Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease

Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selec...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 138; no. 9; pp. 2687 - 2700
Main Authors Jucaite, Aurelija, Svenningsson, Per, Rinne, Juha O., Cselényi, Zsolt, Varnäs, Katarina, Johnström, Peter, Amini, Nahid, Kirjavainen, Anna, Helin, Semi, Minkwitz, Margaret, Kugler, Alan R., Posener, Joel A., Budd, Samantha, Halldin, Christer, Varrone, Andrea, Farde, Lars
Format Journal Article
LanguageEnglish
Published England 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.
AbstractList Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating enzyme myeloperoxidase - reduces binding of the PET ligand [ super(11)C]PBR28 to a microglial marker translocator protein in patients. Myeloperoxidase inhibition may have the potential to reduce neuroinflammation and slow disease progression.Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating enzyme myeloperoxidase - reduces binding of the PET ligand [ super(11)C]PBR28 to a microglial marker translocator protein in patients. Myeloperoxidase inhibition may have the potential to reduce neuroinflammation and slow disease progression. Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of super(11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of super(11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of super(11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.
Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.
Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.
Author Kugler, Alan R.
Helin, Semi
Johnström, Peter
Minkwitz, Margaret
Rinne, Juha O.
Amini, Nahid
Budd, Samantha
Varrone, Andrea
Halldin, Christer
Cselényi, Zsolt
Kirjavainen, Anna
Posener, Joel A.
Svenningsson, Per
Jucaite, Aurelija
Varnäs, Katarina
Farde, Lars
Author_xml – sequence: 1
  givenname: Aurelija
  surname: Jucaite
  fullname: Jucaite, Aurelija
– sequence: 2
  givenname: Per
  surname: Svenningsson
  fullname: Svenningsson, Per
– sequence: 3
  givenname: Juha O.
  surname: Rinne
  fullname: Rinne, Juha O.
– sequence: 4
  givenname: Zsolt
  surname: Cselényi
  fullname: Cselényi, Zsolt
– sequence: 5
  givenname: Katarina
  surname: Varnäs
  fullname: Varnäs, Katarina
– sequence: 6
  givenname: Peter
  surname: Johnström
  fullname: Johnström, Peter
– sequence: 7
  givenname: Nahid
  surname: Amini
  fullname: Amini, Nahid
– sequence: 8
  givenname: Anna
  surname: Kirjavainen
  fullname: Kirjavainen, Anna
– sequence: 9
  givenname: Semi
  surname: Helin
  fullname: Helin, Semi
– sequence: 10
  givenname: Margaret
  surname: Minkwitz
  fullname: Minkwitz, Margaret
– sequence: 11
  givenname: Alan R.
  surname: Kugler
  fullname: Kugler, Alan R.
– sequence: 12
  givenname: Joel A.
  surname: Posener
  fullname: Posener, Joel A.
– sequence: 13
  givenname: Samantha
  surname: Budd
  fullname: Budd, Samantha
– sequence: 14
  givenname: Christer
  surname: Halldin
  fullname: Halldin, Christer
– sequence: 15
  givenname: Andrea
  surname: Varrone
  fullname: Varrone, Andrea
– sequence: 16
  givenname: Lars
  surname: Farde
  fullname: Farde, Lars
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26137956$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:131996405$$DView record from Swedish Publication Index
BookMark eNqN0b9u1TAUBnALFdHbwsaMPDIQ6uPEdsJWlcsfqRIdysJinSQn1DSxL7bTcjdeg9fjSUi5twyIgcmW9TufrPMdsQMfPDH2FMRLEE150kZ0_gRvb6CuHrAVVFoUEpQ-YCshhC7qRolDdpTSFyGgKqV-xA6lhtI0Sq9Yux4G6jIPA89XxKctjWFDMXxzPSbizl-51uUQ-emn16WsgAfPJ9fF8Hl0-Iojv1hf8pTnfrtYfoHx2vkU_M_vPxLvXaIl5DF7OOCY6Mn-PGYf36wvz94V5x_evj87PS-6SutcdCSErFuhmqahtoa67LsOSSojsQclsUEUtemhMwawN6WuKkODElgBgmzKY1bsctMtbebWbqKbMG5tQGf3T9fLjawCWYo7_3znNzF8nSllO7nU0TiipzAnC0ZKMLoW6j-oMEqpEsxCn-3p3E7U__nF_coXIHdgWWJKkQbbuYzZBZ-XJkcLwt71an_3ane9LkMv_hq6z_0n_wX9j6ac
CitedBy_id crossref_primary_10_3390_antiox11112302
crossref_primary_10_1007_s40472_019_0230_4
crossref_primary_10_2174_1381612826666200113162641
crossref_primary_10_1021_acs_jmedchem_1c01571
crossref_primary_10_1002_glia_22986
crossref_primary_10_1007_s13139_024_00842_9
crossref_primary_10_1016_j_biopha_2022_112911
crossref_primary_10_1016_j_jneuroim_2019_577000
crossref_primary_10_3390_diagnostics13061029
crossref_primary_10_1111_cns_70109
crossref_primary_10_1007_s00415_024_12269_5
crossref_primary_10_1186_s42234_021_00065_9
crossref_primary_10_1016_j_dadm_2019_02_004
crossref_primary_10_1016_j_nicl_2021_102672
crossref_primary_10_1186_s40824_023_00353_2
crossref_primary_10_3233_JPD_223183
crossref_primary_10_1016_j_ejphar_2017_12_001
crossref_primary_10_1097_WCO_0000000000000584
crossref_primary_10_1007_s00259_019_04369_6
crossref_primary_10_1093_ibd_izab239
crossref_primary_10_3390_antiox11040608
crossref_primary_10_1038_s41392_023_01588_0
crossref_primary_10_1007_s00441_017_2626_8
crossref_primary_10_1007_s00259_018_4161_6
crossref_primary_10_1016_j_neulet_2024_137766
crossref_primary_10_1016_j_tips_2016_06_007
crossref_primary_10_3390_ijms18040785
crossref_primary_10_2174_1566524023666230907093451
crossref_primary_10_1007_s40336_015_0140_0
crossref_primary_10_3390_cells8020105
crossref_primary_10_1007_s12035_019_01714_6
crossref_primary_10_1080_00498254_2024_2361027
crossref_primary_10_1016_j_nicl_2018_08_007
crossref_primary_10_1007_s00204_023_03628_8
crossref_primary_10_7554_eLife_73753
crossref_primary_10_1002_mds_27296
crossref_primary_10_1155_2018_7043578
crossref_primary_10_1007_s00259_021_05425_w
crossref_primary_10_1038_s41531_018_0057_1
crossref_primary_10_1089_ars_2017_7272
crossref_primary_10_1007_s00259_016_3391_8
crossref_primary_10_1038_s41531_025_00886_4
crossref_primary_10_3390_ijms22041615
crossref_primary_10_1016_j_jalz_2019_02_004
crossref_primary_10_1016_j_neubiorev_2021_06_027
crossref_primary_10_1016_j_clinbiochem_2016_03_011
crossref_primary_10_12688_f1000research_11603_1
crossref_primary_10_1124_jpet_121_001036
crossref_primary_10_1096_fj_202100864R
crossref_primary_10_1111_cts_12859
crossref_primary_10_1016_j_intimp_2018_01_024
crossref_primary_10_1016_j_jacadv_2023_100310
crossref_primary_10_1134_S1819712423030133
crossref_primary_10_1002_cpt_1374
crossref_primary_10_1002_mds_27360
crossref_primary_10_14336_AD_2017_1018
crossref_primary_10_1007_s12035_024_03951_w
crossref_primary_10_1038_s41467_023_40937_z
crossref_primary_10_1016_j_beem_2022_101689
crossref_primary_10_1016_j_expneurol_2024_115095
crossref_primary_10_1073_pnas_1818434116
crossref_primary_10_1016_j_biochi_2023_11_013
crossref_primary_10_1002_2211_5463_13799
crossref_primary_10_1016_j_bcp_2024_116275
crossref_primary_10_1136_jnnp_2020_322875
crossref_primary_10_1021_acschemneuro_0c00362
crossref_primary_10_3390_nu9090966
crossref_primary_10_1371_journal_pone_0214150
crossref_primary_10_3389_fphar_2020_556020
crossref_primary_10_3389_fnins_2021_742065
crossref_primary_10_1038_s41582_019_0155_7
crossref_primary_10_1080_00365521_2016_1235224
crossref_primary_10_4103_NRR_NRR_D_24_00462
crossref_primary_10_1111_bcp_13855
crossref_primary_10_2169_internalmedicine_8940_21
crossref_primary_10_1016_j_nbd_2020_105032
crossref_primary_10_1177_0271678X17750351
crossref_primary_10_1016_j_ab_2017_12_022
crossref_primary_10_1007_s00702_020_02154_6
crossref_primary_10_2139_ssrn_4198908
crossref_primary_10_3390_ijms24065704
crossref_primary_10_3389_fimmu_2023_1305933
crossref_primary_10_1016_j_nano_2016_08_013
crossref_primary_10_1016_j_bmcl_2017_07_075
crossref_primary_10_1155_2017_3851262
crossref_primary_10_1016_S1474_4422_20_30346_X
crossref_primary_10_1111_cen3_12553
crossref_primary_10_1016_j_bcp_2023_115418
crossref_primary_10_1155_2017_8459402
crossref_primary_10_1016_j_biocel_2020_105794
crossref_primary_10_1093_cvr_cvac081
crossref_primary_10_3390_antiox12071411
crossref_primary_10_1158_1078_0432_CCR_16_0399
crossref_primary_10_1016_j_bmc_2020_115548
crossref_primary_10_1016_j_jinorgbio_2022_111979
crossref_primary_10_1007_s00262_024_03647_z
crossref_primary_10_1016_j_freeradbiomed_2019_05_033
crossref_primary_10_1093_toxsci_kfw052
crossref_primary_10_3390_ph14080717
crossref_primary_10_3390_ijms22115606
crossref_primary_10_1007_s00259_019_04403_7
crossref_primary_10_1186_s13054_025_05283_0
crossref_primary_10_3390_biom10020335
crossref_primary_10_1007_s40336_017_0226_y
crossref_primary_10_1021_acs_jmedchem_1c00038
crossref_primary_10_1016_j_ejmech_2019_01_029
crossref_primary_10_12688_f1000research_25634_1
crossref_primary_10_1002_ana_24909
crossref_primary_10_1111_bph_13551
crossref_primary_10_1093_brain_awy351
crossref_primary_10_1002_mco2_534
crossref_primary_10_1007_s11910_017_0733_2
crossref_primary_10_1126_scisignal_aax5971
crossref_primary_10_1093_brain_awab214
crossref_primary_10_31857_S1027813323030135
crossref_primary_10_1016_j_biopsych_2021_01_002
crossref_primary_10_3390_jcm8101719
crossref_primary_10_1007_s12028_024_02169_x
crossref_primary_10_1016_S1474_4422_21_00061_2
crossref_primary_10_1212_WNL_0000000000011774
crossref_primary_10_1016_j_neuropharm_2021_108839
crossref_primary_10_1016_j_bbi_2016_01_019
crossref_primary_10_1016_j_bbi_2018_09_018
crossref_primary_10_3390_ijms18050918
crossref_primary_10_1016_j_autneu_2017_12_008
crossref_primary_10_1002_mds_28814
crossref_primary_10_3390_antiox11061088
crossref_primary_10_1007_s11910_024_01335_0
crossref_primary_10_2967_jnumed_119_229443
crossref_primary_10_1021_acs_jmedchem_4c02431
crossref_primary_10_2174_0118715273258646230920074421
crossref_primary_10_1186_s12872_024_03822_1
crossref_primary_10_3389_fneur_2019_00135
crossref_primary_10_3233_JPD_191856
crossref_primary_10_1053_j_semnuclmed_2016_09_001
crossref_primary_10_1038_s41582_024_01046_7
crossref_primary_10_1124_jpet_118_248435
crossref_primary_10_3390_ijms21103624
crossref_primary_10_1016_j_bmcl_2018_11_031
crossref_primary_10_1093_brain_awx339
crossref_primary_10_1016_j_neubiorev_2016_06_031
crossref_primary_10_1016_j_freeradbiomed_2017_08_006
crossref_primary_10_1038_mp_2017_10
crossref_primary_10_1080_13543776_2020_1780210
crossref_primary_10_3389_fnut_2021_650053
crossref_primary_10_1016_j_arr_2022_101618
crossref_primary_10_1096_fj_202100027R
crossref_primary_10_1016_j_ejphar_2022_175148
crossref_primary_10_1016_j_pharmthera_2020_107711
crossref_primary_10_3389_fnagi_2020_00152
crossref_primary_10_3390_antiox11122342
crossref_primary_10_1113_JP285263
crossref_primary_10_1177_0271678X221126830
crossref_primary_10_3390_ijms231810735
crossref_primary_10_1021_acschemneuro_7b00462
Cites_doi 10.1007/978-94-011-0429-6_5
10.1097/01.WCB.0000038000.34930.4E
10.1007/s00259-009-1156-3
10.1136/jnnp.55.3.181
10.1016/j.neuroimage.2007.11.011
10.1016/0361-9230(87)90033-5
10.2967/jnumed.114.152421
10.1007/s00259-015-3149-8
10.1038/jcbfm.2012.131
10.1038/jcbfm.2011.147
10.1002/mds.20112
10.1002/ana.21573
10.1007/s10048-006-0077-6
10.1002/mds.20213
10.1038/jcbfm.2014.46
10.1038/jcbfm.1990.127
10.1007/s00216-012-6541-2
10.1002/mds.21198
10.1006/nimg.2001.0978
10.1016/j.neurol.2013.06.003
10.3402/bindslev.2008.14
10.1016/j.neuroimage.2006.02.053
10.1038/jcbfm.2010.63
10.1002/mds.22732
10.1016/j.bbi.2013.07.007
10.1002/ana.10481
10.1016/j.neuroimage.2009.11.056
10.3109/00207454.2011.620198
10.2967/jnumed.111.101626
10.1002/jlcr.2927
10.1212/WNL.17.5.427
10.1021/jm0707370
10.1038/sj.jcbfm.9600493
10.1016/j.nbd.2005.08.002
10.1212/WNL.56.11.1559
10.1002/mds.21751
10.1038/jcbfm.1989.98
10.1016/S0002-9440(10)62307-3
10.2165/00002018-199920020-00002
10.1007/s12021-014-9233-6
10.1007/s00259-008-0908-9
10.1016/0022-3956(75)90026-6
10.1016/j.parkreldis.2009.05.005
10.1111/j.1600-0404.1998.tb01736.x
10.1007/s00259-009-1267-x
10.1002/ana.20338
ContentType Journal Article
Copyright The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ADTPV
AOWAS
DOI 10.1093/brain/awv184
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2700
ExternalDocumentID oai_swepub_ki_se_512309
26137956
10_1093_brain_awv184
Genre Multicenter Study
Clinical Trial, Phase II
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ADTPV
AOWAS
ID FETCH-LOGICAL-c466t-ce0028b05999eb8183dccae2572ad152a9aa087d1c771ad736447ef50a41a1293
ISSN 0006-8950
1460-2156
IngestDate Mon Aug 25 03:32:14 EDT 2025
Thu Jul 10 19:33:39 EDT 2025
Fri Jul 11 05:35:06 EDT 2025
Mon Jul 21 06:03:48 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 18kDa translocator protein
positron emission tomography
microglia
Parkinson’s disease
Language English
License The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-ce0028b05999eb8183dccae2572ad152a9aa087d1c771ad736447ef50a41a1293
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/brain/article-pdf/138/9/2687/13800303/awv184.pdf
PMID 26137956
PQID 1707555317
PQPubID 23479
PageCount 14
ParticipantIDs swepub_primary_oai_swepub_ki_se_512309
proquest_miscellaneous_1722176805
proquest_miscellaneous_1707555317
pubmed_primary_26137956
crossref_citationtrail_10_1093_brain_awv184
crossref_primary_10_1093_brain_awv184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2015
References 2016040508373764000_138.9.2687.20
2016040508373764000_138.9.2687.23
2016040508373764000_138.9.2687.22
2016040508373764000_138.9.2687.21
2016040508373764000_138.9.2687.28
2016040508373764000_138.9.2687.27
2016040508373764000_138.9.2687.26
2016040508373764000_138.9.2687.25
2016040508373764000_138.9.2687.29
2016040508373764000_138.9.2687.13
2016040508373764000_138.9.2687.12
2016040508373764000_138.9.2687.11
Ichise (2016040508373764000_138.9.2687.30) 2002; 22
Ondo (2016040508373764000_138.9.2687.39) 2011; 121
2016040508373764000_138.9.2687.10
2016040508373764000_138.9.2687.17
2016040508373764000_138.9.2687.16
2016040508373764000_138.9.2687.15
2016040508373764000_138.9.2687.14
2016040508373764000_138.9.2687.19
2016040508373764000_138.9.2687.18
Owen (2016040508373764000_138.9.2687.43) 2011; 32
2016040508373764000_138.9.2687.42
2016040508373764000_138.9.2687.41
2016040508373764000_138.9.2687.40
2016040508373764000_138.9.2687.46
2016040508373764000_138.9.2687.45
2016040508373764000_138.9.2687.44
2016040508373764000_138.9.2687.9
Stepanov (2016040508373764000_138.9.2687.47) 2012; 55
2016040508373764000_138.9.2687.49
2016040508373764000_138.9.2687.48
2016040508373764000_138.9.2687.6
2016040508373764000_138.9.2687.5
2016040508373764000_138.9.2687.8
2016040508373764000_138.9.2687.7
Jučaite (2016040508373764000_138.9.2687.32) 2012; 23
Gupta (2016040508373764000_138.9.2687.24) 2008; 64
2016040508373764000_138.9.2687.31
2016040508373764000_138.9.2687.35
2016040508373764000_138.9.2687.34
2016040508373764000_138.9.2687.33
2016040508373764000_138.9.2687.37
2016040508373764000_138.9.2687.36
2016040508373764000_138.9.2687.2
2016040508373764000_138.9.2687.1
2016040508373764000_138.9.2687.4
2016040508373764000_138.9.2687.3
Müller (2016040508373764000_138.9.2687.38) 1998; 98
References_xml – ident: 2016040508373764000_138.9.2687.26
  doi: 10.1007/978-94-011-0429-6_5
– volume: 22
  start-page: 1271
  year: 2002
  ident: 2016040508373764000_138.9.2687.30
  article-title: Strategies to improve neuroreceptor parameter estimation by linear regression analysis
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/01.WCB.0000038000.34930.4E
– ident: 2016040508373764000_138.9.2687.49
  doi: 10.1007/s00259-009-1156-3
– ident: 2016040508373764000_138.9.2687.28
  doi: 10.1136/jnnp.55.3.181
– ident: 2016040508373764000_138.9.2687.18
  doi: 10.1016/j.neuroimage.2007.11.011
– ident: 2016040508373764000_138.9.2687.11
  doi: 10.1016/0361-9230(87)90033-5
– ident: 2016040508373764000_138.9.2687.16
  doi: 10.2967/jnumed.114.152421
– ident: 2016040508373764000_138.9.2687.9
  doi: 10.1007/s00259-015-3149-8
– ident: 2016040508373764000_138.9.2687.34
  doi: 10.1038/jcbfm.2012.131
– volume: 32
  start-page: 1
  year: 2011
  ident: 2016040508373764000_138.9.2687.43
  article-title: An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.147
– ident: 2016040508373764000_138.9.2687.6
  doi: 10.1002/mds.20112
– volume: 64
  start-page: S3
  year: 2008
  ident: 2016040508373764000_138.9.2687.24
  article-title: What causes cell death in Parkinson’s disease?
  publication-title: Ann Neurol
  doi: 10.1002/ana.21573
– ident: 2016040508373764000_138.9.2687.13
  doi: 10.1007/s10048-006-0077-6
– volume: 23
  start-page: 2
  year: 2012
  ident: 2016040508373764000_138.9.2687.32
  article-title: Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects
  publication-title: EJNMMI Res
– ident: 2016040508373764000_138.9.2687.23
  doi: 10.1002/mds.20213
– ident: 2016040508373764000_138.9.2687.41
  doi: 10.1038/jcbfm.2014.46
– ident: 2016040508373764000_138.9.2687.36
  doi: 10.1038/jcbfm.1990.127
– ident: 2016040508373764000_138.9.2687.1
  doi: 10.1007/s00216-012-6541-2
– ident: 2016040508373764000_138.9.2687.14
– ident: 2016040508373764000_138.9.2687.22
  doi: 10.1002/mds.21198
– ident: 2016040508373764000_138.9.2687.48
  doi: 10.1006/nimg.2001.0978
– ident: 2016040508373764000_138.9.2687.20
  doi: 10.1016/j.neurol.2013.06.003
– ident: 2016040508373764000_138.9.2687.3
  doi: 10.3402/bindslev.2008.14
– ident: 2016040508373764000_138.9.2687.8
  doi: 10.1016/j.neuroimage.2006.02.053
– ident: 2016040508373764000_138.9.2687.42
  doi: 10.1038/jcbfm.2010.63
– ident: 2016040508373764000_138.9.2687.12
  doi: 10.1002/mds.22732
– ident: 2016040508373764000_138.9.2687.35
  doi: 10.1016/j.bbi.2013.07.007
– ident: 2016040508373764000_138.9.2687.29
  doi: 10.1002/ana.10481
– ident: 2016040508373764000_138.9.2687.33
  doi: 10.1016/j.neuroimage.2009.11.056
– volume: 121
  start-page: 37
  year: 2011
  ident: 2016040508373764000_138.9.2687.39
  article-title: Motor complications in Parkinson’s disease
  publication-title: Int J Neurosci
  doi: 10.3109/00207454.2011.620198
– ident: 2016040508373764000_138.9.2687.44
  doi: 10.2967/jnumed.111.101626
– volume: 55
  start-page: 206
  year: 2012
  ident: 2016040508373764000_138.9.2687.47
  article-title: An efficient one-step radiosynthesis of [18F] FE-PE2I, a PET radioligand for imaging of dopamine transporters. J Label Com Parkinson’s disease
  publication-title: Radiopharm
  doi: 10.1002/jlcr.2927
– ident: 2016040508373764000_138.9.2687.27
  doi: 10.1212/WNL.17.5.427
– ident: 2016040508373764000_138.9.2687.4
  doi: 10.1021/jm0707370
– ident: 2016040508373764000_138.9.2687.31
  doi: 10.1038/sj.jcbfm.9600493
– ident: 2016040508373764000_138.9.2687.19
– ident: 2016040508373764000_138.9.2687.21
  doi: 10.1016/j.nbd.2005.08.002
– ident: 2016040508373764000_138.9.2687.25
  doi: 10.1212/WNL.56.11.1559
– ident: 2016040508373764000_138.9.2687.37
  doi: 10.1002/mds.21751
– ident: 2016040508373764000_138.9.2687.15
  doi: 10.1038/jcbfm.1989.98
– ident: 2016040508373764000_138.9.2687.46
  doi: 10.1016/S0002-9440(10)62307-3
– ident: 2016040508373764000_138.9.2687.5
  doi: 10.2165/00002018-199920020-00002
– ident: 2016040508373764000_138.9.2687.45
  doi: 10.1007/s12021-014-9233-6
– ident: 2016040508373764000_138.9.2687.7
  doi: 10.1007/s00259-008-0908-9
– ident: 2016040508373764000_138.9.2687.17
  doi: 10.1016/0022-3956(75)90026-6
– ident: 2016040508373764000_138.9.2687.2
  doi: 10.1016/j.parkreldis.2009.05.005
– volume: 98
  start-page: 142
  year: 1998
  ident: 2016040508373764000_138.9.2687.38
  article-title: Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson's disease
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1998.tb01736.x
– ident: 2016040508373764000_138.9.2687.10
  doi: 10.1007/s00259-009-1267-x
– ident: 2016040508373764000_138.9.2687.40
  doi: 10.1002/ana.20338
SSID ssj0014326
Score 2.550961
Snippet Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in...
Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating...
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2687
SubjectTerms Aged
Dose-Response Relationship, Drug
Double-Blind Method
Enzyme Inhibitors - therapeutic use
Female
Fluorine Radioisotopes
Follow-Up Studies
Humans
Male
Microglia - diagnostic imaging
Microglia - drug effects
Middle Aged
Parkinson Disease - diagnostic imaging
Parkinson Disease - drug therapy
Parkinson Disease - pathology
Polymorphism, Single Nucleotide - genetics
Positron-Emission Tomography
Protein Binding - drug effects
Pyrimidines - blood
Pyrimidinones - pharmacology
Pyrimidinones - therapeutic use
Pyrroles - pharmacology
Pyrroles - therapeutic use
Receptors, GABA - genetics
Severity of Illness Index
Title Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/26137956
https://www.proquest.com/docview/1707555317
https://www.proquest.com/docview/1722176805
http://kipublications.ki.se/Default.aspx?queryparsed=id:131996405
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkBAviDtlbDISl4cqLHc7vE2waQwNJuikiZfgJO6I2BLUphvbr-fzpW63dWjwEkWpFVc5n8_57HMj5EU4hFXzpe-VoG4eGDj3hIrckUJyLkomua9yh3c-pVt78fZ-sj8Lt9XZJV3xpjxbmFfyP1LFM8hVZcn-g2TdS_EA95AvrpAwrteSsS09bN38R6cq_EeO2t91BdvUr5sfdYEFO-qvf3sPRhMox8CRCsA7UCGyOst5d2NgKsyqcw-VAW2Twdj4nOvGVUASdbOwCYg5WeCMz50sbE9KYbvvOZh8PZa6R9LYJnq57LIvqgeYhtRn5xZRjaCa03rmP7GnE0Hiwq9mGjf1eGaKyzqNG_E5aO12_WxehabGAl_S7abuVTHSJyab4uQ4MM3lFtTLNkVf85-4kzkoTaRSPG-GgKPedX_46BxNcaQ78rm_aXMjMNeanmnNzHOetVzailyoM6u5yeAuuWM3FXTdIOQeuSGb--TWjg2beEC-G6DQdkgBFHoBKNQBhVqg0LahDihvqaCACdUwwVjqYPJ6TC1IHpK9zY3Buy3PttbwyjhNO6-UarNdqOI8mSxA2qIKS1lCf4eiAqUTmRA-Z1WAJRyIikWgzUwOE1_EgVAU8RFZatpGPiFU24E48MvAj2ANJE9ZVZQyFmDWeE3RI_3pp8tLW3detT85zE38Q5TrD52bD90jL93oX6beyhXjnk-lkEMhKi-XaGQ7GecBAwtOYFrY38aE2Iqn3E965LERoZstBMFlWZL2yCsLo-kvVyDr6XUHLpPbsyXyjCx1o4lcAaXtilUNyj9KDqN5
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+myeloperoxidase+inhibitor+AZD3241+on+microglia%3A+a+PET+study+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Jucaite%2C+A&rft.au=Svenningsson%2C+P&rft.au=Rinne%2C+JO&rft.au=Cselenyi%2C+Z&rft.date=2015-09-01&rft.issn=0006-8950&rft.volume=138&rft.issue=Pt+9&rft.spage=2687&rft_id=info:doi/10.1093%2Fbrain%2Fawv184&rft.externalDocID=oai_swepub_ki_se_512309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon