Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease
Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selec...
Saved in:
Published in | Brain (London, England : 1878) Vol. 138; no. 9; pp. 2687 - 2700 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders. |
---|---|
AbstractList | Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating enzyme myeloperoxidase - reduces binding of the PET ligand [ super(11)C]PBR28 to a microglial marker translocator protein in patients. Myeloperoxidase inhibition may have the potential to reduce neuroinflammation and slow disease progression.Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating enzyme myeloperoxidase - reduces binding of the PET ligand [ super(11)C]PBR28 to a microglial marker translocator protein in patients. Myeloperoxidase inhibition may have the potential to reduce neuroinflammation and slow disease progression. Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of super(11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of super(11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of super(11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders. Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders. Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in Parkinson's disease. Myeloperoxidase is a reactive oxygen generating enzyme and is expressed by microglia. The novel compound AZD3241 is a selective and irreversible inhibitor of myeloperoxidase. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders. |
Author | Kugler, Alan R. Helin, Semi Johnström, Peter Minkwitz, Margaret Rinne, Juha O. Amini, Nahid Budd, Samantha Varrone, Andrea Halldin, Christer Cselényi, Zsolt Kirjavainen, Anna Posener, Joel A. Svenningsson, Per Jucaite, Aurelija Varnäs, Katarina Farde, Lars |
Author_xml | – sequence: 1 givenname: Aurelija surname: Jucaite fullname: Jucaite, Aurelija – sequence: 2 givenname: Per surname: Svenningsson fullname: Svenningsson, Per – sequence: 3 givenname: Juha O. surname: Rinne fullname: Rinne, Juha O. – sequence: 4 givenname: Zsolt surname: Cselényi fullname: Cselényi, Zsolt – sequence: 5 givenname: Katarina surname: Varnäs fullname: Varnäs, Katarina – sequence: 6 givenname: Peter surname: Johnström fullname: Johnström, Peter – sequence: 7 givenname: Nahid surname: Amini fullname: Amini, Nahid – sequence: 8 givenname: Anna surname: Kirjavainen fullname: Kirjavainen, Anna – sequence: 9 givenname: Semi surname: Helin fullname: Helin, Semi – sequence: 10 givenname: Margaret surname: Minkwitz fullname: Minkwitz, Margaret – sequence: 11 givenname: Alan R. surname: Kugler fullname: Kugler, Alan R. – sequence: 12 givenname: Joel A. surname: Posener fullname: Posener, Joel A. – sequence: 13 givenname: Samantha surname: Budd fullname: Budd, Samantha – sequence: 14 givenname: Christer surname: Halldin fullname: Halldin, Christer – sequence: 15 givenname: Andrea surname: Varrone fullname: Varrone, Andrea – sequence: 16 givenname: Lars surname: Farde fullname: Farde, Lars |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26137956$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:131996405$$DView record from Swedish Publication Index |
BookMark | eNqN0b9u1TAUBnALFdHbwsaMPDIQ6uPEdsJWlcsfqRIdysJinSQn1DSxL7bTcjdeg9fjSUi5twyIgcmW9TufrPMdsQMfPDH2FMRLEE150kZ0_gRvb6CuHrAVVFoUEpQ-YCshhC7qRolDdpTSFyGgKqV-xA6lhtI0Sq9Yux4G6jIPA89XxKctjWFDMXxzPSbizl-51uUQ-emn16WsgAfPJ9fF8Hl0-Iojv1hf8pTnfrtYfoHx2vkU_M_vPxLvXaIl5DF7OOCY6Mn-PGYf36wvz94V5x_evj87PS-6SutcdCSErFuhmqahtoa67LsOSSojsQclsUEUtemhMwawN6WuKkODElgBgmzKY1bsctMtbebWbqKbMG5tQGf3T9fLjawCWYo7_3znNzF8nSllO7nU0TiipzAnC0ZKMLoW6j-oMEqpEsxCn-3p3E7U__nF_coXIHdgWWJKkQbbuYzZBZ-XJkcLwt71an_3ane9LkMv_hq6z_0n_wX9j6ac |
CitedBy_id | crossref_primary_10_3390_antiox11112302 crossref_primary_10_1007_s40472_019_0230_4 crossref_primary_10_2174_1381612826666200113162641 crossref_primary_10_1021_acs_jmedchem_1c01571 crossref_primary_10_1002_glia_22986 crossref_primary_10_1007_s13139_024_00842_9 crossref_primary_10_1016_j_biopha_2022_112911 crossref_primary_10_1016_j_jneuroim_2019_577000 crossref_primary_10_3390_diagnostics13061029 crossref_primary_10_1111_cns_70109 crossref_primary_10_1007_s00415_024_12269_5 crossref_primary_10_1186_s42234_021_00065_9 crossref_primary_10_1016_j_dadm_2019_02_004 crossref_primary_10_1016_j_nicl_2021_102672 crossref_primary_10_1186_s40824_023_00353_2 crossref_primary_10_3233_JPD_223183 crossref_primary_10_1016_j_ejphar_2017_12_001 crossref_primary_10_1097_WCO_0000000000000584 crossref_primary_10_1007_s00259_019_04369_6 crossref_primary_10_1093_ibd_izab239 crossref_primary_10_3390_antiox11040608 crossref_primary_10_1038_s41392_023_01588_0 crossref_primary_10_1007_s00441_017_2626_8 crossref_primary_10_1007_s00259_018_4161_6 crossref_primary_10_1016_j_neulet_2024_137766 crossref_primary_10_1016_j_tips_2016_06_007 crossref_primary_10_3390_ijms18040785 crossref_primary_10_2174_1566524023666230907093451 crossref_primary_10_1007_s40336_015_0140_0 crossref_primary_10_3390_cells8020105 crossref_primary_10_1007_s12035_019_01714_6 crossref_primary_10_1080_00498254_2024_2361027 crossref_primary_10_1016_j_nicl_2018_08_007 crossref_primary_10_1007_s00204_023_03628_8 crossref_primary_10_7554_eLife_73753 crossref_primary_10_1002_mds_27296 crossref_primary_10_1155_2018_7043578 crossref_primary_10_1007_s00259_021_05425_w crossref_primary_10_1038_s41531_018_0057_1 crossref_primary_10_1089_ars_2017_7272 crossref_primary_10_1007_s00259_016_3391_8 crossref_primary_10_1038_s41531_025_00886_4 crossref_primary_10_3390_ijms22041615 crossref_primary_10_1016_j_jalz_2019_02_004 crossref_primary_10_1016_j_neubiorev_2021_06_027 crossref_primary_10_1016_j_clinbiochem_2016_03_011 crossref_primary_10_12688_f1000research_11603_1 crossref_primary_10_1124_jpet_121_001036 crossref_primary_10_1096_fj_202100864R crossref_primary_10_1111_cts_12859 crossref_primary_10_1016_j_intimp_2018_01_024 crossref_primary_10_1016_j_jacadv_2023_100310 crossref_primary_10_1134_S1819712423030133 crossref_primary_10_1002_cpt_1374 crossref_primary_10_1002_mds_27360 crossref_primary_10_14336_AD_2017_1018 crossref_primary_10_1007_s12035_024_03951_w crossref_primary_10_1038_s41467_023_40937_z crossref_primary_10_1016_j_beem_2022_101689 crossref_primary_10_1016_j_expneurol_2024_115095 crossref_primary_10_1073_pnas_1818434116 crossref_primary_10_1016_j_biochi_2023_11_013 crossref_primary_10_1002_2211_5463_13799 crossref_primary_10_1016_j_bcp_2024_116275 crossref_primary_10_1136_jnnp_2020_322875 crossref_primary_10_1021_acschemneuro_0c00362 crossref_primary_10_3390_nu9090966 crossref_primary_10_1371_journal_pone_0214150 crossref_primary_10_3389_fphar_2020_556020 crossref_primary_10_3389_fnins_2021_742065 crossref_primary_10_1038_s41582_019_0155_7 crossref_primary_10_1080_00365521_2016_1235224 crossref_primary_10_4103_NRR_NRR_D_24_00462 crossref_primary_10_1111_bcp_13855 crossref_primary_10_2169_internalmedicine_8940_21 crossref_primary_10_1016_j_nbd_2020_105032 crossref_primary_10_1177_0271678X17750351 crossref_primary_10_1016_j_ab_2017_12_022 crossref_primary_10_1007_s00702_020_02154_6 crossref_primary_10_2139_ssrn_4198908 crossref_primary_10_3390_ijms24065704 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_1016_j_nano_2016_08_013 crossref_primary_10_1016_j_bmcl_2017_07_075 crossref_primary_10_1155_2017_3851262 crossref_primary_10_1016_S1474_4422_20_30346_X crossref_primary_10_1111_cen3_12553 crossref_primary_10_1016_j_bcp_2023_115418 crossref_primary_10_1155_2017_8459402 crossref_primary_10_1016_j_biocel_2020_105794 crossref_primary_10_1093_cvr_cvac081 crossref_primary_10_3390_antiox12071411 crossref_primary_10_1158_1078_0432_CCR_16_0399 crossref_primary_10_1016_j_bmc_2020_115548 crossref_primary_10_1016_j_jinorgbio_2022_111979 crossref_primary_10_1007_s00262_024_03647_z crossref_primary_10_1016_j_freeradbiomed_2019_05_033 crossref_primary_10_1093_toxsci_kfw052 crossref_primary_10_3390_ph14080717 crossref_primary_10_3390_ijms22115606 crossref_primary_10_1007_s00259_019_04403_7 crossref_primary_10_1186_s13054_025_05283_0 crossref_primary_10_3390_biom10020335 crossref_primary_10_1007_s40336_017_0226_y crossref_primary_10_1021_acs_jmedchem_1c00038 crossref_primary_10_1016_j_ejmech_2019_01_029 crossref_primary_10_12688_f1000research_25634_1 crossref_primary_10_1002_ana_24909 crossref_primary_10_1111_bph_13551 crossref_primary_10_1093_brain_awy351 crossref_primary_10_1002_mco2_534 crossref_primary_10_1007_s11910_017_0733_2 crossref_primary_10_1126_scisignal_aax5971 crossref_primary_10_1093_brain_awab214 crossref_primary_10_31857_S1027813323030135 crossref_primary_10_1016_j_biopsych_2021_01_002 crossref_primary_10_3390_jcm8101719 crossref_primary_10_1007_s12028_024_02169_x crossref_primary_10_1016_S1474_4422_21_00061_2 crossref_primary_10_1212_WNL_0000000000011774 crossref_primary_10_1016_j_neuropharm_2021_108839 crossref_primary_10_1016_j_bbi_2016_01_019 crossref_primary_10_1016_j_bbi_2018_09_018 crossref_primary_10_3390_ijms18050918 crossref_primary_10_1016_j_autneu_2017_12_008 crossref_primary_10_1002_mds_28814 crossref_primary_10_3390_antiox11061088 crossref_primary_10_1007_s11910_024_01335_0 crossref_primary_10_2967_jnumed_119_229443 crossref_primary_10_1021_acs_jmedchem_4c02431 crossref_primary_10_2174_0118715273258646230920074421 crossref_primary_10_1186_s12872_024_03822_1 crossref_primary_10_3389_fneur_2019_00135 crossref_primary_10_3233_JPD_191856 crossref_primary_10_1053_j_semnuclmed_2016_09_001 crossref_primary_10_1038_s41582_024_01046_7 crossref_primary_10_1124_jpet_118_248435 crossref_primary_10_3390_ijms21103624 crossref_primary_10_1016_j_bmcl_2018_11_031 crossref_primary_10_1093_brain_awx339 crossref_primary_10_1016_j_neubiorev_2016_06_031 crossref_primary_10_1016_j_freeradbiomed_2017_08_006 crossref_primary_10_1038_mp_2017_10 crossref_primary_10_1080_13543776_2020_1780210 crossref_primary_10_3389_fnut_2021_650053 crossref_primary_10_1016_j_arr_2022_101618 crossref_primary_10_1096_fj_202100027R crossref_primary_10_1016_j_ejphar_2022_175148 crossref_primary_10_1016_j_pharmthera_2020_107711 crossref_primary_10_3389_fnagi_2020_00152 crossref_primary_10_3390_antiox11122342 crossref_primary_10_1113_JP285263 crossref_primary_10_1177_0271678X221126830 crossref_primary_10_3390_ijms231810735 crossref_primary_10_1021_acschemneuro_7b00462 |
Cites_doi | 10.1007/978-94-011-0429-6_5 10.1097/01.WCB.0000038000.34930.4E 10.1007/s00259-009-1156-3 10.1136/jnnp.55.3.181 10.1016/j.neuroimage.2007.11.011 10.1016/0361-9230(87)90033-5 10.2967/jnumed.114.152421 10.1007/s00259-015-3149-8 10.1038/jcbfm.2012.131 10.1038/jcbfm.2011.147 10.1002/mds.20112 10.1002/ana.21573 10.1007/s10048-006-0077-6 10.1002/mds.20213 10.1038/jcbfm.2014.46 10.1038/jcbfm.1990.127 10.1007/s00216-012-6541-2 10.1002/mds.21198 10.1006/nimg.2001.0978 10.1016/j.neurol.2013.06.003 10.3402/bindslev.2008.14 10.1016/j.neuroimage.2006.02.053 10.1038/jcbfm.2010.63 10.1002/mds.22732 10.1016/j.bbi.2013.07.007 10.1002/ana.10481 10.1016/j.neuroimage.2009.11.056 10.3109/00207454.2011.620198 10.2967/jnumed.111.101626 10.1002/jlcr.2927 10.1212/WNL.17.5.427 10.1021/jm0707370 10.1038/sj.jcbfm.9600493 10.1016/j.nbd.2005.08.002 10.1212/WNL.56.11.1559 10.1002/mds.21751 10.1038/jcbfm.1989.98 10.1016/S0002-9440(10)62307-3 10.2165/00002018-199920020-00002 10.1007/s12021-014-9233-6 10.1007/s00259-008-0908-9 10.1016/0022-3956(75)90026-6 10.1016/j.parkreldis.2009.05.005 10.1111/j.1600-0404.1998.tb01736.x 10.1007/s00259-009-1267-x 10.1002/ana.20338 |
ContentType | Journal Article |
Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK ADTPV AOWAS |
DOI | 10.1093/brain/awv184 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2700 |
ExternalDocumentID | oai_swepub_ki_se_512309 26137956 10_1093_brain_awv184 |
Genre | Multicenter Study Clinical Trial, Phase II Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 CGR CUY CVF ECM EIF NPM 7X8 7TK ADTPV AOWAS |
ID | FETCH-LOGICAL-c466t-ce0028b05999eb8183dccae2572ad152a9aa087d1c771ad736447ef50a41a1293 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Mon Aug 25 03:32:14 EDT 2025 Thu Jul 10 19:33:39 EDT 2025 Fri Jul 11 05:35:06 EDT 2025 Mon Jul 21 06:03:48 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 18kDa translocator protein positron emission tomography microglia Parkinson’s disease |
Language | English |
License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-ce0028b05999eb8183dccae2572ad152a9aa087d1c771ad736447ef50a41a1293 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/138/9/2687/13800303/awv184.pdf |
PMID | 26137956 |
PQID | 1707555317 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_512309 proquest_miscellaneous_1722176805 proquest_miscellaneous_1707555317 pubmed_primary_26137956 crossref_citationtrail_10_1093_brain_awv184 crossref_primary_10_1093_brain_awv184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2015 |
References | 2016040508373764000_138.9.2687.20 2016040508373764000_138.9.2687.23 2016040508373764000_138.9.2687.22 2016040508373764000_138.9.2687.21 2016040508373764000_138.9.2687.28 2016040508373764000_138.9.2687.27 2016040508373764000_138.9.2687.26 2016040508373764000_138.9.2687.25 2016040508373764000_138.9.2687.29 2016040508373764000_138.9.2687.13 2016040508373764000_138.9.2687.12 2016040508373764000_138.9.2687.11 Ichise (2016040508373764000_138.9.2687.30) 2002; 22 Ondo (2016040508373764000_138.9.2687.39) 2011; 121 2016040508373764000_138.9.2687.10 2016040508373764000_138.9.2687.17 2016040508373764000_138.9.2687.16 2016040508373764000_138.9.2687.15 2016040508373764000_138.9.2687.14 2016040508373764000_138.9.2687.19 2016040508373764000_138.9.2687.18 Owen (2016040508373764000_138.9.2687.43) 2011; 32 2016040508373764000_138.9.2687.42 2016040508373764000_138.9.2687.41 2016040508373764000_138.9.2687.40 2016040508373764000_138.9.2687.46 2016040508373764000_138.9.2687.45 2016040508373764000_138.9.2687.44 2016040508373764000_138.9.2687.9 Stepanov (2016040508373764000_138.9.2687.47) 2012; 55 2016040508373764000_138.9.2687.49 2016040508373764000_138.9.2687.48 2016040508373764000_138.9.2687.6 2016040508373764000_138.9.2687.5 2016040508373764000_138.9.2687.8 2016040508373764000_138.9.2687.7 Jučaite (2016040508373764000_138.9.2687.32) 2012; 23 Gupta (2016040508373764000_138.9.2687.24) 2008; 64 2016040508373764000_138.9.2687.31 2016040508373764000_138.9.2687.35 2016040508373764000_138.9.2687.34 2016040508373764000_138.9.2687.33 2016040508373764000_138.9.2687.37 2016040508373764000_138.9.2687.36 2016040508373764000_138.9.2687.2 2016040508373764000_138.9.2687.1 2016040508373764000_138.9.2687.4 2016040508373764000_138.9.2687.3 Müller (2016040508373764000_138.9.2687.38) 1998; 98 |
References_xml | – ident: 2016040508373764000_138.9.2687.26 doi: 10.1007/978-94-011-0429-6_5 – volume: 22 start-page: 1271 year: 2002 ident: 2016040508373764000_138.9.2687.30 article-title: Strategies to improve neuroreceptor parameter estimation by linear regression analysis publication-title: J Cereb Blood Flow Metab doi: 10.1097/01.WCB.0000038000.34930.4E – ident: 2016040508373764000_138.9.2687.49 doi: 10.1007/s00259-009-1156-3 – ident: 2016040508373764000_138.9.2687.28 doi: 10.1136/jnnp.55.3.181 – ident: 2016040508373764000_138.9.2687.18 doi: 10.1016/j.neuroimage.2007.11.011 – ident: 2016040508373764000_138.9.2687.11 doi: 10.1016/0361-9230(87)90033-5 – ident: 2016040508373764000_138.9.2687.16 doi: 10.2967/jnumed.114.152421 – ident: 2016040508373764000_138.9.2687.9 doi: 10.1007/s00259-015-3149-8 – ident: 2016040508373764000_138.9.2687.34 doi: 10.1038/jcbfm.2012.131 – volume: 32 start-page: 1 year: 2011 ident: 2016040508373764000_138.9.2687.43 article-title: An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.147 – ident: 2016040508373764000_138.9.2687.6 doi: 10.1002/mds.20112 – volume: 64 start-page: S3 year: 2008 ident: 2016040508373764000_138.9.2687.24 article-title: What causes cell death in Parkinson’s disease? publication-title: Ann Neurol doi: 10.1002/ana.21573 – ident: 2016040508373764000_138.9.2687.13 doi: 10.1007/s10048-006-0077-6 – volume: 23 start-page: 2 year: 2012 ident: 2016040508373764000_138.9.2687.32 article-title: Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects publication-title: EJNMMI Res – ident: 2016040508373764000_138.9.2687.23 doi: 10.1002/mds.20213 – ident: 2016040508373764000_138.9.2687.41 doi: 10.1038/jcbfm.2014.46 – ident: 2016040508373764000_138.9.2687.36 doi: 10.1038/jcbfm.1990.127 – ident: 2016040508373764000_138.9.2687.1 doi: 10.1007/s00216-012-6541-2 – ident: 2016040508373764000_138.9.2687.14 – ident: 2016040508373764000_138.9.2687.22 doi: 10.1002/mds.21198 – ident: 2016040508373764000_138.9.2687.48 doi: 10.1006/nimg.2001.0978 – ident: 2016040508373764000_138.9.2687.20 doi: 10.1016/j.neurol.2013.06.003 – ident: 2016040508373764000_138.9.2687.3 doi: 10.3402/bindslev.2008.14 – ident: 2016040508373764000_138.9.2687.8 doi: 10.1016/j.neuroimage.2006.02.053 – ident: 2016040508373764000_138.9.2687.42 doi: 10.1038/jcbfm.2010.63 – ident: 2016040508373764000_138.9.2687.12 doi: 10.1002/mds.22732 – ident: 2016040508373764000_138.9.2687.35 doi: 10.1016/j.bbi.2013.07.007 – ident: 2016040508373764000_138.9.2687.29 doi: 10.1002/ana.10481 – ident: 2016040508373764000_138.9.2687.33 doi: 10.1016/j.neuroimage.2009.11.056 – volume: 121 start-page: 37 year: 2011 ident: 2016040508373764000_138.9.2687.39 article-title: Motor complications in Parkinson’s disease publication-title: Int J Neurosci doi: 10.3109/00207454.2011.620198 – ident: 2016040508373764000_138.9.2687.44 doi: 10.2967/jnumed.111.101626 – volume: 55 start-page: 206 year: 2012 ident: 2016040508373764000_138.9.2687.47 article-title: An efficient one-step radiosynthesis of [18F] FE-PE2I, a PET radioligand for imaging of dopamine transporters. J Label Com Parkinson’s disease publication-title: Radiopharm doi: 10.1002/jlcr.2927 – ident: 2016040508373764000_138.9.2687.27 doi: 10.1212/WNL.17.5.427 – ident: 2016040508373764000_138.9.2687.4 doi: 10.1021/jm0707370 – ident: 2016040508373764000_138.9.2687.31 doi: 10.1038/sj.jcbfm.9600493 – ident: 2016040508373764000_138.9.2687.19 – ident: 2016040508373764000_138.9.2687.21 doi: 10.1016/j.nbd.2005.08.002 – ident: 2016040508373764000_138.9.2687.25 doi: 10.1212/WNL.56.11.1559 – ident: 2016040508373764000_138.9.2687.37 doi: 10.1002/mds.21751 – ident: 2016040508373764000_138.9.2687.15 doi: 10.1038/jcbfm.1989.98 – ident: 2016040508373764000_138.9.2687.46 doi: 10.1016/S0002-9440(10)62307-3 – ident: 2016040508373764000_138.9.2687.5 doi: 10.2165/00002018-199920020-00002 – ident: 2016040508373764000_138.9.2687.45 doi: 10.1007/s12021-014-9233-6 – ident: 2016040508373764000_138.9.2687.7 doi: 10.1007/s00259-008-0908-9 – ident: 2016040508373764000_138.9.2687.17 doi: 10.1016/0022-3956(75)90026-6 – ident: 2016040508373764000_138.9.2687.2 doi: 10.1016/j.parkreldis.2009.05.005 – volume: 98 start-page: 142 year: 1998 ident: 2016040508373764000_138.9.2687.38 article-title: Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson's disease publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1998.tb01736.x – ident: 2016040508373764000_138.9.2687.10 doi: 10.1007/s00259-009-1267-x – ident: 2016040508373764000_138.9.2687.40 doi: 10.1002/ana.20338 |
SSID | ssj0014326 |
Score | 2.550961 |
Snippet | Impaired mitochondrial function, oxidative stress and formation of excessive levels of reactive oxygen species play a key role in neurodegeneration in... Oxidative stress is implicated in neurodegeneration in Parkinson's disease. Jucaite et al. show that AZD3241 - an inhibitor of the reactive oxygen-generating... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2687 |
SubjectTerms | Aged Dose-Response Relationship, Drug Double-Blind Method Enzyme Inhibitors - therapeutic use Female Fluorine Radioisotopes Follow-Up Studies Humans Male Microglia - diagnostic imaging Microglia - drug effects Middle Aged Parkinson Disease - diagnostic imaging Parkinson Disease - drug therapy Parkinson Disease - pathology Polymorphism, Single Nucleotide - genetics Positron-Emission Tomography Protein Binding - drug effects Pyrimidines - blood Pyrimidinones - pharmacology Pyrimidinones - therapeutic use Pyrroles - pharmacology Pyrroles - therapeutic use Receptors, GABA - genetics Severity of Illness Index |
Title | Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26137956 https://www.proquest.com/docview/1707555317 https://www.proquest.com/docview/1722176805 http://kipublications.ki.se/Default.aspx?queryparsed=id:131996405 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkBAviDtlbDISl4cqLHc7vE2waQwNJuikiZfgJO6I2BLUphvbr-fzpW63dWjwEkWpFVc5n8_57HMj5EU4hFXzpe-VoG4eGDj3hIrckUJyLkomua9yh3c-pVt78fZ-sj8Lt9XZJV3xpjxbmFfyP1LFM8hVZcn-g2TdS_EA95AvrpAwrteSsS09bN38R6cq_EeO2t91BdvUr5sfdYEFO-qvf3sPRhMox8CRCsA7UCGyOst5d2NgKsyqcw-VAW2Twdj4nOvGVUASdbOwCYg5WeCMz50sbE9KYbvvOZh8PZa6R9LYJnq57LIvqgeYhtRn5xZRjaCa03rmP7GnE0Hiwq9mGjf1eGaKyzqNG_E5aO12_WxehabGAl_S7abuVTHSJyab4uQ4MM3lFtTLNkVf85-4kzkoTaRSPG-GgKPedX_46BxNcaQ78rm_aXMjMNeanmnNzHOetVzailyoM6u5yeAuuWM3FXTdIOQeuSGb--TWjg2beEC-G6DQdkgBFHoBKNQBhVqg0LahDihvqaCACdUwwVjqYPJ6TC1IHpK9zY3Buy3PttbwyjhNO6-UarNdqOI8mSxA2qIKS1lCf4eiAqUTmRA-Z1WAJRyIikWgzUwOE1_EgVAU8RFZatpGPiFU24E48MvAj2ANJE9ZVZQyFmDWeE3RI_3pp8tLW3detT85zE38Q5TrD52bD90jL93oX6beyhXjnk-lkEMhKi-XaGQ7GecBAwtOYFrY38aE2Iqn3E965LERoZstBMFlWZL2yCsLo-kvVyDr6XUHLpPbsyXyjCx1o4lcAaXtilUNyj9KDqN5 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+myeloperoxidase+inhibitor+AZD3241+on+microglia%3A+a+PET+study+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Jucaite%2C+A&rft.au=Svenningsson%2C+P&rft.au=Rinne%2C+JO&rft.au=Cselenyi%2C+Z&rft.date=2015-09-01&rft.issn=0006-8950&rft.volume=138&rft.issue=Pt+9&rft.spage=2687&rft_id=info:doi/10.1093%2Fbrain%2Fawv184&rft.externalDocID=oai_swepub_ki_se_512309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |