Semiautomatic tumor segmentation with multimodal images in a conditional random field framework

Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between d...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical imaging (Bellingham, Wash.) Vol. 3; no. 2; p. 024503
Main Authors Hu, Yu-chi, Grossberg, Michael, Mageras, Gikas
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
AbstractList Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Author Mageras, Gikas
Hu, Yu-chi
Grossberg, Michael
Author_xml – sequence: 1
  givenname: Yu-chi
  surname: Hu
  fullname: Hu, Yu-chi
  email: huj@mskcc.org
  organization: bCity College of New York, Department of Computer Science, 160 Convent Avenue, New York, New York 10031, United States
– sequence: 2
  givenname: Michael
  surname: Grossberg
  fullname: Grossberg, Michael
  organization: bCity College of New York, Department of Computer Science, 160 Convent Avenue, New York, New York 10031, United States
– sequence: 3
  givenname: Gikas
  surname: Mageras
  fullname: Mageras, Gikas
  organization: aMemorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, New York, New York 10065, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27413768$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URB90zwp5ySbBr7w2SFWhUFQECFhbjj2-dYnjYCdU9Nfjkt4KrlBXtma-c2bk40O0N4YREHpGSUkpbV7S8v2H85KXrCRMVIQ_QgeMs64QnJK9-zth--g4pStCCKWkYlQ8QfusEZQ3dXuA5BfwTi1z8Gp2Gs-LDxEn2HgY51wJI7528yX2yzA7H4wasPNqAwm7ESusw2jcLZXrUY0meGwdDAbbqDxch_j9KXps1ZDg-O48Qt_O3nw9fVdcfHx7fnpyUWhR13OhWy2gU7SrK04tUUIZzZjqW0ZU1xkDlFjQlgKzHeNQ8abvRadFV3fCkt7wI_Rq9Z2W3oPRef2oBjnFvG78JYNy8t_O6C7lJvyUIvvVDcsGL-4MYvixQJqld0nDMKgRwpIkbYloq6oRPKPP_551P2T7qhmoV0DHkFIEK7VbXzOPdoOkRN4mKKnMCUoumVwTzEKyI9x6PyApVkmaHMirsMQcRnqI__w_fkvduGlH8ad0EvPvGODT67Pd7mQs_w3jDMlZ
CitedBy_id crossref_primary_10_1002_mp_13695
Cites_doi 10.1016/j.radonc.2008.08.007
10.1186/1748-717X-5-5
10.1259/bjr.20110718
10.1118/1.4728979
10.1118/1.597000
10.1109/TMI.2009.2013851
10.1109/TPAMI.2004.1262177
10.1109/TBME.2009.2012423
10.1016/0730-725X(93)90417-C
10.1109/TMI.2011.2181857
10.1007/11612704
10.1007/s00256-008-0463-2
10.1016/j.ijrobp.2005.06.034
10.1007/978-3-642-33454-2
10.1007/978-3-642-23626-6
10.1109/42.836373
10.1007/11569541
10.7717/peerj.453
10.1016/j.ijrobp.2011.03.031
10.1118/1.4755940
10.1016/j.compmedimag.2009.04.006
ContentType Journal Article
Copyright 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 2016 Society of Photo-Optical Instrumentation Engineers
Copyright_xml – notice: 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
– notice: 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 2016 Society of Photo-Optical Instrumentation Engineers
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1117/1.JMI.3.2.024503
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2329-4310
EndPage 024503
ExternalDocumentID PMC4923672
27413768
10_1117_1_JMI_3_2_024503
Genre Journal Article
GrantInformation_xml – fundername: NIH/NCI Cancer Center Support
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID 0R
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
FQ0
HYE
M4X
O9-
RPM
SPBNH
UT2
0R~
4.4
AAYXX
ABJNI
ADMLS
AKROS
CITATION
OK1
NPM
7X8
5PM
ID FETCH-LOGICAL-c466t-c8c4e9a196531f0a4adc22ab820a99dde10fecf1e2f923e537bb49c49694f0bd3
ISSN 2329-4302
IngestDate Thu Aug 21 18:22:46 EDT 2025
Fri Jul 11 11:19:55 EDT 2025
Wed Feb 19 02:04:54 EST 2025
Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 02:15:53 EDT 2025
Fri Jan 15 20:10:21 EST 2021
Fri May 31 16:22:03 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords conditional random field
semiautomatic segmentation
multimodality imaging
logistic regression
tumor
Language English
License 2329-4302/2016/$25.00 © 2016 SPIE
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-c8c4e9a196531f0a4adc22ab820a99dde10fecf1e2f923e537bb49c49694f0bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27413768
PQID 1804855743
PQPubID 23479
PageCount 1
ParticipantIDs crossref_primary_10_1117_1_JMI_3_2_024503
crossref_citationtrail_10_1117_1_JMI_3_2_024503
proquest_miscellaneous_1804855743
pubmed_primary_27413768
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4923672
spie_journals_10_1117_1_JMI_3_2_024503
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of medical imaging (Bellingham, Wash.)
PublicationTitleAlternate J. Med. Imag
PublicationYear 2016
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References Whitfield, G. A. 2013; 86
Nyul, L.; Udupa, J.; Zhang, X. 2000; 19
Braendengen, M. 2011; 81
Sheth, N. 2010; 37
Elnemr, H. A. 2013; 10
Bezdek, J.; Hall, L.; Clarke, L. 1993; 20
Huyskens, D. P. 2009; 90
Kolmogorov, V.; Zabih, R. 2004; 26
Clarke, L. 1993; 11
Hu, Y.-C. 2012; 39
Zikic, D. 2012; 7512
van der Walt, S. 2014; 2
Heimann, T. 2009; 28
Rachidi, M. 2008; 37
Steenbakkers, R. J. 2006; 64
Lee, C.-H. 2005; 3765
Wang, T.; Cheng, I.; Basu, A. 2009; 56
Nie, J. 2009; 33
Greig, D.; Porteous, B.; Seheult, A. 1989; 51
Stall, B. 2010; 5
Hamamci, A. 2012; 31
Schnitman, Y. 2006; 3852
Bauer, S.; Nolte, L.-P.; Reyes, M. 2011; 6893
References_xml – volume: 90
  start-page: 337
  issn: 0167-8140
  year: 2009
  end-page: 345
  article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.08.007
– volume: 5
  start-page: 5
  issue: 1
  year: 2010
  article-title: Comparison of t2 and flair imaging for target delineation in high grade gliomas
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-5-5
– volume: 86
  start-page: 20110718
  issue: 1021
  year: 2013
  article-title: Automated delineation of radiotherapy volumes: are we going in the right direction?
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20110718
– volume: 39
  start-page: 4547
  issn: 0094-2405
  year: 2012
  end-page: 4558
  article-title: Interactive semiautomatic contour delineation using statistical conditional
  publication-title: Med. Phys.
  doi: 10.1118/1.4728979
– volume: 20
  start-page: 1033
  issn: 0094-2405
  issue: 4
  year: 1993
  end-page: 1048
  article-title: Review of MR image segmentation techniques using pattern recognition
  publication-title: Med. Phys.
  doi: 10.1118/1.597000
– volume: 28
  start-page: 1251
  issn: 0278-0062
  year: 2009
  end-page: 1265
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– volume: 26
  start-page: 147
  issn: 0162-8828
  issue: 2
  year: 2004
  end-page: 159
  article-title: What energy functions can be minimized via graph cuts?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262177
– volume: 10
  start-page: 196
  issue: 6
  year: 2013
  end-page: 202
  article-title: Statistical analysis of law's mask texture features for cancer and water lung detection
  publication-title: Int. J. Comput. Sci. Issues
– volume: 56
  start-page: 781
  year: 2009
  end-page: 789
  article-title: Fluid vector flow and applications in brain tumor segmentation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2012423
– volume: 11
  start-page: 95
  issn: 0730-725X
  issue: 1
  year: 1993
  end-page: 106
  article-title: MRI: stability of three supervised segmentation techniques
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(93)90417-C
– volume: 31
  start-page: 790
  issn: 0278-0062
  year: 2012
  end-page: 804
  article-title: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2181857
– volume: 51
  start-page: 271
  year: 1989
  end-page: 279
  article-title: Exact maximum a posteriori estimation for binary images
  publication-title: J. R. Stat. Soc.
– volume: 3852
  start-page: 373
  issn: 0302-9743
  year: 2006
  end-page: 384
  article-title: Inducing semantic segmentation from an example
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11612704
– volume: 37
  start-page: 541
  issue: 6
  year: 2008
  end-page: 548
  article-title: Laws' masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis
  publication-title: Skeletal Radiol.
  doi: 10.1007/s00256-008-0463-2
– volume: 64
  start-page: 435
  issue: 2
  year: 2006
  end-page: 448
  article-title: Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2005.06.034
– volume: 7512
  start-page: 369
  issn: 0302-9743
  year: 2012
  end-page: 376
  article-title: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-33454-2
– volume: 6893
  start-page: 354
  issn: 0302-9743
  year: 2011
  end-page: 361
  article-title: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-23626-6
– volume: 19
  start-page: 143
  issn: 0278-0062
  year: 2000
  end-page: 150
  article-title: New variants of a method of MRI scale standardization
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.836373
– volume: 3765
  start-page: 469
  issn: 0302-9743
  year: 2005
  end-page: 478
  article-title: Segmenting brain tumors with conditional random fields and support vector machines
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11569541
– volume: 2
  start-page: e453
  year: 2014
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 81
  start-page: e439
  issue: 4
  year: 2011
  end-page: e445
  article-title: Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from {MRI} or fdg-pet/ct: a prospective study
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2011.03.031
– volume: 37
  start-page: 3125
  issn: 0094-2405
  year: 2010
  article-title: Comparison of model-based segmentation systems for contouring of male pelvic structures
  publication-title: Med. Phys.
  doi: 10.1118/1.4755940
– volume: 33
  start-page: 431
  issn: 0895-6111
  issue: 6
  year: 2009
  end-page: 441
  article-title: Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov random field
  publication-title: Comput. Med. Imaging Graphics
  doi: 10.1016/j.compmedimag.2009.04.006
SSID ssj0001105214
Score 1.971586
Snippet Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging...
SourceID pubmedcentral
proquest
pubmed
crossref
spie
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 024503
SubjectTerms Computer-Aided Diagnosis
Title Semiautomatic tumor segmentation with multimodal images in a conditional random field framework
URI http://www.dx.doi.org/10.1117/1.JMI.3.2.024503
https://www.ncbi.nlm.nih.gov/pubmed/27413768
https://www.proquest.com/docview/1804855743
https://pubmed.ncbi.nlm.nih.gov/PMC4923672
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di5wwEA_tFkpfSr9v-0UKpVAOPaNR18fS9rpd2FLoHdxbiDHuSasuu_pyf30nH7q690GvLyImhuD8nMxMZn5B6D2s0JxkUjhhDO4qzaPQSSIinDSahUJyGuVCBfSXP6L5KV2chWe7qJKuLmlSV1xcWVfyP1KFZyBXVSV7C8n2g8IDuAf5whUkDNd_kvEvWRa8bWpDu9q0Zb053MpVaeuJTIW2yRks60zRa5R8pTOwVE1krXarTSQQFqysLg91Otth3uVrXWO4lnZvRw1mAw2qygdubc21OqDJHYQY5q1W9K0jzotdvg-szl1u2TB3X0fHV3JjCs2-Fb_5KDJBokFCi1ZgYKwlDg28kbYNBqDyh5qThprs4CqdrlkB3MXyuxu4vuv1Xcf02XvLWp9saNycmBEGI7CA-cyMcBfd88G38AchHh2YI6qemepDCe38u-1tEh_tT2NszlzyUS6n2k6260IOTJiTR-ihFSH-ZID0GN2R1RN0f2mzK54iNsIT1njCQzxhhSe8wxM2eMJFhTke4AkbPGGNJ9zj6Rk6Pf568nnu2AM4HEGjqHHETFCZcEU6GZDc45Rnwvd5ClYjTxJYGImXS5ET6efgJ8gwiNOUJoImUUJzL82C52hS1ZU8QNgXIgzSgIAHHNIsDrlM1bFpkociJknmTdFR9x2ZsOz06pCUP-w68U3Rx_6NtWFmuaHvu040DNSn2hPjlazbLSMzT9EjgR09RS-MqPrRFLMTrL-zKYpHQuw7KGr2cUtVnGuKdkV7GMX-FH1Q4mZWZ2xvmOBi3LFrvijWe131I4uUn1-O91vXWf7yFl_mFXqw-3Vfo0mzaeUbMLOb9K3-Lf4CpXDRZA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiautomatic+tumor+segmentation+with+multimodal+images+in+a+conditional+random+field+framework&rft.jtitle=Journal+of+medical+imaging+%28Bellingham%2C+Wash.%29&rft.au=Hu%2C+Yu-chi&rft.au=Grossberg%2C+Michael&rft.au=Mageras%2C+Gikas&rft.date=2016-04-01&rft.issn=2329-4302&rft.volume=3&rft.issue=2&rft.spage=24503&rft_id=info:doi/10.1117%2F1.JMI.3.2.024503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JMI_3_2_024503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-4302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-4302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-4302&client=summon