Semiautomatic tumor segmentation with multimodal images in a conditional random field framework
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between d...
Saved in:
Published in | Journal of medical imaging (Bellingham, Wash.) Vol. 3; no. 2; p. 024503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance. |
---|---|
AbstractList | Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance. Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance. |
Author | Mageras, Gikas Hu, Yu-chi Grossberg, Michael |
Author_xml | – sequence: 1 givenname: Yu-chi surname: Hu fullname: Hu, Yu-chi email: huj@mskcc.org organization: bCity College of New York, Department of Computer Science, 160 Convent Avenue, New York, New York 10031, United States – sequence: 2 givenname: Michael surname: Grossberg fullname: Grossberg, Michael organization: bCity College of New York, Department of Computer Science, 160 Convent Avenue, New York, New York 10031, United States – sequence: 3 givenname: Gikas surname: Mageras fullname: Mageras, Gikas organization: aMemorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, New York, New York 10065, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27413768$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhS1URB90zwp5ySbBr7w2SFWhUFQECFhbjj2-dYnjYCdU9Nfjkt4KrlBXtma-c2bk40O0N4YREHpGSUkpbV7S8v2H85KXrCRMVIQ_QgeMs64QnJK9-zth--g4pStCCKWkYlQ8QfusEZQ3dXuA5BfwTi1z8Gp2Gs-LDxEn2HgY51wJI7528yX2yzA7H4wasPNqAwm7ESusw2jcLZXrUY0meGwdDAbbqDxch_j9KXps1ZDg-O48Qt_O3nw9fVdcfHx7fnpyUWhR13OhWy2gU7SrK04tUUIZzZjqW0ZU1xkDlFjQlgKzHeNQ8abvRadFV3fCkt7wI_Rq9Z2W3oPRef2oBjnFvG78JYNy8t_O6C7lJvyUIvvVDcsGL-4MYvixQJqld0nDMKgRwpIkbYloq6oRPKPP_551P2T7qhmoV0DHkFIEK7VbXzOPdoOkRN4mKKnMCUoumVwTzEKyI9x6PyApVkmaHMirsMQcRnqI__w_fkvduGlH8ad0EvPvGODT67Pd7mQs_w3jDMlZ |
CitedBy_id | crossref_primary_10_1002_mp_13695 |
Cites_doi | 10.1016/j.radonc.2008.08.007 10.1186/1748-717X-5-5 10.1259/bjr.20110718 10.1118/1.4728979 10.1118/1.597000 10.1109/TMI.2009.2013851 10.1109/TPAMI.2004.1262177 10.1109/TBME.2009.2012423 10.1016/0730-725X(93)90417-C 10.1109/TMI.2011.2181857 10.1007/11612704 10.1007/s00256-008-0463-2 10.1016/j.ijrobp.2005.06.034 10.1007/978-3-642-33454-2 10.1007/978-3-642-23626-6 10.1109/42.836373 10.1007/11569541 10.7717/peerj.453 10.1016/j.ijrobp.2011.03.031 10.1118/1.4755940 10.1016/j.compmedimag.2009.04.006 |
ContentType | Journal Article |
Copyright | 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 2016 Society of Photo-Optical Instrumentation Engineers |
Copyright_xml | – notice: 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) – notice: 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 2016 Society of Photo-Optical Instrumentation Engineers |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1117/1.JMI.3.2.024503 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2329-4310 |
EndPage | 024503 |
ExternalDocumentID | PMC4923672 27413768 10_1117_1_JMI_3_2_024503 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH/NCI Cancer Center Support grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | 0R ACGFS ALMA_UNASSIGNED_HOLDINGS EBS EJD FQ0 HYE M4X O9- RPM SPBNH UT2 0R~ 4.4 AAYXX ABJNI ADMLS AKROS CITATION OK1 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c466t-c8c4e9a196531f0a4adc22ab820a99dde10fecf1e2f923e537bb49c49694f0bd3 |
ISSN | 2329-4302 |
IngestDate | Thu Aug 21 18:22:46 EDT 2025 Fri Jul 11 11:19:55 EDT 2025 Wed Feb 19 02:04:54 EST 2025 Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 02:15:53 EDT 2025 Fri Jan 15 20:10:21 EST 2021 Fri May 31 16:22:03 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | conditional random field semiautomatic segmentation multimodality imaging logistic regression tumor |
Language | English |
License | 2329-4302/2016/$25.00 © 2016 SPIE |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-c8c4e9a196531f0a4adc22ab820a99dde10fecf1e2f923e537bb49c49694f0bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27413768 |
PQID | 1804855743 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1117_1_JMI_3_2_024503 crossref_citationtrail_10_1117_1_JMI_3_2_024503 proquest_miscellaneous_1804855743 pubmed_primary_27413768 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4923672 spie_journals_10_1117_1_JMI_3_2_024503 |
ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of medical imaging (Bellingham, Wash.) |
PublicationTitleAlternate | J. Med. Imag |
PublicationYear | 2016 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
References | Whitfield, G. A. 2013; 86 Nyul, L.; Udupa, J.; Zhang, X. 2000; 19 Braendengen, M. 2011; 81 Sheth, N. 2010; 37 Elnemr, H. A. 2013; 10 Bezdek, J.; Hall, L.; Clarke, L. 1993; 20 Huyskens, D. P. 2009; 90 Kolmogorov, V.; Zabih, R. 2004; 26 Clarke, L. 1993; 11 Hu, Y.-C. 2012; 39 Zikic, D. 2012; 7512 van der Walt, S. 2014; 2 Heimann, T. 2009; 28 Rachidi, M. 2008; 37 Steenbakkers, R. J. 2006; 64 Lee, C.-H. 2005; 3765 Wang, T.; Cheng, I.; Basu, A. 2009; 56 Nie, J. 2009; 33 Greig, D.; Porteous, B.; Seheult, A. 1989; 51 Stall, B. 2010; 5 Hamamci, A. 2012; 31 Schnitman, Y. 2006; 3852 Bauer, S.; Nolte, L.-P.; Reyes, M. 2011; 6893 |
References_xml | – volume: 90 start-page: 337 issn: 0167-8140 year: 2009 end-page: 345 article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2008.08.007 – volume: 5 start-page: 5 issue: 1 year: 2010 article-title: Comparison of t2 and flair imaging for target delineation in high grade gliomas publication-title: Radiat. Oncol. doi: 10.1186/1748-717X-5-5 – volume: 86 start-page: 20110718 issue: 1021 year: 2013 article-title: Automated delineation of radiotherapy volumes: are we going in the right direction? publication-title: Br. J. Radiol. doi: 10.1259/bjr.20110718 – volume: 39 start-page: 4547 issn: 0094-2405 year: 2012 end-page: 4558 article-title: Interactive semiautomatic contour delineation using statistical conditional publication-title: Med. Phys. doi: 10.1118/1.4728979 – volume: 20 start-page: 1033 issn: 0094-2405 issue: 4 year: 1993 end-page: 1048 article-title: Review of MR image segmentation techniques using pattern recognition publication-title: Med. Phys. doi: 10.1118/1.597000 – volume: 28 start-page: 1251 issn: 0278-0062 year: 2009 end-page: 1265 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2013851 – volume: 26 start-page: 147 issn: 0162-8828 issue: 2 year: 2004 end-page: 159 article-title: What energy functions can be minimized via graph cuts? publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1262177 – volume: 10 start-page: 196 issue: 6 year: 2013 end-page: 202 article-title: Statistical analysis of law's mask texture features for cancer and water lung detection publication-title: Int. J. Comput. Sci. Issues – volume: 56 start-page: 781 year: 2009 end-page: 789 article-title: Fluid vector flow and applications in brain tumor segmentation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2012423 – volume: 11 start-page: 95 issn: 0730-725X issue: 1 year: 1993 end-page: 106 article-title: MRI: stability of three supervised segmentation techniques publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(93)90417-C – volume: 31 start-page: 790 issn: 0278-0062 year: 2012 end-page: 804 article-title: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2181857 – volume: 51 start-page: 271 year: 1989 end-page: 279 article-title: Exact maximum a posteriori estimation for binary images publication-title: J. R. Stat. Soc. – volume: 3852 start-page: 373 issn: 0302-9743 year: 2006 end-page: 384 article-title: Inducing semantic segmentation from an example publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11612704 – volume: 37 start-page: 541 issue: 6 year: 2008 end-page: 548 article-title: Laws' masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis publication-title: Skeletal Radiol. doi: 10.1007/s00256-008-0463-2 – volume: 64 start-page: 435 issue: 2 year: 2006 end-page: 448 article-title: Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2005.06.034 – volume: 7512 start-page: 369 issn: 0302-9743 year: 2012 end-page: 376 article-title: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-33454-2 – volume: 6893 start-page: 354 issn: 0302-9743 year: 2011 end-page: 361 article-title: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-23626-6 – volume: 19 start-page: 143 issn: 0278-0062 year: 2000 end-page: 150 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.836373 – volume: 3765 start-page: 469 issn: 0302-9743 year: 2005 end-page: 478 article-title: Segmenting brain tumors with conditional random fields and support vector machines publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11569541 – volume: 2 start-page: e453 year: 2014 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 81 start-page: e439 issue: 4 year: 2011 end-page: e445 article-title: Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from {MRI} or fdg-pet/ct: a prospective study publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2011.03.031 – volume: 37 start-page: 3125 issn: 0094-2405 year: 2010 article-title: Comparison of model-based segmentation systems for contouring of male pelvic structures publication-title: Med. Phys. doi: 10.1118/1.4755940 – volume: 33 start-page: 431 issn: 0895-6111 issue: 6 year: 2009 end-page: 441 article-title: Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov random field publication-title: Comput. Med. Imaging Graphics doi: 10.1016/j.compmedimag.2009.04.006 |
SSID | ssj0001105214 |
Score | 1.971586 |
Snippet | Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging... |
SourceID | pubmedcentral proquest pubmed crossref spie |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 024503 |
SubjectTerms | Computer-Aided Diagnosis |
Title | Semiautomatic tumor segmentation with multimodal images in a conditional random field framework |
URI | http://www.dx.doi.org/10.1117/1.JMI.3.2.024503 https://www.ncbi.nlm.nih.gov/pubmed/27413768 https://www.proquest.com/docview/1804855743 https://pubmed.ncbi.nlm.nih.gov/PMC4923672 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di5wwEA_tFkpfSr9v-0UKpVAOPaNR18fS9rpd2FLoHdxbiDHuSasuu_pyf30nH7q690GvLyImhuD8nMxMZn5B6D2s0JxkUjhhDO4qzaPQSSIinDSahUJyGuVCBfSXP6L5KV2chWe7qJKuLmlSV1xcWVfyP1KFZyBXVSV7C8n2g8IDuAf5whUkDNd_kvEvWRa8bWpDu9q0Zb053MpVaeuJTIW2yRks60zRa5R8pTOwVE1krXarTSQQFqysLg91Otth3uVrXWO4lnZvRw1mAw2qygdubc21OqDJHYQY5q1W9K0jzotdvg-szl1u2TB3X0fHV3JjCs2-Fb_5KDJBokFCi1ZgYKwlDg28kbYNBqDyh5qThprs4CqdrlkB3MXyuxu4vuv1Xcf02XvLWp9saNycmBEGI7CA-cyMcBfd88G38AchHh2YI6qemepDCe38u-1tEh_tT2NszlzyUS6n2k6260IOTJiTR-ihFSH-ZID0GN2R1RN0f2mzK54iNsIT1njCQzxhhSe8wxM2eMJFhTke4AkbPGGNJ9zj6Rk6Pf568nnu2AM4HEGjqHHETFCZcEU6GZDc45Rnwvd5ClYjTxJYGImXS5ET6efgJ8gwiNOUJoImUUJzL82C52hS1ZU8QNgXIgzSgIAHHNIsDrlM1bFpkociJknmTdFR9x2ZsOz06pCUP-w68U3Rx_6NtWFmuaHvu040DNSn2hPjlazbLSMzT9EjgR09RS-MqPrRFLMTrL-zKYpHQuw7KGr2cUtVnGuKdkV7GMX-FH1Q4mZWZ2xvmOBi3LFrvijWe131I4uUn1-O91vXWf7yFl_mFXqw-3Vfo0mzaeUbMLOb9K3-Lf4CpXDRZA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiautomatic+tumor+segmentation+with+multimodal+images+in+a+conditional+random+field+framework&rft.jtitle=Journal+of+medical+imaging+%28Bellingham%2C+Wash.%29&rft.au=Hu%2C+Yu-chi&rft.au=Grossberg%2C+Michael&rft.au=Mageras%2C+Gikas&rft.date=2016-04-01&rft.issn=2329-4302&rft.volume=3&rft.issue=2&rft.spage=24503&rft_id=info:doi/10.1117%2F1.JMI.3.2.024503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JMI_3_2_024503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-4302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-4302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-4302&client=summon |