Approaches to the design of catalytic metallodrugs
•How can metal catalysts be used for biochemical transformations?•Catalysis by metal complexes can even be achieved in cells.•Catalysis includes CC bond formation, deprotection/functional group modification.•Degradation of biomolecules and redox modulation can also be achieved.•Four classes of catal...
Saved in:
Published in | Current opinion in chemical biology Vol. 25; pp. 172 - 183 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •How can metal catalysts be used for biochemical transformations?•Catalysis by metal complexes can even be achieved in cells.•Catalysis includes CC bond formation, deprotection/functional group modification.•Degradation of biomolecules and redox modulation can also be achieved.•Four classes of catalytic redox modulators are discussed.•Catalytic metallodrugs offer the prospect of low-dose therapy.
Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include CC bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration. |
---|---|
AbstractList | Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration.Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration. Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration. •How can metal catalysts be used for biochemical transformations?•Catalysis by metal complexes can even be achieved in cells.•Catalysis includes CC bond formation, deprotection/functional group modification.•Degradation of biomolecules and redox modulation can also be achieved.•Four classes of catalytic redox modulators are discussed.•Catalytic metallodrugs offer the prospect of low-dose therapy. Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include CC bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration. |
Author | Soldevila-Barreda, Joan J Sadler, Peter J |
Author_xml | – sequence: 1 givenname: Joan J surname: Soldevila-Barreda fullname: Soldevila-Barreda, Joan J – sequence: 2 givenname: Peter J surname: Sadler fullname: Sadler, Peter J email: P.J.Sadler@warwick.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25765750$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi0E4qPwBxhQRpaEsxM7qcRSIb6kSiwwW459Lq7SuNguEv8eVy0LQ6e74X1e3T0X5Hj0IxJyTaGiQMXdstL9WlUMKK-AVsCaI3JOu3ZaQgPsOO-1aEs-rekZuYhxCQCCdfyUnDHeCt5yOCdstl4Hr_QnxiL5In1iYTC6xVh4W2iV1PCTnC5WmLfBm7BZxEtyYtUQ8Wo_J-Tj6fH94aWcvz2_PszmpW6ESKVGNK3FRk3Rmt5aXlNmWmHysAoRG81ob1Vfq47WCLpGDT1H22sOXChbT8jtrjcf-LXBmOTKRY3DoEb0myip6OgUuo7RHL3ZRzf9Co1cB7dS4Uf-_ZkD3S6gg48xoJXaJZWcH1NQbpAU5FapXMqtUrlVKoHKrDSj7B_6134Qut9BmAV9OwwyaoejRuMC6iSNd4fwX0HlkEs |
CitedBy_id | crossref_primary_10_1016_j_jinorgbio_2016_09_016 crossref_primary_10_1002_cctc_201601307 crossref_primary_10_1016_j_biocel_2016_02_015 crossref_primary_10_1002_adfm_202010337 crossref_primary_10_1016_j_jinorgbio_2022_112062 crossref_primary_10_3390_inorganics9040026 crossref_primary_10_1016_j_ica_2017_11_003 crossref_primary_10_1155_2015_374782 crossref_primary_10_1039_D0CC03398G crossref_primary_10_1039_D0CS00630K crossref_primary_10_1002_ange_202013366 crossref_primary_10_1016_j_cbpa_2022_102213 crossref_primary_10_1007_s00775_023_01994_3 crossref_primary_10_1016_j_ccr_2021_214104 crossref_primary_10_1073_pnas_1915202117 crossref_primary_10_1039_D0DT01390K crossref_primary_10_1002_aoc_4779 crossref_primary_10_1039_c9mt00304e crossref_primary_10_1002_ange_202300467 crossref_primary_10_1016_j_poly_2022_115879 crossref_primary_10_1039_D3CY00676J crossref_primary_10_1039_C9QI01172B crossref_primary_10_1016_j_jinorgbio_2021_111622 crossref_primary_10_1039_C6DT03356C crossref_primary_10_1021_acs_inorgchem_8b00346 crossref_primary_10_4155_fmc_2023_0170 crossref_primary_10_1021_acs_inorgchem_8b00625 crossref_primary_10_1016_j_cbpa_2025_102584 crossref_primary_10_1002_aoc_4940 crossref_primary_10_1039_C6RA23663D crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1002_smtd_202300197 crossref_primary_10_1039_C9DT02030F crossref_primary_10_1039_C7CS00332C crossref_primary_10_1007_s00775_020_01804_0 crossref_primary_10_3390_antiox10010130 crossref_primary_10_3390_biom14050530 crossref_primary_10_3390_molecules25194540 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1002_chem_202003927 crossref_primary_10_1016_j_molliq_2019_111887 crossref_primary_10_1016_j_jinorgbio_2022_111877 crossref_primary_10_1016_j_jorganchem_2016_09_005 crossref_primary_10_1039_C8DT00449H crossref_primary_10_1021_acs_inorgchem_0c00608 crossref_primary_10_1016_j_ica_2021_120754 crossref_primary_10_1021_acs_inorgchem_4c00650 crossref_primary_10_1039_D1DT00808K crossref_primary_10_1016_j_ddtec_2019_06_001 crossref_primary_10_1039_D1DT02783B crossref_primary_10_1002_cbic_202400374 crossref_primary_10_1016_j_rechem_2024_101632 crossref_primary_10_1039_C7CS00195A crossref_primary_10_1038_ncomms12538 crossref_primary_10_1002_ejic_201800225 crossref_primary_10_1039_C9CC01675A crossref_primary_10_1002_smll_202000392 crossref_primary_10_1016_j_jorganchem_2016_12_010 crossref_primary_10_3390_pharmaceutics11010030 crossref_primary_10_3390_toxics10020083 crossref_primary_10_1021_acscatal_6b00395 crossref_primary_10_1002_ejic_201500408 crossref_primary_10_1038_s41570_018_0018_6 crossref_primary_10_1016_j_jinorgbio_2016_01_020 crossref_primary_10_1002_anie_202013366 crossref_primary_10_1002_cctc_202401424 crossref_primary_10_3390_molecules28186469 crossref_primary_10_1016_j_chempr_2019_10_013 crossref_primary_10_1039_D4QI02472A crossref_primary_10_1002_ejic_201601226 crossref_primary_10_1039_D0CB00150C crossref_primary_10_1002_chem_201806341 crossref_primary_10_1016_j_molstruc_2018_03_058 crossref_primary_10_1002_chem_201603206 crossref_primary_10_1002_chem_201701714 crossref_primary_10_1039_C9CC07920C crossref_primary_10_1002_anie_202300467 crossref_primary_10_1021_acs_bioconjchem_5b00469 crossref_primary_10_1039_C6SC02901A crossref_primary_10_1155_2016_4013639 crossref_primary_10_1002_ange_202100369 crossref_primary_10_1016_j_trac_2016_04_015 crossref_primary_10_1039_D0DT03165H crossref_primary_10_1016_j_bioorg_2018_08_019 crossref_primary_10_1016_j_jorganchem_2024_123168 crossref_primary_10_1039_D0SC03628E crossref_primary_10_1002_cmdc_201600638 crossref_primary_10_1016_j_ejmech_2021_113187 crossref_primary_10_3390_cancers11040474 crossref_primary_10_1016_j_ccr_2023_215230 crossref_primary_10_1002_chem_201800504 crossref_primary_10_1007_s10989_018_9717_6 crossref_primary_10_3390_molecules200917244 crossref_primary_10_1080_02603594_2016_1192541 crossref_primary_10_1016_j_ccr_2016_05_013 crossref_primary_10_5802_crchim_295 crossref_primary_10_1016_j_jinorgbio_2016_04_005 crossref_primary_10_47470_0016_9900_2020_99_12_1365_1369 crossref_primary_10_1016_j_ica_2018_11_050 crossref_primary_10_1039_C9CC00159J crossref_primary_10_1016_j_xcrp_2020_100076 crossref_primary_10_1021_acs_joc_2c00956 crossref_primary_10_1021_acs_biochem_9b00440 crossref_primary_10_1038_s41467_018_04440_0 crossref_primary_10_3390_molecules26175169 crossref_primary_10_1039_C6SC00651E crossref_primary_10_3390_molecules29051066 crossref_primary_10_1021_acscatal_1c00438 crossref_primary_10_1016_j_jinorgbio_2015_10_008 crossref_primary_10_1016_j_jinorgbio_2021_111395 crossref_primary_10_1039_C5DT04529K crossref_primary_10_1016_j_jinorgbio_2021_111431 crossref_primary_10_1021_jacs_4c18328 crossref_primary_10_1515_pac_2017_0207 crossref_primary_10_1016_j_chemosphere_2021_129843 crossref_primary_10_1002_chem_202300842 crossref_primary_10_1002_cmdc_202100297 crossref_primary_10_1039_D1DT00246E crossref_primary_10_1039_D4CB00187G crossref_primary_10_1002_hlca_202300001 crossref_primary_10_1021_acs_inorgchem_0c02672 crossref_primary_10_1002_anie_202100369 crossref_primary_10_1039_C5DT03919C crossref_primary_10_1021_acs_inorgchem_0c02438 crossref_primary_10_1039_D0NJ00209G |
Cites_doi | 10.1155/2012/736837 10.1517/14728222.11.5.695 10.1155/2008/276109 10.1021/ja208791f 10.1002/chem.200900821 10.1021/cr5004375 10.1002/anie.201108175 10.1007/s00775-007-0221-2 10.1016/j.bbadis.2011.12.002 10.1021/jm100560f 10.1021/ic010562z 10.1016/j.cbpa.2008.01.028 10.1039/b403627a 10.5012/bkcs.2008.29.4.882 10.1021/ja2066913 10.2967/jnumed.112.115550 10.1039/c1ob05482a 10.1021/ja207785f 10.1002/cbic.201100719 10.1038/ncomms7582 10.1038/nchem.981 10.1021/ja907150m 10.1021/ja044043h 10.1039/C4CS00117F 10.1016/j.jorganchem.2009.10.015 10.1002/anie.201004101 10.1002/anie.200702399 10.1007/s00280-003-0726-5 10.1159/000341715 10.1038/cdd.2009.107 10.1016/j.jorganchem.2004.09.044 10.1021/ja021381e 10.1021/om3006307 10.1016/j.jorganchem.2013.04.049 10.1021/ic2021935 10.1039/b710345j 10.3390/molecules17089835 10.1002/ejic.200700505 10.1007/s00775-008-0354-y 10.1007/s00775-010-0750-y 10.1073/pnas.0800076105 10.1021/bc100272z 10.1007/s11244-013-0187-y 10.1038/nchem.1887 10.1038/nrm3286 10.1007/s00775-006-0098-5 10.1089/ars.2007.1672 10.1089/ars.2012.5147 10.2174/187152011795677562 10.1002/anie.201311161 10.1021/ja00164a076 10.1039/c2sc20220d 10.1021/bi971565j 10.1021/ja053387k 10.1007/s00775-012-0918-8 10.1002/cmdc.201400070 10.1021/ja402424j 10.1039/c3dt51991k 10.1016/j.cbpa.2014.12.021 10.1002/anie.200601752 10.1002/ejic.201101057 10.1039/c3sc22135k 10.1002/anie.201404547 10.1021/ja209352s 10.1039/c2cc17377h 10.1021/om3001668 10.1590/1414-431X20133086 10.1021/ar100099u 10.1071/CH10239 10.1039/B513396C 10.1002/anie.201204029 10.1039/c3gc37129h 10.1021/jm500531z 10.1021/ic9013366 10.1039/C2DT32091F 10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K 10.1038/nchem.1498 10.1021/bc400502d 10.1039/C2CC37832A 10.1016/j.cbpa.2014.07.007 |
ContentType | Journal Article |
Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cbpa.2015.01.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1879-0402 |
EndPage | 183 |
ExternalDocumentID | 25765750 10_1016_j_cbpa_2015_01_024 S1367593115000198 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATCM AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCC SDF SDG SDP SES SEW SPC SPCBC SSK SSP SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-ceed7fe4a9efdbff5312d76d312faeee4c21bfab3a813e0c3ec0b5efbc5056af3 |
IEDL.DBID | .~1 |
ISSN | 1367-5931 1879-0402 |
IngestDate | Thu Jul 10 18:54:14 EDT 2025 Mon Jul 21 05:55:24 EDT 2025 Tue Jul 01 02:35:31 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Fri Feb 23 02:27:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-ceed7fe4a9efdbff5312d76d312faeee4c21bfab3a813e0c3ec0b5efbc5056af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1367593115000198 |
PMID | 25765750 |
PQID | 1681908821 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1681908821 pubmed_primary_25765750 crossref_citationtrail_10_1016_j_cbpa_2015_01_024 crossref_primary_10_1016_j_cbpa_2015_01_024 elsevier_sciencedirect_doi_10_1016_j_cbpa_2015_01_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 2015-04-00 2015-Apr 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in chemical biology |
PublicationTitleAlternate | Curr Opin Chem Biol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Khan, Forouhar, Tao, Tong (bib0620) 2007; 11 Bugarcic, Habtemariam, Deeth, Fabbiani, Parsons, Sadler (bib0670) 2009; 48 Soldevila-Barreda, Romero-Canelón, Habtemariam, Sadler (bib0810) 2015; 6 Leiva, Lo, Fish (bib0730) 2010; 695 Hong, Steinmetz, Manchester, Finn (bib0465) 2010; 21 Lee, Suh (bib0605) 2009; 38 Khan, Forouhar, Tao, Tong (bib0795) 2007; 11 Wu, Tian, Song, Liu, Yang, Jiang (bib0720) 2013; 15 Buriez, Kerr, Fish (bib0750) 1999; 38 Hileman, Liu, Albitar, Keating, Huang (bib0800) 2004; 53 Weiss, Dawson, Fraser, Rybski, Torres-Sánchez, Bradley, Patton, Carragher, Unciti-Broceta (bib0500) 2014; 57 Zeng, Zeglis, Lewis, Anderson (bib0490) 2013; 54 Gallagher, Zelenko, Walts, Sigman (bib0540) 1998; 37 Karlsson, Ignarro, Lundström, Jynge, Almén (bib0420) 2014 Ying (bib0790) 2008; 10 Franco, Cidlowski (bib0655) 2009; 16 Hoyer, Cho, Schultz (bib0545) 1990; 112 Maenaka, Suenobu, Fukuzumi (bib0815) 2012; 134 Li, Lim, Edwardraja, Lin (bib0455) 2011; 133 Crabtree (bib0425) 2014; 115 Sasmal, Streu, Meggers (bib0510) 2013; 49 Hocharoen, Cowan (bib0615) 2009; 15 Davis, Chin (bib0450) 2012; 13 Lo, Fish (bib0745) 2002; 41 Yan, Melchart, Habtemariam, Peacock, Sadler (bib0760) 2006; 11 Jiang, Zheng, Lopez-Aguilar, Feng, Kopp, Marlow, Wu (bib0475) 2014; 25 Yang, Song, Zhang, Lin, Hao, Liang, Zhang, Chen (bib0470) 2012; 51 Miriyala, Spasojevic, Tovmasyan, Salvemini, Vujaskovic, St. Clair, Batinic-Haberle (bib0635) 2012; 1822 Yusop, Unciti-Broceta, Johansson, Sánchez-Martín, Bradley (bib0435) 2011; 3 Chankeshwara, Indrigo, Bradley (bib0480) 2014; 21 Sasmal, Carregal-Romero, Han, Streu, Lin, Namikawa, Elliott, Köster, Parak, Meggers (bib0530) 2012; 13 Chalker, Wood, Davis (bib0440) 2009; 131 Batinic-Haberle, Tovmasyan, Roberts, Vujaskovic, Leong, Spasojevic (bib0630) 2014; 20 Haquette, Talbi, Barilleau, Madern, Fosse, Salmain (bib0765) 2011; 9 Suh, Yoo, Kim, Jeong, Ahn, Kim, Chae, Lee, Lee, Lee (bib0565) 2007; 46 Fu, Habtemariam, Pizarro, van Rijt, Healey, Cooper, Shnyder, Clarkson, Sadler (bib0665) 2010; 53 Bradford, Cowan (bib0585) 2012; 48 Batinic-Haberle, Rajic, Benov (bib0645) 2011; 11 Gladiali, Alberico (bib0710) 2006; 35 Joyner, Hocharoen, Cowan (bib0575) 2011; 134 Giannini, Furrer, Süss-Fink, Clavel, Dyson (bib0690) 2013; 744 Ward (bib0780) 2011; 44 Wu, Li, Hems, King, Xiao (bib0715) 2004; 2 Lo, Leiva, Buriez, Kerr, Olmstead, Fish (bib0725) 2001; 40 Weiss, Dawson, Macleod, Rybski, Fraser, Torres-Sánchez, Patton, Bradley, Carragher, Unciti-Broceta (bib0495) 2014 Josefsen, Boyle (bib0625) 2008; 2008 Sasmal, Carregal-Romero, Parak, Meggers (bib0515) 2012; 31 Maid, Böhm, Huber, Bauer, Hummel, Jux, Gröger (bib0835) 2011; 50 Dougan, Habtemariam, McHale, Parsons, Sadler (bib0650) 2008; 105 Quinto, Köhler, Ward (bib0770) 2014; 57 Paul, Therrien, Furrer (bib0705) 2011; 51 Wang, Xu, Wu, Weidt, Mackay, Langridge-Smith, Sadler (bib0675) 2013; 42 de Torres, Dimroth, Arends, Keilitz, Hollmann (bib0775) 2012; 17 Streu, Meggers (bib0505) 2006; 45 Tovmasyan, Sheng, Weitner, Arulpragasam, Lu, Warner, Vujaskovic, Spasojevic, Batinic-Haberle (bib0640) 2013; 22 Wang, Xu, Habtemariam, Sadler (bib0680) 2005; 127 Fish (bib0735) 2010; 63 Canivet, Süss-Fink, Štěpnička (bib0755) 2007 Ibao, Gras, Therrien, Süss-Fink, Zava, Dyson (bib0695) 2012; 2012 Soldevila-Barreda, Bruijnincx, Habtemariam, Clarkson, Deeth, Sadler (bib0805) 2012; 31 Joyner, Keuper, Cowan (bib0595) 2013; 4 Joyner, Cowan (bib0600) 2013; 46 Lutz, Hollmann, Ho, Schnyder, Fish, Schmid (bib0740) 2004; 689 Li, Lin, Wang, Jia, Yang, Hao, Zhang, Chen (bib0460) 2013; 135 Lee, Yoo, Jeong, Lee, Ahn, Suh (bib0555) 2008; 29 Köhler, Wilson, Dürrenberger, Ghislieri, Churakova, Quinto, Knörr, Häussinger, Hollmann, Turner (bib0785) 2013; 5 Spicer, Triemer, Davis (bib0445) 2011; 134 Fu, Romero, Habtemariam, Snowden, Song, Clarkson, Qamar, Pizarro, Unwin, Sadler (bib0830) 2012; 3 Li, Yu, Zhao, Wang, Zheng, Lin, Chen, Yang, Jia, Zhang (bib0525) 2014; 6 Chei, Ju, Suh (bib0570) 2011; 16 Bradford, Ross, Fidai, Cowan (bib0580) 2014; 9 Lushchak (bib0660) 2012; 2012 Jin, Cowan (bib0590) 2007; 12 Betanzos-Lara, Liu, Habtemariam, Pizarro, Qamar, Sadler (bib0820) 2012; 51 Wang, Chan, Hilgraf, Fokin, Sharpless, Finn (bib0430) 2003; 125 Paul, Therrien, Furrer (bib0700) 2012; 17 Suh, Chei, Lee, Kim, Yoo, Jeong, Ahn (bib0560) 2008; 13 Yang, Li, Chen (bib0485) 2014; 43 Gupta, Garci, Murray, Dyson, Fabre, Trouillas, Giannini, Furrer, Süss-Fink, Therrien (bib0685) 2013; 42 Liu, Romero-Canelón, Qamar, Hearn, Habtemariam, Barry, Pizarro, Clarkson, Sadler (bib0825) 2014; 53 Suh, Chei (bib0610) 2008; 12 Völker, Meggers (bib0535) 2015; 25 Chae, Kim, Jeung, Lee, Park, Lee, Suh (bib0550) 2005; 127 Völker, Dempwolff, Graumann, Meggers (bib0520) 2014; 53 Ying (10.1016/j.cbpa.2015.01.024_bib0790) 2008; 10 Miriyala (10.1016/j.cbpa.2015.01.024_bib0635) 2012; 1822 Sasmal (10.1016/j.cbpa.2015.01.024_bib0515) 2012; 31 Liu (10.1016/j.cbpa.2015.01.024_sbref0825) 2014; 53 Ibao (10.1016/j.cbpa.2015.01.024_bib0695) 2012; 2012 Hileman (10.1016/j.cbpa.2015.01.024_bib0800) 2004; 53 Streu (10.1016/j.cbpa.2015.01.024_bib0505) 2006; 45 Gladiali (10.1016/j.cbpa.2015.01.024_bib0710) 2006; 35 Lo (10.1016/j.cbpa.2015.01.024_bib0725) 2001; 40 Völker (10.1016/j.cbpa.2015.01.024_sbref0535) 2015; 25 Khan (10.1016/j.cbpa.2015.01.024_bib0795) 2007; 11 Suh (10.1016/j.cbpa.2015.01.024_bib0610) 2008; 12 Maenaka (10.1016/j.cbpa.2015.01.024_bib0815) 2012; 134 Davis (10.1016/j.cbpa.2015.01.024_bib0450) 2012; 13 Hoyer (10.1016/j.cbpa.2015.01.024_bib0545) 1990; 112 Joyner (10.1016/j.cbpa.2015.01.024_bib0575) 2011; 134 Lee (10.1016/j.cbpa.2015.01.024_bib0605) 2009; 38 Josefsen (10.1016/j.cbpa.2015.01.024_bib0625) 2008; 2008 Bradford (10.1016/j.cbpa.2015.01.024_bib0580) 2014; 9 Khan (10.1016/j.cbpa.2015.01.024_bib0620) 2007; 11 Lo (10.1016/j.cbpa.2015.01.024_bib0745) 2002; 41 Fu (10.1016/j.cbpa.2015.01.024_bib0830) 2012; 3 Gallagher (10.1016/j.cbpa.2015.01.024_bib0540) 1998; 37 Haquette (10.1016/j.cbpa.2015.01.024_bib0765) 2011; 9 Paul (10.1016/j.cbpa.2015.01.024_bib0705) 2011; 51 Völker (10.1016/j.cbpa.2015.01.024_bib0520) 2014; 53 Köhler (10.1016/j.cbpa.2015.01.024_bib0785) 2013; 5 Wang (10.1016/j.cbpa.2015.01.024_bib0675) 2013; 42 Fish (10.1016/j.cbpa.2015.01.024_bib0735) 2010; 63 Gupta (10.1016/j.cbpa.2015.01.024_bib0685) 2013; 42 Li (10.1016/j.cbpa.2015.01.024_sbref0525) 2014; 6 Suh (10.1016/j.cbpa.2015.01.024_bib0560) 2008; 13 Maid (10.1016/j.cbpa.2015.01.024_bib0835) 2011; 50 Lushchak (10.1016/j.cbpa.2015.01.024_bib0660) 2012; 2012 de Torres (10.1016/j.cbpa.2015.01.024_bib0775) 2012; 17 Jiang (10.1016/j.cbpa.2015.01.024_bib0475) 2014; 25 Fu (10.1016/j.cbpa.2015.01.024_bib0665) 2010; 53 Suh (10.1016/j.cbpa.2015.01.024_bib0565) 2007; 46 Wang (10.1016/j.cbpa.2015.01.024_bib0680) 2005; 127 Chalker (10.1016/j.cbpa.2015.01.024_bib0440) 2009; 131 Sasmal (10.1016/j.cbpa.2015.01.024_bib0530) 2012; 13 Buriez (10.1016/j.cbpa.2015.01.024_bib0750) 1999; 38 Yan (10.1016/j.cbpa.2015.01.024_bib0760) 2006; 11 Wu (10.1016/j.cbpa.2015.01.024_bib0720) 2013; 15 Paul (10.1016/j.cbpa.2015.01.024_bib0700) 2012; 17 Chae (10.1016/j.cbpa.2015.01.024_bib0550) 2005; 127 Bradford (10.1016/j.cbpa.2015.01.024_bib0585) 2012; 48 Chei (10.1016/j.cbpa.2015.01.024_bib0570) 2011; 16 Bugarcic (10.1016/j.cbpa.2015.01.024_bib0670) 2009; 48 Lee (10.1016/j.cbpa.2015.01.024_bib0555) 2008; 29 Soldevila-Barreda (10.1016/j.cbpa.2015.01.024_bib0810) 2015; 6 Soldevila-Barreda (10.1016/j.cbpa.2015.01.024_bib0805) 2012; 31 Franco (10.1016/j.cbpa.2015.01.024_bib0655) 2009; 16 Quinto (10.1016/j.cbpa.2015.01.024_bib0770) 2014; 57 Zeng (10.1016/j.cbpa.2015.01.024_bib0490) 2013; 54 Yang (10.1016/j.cbpa.2015.01.024_bib0470) 2012; 51 Leiva (10.1016/j.cbpa.2015.01.024_bib0730) 2010; 695 Hocharoen (10.1016/j.cbpa.2015.01.024_bib0615) 2009; 15 Hong (10.1016/j.cbpa.2015.01.024_bib0465) 2010; 21 Weiss (10.1016/j.cbpa.2015.01.024_sbref0495) 2014 Batinic-Haberle (10.1016/j.cbpa.2015.01.024_bib0645) 2011; 11 Joyner (10.1016/j.cbpa.2015.01.024_bib0595) 2013; 4 Batinic-Haberle (10.1016/j.cbpa.2015.01.024_bib0630) 2014; 20 Lutz (10.1016/j.cbpa.2015.01.024_bib0740) 2004; 689 Chankeshwara (10.1016/j.cbpa.2015.01.024_bib0480) 2014; 21 Giannini (10.1016/j.cbpa.2015.01.024_bib0690) 2013; 744 Li (10.1016/j.cbpa.2015.01.024_bib0460) 2013; 135 Jin (10.1016/j.cbpa.2015.01.024_bib0590) 2007; 12 Dougan (10.1016/j.cbpa.2015.01.024_sbref0650) 2008; 105 Wang (10.1016/j.cbpa.2015.01.024_bib0430) 2003; 125 Weiss (10.1016/j.cbpa.2015.01.024_bib0500) 2014; 57 Canivet (10.1016/j.cbpa.2015.01.024_bib0755) 2007 Yang (10.1016/j.cbpa.2015.01.024_bib0485) 2014; 43 Sasmal (10.1016/j.cbpa.2015.01.024_bib0510) 2013; 49 Li (10.1016/j.cbpa.2015.01.024_bib0455) 2011; 133 Yusop (10.1016/j.cbpa.2015.01.024_bib0435) 2011; 3 Joyner (10.1016/j.cbpa.2015.01.024_bib0600) 2013; 46 Tovmasyan (10.1016/j.cbpa.2015.01.024_bib0640) 2013; 22 Spicer (10.1016/j.cbpa.2015.01.024_bib0445) 2011; 134 Karlsson (10.1016/j.cbpa.2015.01.024_bib0420) 2014 Wu (10.1016/j.cbpa.2015.01.024_bib0715) 2004; 2 Ward (10.1016/j.cbpa.2015.01.024_bib0780) 2011; 44 Crabtree (10.1016/j.cbpa.2015.01.024_bib0425) 2014; 115 Betanzos-Lara (10.1016/j.cbpa.2015.01.024_sbref0820) 2012; 51 |
References_xml | – volume: 131 start-page: 16346 year: 2009 end-page: 16347 ident: bib0440 article-title: A convenient catalyst for aqueous and protein Suzuki–Miyaura cross-coupling publication-title: J Am Chem Soc – volume: 41 start-page: 478 year: 2002 end-page: 481 ident: bib0745 article-title: Biomimetic NAD(+) models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis publication-title: Angew Chem Int Ed – volume: 133 start-page: 15316 year: 2011 end-page: 15319 ident: bib0455 article-title: Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells publication-title: J Am Chem Soc – volume: 51 start-page: 7674 year: 2012 end-page: 7679 ident: bib0470 article-title: Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity publication-title: Angew Chem Int Ed – volume: 127 start-page: 17734 year: 2005 end-page: 17743 ident: bib0680 article-title: Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate publication-title: J Am Chem Soc – volume: 10 start-page: 179 year: 2008 end-page: 206 ident: bib0790 article-title: NAD publication-title: Antioxid Redox Sign – volume: 50 start-page: 2397 year: 2011 end-page: 2400 ident: bib0835 article-title: Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase publication-title: Angew Chem Int Ed – volume: 21 start-page: 1912 year: 2010 end-page: 1916 ident: bib0465 article-title: Labeling live cells by copper-catalyzed alkyne–azide click chemistry publication-title: Bioconj Chem – volume: 3 start-page: 2485 year: 2012 end-page: 2494 ident: bib0830 article-title: The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes publication-title: Chem Sci – volume: 13 start-page: 168 year: 2012 end-page: 182 ident: bib0450 article-title: Designer proteins: applications of genetic code expansion in cell biology publication-title: Nat Rev Mol Cell Biol – volume: 53 start-page: 10536 year: 2014 end-page: 10540 ident: bib0520 article-title: Progress towards bioorthogonal catalysis with organometallic compounds publication-title: Angew Chem Int Ed – volume: 16 start-page: 1303 year: 2009 end-page: 1314 ident: bib0655 article-title: Apoptosis and glutathione: beyond an antioxidant publication-title: Cell Death Differ – volume: 53 start-page: 3941 year: 2014 end-page: 3946 ident: bib0825 article-title: The potent oxidant anticancer activity of organoiridium catalysts publication-title: Angew Chem Int Ed – volume: 20 start-page: 2372 year: 2014 end-page: 2415 ident: bib0630 article-title: SOD therapeutics: latest insights into their structure–activity relationships and impact on the cellular redox-based signaling pathways publication-title: Antioxid Redox Signal – volume: 51 start-page: 1057 year: 2011 end-page: 1067 ident: bib0705 article-title: Investigation of the reactivity between a ruthenium hexacationic prism and biological ligands publication-title: Inorg Chem – volume: 38 start-page: 1949 year: 2009 end-page: 1957 ident: bib0605 article-title: Target-selective peptide-cleaving catalysts as a new paradigm in drug design publication-title: Chem Soc Rev – volume: 35 start-page: 226 year: 2006 end-page: 236 ident: bib0710 article-title: Asymmetric transfer hydrogenation: chiral ligands and applications publication-title: Chem Soc Rev – volume: 38 start-page: 1997 year: 1999 end-page: 2000 ident: bib0750 article-title: Regioselective reduction of NAD publication-title: Angew Chem Int Ed – volume: 43 start-page: 6511 year: 2014 end-page: 6526 ident: bib0485 article-title: Transition metal-mediated bioorthogonal protein chemistry in living cells publication-title: Chem Soc Rev – volume: 134 start-page: 3396 year: 2011 end-page: 3410 ident: bib0575 article-title: Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates publication-title: J Am Chem Soc – volume: 13 start-page: 1116 year: 2012 end-page: 1120 ident: bib0530 article-title: Catalytic azide reduction in biological environments publication-title: ChemBioChem – volume: 57 start-page: 5395 year: 2014 end-page: 5404 ident: bib0500 article-title: Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine publication-title: J Med Chem – volume: 9 start-page: 1275 year: 2014 end-page: 1285 ident: bib0580 article-title: Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA publication-title: Chem Med Chem – volume: 53 start-page: 209 year: 2004 end-page: 219 ident: bib0800 article-title: Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity publication-title: Cancer Chemother Pharm – volume: 6 start-page: 352 year: 2014 end-page: 361 ident: bib0525 article-title: Palladium-triggered deprotection chemistry for protein activation in living cells publication-title: Nat Chem – volume: 9 start-page: 5720 year: 2011 end-page: 5727 ident: bib0765 article-title: Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration publication-title: Org Biomol Chem – volume: 57 start-page: 321 year: 2014 end-page: 331 ident: bib0770 article-title: Recent trends in biomimetic NADH regeneration publication-title: Top Catal – volume: 2012 start-page: 1531 year: 2012 end-page: 1535 ident: bib0695 article-title: Thiolato-bridged arene–ruthenium complexes: synthesis, molecular structure, reactivity, and anticancer activity of the dinuclear complexes [(arene) publication-title: Eur J Inorg Chem – volume: 689 start-page: 4783 year: 2004 end-page: 4790 ident: bib0740 article-title: Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD publication-title: J Organomet Chem – volume: 44 start-page: 47 year: 2011 end-page: 57 ident: bib0780 article-title: Artificial metalloenzymes based on the biotin–avidin technology: enantioselective catalysis and beyond publication-title: Acc Chem Res – start-page: 5 year: 2014 ident: bib0495 article-title: Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach publication-title: Nat Commun – volume: 105 start-page: 11628 year: 2008 end-page: 11633 ident: bib0650 article-title: Catalytic organometallic anticancer complexes publication-title: Proc Natl Acad Sci U S A – volume: 2008 start-page: 1 year: 2008 end-page: 24 ident: bib0625 article-title: Photodynamic therapy and the development of metal-based photosensitisers publication-title: Met Based Drugs – volume: 112 start-page: 3249 year: 1990 end-page: 3250 ident: bib0545 article-title: New strategy for selective protein cleavage publication-title: J Am Chem Soc – start-page: 4736 year: 2007 end-page: 4742 ident: bib0755 article-title: Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones publication-title: Eur J Inorg Chem – volume: 25 start-page: 698 year: 2014 end-page: 706 ident: bib0475 article-title: Monitoring dynamic glycosylation in vivo using supersensitive click chemistry publication-title: Bioconj Chem – volume: 45 start-page: 5645 year: 2006 end-page: 5648 ident: bib0505 article-title: Ruthenium-induced allylcarbamate cleavage in living cells publication-title: Angew Chem Int Ed – volume: 31 start-page: 5958 year: 2012 end-page: 5967 ident: bib0805 article-title: Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD publication-title: Organometallics – volume: 134 start-page: 800 year: 2011 end-page: 803 ident: bib0445 article-title: Palladium-mediated cell-surface labeling publication-title: J Am Chem Soc – volume: 48 start-page: 3118 year: 2012 end-page: 3120 ident: bib0585 article-title: Catalytic metallodrugs targeting HCV IRES RNA publication-title: Chem Commun – volume: 5 start-page: 93 year: 2013 end-page: 99 ident: bib0785 article-title: Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes publication-title: Nat Chem – volume: 4 start-page: 1707 year: 2013 end-page: 1718 ident: bib0595 article-title: Kinetics and mechanisms of oxidative cleavage of HIV RRE RNA by Rev-coupled transition metal chelates publication-title: Chem Sci – volume: 744 start-page: 41 year: 2013 end-page: 48 ident: bib0690 article-title: Synthesis, characterization and in vitro anticancer activity of highly cytotoxic trithiolato diruthenium complexes of the type [(η publication-title: J Organomet Chem – volume: 125 start-page: 3192 year: 2003 end-page: 3193 ident: bib0430 article-title: Bioconjugation by copper(I)-catalyzed azide–alkyne [3 publication-title: J Am Chem Soc – volume: 51 start-page: 3897 year: 2012 end-page: 3900 ident: bib0820 article-title: Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor publication-title: Angew Chem Int Ed – volume: 115 start-page: 127 year: 2014 end-page: 150 ident: bib0425 article-title: Deactivation in homogeneous transition metal catalysis: causes, avoidance, and cure publication-title: Chem Rev – volume: 37 start-page: 2096 year: 1998 end-page: 2104 ident: bib0540 article-title: Protease activity of 1,10-phenanthroline-copper(I). Targeted scission of the catalytic site of carbonic anhydrase publication-title: Biochemistry – volume: 21 start-page: 128 year: 2014 end-page: 135 ident: bib0480 article-title: Palladium-mediated chemistry in living cells publication-title: Curr Opin Chem Biol – volume: 42 start-page: 15457 year: 2013 end-page: 15463 ident: bib0685 article-title: Synthesis, molecular structure, computational study and in vitro anticancer activity of thiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes publication-title: Dalton Trans – volume: 11 start-page: 695 year: 2007 end-page: 705 ident: bib0620 article-title: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery publication-title: Expert Opin Ther Targets – volume: 48 start-page: 9444 year: 2009 end-page: 9453 ident: bib0670 article-title: Ruthenium(II) arene anticancer complexes with redox-active diamine ligands publication-title: Inorg Chem – volume: 135 start-page: 7330 year: 2013 end-page: 7338 ident: bib0460 article-title: Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens publication-title: J Am Chem Soc – volume: 127 start-page: 2396 year: 2005 end-page: 2397 ident: bib0550 article-title: Peptide-cleaving catalyst selective for peptide deformylase publication-title: J Am Chem Soc – volume: 1822 start-page: 794 year: 2012 end-page: 814 ident: bib0635 article-title: Manganese superoxide dismutase, MnSOD and its mimics publication-title: Biochim Biophys Acta – volume: 2012 start-page: 1 year: 2012 end-page: 26 ident: bib0660 article-title: Glutathione homeostasis and functions potential targets for medical interventions publication-title: J Amino Acids – volume: 3 start-page: 239 year: 2011 end-page: 243 ident: bib0435 article-title: Palladium-mediated intracellular chemistry publication-title: Nat Chem – volume: 29 start-page: 882 year: 2008 end-page: 884 ident: bib0555 article-title: Cleavage agents for α-synuclein publication-title: Bull Kor Chem Soc – volume: 31 start-page: 5968 year: 2012 end-page: 5970 ident: bib0515 article-title: Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments publication-title: Organometallics – volume: 53 start-page: 8192 year: 2010 end-page: 8196 ident: bib0665 article-title: Organometallic osmium arene complexes with potent cancer cell cytotoxicity publication-title: J Med Chem – volume: 40 start-page: 6705 year: 2001 end-page: 6716 ident: bib0725 article-title: Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [Cp*Rh(Bpy)H](+): structure–activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives publication-title: Inorg Chem – volume: 134 start-page: 367 year: 2012 end-page: 374 ident: bib0815 article-title: Efficient catalytic interconversion between NADH and NAD publication-title: J Am Chem Soc – volume: 49 start-page: 1581 year: 2013 end-page: 1587 ident: bib0510 article-title: Metal complex catalysis in living biological systems publication-title: Chem Commun – volume: 695 start-page: 145 year: 2010 end-page: 150 ident: bib0730 article-title: Aqueous organometallic chemistry. 3. Catalytic hydride transfer reactions with ketones and aldehydes using [Cp*Rh(bpy)(H publication-title: J Organomet Chem – volume: 15 start-page: 1773 year: 2013 end-page: 1789 ident: bib0720 article-title: Methods for the regeneration on NAD coenzymes publication-title: Green Chem – volume: 63 start-page: 1505 year: 2010 end-page: 1513 ident: bib0735 article-title: A bioorganometallic chemistry overview: from cytochrome P450 enzyme metabolism of organotin compounds to organorhodium–hydroxytamoxifen complexes with potential anti-cancer properties: a 37 year perspective at the interface of organometallic chemistry and biology publication-title: Aust J Chem – volume: 12 start-page: 207 year: 2008 end-page: 213 ident: bib0610 article-title: Metal complexes as artificial proteases: toward catalytic drugs publication-title: Curr Opin Chem Biol – volume: 42 start-page: 3188 year: 2013 end-page: 3195 ident: bib0675 article-title: Competition between glutathione and DNA oligonucleotides for ruthenium(II) arene anticancer complexes publication-title: Dalton Trans – volume: 13 start-page: 693 year: 2008 end-page: 701 ident: bib0560 article-title: Cleavage agents for soluble oligomers of human islet amyloid polypeptide publication-title: J Biol Inorg Chem – volume: 25 start-page: 48 year: 2015 end-page: 54 ident: bib0535 article-title: Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups publication-title: Curr Opin Chem Biol – volume: 54 start-page: 829 year: 2013 end-page: 832 ident: bib0490 article-title: The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals publication-title: J Nucl Med – volume: 17 start-page: 1053 year: 2012 end-page: 1062 ident: bib0700 article-title: Interaction of a ruthenium hexacationic prism with amino acids and biological ligands: ESI mass spectrometry and NMR characterisation of the reaction products publication-title: J Biol Inorg Chem – volume: 12 start-page: 637 year: 2007 end-page: 644 ident: bib0590 article-title: Cellular activity of Rev response element RNA targeting metallopeptides publication-title: J Biol Inorg Chem – volume: 22 start-page: 103 year: 2013 end-page: 130 ident: bib0640 article-title: Design, mechanism of action, bioavailability and therapeutic effects of Mn porphyrin-based redox modulators publication-title: Med Princ Pract – volume: 2 start-page: 1818 year: 2004 end-page: 1821 ident: bib0715 article-title: Accelerated asymmetric transfer hydrogenation of aromatic ketones in water publication-title: Org Biomol Chem – volume: 46 start-page: 465 year: 2013 end-page: 485 ident: bib0600 article-title: Target-directed catalytic metallodrugs publication-title: Braz J Med Biol Res – volume: 11 start-page: 329 year: 2011 end-page: 340 ident: bib0645 article-title: A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing publication-title: Anticancer Agents Med Chem – volume: 11 start-page: 695 year: 2007 end-page: 705 ident: bib0795 article-title: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery publication-title: Expert Opin Ther Targets – volume: 17 start-page: 9835 year: 2012 end-page: 9841 ident: bib0775 article-title: Towards recyclable NAD(P)H regeneration catalysts publication-title: Molecules – start-page: 1 year: 2014 end-page: 11 ident: bib0420 article-title: Calmangafodipir [Ca publication-title: Drug Discov Today – volume: 46 start-page: 7064 year: 2007 end-page: 7067 ident: bib0565 article-title: Cleavage agents for soluble oligomers of amyloid β peptides publication-title: Angew Chem Int Ed – volume: 11 start-page: 483 year: 2006 end-page: 488 ident: bib0760 article-title: Catalysis of regioselective reduction of NAD publication-title: J Biol Inorg Chem – volume: 6 start-page: 6582 year: 2015 ident: bib0810 article-title: Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design publication-title: Nat Commun – volume: 15 start-page: 8670 year: 2009 end-page: 8676 ident: bib0615 article-title: Metallotherapeutics novel strategies in drug design publication-title: Chem Eur J – volume: 16 start-page: 511 year: 2011 end-page: 519 ident: bib0570 article-title: New chelating ligands for Co(III)-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses publication-title: J Biol Inorg Chem – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0660 article-title: Glutathione homeostasis and functions potential targets for medical interventions publication-title: J Amino Acids doi: 10.1155/2012/736837 – volume: 11 start-page: 695 year: 2007 ident: 10.1016/j.cbpa.2015.01.024_bib0795 article-title: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.11.5.695 – volume: 2008 start-page: 1 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_bib0625 article-title: Photodynamic therapy and the development of metal-based photosensitisers publication-title: Met Based Drugs doi: 10.1155/2008/276109 – volume: 134 start-page: 3396 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0575 article-title: Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates publication-title: J Am Chem Soc doi: 10.1021/ja208791f – volume: 15 start-page: 8670 year: 2009 ident: 10.1016/j.cbpa.2015.01.024_bib0615 article-title: Metallotherapeutics novel strategies in drug design publication-title: Chem Eur J doi: 10.1002/chem.200900821 – volume: 115 start-page: 127 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0425 article-title: Deactivation in homogeneous transition metal catalysis: causes, avoidance, and cure publication-title: Chem Rev doi: 10.1021/cr5004375 – volume: 51 start-page: 3897 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_sbref0820 article-title: Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor publication-title: Angew Chem Int Ed doi: 10.1002/anie.201108175 – volume: 12 start-page: 637 year: 2007 ident: 10.1016/j.cbpa.2015.01.024_bib0590 article-title: Cellular activity of Rev response element RNA targeting metallopeptides publication-title: J Biol Inorg Chem doi: 10.1007/s00775-007-0221-2 – volume: 1822 start-page: 794 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0635 article-title: Manganese superoxide dismutase, MnSOD and its mimics publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2011.12.002 – volume: 53 start-page: 8192 year: 2010 ident: 10.1016/j.cbpa.2015.01.024_bib0665 article-title: Organometallic osmium arene complexes with potent cancer cell cytotoxicity publication-title: J Med Chem doi: 10.1021/jm100560f – volume: 40 start-page: 6705 year: 2001 ident: 10.1016/j.cbpa.2015.01.024_bib0725 publication-title: Inorg Chem doi: 10.1021/ic010562z – volume: 12 start-page: 207 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_bib0610 article-title: Metal complexes as artificial proteases: toward catalytic drugs publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2008.01.028 – volume: 2 start-page: 1818 year: 2004 ident: 10.1016/j.cbpa.2015.01.024_bib0715 article-title: Accelerated asymmetric transfer hydrogenation of aromatic ketones in water publication-title: Org Biomol Chem doi: 10.1039/b403627a – volume: 29 start-page: 882 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_bib0555 article-title: Cleavage agents for α-synuclein publication-title: Bull Kor Chem Soc doi: 10.5012/bkcs.2008.29.4.882 – volume: 133 start-page: 15316 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0455 article-title: Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells publication-title: J Am Chem Soc doi: 10.1021/ja2066913 – volume: 54 start-page: 829 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0490 article-title: The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals publication-title: J Nucl Med doi: 10.2967/jnumed.112.115550 – volume: 9 start-page: 5720 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0765 article-title: Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration publication-title: Org Biomol Chem doi: 10.1039/c1ob05482a – volume: 134 start-page: 367 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0815 article-title: Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature publication-title: J Am Chem Soc doi: 10.1021/ja207785f – volume: 13 start-page: 1116 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0530 article-title: Catalytic azide reduction in biological environments publication-title: ChemBioChem doi: 10.1002/cbic.201100719 – volume: 6 start-page: 6582 year: 2015 ident: 10.1016/j.cbpa.2015.01.024_bib0810 article-title: Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design publication-title: Nat Commun doi: 10.1038/ncomms7582 – start-page: 1 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0420 article-title: Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties publication-title: Drug Discov Today – volume: 3 start-page: 239 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0435 article-title: Palladium-mediated intracellular chemistry publication-title: Nat Chem doi: 10.1038/nchem.981 – volume: 131 start-page: 16346 year: 2009 ident: 10.1016/j.cbpa.2015.01.024_bib0440 article-title: A convenient catalyst for aqueous and protein Suzuki–Miyaura cross-coupling publication-title: J Am Chem Soc doi: 10.1021/ja907150m – volume: 127 start-page: 2396 year: 2005 ident: 10.1016/j.cbpa.2015.01.024_bib0550 article-title: Peptide-cleaving catalyst selective for peptide deformylase publication-title: J Am Chem Soc doi: 10.1021/ja044043h – volume: 38 start-page: 1997 year: 1999 ident: 10.1016/j.cbpa.2015.01.024_bib0750 article-title: Regioselective reduction of NAD+ models with [Cp*Rh(bpy)H]: structure-activity relationships and mechanistic aspects in the formation of the 1,4-NADH derivatives publication-title: Angew Chem Int Ed – volume: 43 start-page: 6511 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0485 article-title: Transition metal-mediated bioorthogonal protein chemistry in living cells publication-title: Chem Soc Rev doi: 10.1039/C4CS00117F – volume: 695 start-page: 145 year: 2010 ident: 10.1016/j.cbpa.2015.01.024_bib0730 publication-title: J Organomet Chem doi: 10.1016/j.jorganchem.2009.10.015 – volume: 50 start-page: 2397 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0835 article-title: Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase publication-title: Angew Chem Int Ed doi: 10.1002/anie.201004101 – volume: 46 start-page: 7064 year: 2007 ident: 10.1016/j.cbpa.2015.01.024_bib0565 article-title: Cleavage agents for soluble oligomers of amyloid β peptides publication-title: Angew Chem Int Ed doi: 10.1002/anie.200702399 – volume: 53 start-page: 209 year: 2004 ident: 10.1016/j.cbpa.2015.01.024_bib0800 article-title: Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity publication-title: Cancer Chemother Pharm doi: 10.1007/s00280-003-0726-5 – volume: 22 start-page: 103 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0640 article-title: Design, mechanism of action, bioavailability and therapeutic effects of Mn porphyrin-based redox modulators publication-title: Med Princ Pract doi: 10.1159/000341715 – volume: 16 start-page: 1303 year: 2009 ident: 10.1016/j.cbpa.2015.01.024_bib0655 article-title: Apoptosis and glutathione: beyond an antioxidant publication-title: Cell Death Differ doi: 10.1038/cdd.2009.107 – volume: 689 start-page: 4783 year: 2004 ident: 10.1016/j.cbpa.2015.01.024_bib0740 article-title: Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis publication-title: J Organomet Chem doi: 10.1016/j.jorganchem.2004.09.044 – volume: 125 start-page: 3192 year: 2003 ident: 10.1016/j.cbpa.2015.01.024_bib0430 article-title: Bioconjugation by copper(I)-catalyzed azide–alkyne [3+2] cycloaddition publication-title: J Am Chem Soc doi: 10.1021/ja021381e – volume: 31 start-page: 5958 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0805 article-title: Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+ publication-title: Organometallics doi: 10.1021/om3006307 – volume: 744 start-page: 41 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0690 article-title: Synthesis, characterization and in vitro anticancer activity of highly cytotoxic trithiolato diruthenium complexes of the type [(η6-p-MeC6H4iPr)2Ru2(μ2-SR1)2(μ2-SR2)]+ containing different thiolato bridges publication-title: J Organomet Chem doi: 10.1016/j.jorganchem.2013.04.049 – volume: 51 start-page: 1057 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0705 article-title: Investigation of the reactivity between a ruthenium hexacationic prism and biological ligands publication-title: Inorg Chem doi: 10.1021/ic2021935 – volume: 38 start-page: 1949 year: 2009 ident: 10.1016/j.cbpa.2015.01.024_bib0605 article-title: Target-selective peptide-cleaving catalysts as a new paradigm in drug design publication-title: Chem Soc Rev doi: 10.1039/b710345j – volume: 17 start-page: 9835 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0775 article-title: Towards recyclable NAD(P)H regeneration catalysts publication-title: Molecules doi: 10.3390/molecules17089835 – start-page: 4736 year: 2007 ident: 10.1016/j.cbpa.2015.01.024_bib0755 article-title: Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones publication-title: Eur J Inorg Chem doi: 10.1002/ejic.200700505 – start-page: 5 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_sbref0495 article-title: Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach publication-title: Nat Commun – volume: 13 start-page: 693 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_bib0560 article-title: Cleavage agents for soluble oligomers of human islet amyloid polypeptide publication-title: J Biol Inorg Chem doi: 10.1007/s00775-008-0354-y – volume: 16 start-page: 511 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0570 article-title: New chelating ligands for Co(III)-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses publication-title: J Biol Inorg Chem doi: 10.1007/s00775-010-0750-y – volume: 105 start-page: 11628 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_sbref0650 article-title: Catalytic organometallic anticancer complexes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0800076105 – volume: 21 start-page: 1912 year: 2010 ident: 10.1016/j.cbpa.2015.01.024_bib0465 article-title: Labeling live cells by copper-catalyzed alkyne–azide click chemistry publication-title: Bioconj Chem doi: 10.1021/bc100272z – volume: 57 start-page: 321 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0770 article-title: Recent trends in biomimetic NADH regeneration publication-title: Top Catal doi: 10.1007/s11244-013-0187-y – volume: 6 start-page: 352 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_sbref0525 article-title: Palladium-triggered deprotection chemistry for protein activation in living cells publication-title: Nat Chem doi: 10.1038/nchem.1887 – volume: 13 start-page: 168 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0450 article-title: Designer proteins: applications of genetic code expansion in cell biology publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3286 – volume: 11 start-page: 483 year: 2006 ident: 10.1016/j.cbpa.2015.01.024_bib0760 article-title: Catalysis of regioselective reduction of NAD+ by ruthenium(II) arene complexes under biologically relevant conditions publication-title: J Biol Inorg Chem doi: 10.1007/s00775-006-0098-5 – volume: 10 start-page: 179 year: 2008 ident: 10.1016/j.cbpa.2015.01.024_bib0790 article-title: NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences publication-title: Antioxid Redox Sign doi: 10.1089/ars.2007.1672 – volume: 20 start-page: 2372 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0630 article-title: SOD therapeutics: latest insights into their structure–activity relationships and impact on the cellular redox-based signaling pathways publication-title: Antioxid Redox Signal doi: 10.1089/ars.2012.5147 – volume: 11 start-page: 329 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0645 article-title: A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon publication-title: Anticancer Agents Med Chem doi: 10.2174/187152011795677562 – volume: 53 start-page: 3941 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_sbref0825 article-title: The potent oxidant anticancer activity of organoiridium catalysts publication-title: Angew Chem Int Ed doi: 10.1002/anie.201311161 – volume: 112 start-page: 3249 year: 1990 ident: 10.1016/j.cbpa.2015.01.024_bib0545 article-title: New strategy for selective protein cleavage publication-title: J Am Chem Soc doi: 10.1021/ja00164a076 – volume: 3 start-page: 2485 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0830 article-title: The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes publication-title: Chem Sci doi: 10.1039/c2sc20220d – volume: 37 start-page: 2096 year: 1998 ident: 10.1016/j.cbpa.2015.01.024_bib0540 article-title: Protease activity of 1,10-phenanthroline-copper(I). Targeted scission of the catalytic site of carbonic anhydrase publication-title: Biochemistry doi: 10.1021/bi971565j – volume: 127 start-page: 17734 year: 2005 ident: 10.1016/j.cbpa.2015.01.024_bib0680 article-title: Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate publication-title: J Am Chem Soc doi: 10.1021/ja053387k – volume: 17 start-page: 1053 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0700 article-title: Interaction of a ruthenium hexacationic prism with amino acids and biological ligands: ESI mass spectrometry and NMR characterisation of the reaction products publication-title: J Biol Inorg Chem doi: 10.1007/s00775-012-0918-8 – volume: 9 start-page: 1275 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0580 article-title: Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA publication-title: Chem Med Chem doi: 10.1002/cmdc.201400070 – volume: 135 start-page: 7330 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0460 article-title: Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens publication-title: J Am Chem Soc doi: 10.1021/ja402424j – volume: 42 start-page: 15457 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0685 article-title: Synthesis, molecular structure, computational study and in vitro anticancer activity of thiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes publication-title: Dalton Trans doi: 10.1039/c3dt51991k – volume: 25 start-page: 48 year: 2015 ident: 10.1016/j.cbpa.2015.01.024_sbref0535 article-title: Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2014.12.021 – volume: 45 start-page: 5645 year: 2006 ident: 10.1016/j.cbpa.2015.01.024_bib0505 article-title: Ruthenium-induced allylcarbamate cleavage in living cells publication-title: Angew Chem Int Ed doi: 10.1002/anie.200601752 – volume: 11 start-page: 695 year: 2007 ident: 10.1016/j.cbpa.2015.01.024_bib0620 article-title: Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.11.5.695 – volume: 2012 start-page: 1531 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0695 article-title: Thiolato-bridged arene–ruthenium complexes: synthesis, molecular structure, reactivity, and anticancer activity of the dinuclear complexes [(arene)2Ru2(SR)2Cl2] publication-title: Eur J Inorg Chem doi: 10.1002/ejic.201101057 – volume: 4 start-page: 1707 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0595 article-title: Kinetics and mechanisms of oxidative cleavage of HIV RRE RNA by Rev-coupled transition metal chelates publication-title: Chem Sci doi: 10.1039/c3sc22135k – volume: 53 start-page: 10536 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0520 article-title: Progress towards bioorthogonal catalysis with organometallic compounds publication-title: Angew Chem Int Ed doi: 10.1002/anie.201404547 – volume: 134 start-page: 800 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0445 article-title: Palladium-mediated cell-surface labeling publication-title: J Am Chem Soc doi: 10.1021/ja209352s – volume: 48 start-page: 3118 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0585 article-title: Catalytic metallodrugs targeting HCV IRES RNA publication-title: Chem Commun doi: 10.1039/c2cc17377h – volume: 31 start-page: 5968 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0515 article-title: Light-triggered ruthenium-catalyzed allylcarbamate cleavage in biological environments publication-title: Organometallics doi: 10.1021/om3001668 – volume: 46 start-page: 465 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0600 article-title: Target-directed catalytic metallodrugs publication-title: Braz J Med Biol Res doi: 10.1590/1414-431X20133086 – volume: 44 start-page: 47 year: 2011 ident: 10.1016/j.cbpa.2015.01.024_bib0780 article-title: Artificial metalloenzymes based on the biotin–avidin technology: enantioselective catalysis and beyond publication-title: Acc Chem Res doi: 10.1021/ar100099u – volume: 63 start-page: 1505 year: 2010 ident: 10.1016/j.cbpa.2015.01.024_bib0735 publication-title: Aust J Chem doi: 10.1071/CH10239 – volume: 35 start-page: 226 year: 2006 ident: 10.1016/j.cbpa.2015.01.024_bib0710 article-title: Asymmetric transfer hydrogenation: chiral ligands and applications publication-title: Chem Soc Rev doi: 10.1039/B513396C – volume: 51 start-page: 7674 year: 2012 ident: 10.1016/j.cbpa.2015.01.024_bib0470 article-title: Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity publication-title: Angew Chem Int Ed doi: 10.1002/anie.201204029 – volume: 15 start-page: 1773 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0720 article-title: Methods for the regeneration on NAD coenzymes publication-title: Green Chem doi: 10.1039/c3gc37129h – volume: 57 start-page: 5395 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0500 article-title: Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine publication-title: J Med Chem doi: 10.1021/jm500531z – volume: 48 start-page: 9444 year: 2009 ident: 10.1016/j.cbpa.2015.01.024_bib0670 article-title: Ruthenium(II) arene anticancer complexes with redox-active diamine ligands publication-title: Inorg Chem doi: 10.1021/ic9013366 – volume: 42 start-page: 3188 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0675 article-title: Competition between glutathione and DNA oligonucleotides for ruthenium(II) arene anticancer complexes publication-title: Dalton Trans doi: 10.1039/C2DT32091F – volume: 41 start-page: 478 year: 2002 ident: 10.1016/j.cbpa.2015.01.024_bib0745 article-title: Biomimetic NAD(+) models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis publication-title: Angew Chem Int Ed doi: 10.1002/1521-3773(20020201)41:3<478::AID-ANIE478>3.0.CO;2-K – volume: 5 start-page: 93 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0785 article-title: Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes publication-title: Nat Chem doi: 10.1038/nchem.1498 – volume: 25 start-page: 698 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0475 article-title: Monitoring dynamic glycosylation in vivo using supersensitive click chemistry publication-title: Bioconj Chem doi: 10.1021/bc400502d – volume: 49 start-page: 1581 year: 2013 ident: 10.1016/j.cbpa.2015.01.024_bib0510 article-title: Metal complex catalysis in living biological systems publication-title: Chem Commun doi: 10.1039/C2CC37832A – volume: 21 start-page: 128 year: 2014 ident: 10.1016/j.cbpa.2015.01.024_bib0480 article-title: Palladium-mediated chemistry in living cells publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2014.07.007 |
SSID | ssj0006285 |
Score | 2.499127 |
SecondaryResourceType | review_article |
Snippet | •How can metal catalysts be used for biochemical transformations?•Catalysis by metal complexes can even be achieved in cells.•Catalysis includes CC bond... Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 172 |
SubjectTerms | Animals Catalysis Coordination Complexes - chemistry Coordination Complexes - pharmacology Drug Design Humans Oxidation-Reduction |
Title | Approaches to the design of catalytic metallodrugs |
URI | https://dx.doi.org/10.1016/j.cbpa.2015.01.024 https://www.ncbi.nlm.nih.gov/pubmed/25765750 https://www.proquest.com/docview/1681908821 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6axgEuE3TAymAyEuKCQuPEsZtjVVGVXxMCJvVmxfHzVETTqk0Pvexvx89xhjhsB05RIjuxnp3nz_b3vgfwplLjnGQ2E4UqS0SGeeJhRJGUFi0KNbZ5yJ_y9VLOr8SnRbE4gmkfC0O0yuj7O58evHV8MorWHG2Wy9EPEhsrSlKLCUCFAn6FUDTK39_8pXlQiGAXe6USKh0DZzqOV202pD3Eo3SnuGtyugt8hklo9hhOInpkk66BT-AImwGcThq_cl4d2FsW-Jxho3wAD6d9LrdTyCZROhx3rF0zD_qYDdQNtnYs7OAc_BvZCls6h7fb_fXuKVzNPvyczpOYLSGphZRtQrOdciiqEp01zvmfK7NKWn9xFSKKOuPGVSavxjzHtM6xTk2BztQEgiqXP4PjZt3gGTAp0dTKWSdtIXhqTVkIlQpRciPTSmRD4L2ZdB2lxCmjxW_dc8Z-aTKtJtPqlGtv2iG8u62z6YQ07i1d9NbX_wwH7T39vfVe912lvYnp8KNqcL3faS4J-_j1BB_C864Pb9tBiy4PW9MX__nVc3hEdx2h5yUct9s9vvJYpTUXYTBewIPJ9PuXb3T9-Hl--QcWsujv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB2VcoDLiu8t7IJXQlxQ1DhxnOZYVYtaPnpZkLhZcTxGRZBWND3w7_EkTqU9wIFTpMROrGdn_GzPvAE4z9NBTDKbQYppFIgI48DRiCTIDBoU6cDEdf6Uu6kcP4jrx-SxA6M2FobcKr3tb2x6ba39nb5Hs7-Yzfr_SGwsyUgtpiYqgw3YJHWqpAubw8nNeLo2yBQl2IRfpQFV8LEzjZtXoRckP8S9eqf4bH76jH_W89DVDvzwBJINmzbuQgfLPdgflm7x_PrOLljt0lnvle_B1qhN57YP0dCrh-OSVXPmeB8ztfcGm1tWb-K8uzeyV6zoKN68rZ6WB_Bw9fd-NA58woSgEFJWAU14qUWRZ2iNttb9X5FJpXEXmyOiKCKuba7jfMBjDIsYi1AnaHVBPCi38SF0y3mJP4FJibpIrbHSJIKHRmcO2lCIjGsZ5iLqAW9hUoVXE6ekFi-qdRt7VgStImhVyJWDtgeX6zqLRkvjy9JJi776b0QoZ-y_rPen7SrlIKbzj7zE-WqpuCT645YUvAdHTR-u20HrLsdcw-NvfvUMtsb3d7fqdjK9OYFtetL49_yCbvW2wt-OulT61A_ND8sr6gs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaches+to+the+design+of+catalytic+metallodrugs&rft.jtitle=Current+opinion+in+chemical+biology&rft.au=Soldevila-Barreda%2C+Joan+J&rft.au=Sadler%2C+Peter+J&rft.date=2015-04-01&rft.eissn=1879-0402&rft.volume=25&rft.spage=172&rft_id=info:doi/10.1016%2Fj.cbpa.2015.01.024&rft_id=info%3Apmid%2F25765750&rft.externalDocID=25765750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5931&client=summon |