2018.03.001_bib102) 2016; 24
Graaf (10.1016/j.cmet.2018.03.001_bib37) 2016; 68
Hsieh (10.1016/j.cmet.2018.03.001_bib45) 2010; 53
Marso (10.1016/j.cmet.2018.03.001_bib69) 2016; 375
Mokadem (10.1016/j.cmet.2018.03.001_bib75) 2014; 3
Chadwick (10.1016/j.cmet.2018.03.001_bib14) 2014; 63
Lamont (10.1016/j.cmet.2018.03.001_bib58) 2012; 122
Tschen (10.1016/j.cmet.2018.03.001_bib118) 2011; 25
Secher (10.1016/j.cmet.2018.03.001_bib101) 2014; 124
Cohen (10.1016/j.cmet.2018.03.001_bib16) 2017; 549
Wilson-Pérez (10.1016/j.cmet.2018.03.001_bib129) 2013; 62
ten Kulve (10.1016/j.cmet.2018.03.001_bib116) 2015; 58
Xiao (10.1016/j.cmet.2018.03.001_bib134) 2012; 32
References_xml – volume: 32
  start-page: 1513
  year: 2012
  end-page: 1519
  ident: bib134
  article-title: Exenatide, a glucagon-like peptide receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 21
  start-page: 27
  year: 2015
  end-page: 36
  ident: bib32
  article-title: A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents
  publication-title: Nat. Med.
– volume: 32
  start-page: 2251
  year: 2009
  end-page: 2257
  ident: bib95
  article-title: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes
  publication-title: Diabetes Care
– volume: 76
  start-page: 561
  year: 2014
  end-page: 583
  ident: bib26
  article-title: Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2
  publication-title: Annu. Rev. Physiol.
– volume: 64
  start-page: 434
  year: 2015
  end-page: 446
  ident: bib122
  article-title: GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification
  publication-title: Diabetes
– volume: 19
  start-page: 567
  year: 2013
  end-page: 575
  ident: bib52
  article-title: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure
  publication-title: Nat. Med.
– volume: 63
  start-page: 1303
  year: 2014
  end-page: 1314
  ident: bib14
  article-title: Occurrence of spontaneous pancreatic lesions in normal and diabetic rats: a potential confounding factor in the nonclinical assessment of GLP-1-based therapies
  publication-title: Diabetes
– volume: 36
  start-page: 2125
  year: 2016
  end-page: 2132
  ident: bib112
  article-title: GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus: an acute and 12-week randomized, double-blind, placebo-controlled trial
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 6
  start-page: 135
  year: 2011
  end-page: 145
  ident: bib84
  article-title: A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1
  publication-title: ACS Chem. Biol.
– volume: 309
  start-page: R544
  year: 2015
  end-page: R551
  ident: bib86
  article-title: The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 127
  start-page: 1031
  year: 2017
  end-page: 1045
  ident: bib36
  article-title: Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight
  publication-title: J. Clin. Invest.
– volume: 4
  start-page: 391
  year: 2006
  end-page: 406
  ident: bib137
  article-title: GLP-1 receptor activation improves β-cell function and survival following induction of endoplasmic reticulum stress
  publication-title: Cell Metab.
– volume: 3
  start-page: 191
  year: 2014
  end-page: 201
  ident: bib75
  article-title: Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency
  publication-title: Mol. Metab.
– volume: 124
  start-page: 4473
  year: 2014
  end-page: 4488
  ident: bib101
  article-title: The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: 391
  year: 2015
  end-page: 402
  ident: bib125
  article-title: Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas
  publication-title: Mod. Pathol.
– volume: 39
  start-page: 1702
  year: 2016
  end-page: 1710
  ident: bib70
  article-title: Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial
  publication-title: Diabetes Care
– volume: 40
  start-page: 839
  year: 2017
  end-page: 848
  ident: bib115
  article-title: Impact of liraglutide on amylase, lipase, and acute pancreatitis in participants with overweight/obesity and normoglycemia, prediabetes, or type 2 diabetes: secondary analyses of pooled data from the SCALE clinical development program
  publication-title: Diabetes Care
– volume: 24
  start-page: 593
  year: 2016
  end-page: 607
  ident: bib102
  article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
  publication-title: Cell Metab.
– volume: 155
  start-page: 1280
  year: 2014
  end-page: 1290
  ident: bib89
  article-title: GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody
  publication-title: Endocrinology
– volume: 57
  start-page: 2046
  year: 2008
  end-page: 2054
  ident: bib98
  article-title: Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake
  publication-title: Diabetes
– volume: 57
  start-page: 1322
  year: 2017
  end-page: 1329
  ident: bib103
  article-title: Effect of albiglutide on cholecystokinin-induced gallbladder emptying in healthy individuals: a randomized crossover study
  publication-title: J. Clin. Pharmacol.
– volume: 30
  start-page: 1729
  year: 2006
  end-page: 1736
  ident: bib132
  article-title: Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial
  publication-title: Int. J. Obes. (Lond)
– volume: 64
  start-page: 1046
  year: 2015
  end-page: 1056
  ident: bib55
  article-title: Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis
  publication-title: Diabetes
– volume: 3
  start-page: 385
  year: 2016
  end-page: 394.e3
  ident: bib76
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst.
– volume: 387
  start-page: 679
  year: 2016
  end-page: 690
  ident: bib2
  article-title: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study
  publication-title: Lancet
– volume: 63
  start-page: 483
  year: 2014
  end-page: 493
  ident: bib105
  article-title: Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass
  publication-title: Diabetes
– volume: 24
  start-page: 510
  year: 2016
  end-page: 519
  ident: bib64
  article-title: iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy
  publication-title: Cell Metab.
– volume: 48
  start-page: 86
  year: 1999
  end-page: 93
  ident: bib27
  article-title: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39
  publication-title: Diabetes
– volume: 549
  start-page: 48
  year: 2017
  end-page: 53
  ident: bib16
  article-title: Commensal bacteria make GPCR ligands that mimic human signalling molecules
  publication-title: Nature
– volume: 6
  start-page: 105
  year: 2018
  end-page: 113
  ident: bib7
  article-title: Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis
  publication-title: Lancet Diabetes Endocrinol.
– volume: 88
  start-page: 801
  year: 2010
  end-page: 808
  ident: bib73
  article-title: Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1
  publication-title: Clin. Pharmacol. Ther.
– volume: 176
  start-page: 1474
  year: 2016
  end-page: 1481
  ident: bib30
  article-title: Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus
  publication-title: JAMA Intern. Med.
– volume: 157
  start-page: 3405
  year: 2016
  end-page: 3409
  ident: bib35
  article-title: Beta-cell glucagon-like peptide-1 receptor contributes to improved glucose tolerance after vertical sleeve gastrectomy
  publication-title: Endocrinology
– volume: 8
  start-page: 341ra376
  year: 2016
  ident: bib99
  article-title: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease
  publication-title: Sci. Transl. Med.
– volume: 304
  start-page: G1117
  year: 2013
  end-page: G1127
  ident: bib87
  article-title: The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 60
  start-page: 1561
  year: 2011
  end-page: 1565
  ident: bib78
  article-title: Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans
  publication-title: Diabetes
– volume: 362
  start-page: 774
  year: 2010
  end-page: 777
  ident: bib83
  article-title: Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 10470
  year: 2002
  end-page: 10476
  ident: bib53
  article-title: The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness
  publication-title: J. Neurosci.
– volume: 24
  start-page: 15
  year: 2016
  end-page: 30
  ident: bib22
  article-title: The cardiovascular biology of glucagon-like peptide-1
  publication-title: Cell Metab.
– volume: 63
  start-page: 1224
  year: 2014
  end-page: 1233
  ident: bib94
  article-title: Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model
  publication-title: Diabetes
– volume: 53
  start-page: 552
  year: 2010
  end-page: 561
  ident: bib45
  article-title: The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice
  publication-title: Diabetologia
– volume: 14
  start-page: 582
  year: 2013
  end-page: 590
  ident: bib127
  article-title: Microbial modulation of energy availability in the colon regulates intestinal transit
  publication-title: Cell Host Microbe
– volume: 4
  start-page: e06253
  year: 2015
  ident: bib59
  article-title: Oxyntomodulin regulates resetting of the liver circadian clock by food
  publication-title: Elife
– volume: 18
  start-page: 1217
  year: 2016
  end-page: 1225
  ident: bib111
  article-title: Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients
  publication-title: Diabetes Obes. Metab.
– volume: 58
  start-page: 2688
  year: 2015
  end-page: 2698
  ident: bib116
  article-title: Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes
  publication-title: Diabetologia
– volume: 21
  start-page: 1160
  year: 2017
  end-page: 1168
  ident: bib61
  article-title: Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion
  publication-title: Cell Rep.
– volume: 117
  start-page: 143
  year: 2007
  end-page: 152
  ident: bib39
  article-title: Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure
  publication-title: J. Clin. Invest.
– volume: 306
  start-page: E355
  year: 2014
  end-page: E362
  ident: bib109
  article-title: GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 6
  start-page: 5897
  year: 2015
  ident: bib126
  article-title: Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  publication-title: Nat. Commun.
– volume: 51
  start-page: 2263
  year: 2008
  end-page: 2270
  ident: bib19
  article-title: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas
  publication-title: Diabetologia
– volume: 38
  start-page: 1827
  year: 2015
  end-page: 1834
  ident: bib106
  article-title: Intake of
  publication-title: Diabetes Care
– volume: 13
  start-page: 320
  year: 2011
  end-page: 330
  ident: bib41
  article-title: Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation
  publication-title: Cell Metab.
– volume: 68
  start-page: 954
  year: 2016
  end-page: 1013
  ident: bib37
  article-title: Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes
  publication-title: Pharmacol. Rev.
– volume: 2
  start-page: 152
  year: 2014
  end-page: 164
  ident: bib65
  article-title: Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery
  publication-title: Lancet Diabetes Endocrinol.
– volume: 123
  start-page: 2730
  year: 2013
  end-page: 2736
  ident: bib5
  article-title: Exenatide and the treatment of patients with Parkinson's disease
  publication-title: J. Clin. Invest.
– volume: 130
  start-page: 833
  year: 2017
  end-page: 841.e3
  ident: bib60
  article-title: GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease
  publication-title: Am. J. Med.
– volume: 377
  start-page: 1228
  year: 2017
  end-page: 1239
  ident: bib43
  article-title: Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 34
  start-page: 2041
  year: 2011
  end-page: 2047
  ident: bib10
  article-title: Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes
  publication-title: Diabetes Care
– volume: 370
  start-page: 794
  year: 2014
  end-page: 797
  ident: bib28
  article-title: Pancreatic safety of incretin-based drugs—FDA and EMA assessment
  publication-title: N. Engl. J. Med.
– volume: 41
  start-page: 348
  year: 2018
  end-page: 355
  ident: bib104
  article-title: Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD
  publication-title: Diabetes Care
– volume: 310
  start-page: G26
  year: 2016
  end-page: G33
  ident: bib44
  article-title: Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 23
  start-page: 850
  year: 2017
  end-page: 858
  ident: bib131
  article-title: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug
  publication-title: Nat. Med.
– volume: 9
  start-page: 113
  year: 2018
  ident: bib48
  article-title: GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose
  publication-title: Nat. Commun.
– volume: 21
  start-page: 379
  year: 2015
  end-page: 391
  ident: bib56
  article-title: GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7
  publication-title: Cell Metab.
– volume: 146
  start-page: 669
  year: 2014
  end-page: 680.e2
  ident: bib97
  article-title: Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass
  publication-title: Gastroenterology
– volume: 26
  start-page: 343
  year: 2017
  end-page: 352.e2
  ident: bib34
  article-title: The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes
  publication-title: Cell Metab.
– volume: 19
  start-page: 69
  year: 2017
  end-page: 77
  ident: bib50
  article-title: Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial
  publication-title: Eur. J. Heart Fail.
– volume: 66
  start-page: 372
  year: 2017
  end-page: 384
  ident: bib11
  article-title: The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice
  publication-title: Diabetes
– volume: 122
  start-page: 388
  year: 2012
  end-page: 402
  ident: bib58
  article-title: Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice
  publication-title: J. Clin. Invest.
– volume: 23
  start-page: 324
  year: 2016
  end-page: 334
  ident: bib9
  article-title: Gut commensal
  publication-title: Cell Metab.
– volume: 375
  start-page: 1834
  year: 2016
  end-page: 1844
  ident: bib68
  article-title: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 17
  start-page: 1481
  year: 2011
  end-page: 1489
  ident: bib29
  article-title: Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells
  publication-title: Nat. Med.
– year: 2017
  ident: bib63
  article-title: Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight
  publication-title: Mol. Psychiatry
– volume: 96
  start-page: 897
  year: 2017
  end-page: 909.e5
  ident: bib62
  article-title: Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus
  publication-title: Neuron
– volume: 9
  start-page: 425
  year: 2013
  end-page: 433
  ident: bib96
  article-title: Emerging combinatorial hormone therapies for the treatment of obesity and T2DM
  publication-title: Nat. Rev. Endocrinol.
– volume: 12
  start-page: 726
  year: 2015
  end-page: 733
  ident: bib124
  article-title: Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons
  publication-title: Cell Rep.
– volume: 40
  start-page: 1522
  year: 2017
  end-page: 1529
  ident: bib117
  article-title: Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues
  publication-title: Diabetes Care
– volume: 39
  start-page: 1693
  year: 2016
  end-page: 1701
  ident: bib1
  article-title: Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial
  publication-title: Diabetes Care
– volume: 6
  start-page: 8918
  year: 2015
  ident: bib140
  article-title: Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects
  publication-title: Nat. Commun.
– volume: 19
  start-page: 356
  year: 2017
  end-page: 363
  ident: bib88
  article-title: Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes
  publication-title: Diabetes Obes. Metab.
– volume: 149
  start-page: 574
  year: 2008
  end-page: 579
  ident: bib135
  article-title: The murine glucagon-like peptide-1 receptor is essential for control of bone resorption
  publication-title: Endocrinology
– volume: 19
  start-page: 1050
  year: 2014
  end-page: 1057
  ident: bib110
  article-title: The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs
  publication-title: Cell Metab.
– volume: 306
  start-page: R352
  year: 2014
  end-page: R362
  ident: bib136
  article-title: GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 140
  start-page: 244
  year: 1999
  end-page: 250
  ident: bib72
  article-title: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat
  publication-title: Endocrinology
– volume: 316
  start-page: 500
  year: 2016
  end-page: 508
  ident: bib67
  article-title: Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial
  publication-title: JAMA
– volume: 154
  start-page: 127
  year: 2013
  end-page: 139
  ident: bib82
  article-title: GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice
  publication-title: Endocrinology
– volume: 165
  start-page: 1632
  year: 2016
  end-page: 1643
  ident: bib130
  article-title: The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism
  publication-title: Cell
– volume: 62
  start-page: 3316
  year: 2013
  end-page: 3323
  ident: bib21
  article-title: Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls
  publication-title: Diabetes
– volume: 373
  start-page: 2247
  year: 2015
  end-page: 2257
  ident: bib85
  article-title: Lixisenatide in patients with type 2 diabetes and acute coronary syndrome
  publication-title: N. Engl. J. Med.
– volume: 61
  start-page: 1082
  year: 2012
  end-page: 1089
  ident: bib113
  article-title: Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1
  publication-title: Diabetes
– volume: 62
  start-page: 2380
  year: 2013
  end-page: 2385
  ident: bib129
  article-title: Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency
  publication-title: Diabetes
– volume: 390
  start-page: 1664
  year: 2017
  end-page: 1675
  ident: bib4
  article-title: Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial
  publication-title: Lancet
– volume: 55
  start-page: 167
  year: 2003
  end-page: 194
  ident: bib71
  article-title: International union of pharmacology. XXXV. The glucagon receptor family
  publication-title: Pharmacol. Rev.
– volume: 21
  start-page: 1925
  year: 1998
  end-page: 1931
  ident: bib79
  article-title: Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure
  publication-title: Diabetes Care
– volume: 29
  start-page: 2397
  year: 2015
  end-page: 2411
  ident: bib46
  article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity
  publication-title: FASEB J.
– volume: 54
  start-page: 339
  year: 2011
  end-page: 349
  ident: bib66
  article-title: Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice
  publication-title: Diabetologia
– volume: 127
  start-page: 4217
  year: 2017
  end-page: 4227
  ident: bib24
  article-title: Discovery, characterization, and clinical development of the glucagon-like peptides
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 819
  year: 2013
  end-page: 837
  ident: bib12
  article-title: Pharmacology, physiology, and mechanisms of incretin hormone action
  publication-title: Cell Metab.
– volume: 166
  start-page: 209
  year: 2016
  end-page: 221
  ident: bib128
  article-title: Sensory neurons that detect stretch and nutrients in the digestive system
  publication-title: Cell
– volume: 293
  start-page: G288
  year: 2007
  end-page: G295
  ident: bib107
  article-title: Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 96
  start-page: 853
  year: 2011
  end-page: 860
  ident: bib42
  article-title: GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 10
  start-page: e0142352
  year: 2015
  ident: bib74
  article-title: Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism
  publication-title: PLoS One
– volume: 124
  start-page: 2456
  year: 2014
  end-page: 2463
  ident: bib108
  article-title: Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect
  publication-title: J. Clin. Invest.
– volume: 58
  start-page: 1365
  year: 2009
  end-page: 1372
  ident: bib90
  article-title: Adaptive beta cell proliferation is severely restricted with advanced age
  publication-title: Diabetes
– volume: 374
  start-page: 1606
  year: 2009
  end-page: 1616
  ident: bib3
  article-title: Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study
  publication-title: Lancet
– volume: 56
  start-page: 3006
  year: 2007
  end-page: 3013
  ident: bib33
  article-title: Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice
  publication-title: Diabetes
– volume: 546
  start-page: 254
  year: 2017
  end-page: 258
  ident: bib49
  article-title: Crystal structure of the GLP-1 receptor bound to a peptide agonist
  publication-title: Nature
– volume: 19
  start-page: 705
  year: 2017
  end-page: 712
  ident: bib54
  article-title: Immunohistochemical assessment of glucagon-like peptide 1 receptor (GLP-1R) expression in the pancreas of patients with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
– volume: 310
  start-page: E855
  year: 2016
  end-page: E861
  ident: bib13
  article-title: Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 24
  start-page: 63
  year: 2016
  end-page: 74
  ident: bib91
  article-title: Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial
  publication-title: Cell Metab.
– volume: 6
  start-page: 503
  year: 2017
  end-page: 511
  ident: bib139
  article-title: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway
  publication-title: Mol. Metab.
– volume: 59
  start-page: 1645
  year: 2016
  end-page: 1654
  ident: bib20
  article-title: Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials
  publication-title: Diabetologia
– volume: 101
  start-page: 778
  year: 2016
  end-page: 786
  ident: bib23
  article-title: Evolving concepts and translational relevance of enteroendocrine cell biology
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 25
  start-page: 2134
  year: 2011
  end-page: 2143
  ident: bib118
  article-title: Skp2 is required for incretin hormone-mediated beta-cell proliferation
  publication-title: Mol. Endocrinol.
– volume: 63
  start-page: 471
  year: 2014
  end-page: 482
  ident: bib80
  article-title: Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway
  publication-title: Diabetes
– volume: 368
  start-page: 1696
  year: 2006
  end-page: 1705
  ident: bib25
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
– volume: 54
  start-page: 2390
  year: 2005
  end-page: 2395
  ident: bib133
  article-title: Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial
  publication-title: Diabetes
– volume: 318
  start-page: 1460
  year: 2017
  end-page: 1470
  ident: bib18
  article-title: Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial
  publication-title: JAMA
– volume: 150
  start-page: 2654
  year: 2009
  end-page: 2659
  ident: bib40
  article-title: Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling
  publication-title: Endocrinology
– volume: 135
  start-page: 1705
  year: 2017
  end-page: 1719
  ident: bib47
  article-title: Patients with long-QT syndrome caused by impaired hERG-encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia
  publication-title: Circulation
– volume: 29
  start-page: 5916
  year: 2009
  end-page: 5925
  ident: bib81
  article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity
  publication-title: J. Neurosci.
– volume: 151
  start-page: 1473
  year: 2010
  end-page: 1486
  ident: bib8
  article-title: Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation
  publication-title: Endocrinology
– volume: 546
  start-page: 248
  year: 2017
  end-page: 253
  ident: bib141
  article-title: Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein
  publication-title: Nature
– volume: 5
  start-page: 209ra151
  year: 2013
  ident: bib31
  article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
  publication-title: Sci. Transl. Med.
– volume: 375
  start-page: 311
  year: 2016
  end-page: 322
  ident: bib69
  article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 159
  start-page: 1570
  year: 2018
  end-page: 1584
  ident: bib6
  article-title: GLP-1 receptor expression within the human heart
  publication-title: Endocrinology
– volume: 2
  start-page: 1254
  year: 1996
  end-page: 1258
  ident: bib100
  article-title: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene
  publication-title: Nat. Med.
– volume: 36
  start-page: 3531
  year: 2016
  end-page: 3540
  ident: bib92
  article-title: Astrocytes regulate GLP-1 receptor-mediated effects on energy balance
  publication-title: J. Neurosci.
– volume: 546
  start-page: 312
  year: 2017
  end-page: 315
  ident: bib114
  article-title: Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators
  publication-title: Nature
– volume: 156
  start-page: 2409
  year: 2015
  end-page: 2416
  ident: bib120
  article-title: Effects of dulaglutide on thyroid C cells and serum calcitonin in male monkeys
  publication-title: Endocrinology
– volume: 9
  start-page: e100778
  year: 2014
  ident: bib77
  article-title: Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus
  publication-title: PLoS One
– volume: 127
  start-page: 3835
  year: 2017
  end-page: 3844
  ident: bib17
  article-title: Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 1075
  year: 2017
  end-page: 1090.e5
  ident: bib38
  article-title: A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism
  publication-title: Cell Metab.
– volume: 65
  start-page: 34
  year: 2016
  end-page: 43
  ident: bib57
  article-title: Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia
  publication-title: Diabetes
– volume: 37
  start-page: 3270
  year: 2014
  end-page: 3278
  ident: bib93
  article-title: Liraglutide and the preservation of pancreatic beta-cell function in early type 2 diabetes: the LIBRA trial
  publication-title: Diabetes Care
– volume: 179
  start-page: 77
  year: 2012
  end-page: 83
  ident: bib51
  article-title: Effect of exenatide on cholecystokinin-induced gallbladder emptying in fasting healthy subjects
  publication-title: Regul. Pept.
– volume: 114
  start-page: 1788
  year: 2014
  end-page: 1803
  ident: bib119
  article-title: Cardiovascular actions of incretin-based therapies
  publication-title: Circ. Res.
– volume: 64
  start-page: 2537
  year: 2015
  end-page: 2549
  ident: bib138
  article-title: GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte (IEL) GLP-1R
  publication-title: Diabetes
– volume: 9
  start-page: 1202
  year: 2014
  end-page: 1208
  ident: bib15
  article-title: Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells
  publication-title: Cell Rep.
– volume: 38
  start-page: 784
  year: 2014
  end-page: 793
  ident: bib121
  article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults
  publication-title: Int. J. Obes. (Lond.)
– volume: 89
  start-page: 365
  year: 2015
  end-page: 375
  ident: bib123
  article-title: Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium
  publication-title: J. Mol. Cell. Cardiol.
– volume: 21
  start-page: 27
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib32
  article-title: A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents
  publication-title: Nat. Med.
  doi: 10.1038/nm.3761
– volume: 387
  start-page: 679
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib2
  article-title: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00803-X
– volume: 64
  start-page: 1046
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib55
  article-title: Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis
  publication-title: Diabetes
  doi: 10.2337/db14-0883
– volume: 159
  start-page: 1570
  year: 2018
  ident: 10.1016/j.cmet.2018.03.001_bib6
  article-title: GLP-1 receptor expression within the human heart
  publication-title: Endocrinology
  doi: 10.1210/en.2018-00004
– volume: 4
  start-page: e06253
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib59
  article-title: Oxyntomodulin regulates resetting of the liver circadian clock by food
  publication-title: Elife
  doi: 10.7554/eLife.06253
– volume: 38
  start-page: 1827
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib106
  article-title: Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept
  publication-title: Diabetes Care
  doi: 10.2337/dc14-2690
– volume: 368
  start-page: 1696
  year: 2006
  ident: 10.1016/j.cmet.2018.03.001_bib25
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69705-5
– volume: 41
  start-page: 348
  year: 2018
  ident: 10.1016/j.cmet.2018.03.001_bib104
  article-title: Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1638
– volume: 39
  start-page: 1693
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib1
  article-title: Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0690
– volume: 306
  start-page: R352
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib136
  article-title: GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00491.2013
– volume: 59
  start-page: 1645
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib20
  article-title: Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3992-6
– volume: 9
  start-page: e100778
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib77
  article-title: Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100778
– volume: 150
  start-page: 2654
  year: 2009
  ident: 10.1016/j.cmet.2018.03.001_bib40
  article-title: Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling
  publication-title: Endocrinology
  doi: 10.1210/en.2008-1479
– volume: 22
  start-page: 10470
  year: 2002
  ident: 10.1016/j.cmet.2018.03.001_bib53
  article-title: The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-23-10470.2002
– volume: 10
  start-page: e0142352
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib74
  article-title: Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142352
– volume: 19
  start-page: 1050
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib110
  article-title: The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.005
– volume: 3
  start-page: 191
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib75
  article-title: Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2013.11.010
– volume: 549
  start-page: 48
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib16
  article-title: Commensal bacteria make GPCR ligands that mimic human signalling molecules
  publication-title: Nature
  doi: 10.1038/nature23874
– volume: 374
  start-page: 1606
  year: 2009
  ident: 10.1016/j.cmet.2018.03.001_bib3
  article-title: Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61375-1
– volume: 306
  start-page: E355
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib109
  article-title: GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00283.2013
– volume: 546
  start-page: 312
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib114
  article-title: Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators
  publication-title: Nature
  doi: 10.1038/nature22378
– volume: 149
  start-page: 574
  year: 2008
  ident: 10.1016/j.cmet.2018.03.001_bib135
  article-title: The murine glucagon-like peptide-1 receptor is essential for control of bone resorption
  publication-title: Endocrinology
  doi: 10.1210/en.2007-1292
– volume: 130
  start-page: 833
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib60
  article-title: GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2017.03.010
– volume: 19
  start-page: 69
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib50
  article-title: Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.657
– volume: 51
  start-page: 2263
  year: 2008
  ident: 10.1016/j.cmet.2018.03.001_bib19
  article-title: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas
  publication-title: Diabetologia
  doi: 10.1007/s00125-008-1149-y
– volume: 140
  start-page: 244
  year: 1999
  ident: 10.1016/j.cmet.2018.03.001_bib72
  article-title: Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat
  publication-title: Endocrinology
  doi: 10.1210/endo.140.1.6421
– volume: 29
  start-page: 5916
  year: 2009
  ident: 10.1016/j.cmet.2018.03.001_bib81
  article-title: Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5977-08.2009
– volume: 89
  start-page: 365
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib123
  article-title: Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.09.018
– volume: 66
  start-page: 372
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib11
  article-title: The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice
  publication-title: Diabetes
  doi: 10.2337/db16-1102
– volume: 2
  start-page: 152
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib65
  article-title: Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(13)70218-3
– volume: 21
  start-page: 1925
  year: 1998
  ident: 10.1016/j.cmet.2018.03.001_bib79
  article-title: Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure
  publication-title: Diabetes Care
  doi: 10.2337/diacare.21.11.1925
– volume: 62
  start-page: 2380
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib129
  article-title: Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency
  publication-title: Diabetes
  doi: 10.2337/db12-1498
– volume: 375
  start-page: 311
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib69
  article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1603827
– volume: 38
  start-page: 784
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib121
  article-title: Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults
  publication-title: Int. J. Obes. (Lond.)
  doi: 10.1038/ijo.2013.162
– volume: 14
  start-page: 582
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib127
  article-title: Microbial modulation of energy availability in the colon regulates intestinal transit
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.09.012
– volume: 24
  start-page: 510
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib64
  article-title: iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.003
– volume: 26
  start-page: 343
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib34
  article-title: The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.07.011
– volume: 40
  start-page: 1522
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib117
  article-title: Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues
  publication-title: Diabetes Care
  doi: 10.2337/dc16-2113
– volume: 48
  start-page: 86
  year: 1999
  ident: 10.1016/j.cmet.2018.03.001_bib27
  article-title: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.1.86
– volume: 546
  start-page: 254
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib49
  article-title: Crystal structure of the GLP-1 receptor bound to a peptide agonist
  publication-title: Nature
  doi: 10.1038/nature22800
– volume: 60
  start-page: 1561
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib78
  article-title: Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans
  publication-title: Diabetes
  doi: 10.2337/db10-0474
– volume: 6
  start-page: 503
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib139
  article-title: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.03.006
– volume: 39
  start-page: 1702
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib70
  article-title: Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0691
– volume: 34
  start-page: 2041
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib10
  article-title: Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc11-0291
– volume: 30
  start-page: 1729
  year: 2006
  ident: 10.1016/j.cmet.2018.03.001_bib132
  article-title: Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/sj.ijo.0803344
– volume: 36
  start-page: 3531
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib92
  article-title: Astrocytes regulate GLP-1 receptor-mediated effects on energy balance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3579-15.2016
– volume: 68
  start-page: 954
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib37
  article-title: Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.115.011395
– volume: 127
  start-page: 4217
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib24
  article-title: Discovery, characterization, and clinical development of the glucagon-like peptides
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI97233
– volume: 316
  start-page: 500
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib67
  article-title: Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2016.10260
– volume: 309
  start-page: R544
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib86
  article-title: The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00123.2015
– volume: 176
  start-page: 1474
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib30
  article-title: Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2016.1531
– volume: 18
  start-page: 1217
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib111
  article-title: Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12748
– volume: 151
  start-page: 1473
  year: 2010
  ident: 10.1016/j.cmet.2018.03.001_bib8
  article-title: Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1272
– volume: 96
  start-page: 853
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib42
  article-title: GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-2318
– volume: 390
  start-page: 1664
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib4
  article-title: Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31585-4
– volume: 362
  start-page: 774
  year: 2010
  ident: 10.1016/j.cmet.2018.03.001_bib83
  article-title: Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1001578
– volume: 127
  start-page: 1031
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib36
  article-title: Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI81335
– volume: 377
  start-page: 1228
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib43
  article-title: Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1612917
– volume: 135
  start-page: 1705
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib47
  article-title: Patients with long-QT syndrome caused by impaired hERG-encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.024279
– volume: 58
  start-page: 2688
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib116
  article-title: Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3754-x
– volume: 157
  start-page: 3405
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib35
  article-title: Beta-cell glucagon-like peptide-1 receptor contributes to improved glucose tolerance after vertical sleeve gastrectomy
  publication-title: Endocrinology
  doi: 10.1210/en.2016-1302
– volume: 123
  start-page: 2730
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib5
  article-title: Exenatide and the treatment of patients with Parkinson's disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI68295
– volume: 155
  start-page: 1280
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib89
  article-title: GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody
  publication-title: Endocrinology
  doi: 10.1210/en.2013-1934
– volume: 24
  start-page: 593
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib102
  article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.020
– volume: 9
  start-page: 113
  year: 2018
  ident: 10.1016/j.cmet.2018.03.001_bib48
  article-title: GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02488-y
– volume: 88
  start-page: 801
  year: 2010
  ident: 10.1016/j.cmet.2018.03.001_bib73
  article-title: Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1038/clpt.2010.184
– volume: 63
  start-page: 1303
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib14
  article-title: Occurrence of spontaneous pancreatic lesions in normal and diabetic rats: a potential confounding factor in the nonclinical assessment of GLP-1-based therapies
  publication-title: Diabetes
  doi: 10.2337/db13-1268
– volume: 304
  start-page: G1117
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib87
  article-title: The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00035.2013
– volume: 37
  start-page: 3270
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib93
  article-title: Liraglutide and the preservation of pancreatic beta-cell function in early type 2 diabetes: the LIBRA trial
  publication-title: Diabetes Care
  doi: 10.2337/dc14-0893
– volume: 54
  start-page: 339
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib66
  article-title: Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-1937-z
– volume: 63
  start-page: 483
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib105
  article-title: Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass
  publication-title: Diabetes
  doi: 10.2337/db13-0954
– volume: 17
  start-page: 1481
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib29
  article-title: Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.2513
– volume: 375
  start-page: 1834
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib68
  article-title: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1607141
– volume: 3
  start-page: 385
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib76
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.09.002
– volume: 8
  start-page: 341ra376
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib99
  article-title: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad3744
– volume: 101
  start-page: 778
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib23
  article-title: Evolving concepts and translational relevance of enteroendocrine cell biology
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-3449
– volume: 57
  start-page: 2046
  year: 2008
  ident: 10.1016/j.cmet.2018.03.001_bib98
  article-title: Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake
  publication-title: Diabetes
  doi: 10.2337/db07-1824
– volume: 156
  start-page: 2409
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib120
  article-title: Effects of dulaglutide on thyroid C cells and serum calcitonin in male monkeys
  publication-title: Endocrinology
  doi: 10.1210/en.2014-1717
– volume: 63
  start-page: 1224
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib94
  article-title: Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model
  publication-title: Diabetes
  doi: 10.2337/db13-1440
– volume: 124
  start-page: 2456
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib108
  article-title: Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI72434
– volume: 96
  start-page: 897
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib62
  article-title: Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.09.042
– volume: 40
  start-page: 839
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib115
  article-title: Impact of liraglutide on amylase, lipase, and acute pancreatitis in participants with overweight/obesity and normoglycemia, prediabetes, or type 2 diabetes: secondary analyses of pooled data from the SCALE clinical development program
  publication-title: Diabetes Care
  doi: 10.2337/dc16-2684
– year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib63
  article-title: Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight
  publication-title: Mol. Psychiatry
– volume: 373
  start-page: 2247
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib85
  article-title: Lixisenatide in patients with type 2 diabetes and acute coronary syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1509225
– volume: 19
  start-page: 356
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib88
  article-title: Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12826
– volume: 293
  start-page: G288
  year: 2007
  ident: 10.1016/j.cmet.2018.03.001_bib107
  article-title: Exendin-4, but not dipeptidyl peptidase IV inhibition, increases small intestinal mass in GK rats
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00453.2006
– volume: 6
  start-page: 8918
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib140
  article-title: Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9918
– volume: 9
  start-page: 1202
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib15
  article-title: Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.032
– volume: 117
  start-page: 143
  year: 2007
  ident: 10.1016/j.cmet.2018.03.001_bib39
  article-title: Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25483
– volume: 65
  start-page: 34
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib57
  article-title: Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia
  publication-title: Diabetes
  doi: 10.2337/db15-0973
– volume: 6
  start-page: 105
  year: 2018
  ident: 10.1016/j.cmet.2018.03.001_bib7
  article-title: Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(17)30412-6
– volume: 370
  start-page: 794
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib28
  article-title: Pancreatic safety of incretin-based drugs—FDA and EMA assessment
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1314078
– volume: 310
  start-page: G26
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib44
  article-title: Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00293.2015
– volume: 28
  start-page: 391
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib125
  article-title: Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2014.113
– volume: 146
  start-page: 669
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib97
  article-title: Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.11.044
– volume: 318
  start-page: 1460
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib18
  article-title: Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2017.14752
– volume: 23
  start-page: 850
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib131
  article-title: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug
  publication-title: Nat. Med.
  doi: 10.1038/nm.4345
– volume: 19
  start-page: 705
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib54
  article-title: Immunohistochemical assessment of glucagon-like peptide 1 receptor (GLP-1R) expression in the pancreas of patients with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12879
– volume: 9
  start-page: 425
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib96
  article-title: Emerging combinatorial hormone therapies for the treatment of obesity and T2DM
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2013.47
– volume: 62
  start-page: 3316
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib21
  article-title: Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls
  publication-title: Diabetes
  doi: 10.2337/db13-0822
– volume: 24
  start-page: 15
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib22
  article-title: The cardiovascular biology of glucagon-like peptide-1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.009
– volume: 19
  start-page: 567
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib52
  article-title: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure
  publication-title: Nat. Med.
  doi: 10.1038/nm.3128
– volume: 54
  start-page: 2390
  year: 2005
  ident: 10.1016/j.cmet.2018.03.001_bib133
  article-title: Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.8.2390
– volume: 61
  start-page: 1082
  year: 2012
  ident: 10.1016/j.cmet.2018.03.001_bib113
  article-title: Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1
  publication-title: Diabetes
  doi: 10.2337/db11-1732
– volume: 21
  start-page: 1160
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib61
  article-title: Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.008
– volume: 32
  start-page: 2251
  year: 2009
  ident: 10.1016/j.cmet.2018.03.001_bib95
  article-title: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0773
– volume: 36
  start-page: 2125
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib112
  article-title: GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus: an acute and 12-week randomized, double-blind, placebo-controlled trial
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.116.307930
– volume: 12
  start-page: 726
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib124
  article-title: Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.062
– volume: 25
  start-page: 1075
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib38
  article-title: A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.04.013
– volume: 6
  start-page: 135
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib84
  article-title: A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb1002015
– volume: 23
  start-page: 324
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib9
  article-title: Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.10.017
– volume: 124
  start-page: 4473
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib101
  article-title: The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI75276
– volume: 25
  start-page: 2134
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib118
  article-title: Skp2 is required for incretin hormone-mediated beta-cell proliferation
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2011-1119
– volume: 17
  start-page: 819
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib12
  article-title: Pharmacology, physiology, and mechanisms of incretin hormone action
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.04.008
– volume: 546
  start-page: 248
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib141
  article-title: Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein
  publication-title: Nature
  doi: 10.1038/nature22394
– volume: 165
  start-page: 1632
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib130
  article-title: The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.023
– volume: 29
  start-page: 2397
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib46
  article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity
  publication-title: FASEB J.
  doi: 10.1096/fj.14-265983
– volume: 4
  start-page: 391
  year: 2006
  ident: 10.1016/j.cmet.2018.03.001_bib137
  article-title: GLP-1 receptor activation improves β-cell function and survival following induction of endoplasmic reticulum stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.10.001
– volume: 55
  start-page: 167
  year: 2003
  ident: 10.1016/j.cmet.2018.03.001_bib71
  article-title: International union of pharmacology. XXXV. The glucagon receptor family
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.55.1.6
– volume: 127
  start-page: 3835
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib17
  article-title: Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI91761
– volume: 24
  start-page: 63
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib91
  article-title: Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.016
– volume: 53
  start-page: 552
  year: 2010
  ident: 10.1016/j.cmet.2018.03.001_bib45
  article-title: The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1611-5
– volume: 2
  start-page: 1254
  year: 1996
  ident: 10.1016/j.cmet.2018.03.001_bib100
  article-title: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene
  publication-title: Nat. Med.
  doi: 10.1038/nm1196-1254
– volume: 57
  start-page: 1322
  year: 2017
  ident: 10.1016/j.cmet.2018.03.001_bib103
  article-title: Effect of albiglutide on cholecystokinin-induced gallbladder emptying in healthy individuals: a randomized crossover study
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/jcph.940
– volume: 56
  start-page: 3006
  year: 2007
  ident: 10.1016/j.cmet.2018.03.001_bib33
  article-title: Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice
  publication-title: Diabetes
  doi: 10.2337/db07-0697
– volume: 122
  start-page: 388
  year: 2012
  ident: 10.1016/j.cmet.2018.03.001_bib58
  article-title: Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI42497
– volume: 32
  start-page: 1513
  year: 2012
  ident: 10.1016/j.cmet.2018.03.001_bib134
  article-title: Exenatide, a glucagon-like peptide receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.112.246207
– volume: 76
  start-page: 561
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib26
  article-title: Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021113-170317
– volume: 64
  start-page: 434
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib122
  article-title: GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification
  publication-title: Diabetes
  doi: 10.2337/db14-0558
– volume: 166
  start-page: 209
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib128
  article-title: Sensory neurons that detect stretch and nutrients in the digestive system
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.011
– volume: 21
  start-page: 379
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib56
  article-title: GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.02.005
– volume: 6
  start-page: 5897
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib126
  article-title: Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6897
– volume: 310
  start-page: E855
  year: 2016
  ident: 10.1016/j.cmet.2018.03.001_bib13
  article-title: Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00412.2015
– volume: 63
  start-page: 471
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib80
  article-title: Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway
  publication-title: Diabetes
  doi: 10.2337/db13-0903
– volume: 154
  start-page: 127
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib82
  article-title: GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice
  publication-title: Endocrinology
  doi: 10.1210/en.2012-1937
– volume: 58
  start-page: 1365
  year: 2009
  ident: 10.1016/j.cmet.2018.03.001_bib90
  article-title: Adaptive beta cell proliferation is severely restricted with advanced age
  publication-title: Diabetes
  doi: 10.2337/db08-1198
– volume: 13
  start-page: 320
  year: 2011
  ident: 10.1016/j.cmet.2018.03.001_bib41
  article-title: Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.02.001
– volume: 64
  start-page: 2537
  year: 2015
  ident: 10.1016/j.cmet.2018.03.001_bib138
  article-title: GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte (IEL) GLP-1R
  publication-title: Diabetes
  doi: 10.2337/db14-1577
– volume: 5
  start-page: 209ra151
  year: 2013
  ident: 10.1016/j.cmet.2018.03.001_bib31
  article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007218
– volume: 179
  start-page: 77
  year: 2012
  ident: 10.1016/j.cmet.2018.03.001_bib51
  article-title: Effect of exenatide on cholecystokinin-induced gallbladder emptying in fasting healthy subjects
  publication-title: Regul. Pept.
  doi: 10.1016/j.regpep.2012.08.005
– volume: 114
  start-page: 1788
  year: 2014
  ident: 10.1016/j.cmet.2018.03.001_bib119
  article-title: Cardiovascular actions of incretin-based therapies
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.301958
SSID ssj0036393
Score 2.6986487
SecondaryResourceType review_article
Snippet Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 740
SubjectTerms Animals
Blood Glucose - drug effects
body weight
cardiovascular disease
diabetes
Diabetes Mellitus, Type 1 - therapy
Diabetes Mellitus, Type 2 - therapy
drug
Eating - drug effects
G protein-coupled receptor
Glucagon-Like Peptide 1 - adverse effects
Glucagon-Like Peptide 1 - pharmacology
Glucagon-Like Peptide 1 - therapeutic use
Glucagon-Like Peptide-1 Receptor - agonists
Glucagon-Like Peptide-1 Receptor - physiology
Humans
hypertension
Hypoglycemic Agents - therapeutic use
incretin
inflammation
Insulin - metabolism
metabolism
Mice
obesity
Obesity - therapy
Rats
Weight Gain - drug effects
Title Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1
URI https://dx.doi.org/10.1016/j.cmet.2018.03.001
https://www.ncbi.nlm.nih.gov/pubmed/29617641
https://www.proquest.com/docview/2022130863
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KQfAivq0vIniTpcm-snusRS1KRVCht7DZh1RrKrY9-O_dyaPFgx48JsySZXYz3yT7fTMInUuhFPexx1aaFDPhDda58ViJlPAAyNKXdQuG92LwzG5HfNRC_UYLA7TKOvZXMb2M1vWdbu3N7sd43H2E5JpBtRhJYVuBopwyWYr4RpdNNKYBgUuSfTDGYF0LZyqOl3l3wKdMZFXoNPkNnH5LPksQut5EG3X2GPWqCW6hliu20VrVT_JrB90NHQh5x7P3WTT1Ua_ULES6sNHTSmYV9VZn1mB1A33PXqYFnozfXPQALBfrcLKLnq-vnvoDXHdLwIYJMcfWcsKtMjaXUhsi89zmItF5Gj5yGdMuQLNxMYf_nj7RIs0Njb2XWlnumCKG7qF2MS3cAYpMQjRVPo2tT5mJhVQytrEyhPtUeC86KGnclJm6lDh0tJhkDWfsNQPXZuDaLKZAnOugi-WYj6qQxp_WvPF-9mM7ZCHS_znurFmqLLwncPihCzddzIIRIQGvpaAdtF-t4XIeRIU8TrDk8J9PPULrcFUSeugxas8_F-4k5Crz_LTcjN_UkeVV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMsTyPBCVmbOH4eOCyPsst2KyS20t6C4wdaaLMVuxXq7-IP4smjFYf2gNRrYifWZ3vmS_zNDMArLY0RMYvUa6col9FRW7lIjVRMJIesY5O3YLYvxwf880IstuBPHwuDssrO9rc2vbHW3ZVhh-bweLkcfkVyzTFbjC5wWalOWTkNp7_Td9v67eRDmuTXjO1-nL8f0660AHVcyg31XjDhjfOV1tYxXVW-krmtVPoi5NyG5MdcyAT-JIy5lapyRRajtsaLwA1zRXruNbie2IdCazBZvOvNf5FcfqPqT6OjOLwuUqcVlbmjgALOXLeZVfOLvOFFbLfxert34HZHV8moReQubIX6HtxoC1ie3ofpLGDk8HJ9tCarSEZNkASxtSfz87guMjo_JMdWn7DQ2vdVTQ-XPwP5grIaH2j-AA6uBMOHsF2v6vAIiMuZLUxUmY-Ku0xqozOfGcdEVDJGOYC8h6l0Xe5yLKFxWPYitR8lQlsitGVWoFJvAG_O-hy3mTsubS169Mt_1l-ZXMul_V72U1WmjYmnLbYOq5N1asRYIghaFgPYaefwbBzMJOIoef74P9_6Am6O57O9cm-yP30Ct_BOoyYqnsL25tdJeJaI0qZ63ixMAt-ueif8Bd8OJD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Action+and+Therapeutic+Application+of+Glucagon-like+Peptide-1&rft.jtitle=Cell+metabolism&rft.au=Drucker%2C+Daniel+J.&rft.date=2018-04-03&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=27&rft.issue=4&rft.spage=740&rft.epage=756&rft_id=info:doi/10.1016%2Fj.cmet.2018.03.001&rft.externalDocID=S1550413118301797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon