Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment
[Display omitted] •Inhibiting ferroptosis could alleviate acute kidney injury following crush syndrome.•Iron overload produced by myoglobin degradation is a risk factor for ferroptosis.•HMGB1 and souble-stranded DNA trigger ferroptosis via multiple signaling pathways.•Crosstalk between inflammation...
Saved in:
Published in | Journal of advanced research Vol. 54; pp. 211 - 222 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.12.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Inhibiting ferroptosis could alleviate acute kidney injury following crush syndrome.•Iron overload produced by myoglobin degradation is a risk factor for ferroptosis.•HMGB1 and souble-stranded DNA trigger ferroptosis via multiple signaling pathways.•Crosstalk between inflammation and ferroptosis.•Inhibition of ferroptosis by alleviating inflammation and anti-lipid peroxidation.
Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI.
This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI.
One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI. |
---|---|
AbstractList | Background: Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. Aim of review: This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. Key scientific concepts of review: One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI. Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI. Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI.BACKGROUNDCrush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI.This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI.AIM OF REVIEWThis review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI.One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.KEY SCIENTIFIC CONCEPTS OF REVIEWOne of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI. [Display omitted] •Inhibiting ferroptosis could alleviate acute kidney injury following crush syndrome.•Iron overload produced by myoglobin degradation is a risk factor for ferroptosis.•HMGB1 and souble-stranded DNA trigger ferroptosis via multiple signaling pathways.•Crosstalk between inflammation and ferroptosis.•Inhibition of ferroptosis by alleviating inflammation and anti-lipid peroxidation. Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI. |
Author | Li, Ning Gong, Yanhua Qiao, Ou Wang, Xinyue Wang, Yuru |
Author_xml | – sequence: 1 givenname: Ou surname: Qiao fullname: Qiao, Ou organization: Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 2 givenname: Xinyue surname: Wang fullname: Wang, Xinyue organization: Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 3 givenname: Yuru surname: Wang fullname: Wang, Yuru organization: Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 4 givenname: Ning surname: Li fullname: Li, Ning email: lining620@tju.edu.cn organization: Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China – sequence: 5 givenname: Yanhua surname: Gong fullname: Gong, Yanhua email: gongyanhua@tju.edu.cn organization: Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36702249$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTFvHCEQhZFly3Yc_4EUEWWauwB7t7BRGsuKE0uW3CRFKjSww4XNLlyAtXX_PlzOdpHCaCQG9L0HevOGHIcYkJB3nC054-3HYTlAwqVgolkyXqs9IueCdWzBhVgdv_SNOCOXOQ-srkapjvNTcta0klWqOyc_bzCluC0x-0x9oGDngvS37wPu6nmY0466OI7x0YcNtWnOv2jehT7FCT_RKxriA460QNpgqWCiJSGUCUN5S04cjBkvn_YL8uPmy_frb4u7-6-311d3C7tq27KwkqumlwB2jbwzykim2s6snJHcGgNghGR9ZwGEEqpfO3BoGqNg7bhyyjYX5Pbg20cY9Db5CdJOR_D630VMGw2peDuiNmsjnG1RQStXAntlEa00nas_aTq29_pw8Nqm-GfGXPTks8VxhIBxzlpIybhgqlMVff-EzmbC_uXh52groA6ATTHnhE5bX6D4GEoCP2rO9H6QetD7Qer9IDXjtdoqFf9Jn91fFX0-iLCG_eAx6Ww9Bou9T2hLTcO_Jv8LThC4aw |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1388527 crossref_primary_10_1007_s10753_024_02137_9 crossref_primary_10_1016_j_phymed_2024_155700 crossref_primary_10_1016_j_jare_2024_05_012 crossref_primary_10_3389_fphar_2024_1438127 crossref_primary_10_3390_diagnostics13193034 crossref_primary_10_1038_s41467_025_56353_4 crossref_primary_10_1186_s12882_024_03679_8 crossref_primary_10_1016_j_ejpb_2025_114702 crossref_primary_10_1007_s00262_023_03564_7 crossref_primary_10_1016_j_ajem_2024_10_031 crossref_primary_10_1021_acsami_4c14815 crossref_primary_10_1172_JCI188358 crossref_primary_10_1016_j_aquaculture_2024_742033 crossref_primary_10_1097_MD_0000000000033453 crossref_primary_10_1186_s13054_024_05158_w crossref_primary_10_3389_fchem_2025_1543455 crossref_primary_10_1016_j_intimp_2023_110801 crossref_primary_10_3389_fphar_2024_1472971 crossref_primary_10_1007_s00604_024_06661_1 |
Cites_doi | 10.1038/s41467-022-33610-4 10.1080/0886022X.2020.1792928 10.1016/j.jare.2020.07.007 10.1038/s41419-020-2732-5 10.1038/ncb3064 10.1089/ars.2012.4887 10.1186/s12974-022-02596-7 10.1038/s41467-021-24859-2 10.1016/j.canlet.2022.215919 10.1016/j.coi.2017.10.011 10.1016/j.ejphar.2022.175304 10.1016/j.cbi.2016.06.020 10.1016/j.bioorg.2020.103913 10.3389/fphys.2019.00139 10.1016/j.scitotenv.2022.157819 10.1182/bloodadvances.2020001698 10.1016/j.freeradbiomed.2021.09.008 10.1002/advs.202100997 10.1038/s41418-019-0380-z 10.1152/ajprenal.00044.2017 10.1096/fj.202001758R 10.1038/nutd.2015.11 10.1016/j.celrep.2022.110942 10.1007/s00068-018-0987-7 10.3389/fcell.2021.707959 10.1111/bph.15518 10.1002/hep.26401 10.1021/acscentsci.0c01592 10.1021/acschembio.7b00730 10.2217/nnm-2020-0038 10.1016/j.bbi.2021.01.003 10.1155/2022/9947191 10.1016/j.lfs.2022.121050 10.1182/blood-2018-05-850404 10.3389/fimmu.2019.01003 10.1186/s13018-021-02903-7 10.1042/bst0300745 10.1038/s41419-021-03452-x 10.1038/nchembio.2238 10.1182/blood-2008-06-165340 10.1038/s41467-019-13143-z 10.1038/nature00858 10.1038/cdd.2015.158 10.1167/iovs.63.3.2 10.1007/s00068-022-01910-5 10.1159/000489659 10.1016/j.redox.2022.102262 10.1371/journal.ppat.1007140 10.1096/fj.201900077R 10.1016/j.ejphar.2022.175291 10.3892/etm.2022.11249 10.2337/db17-1280 10.1016/j.cell.2017.09.021 10.1016/j.fct.2022.112909 10.1159/000484233 10.1097/SHK.0000000000001839 10.1080/08923973.2019.1706555 10.1002/iub.1616 10.1159/000368528 10.1016/j.freeradbiomed.2014.05.005 10.1111/bph.15364 10.1016/j.ijbiomac.2021.01.138 10.1177/1043454214554008 10.1042/BSR20202924 10.1097/SHK.0000000000001911 10.1152/ajprenal.00062.2003 10.3389/fphar.2022.782466 10.1016/j.redox.2022.102435 10.1056/NEJMra054329 10.1002/adma.202000038 10.1016/j.cell.2012.03.042 10.1080/21655979.2021.1964158 10.1039/C7CP00804J 10.1016/j.bbrc.2019.01.090 10.1172/jci.insight.146852 10.1056/NEJMra0801327 10.3389/fphys.2021.680544 10.1097/SHK.0000000000000817 10.1016/j.chembiol.2008.02.010 10.1016/j.intimp.2020.106265 10.1038/s41418-022-01033-9 10.4155/fmc.09.121 10.1002/path.5212 10.1186/s41065-022-00235-y 10.1073/pnas.1415518111 10.1084/jem.20220504 10.3389/fphar.2022.857067 10.3390/ijms21228564 10.1155/2022/8438528 10.1021/acsomega.1c01411 10.1016/S1535-6108(03)00050-3 10.1016/j.bbrc.2022.07.041 10.1016/j.carbpol.2015.10.048 10.1186/s13613-017-0313-2 10.1136/bmj.1.4185.427 10.3390/cells11050849 10.1021/acs.jafc.2c01196 10.1021/ja411006a 10.1097/01.JAA.0000510986.14286.fd 10.1126/science.1092385 10.1021/acs.jmedchem.5b01641 10.1186/s10020-019-0081-6 10.1080/21655979.2021.2000742 10.1038/s41420-022-00894-w 10.1038/nm.4462 10.1016/j.molcel.2018.10.042 10.1016/j.foodchem.2022.132972 10.1038/s41467-022-33301-0 10.1038/s41598-022-06848-7 10.3390/ijms23169327 10.3389/fnagi.2021.745046 10.1080/10408398.2017.1381583 10.1186/s13062-021-00294-7 10.1002/JLB.1A0422-211R 10.1007/s12098-019-03096-y |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Production and hosting by Elsevier B.V. |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Production and hosting by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.jare.2023.01.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 222 |
ExternalDocumentID | oai_doaj_org_article_b5b2fc6e8a6742ed8ceec7b9f466390c 36702249 10_1016_j_jare_2023_01_016 S2090123223000292 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-c7183d7aac5e19b8b70869b4fb71cbbaab270d9caa2828d5fafeb3b8a5f18f8c3 |
IEDL.DBID | DOA |
ISSN | 2090-1232 2090-1224 |
IngestDate | Wed Aug 27 01:30:49 EDT 2025 Thu Jul 10 23:22:02 EDT 2025 Sat Jun 28 01:32:46 EDT 2025 Tue Jul 01 03:01:32 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 23 02:37:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myoglobin Systemic inflammatory responses Ferroptosis Crush syndrome Drug development Acute kidney injury |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023. Production and hosting by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-c7183d7aac5e19b8b70869b4fb71cbbaab270d9caa2828d5fafeb3b8a5f18f8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
OpenAccessLink | https://doaj.org/article/b5b2fc6e8a6742ed8ceec7b9f466390c |
PMID | 36702249 |
PQID | 2770120898 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5b2fc6e8a6742ed8ceec7b9f466390c proquest_miscellaneous_2770120898 pubmed_primary_36702249 crossref_citationtrail_10_1016_j_jare_2023_01_016 crossref_primary_10_1016_j_jare_2023_01_016 elsevier_sciencedirect_doi_10_1016_j_jare_2023_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Li, Yan, Zhao, Zhang, Zhang (b0405) 2022; 13 Pawlaczyk, Schroeder (b0565) 2021; 6 Kagan, Mao, Qu, Angeli, Doll, Croix (b0460) 2017; 13 Qiongyue, Xin, Meng, Sulin, Yanlin, Xinyi (b0595) 2022; 13 Zhang, Song, Wang, Wen, Zhang (b0330) 2022; 17 Zhou, Yu, Wang, Du, Chen, Li (b0600) 2022; 2022 Tan, Sun, Sun, Li, Zhang, Yang (b0190) 2021; 173 Murata, Miyake, Takahashi, Suzuki, Fujiwara, Sato (b0630) 2017; 48 Panizo, Rubio-Navarro, Amaro-Villalobos, Egido, Moreno (b0205) 2015; 40 Wen, Liu, Kang, Zhou, Tang (b0370) 2019; 510 Kremer, Nelson, Lin, Yarosz, Halbrook, Kerk (b0115) 2021; 12 Jiang, Liao, Huang, Zeng, Liao (b0585) 2021; 23 Sterling, Baumann, Foshe, Voigt, Guttha, Alnemri (b0300) 2022; 39 Li, Chen, Geng, Wang, Wang, Sun (b0020) 2022; 8 Chen, Sun, Li, Wang, Lin, Hu (b0250) 2017; 43 Linkermann, Skouta, Himmerkus, Mulay, Dewitz, De Zen (b0535) 2014; 111 McCullough, Akhter, Taheri, Traylor, Zmijewska, Verma (b0605) 2022; 9 Rassu, Salis, Porcu, Giunchedi, Roldo, Gavini (b0570) 2016; 136 He, Wang, Li, Chen, Liao, Zou (b0030) 2011; 70 Li, Gao, Wang, Wu, Zhang, Xu (b0415) 2022; 13 Meihe, Shan, Minchao, Xiaoling, Peng, Xili (b0325) 2021; 9 Skouta, Dixon, Wang, Dunn, Orman, Shimada (b0525) 2014; 136 Fraenkel, Gibert, Holzheimer, Lattanzi, Burnett, Dooley (b0150) 2009; 113 Bao, Zhao, Feng, Zhao, Duan, Qiu (b0235) 2022; 163 Yang, Wang, Yang, Yuan, Chen, Zhang (b0345) 2018; 46 Li Pomi, Borgia, Custurone, Vaccaro, Pioggia, Gangemi (b0335) 2022; 23 Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon (b0165) 2017; 171 infection, J Exp Med. 2022;219. doi: 10.1084/jem.20220504. Wu, Zhao, Yang, Wang, Chen (b0365) 2021; 41 M.R. Marasco, A.M. Conteh, C.A. Reissaus, J.E.t. Cupit, E.M. Appleman, R.G. Mirmira, et al. Interleukin-6 reduces beta-cell oxidative stress by linking autophagy with the antioxidant response. Diabetes 2018;67:1576–88. doi: 10.2337/db17-1280. Zhang, He, Deng, Xu, Zeng, Qian (b0620) 2022; 933 Wang, Timilsena, Blanch, Adhikari (b0560) 2019; 59 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason (b0100) 2012; 149 Yang, Song, Hou, Fan, Lv, Liu (b0260) 2020; 81 Yao, Li, Fang, Xiao, Wu, Li (b0040) 2021; 8 Fillebeen, Charlebois, Wagner, Katsarou, Mui, Vali (b0145) 2019; 133 Wei, Wang, Wang, Wang, Liu, Han (b0425) 2019; 10 Li, Liu, Fan, Liu, Han, Meng (b0580) 2021; 178 Musheshe, Oun, Sabogal-Guaqueta, Trombetta-Lima, Mitchel, Adzemovic (b0055) 2022; 11 Wang, Quan, Cao, Lin, Yue, Bi (b0045) 2021; 28 Lei, Bai, Sun (b0170) 2019; 10 Okubo, Kurosawa, Kamiya, Urano, Suzuki, Yamamoto (b0435) 2018; 24 Montes, Subramanian, Goodspeed, Wang, Omer, Bobik (b0505) 2015; 5 Friedmann Angeli, Schneider, Proneth, Tyurina, Tyurin, Hammond (b0520) 2014; 16 Adedoyin, Boddu, Traylor, Lever, Bolisetty, George (b0185) 2018; 314 Ke, Bai, Zhu, Xiang, Liu, Zhou (b0215) 2022; 389 Murata, Abe, Yaginuma, Yodo, Kamakari, Miyazaki (b0265) 2017; 7 Kruger, Han (b0200) 2017; 30 Liu, Kang (b0480) 2022; 623 Wang, Li, Wang, Chen, Geng, Liu (b0015) 2021; 8 Sever, Vanholder, Lameire (b0010) 2006; 354 Sheng, Shan, Liu, Yang, Sun, Chen (b0515) 2017; 19 Han, Li, Yang, Bai (b0285) 2021; 12 Gao, Yi, Zhu, Minikes, Monian, Thompson (b0050) 2019; 73 Li, Sun, Song, Song, Fang, Zhang (b0310) 2021; 6 Yang, Liu, Zeng, Imperato, Addorisio, Li (b0500) 2019; 25 Sun, Wu, Deng, Zhang (b0085) 2022; 309 Ning, Qi, Yuan, Li, Wang, Lin (b0130) 2022; 934 Rashed, Deghiedy, El-Hazek, El-Sabbagh, Rashed, El-Ghazaly (b0090) 2020; 100 Gburek, Birn, Verroust, Goj, Jacobsen, Moestrup (b0210) 2003; 285 Shen, Luo, Chen, Ma, Mao, Zhang (b0410) 2022; 550 Bywaters, Beall (b0065) 1941; 1 Wu, Yang, Sun, Hu, Zhang, Cai (b0445) 2021; 178 Brinkmann, Reichard, Goosmann, Fauler, Uhlemann, Weiss (b0420) 2004; 303 Majernikova, den Dunnen, Dolga (b0125) 2021; 13 Cui, Zhang, Zhao, Shao, Liu, Sun (b0270) 2021; 93 Place, Kanneganti (b0305) 2018; 50 Roy, Devarajan (b0075) 2020; 87 Lv, Long, Wang, Shi, Wang, Guo (b0070) 2021; 56 Dolma, Lessnick, Hahn, Stockwell (b0105) 2003; 3 Wang, Knutson (b0155) 2013; 58 Guerrero-Hue, Garcia-Caballero, Palomino-Antolin, Rubio-Navarro, Vazquez-Carballo, Herencia (b0060) 2019; 33 Liu, Yu, Chen, Liu, Li, Zhang (b0005) 2022; 57 Hong, Lin, Xu, Tong, Zhang, He (b0275) 2022; 849 Scaffidi, Misteli, Bianchi (b0355) 2002; 418 Doll, Conrad (b0160) 2017; 69 Zhang, Li, Li, Lv, Yang (b0465) 2021; 16 L. Wang, Y. Liu, T. Du, H. Yang, L. Lei, M. Guo, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc, Cell Death Differ. 27 (2020). 662–75. doi: 10.1038/s41418-019-0380-z. Murata, Kawanishi, Inoue, Iwata, Kobayashi, Inoue (b0635) 2019; 45 Mao, Zhao, Song, Lin, Fan, Cui (b0140) 2020; 11 Bosch, Poch, Grau (b0450) 2009; 361 Ratiu, Barclay, Lin, Wang, Wellford, Mehta (b0390) 2022; 13 Wu (b0485) 2015; 32 S. Hofmans, T. Vanden Berghe, L. Devisscher, B. Hassannia, S. Lyssens, J. Joossens, et al. Novel ferroptosis inhibitors with improved potency and ADME properties, J Med Chem. 59 (2016). 2041–53. doi: 10.1021/acs.jmedchem.5b01641. Zhang, Zhang, Zhang, Yang, Zhu, Yin (b0385) 2022 Li, Zou, Fu, Xing, Wang, Wan (b0180) 2021; 12 Mo, Xu, Li (b0295) 2021; 12 Fang, Chen, Tan, Zhou, Xu, Gu (b0510) 2021; 7 Oishi, Tsukiji, Otake, Oishi, Sasaki, Shirai (b0440) 2021; 5 Zhang, Wang, Liu, Du, Lu (b0490) 2021; 8 Yang, Stockwell (b0110) 2008; 15 Baatarjav, Komada, Karasawa, Yamada, Sampilvanjil, Matsumura (b0375) 2022; 29 Xie, Deng, Guo, Li, Zhou, Liao (b0320) 2022; 12 Wang, Zhang, Bi, Su, Quan, Lin (b0470) 2022; 51 Jones, Goswami, Kang, Choi, Kim (b0575) 2020; 15 Kim, Kang, Joo, Han, Shin, Nam (b0175) 2021; 12 Zhao, Yu, He, Bao, Feng, Chen (b0550) 2021; 175 Richards (b0220) 2013; 18 Su, Shen, Hu, Chen, Cheng, Cai (b0395) 2022 Li, Wang, Wang, Fan, Hou, Gong (b0035) 2020; 42 Kang, Han, Xue, Baek, Chang, Hu (b0545) 2019; 10 Guo, Wang, Min (b0590) 2022; 112 Hendgen-Cotta, Kelm, Rassaf (b0195) 2014; 73 Min, Qi, Zhang, Han, Cheng, Liu (b0230) 2020; 32 Li, Yang, Hao, Zhou, Li, Liu (b0615) 2022; 2022 E.P. Amaral, T.W. Foreman, S. Namasivayam, K.L. Hilligan, K.D. Kauffman, C.C. Barbosa Bomfim, et al. GPX4 regulates cellular necrosis and host resistance in Tao, Shan, Zhang, Liu, Wang, Wei (b0475) 2022; 13 Pertiwi, de Boer, Mackaaij, Pabittei, de Winter, Li (b0430) 2019; 247 Li, Wang, Jia, Xie, Ma, Hao (b0640) 2022; 56 Shah, Margison, Pratt (b0540) 2017; 12 Hatcher, Singh, Torti, Torti (b0555) 2009; 1 Laranjeira-Silva, Wang, Samuel, Maeda, Michailowsky, Hamza (b0225) 2018; 14 Leng, Luo, Yu, Jia, Ferroptosis (b0120) 2021; 9 Jin, Lin, Liu, Wang, Wang, Zhang (b0025) 2022; 48 Zhou, Bai, Jiang, Tarun, Feng, Huang (b0080) 2020; 42 Taverna, Tonacci, Ferraro, Cammarata, Cuttitta, Bucchieri (b0340) 2022; 11 Song, Kim, Lee, Moon, Hwang, Kim (b0245) 2020; 21 Zhu, Zhu, Liu, Yu, Wu, Hei (b0495) 2022; 2022 Reeder, Sharpe, Kay, Kerr, Moore, Wilson (b0240) 2002; 30 Murata, Sugai, Murakawa, Miyamoto, Kobayashi, Inoue (b0255) 2022; 23 Griswold, Huang, Bachovchin (b0315) 2022; 63 Xie, Hou, Song, Yu, Huang, Sun (b0135) 2016; 23 Zhu, Sui, Shi, Wang (b0280) 2022; 159 Zhao, Wang, Yang, Wang, Zhao, Sun (b0290) 2022; 70 Zorova, Pevzner, Chupyrkina, Zorov, Silachev, Plotnikov (b0095) 2016; 256 Wang, Liu, Xue, Hu, Zhao, Cai (b0380) 2022; 13 Zhang, Jiang, He, Cai, Xie, Wu (b0350) 2022; 19 Xu, Li, Cheng, Yang, Wang (b0455) 2020; 34 Ye, Chai, Xie, Yang, Yu, Cao (b0360) 2019; 9 Xu (10.1016/j.jare.2023.01.016_b0455) 2020; 34 Brinkmann (10.1016/j.jare.2023.01.016_b0420) 2004; 303 Chen (10.1016/j.jare.2023.01.016_b0250) 2017; 43 Sterling (10.1016/j.jare.2023.01.016_b0300) 2022; 39 Fang (10.1016/j.jare.2023.01.016_b0510) 2021; 7 Scaffidi (10.1016/j.jare.2023.01.016_b0355) 2002; 418 Wu (10.1016/j.jare.2023.01.016_b0365) 2021; 41 Murata (10.1016/j.jare.2023.01.016_b0635) 2019; 45 Bosch (10.1016/j.jare.2023.01.016_b0450) 2009; 361 Li (10.1016/j.jare.2023.01.016_b0405) 2022; 13 Wei (10.1016/j.jare.2023.01.016_b0425) 2019; 10 Jin (10.1016/j.jare.2023.01.016_b0025) 2022; 48 He (10.1016/j.jare.2023.01.016_b0030) 2011; 70 Ke (10.1016/j.jare.2023.01.016_b0215) 2022; 389 10.1016/j.jare.2023.01.016_b0530 Adedoyin (10.1016/j.jare.2023.01.016_b0185) 2018; 314 Jones (10.1016/j.jare.2023.01.016_b0575) 2020; 15 Wang (10.1016/j.jare.2023.01.016_b0155) 2013; 58 Meihe (10.1016/j.jare.2023.01.016_b0325) 2021; 9 Zhao (10.1016/j.jare.2023.01.016_b0290) 2022; 70 Reeder (10.1016/j.jare.2023.01.016_b0240) 2002; 30 Murata (10.1016/j.jare.2023.01.016_b0265) 2017; 7 Kremer (10.1016/j.jare.2023.01.016_b0115) 2021; 12 Wang (10.1016/j.jare.2023.01.016_b0015) 2021; 8 Friedmann Angeli (10.1016/j.jare.2023.01.016_b0520) 2014; 16 Zhang (10.1016/j.jare.2023.01.016_b0350) 2022; 19 Li (10.1016/j.jare.2023.01.016_b0580) 2021; 178 Mo (10.1016/j.jare.2023.01.016_b0295) 2021; 12 Shen (10.1016/j.jare.2023.01.016_b0410) 2022; 550 Zhu (10.1016/j.jare.2023.01.016_b0495) 2022; 2022 Zhang (10.1016/j.jare.2023.01.016_b0385) 2022 Dolma (10.1016/j.jare.2023.01.016_b0105) 2003; 3 Hong (10.1016/j.jare.2023.01.016_b0275) 2022; 849 10.1016/j.jare.2023.01.016_b0400 Stockwell (10.1016/j.jare.2023.01.016_b0165) 2017; 171 Li Pomi (10.1016/j.jare.2023.01.016_b0335) 2022; 23 Zhao (10.1016/j.jare.2023.01.016_b0550) 2021; 175 Li (10.1016/j.jare.2023.01.016_b0640) 2022; 56 Wang (10.1016/j.jare.2023.01.016_b0380) 2022; 13 Su (10.1016/j.jare.2023.01.016_b0395) 2022 Murata (10.1016/j.jare.2023.01.016_b0630) 2017; 48 Lv (10.1016/j.jare.2023.01.016_b0070) 2021; 56 Dixon (10.1016/j.jare.2023.01.016_b0100) 2012; 149 Xie (10.1016/j.jare.2023.01.016_b0135) 2016; 23 Mao (10.1016/j.jare.2023.01.016_b0140) 2020; 11 Guo (10.1016/j.jare.2023.01.016_b0590) 2022; 112 Qiongyue (10.1016/j.jare.2023.01.016_b0595) 2022; 13 Min (10.1016/j.jare.2023.01.016_b0230) 2020; 32 Wang (10.1016/j.jare.2023.01.016_b0560) 2019; 59 Ning (10.1016/j.jare.2023.01.016_b0130) 2022; 934 Wu (10.1016/j.jare.2023.01.016_b0485) 2015; 32 Li (10.1016/j.jare.2023.01.016_b0615) 2022; 2022 Sun (10.1016/j.jare.2023.01.016_b0085) 2022; 309 Doll (10.1016/j.jare.2023.01.016_b0160) 2017; 69 Li (10.1016/j.jare.2023.01.016_b0180) 2021; 12 Skouta (10.1016/j.jare.2023.01.016_b0525) 2014; 136 Tan (10.1016/j.jare.2023.01.016_b0190) 2021; 173 Rashed (10.1016/j.jare.2023.01.016_b0090) 2020; 100 Liu (10.1016/j.jare.2023.01.016_b0480) 2022; 623 Montes (10.1016/j.jare.2023.01.016_b0505) 2015; 5 10.1016/j.jare.2023.01.016_b0625 Yang (10.1016/j.jare.2023.01.016_b0260) 2020; 81 Griswold (10.1016/j.jare.2023.01.016_b0315) 2022; 63 Wang (10.1016/j.jare.2023.01.016_b0470) 2022; 51 Kim (10.1016/j.jare.2023.01.016_b0175) 2021; 12 Li (10.1016/j.jare.2023.01.016_b0415) 2022; 13 Lei (10.1016/j.jare.2023.01.016_b0170) 2019; 10 Place (10.1016/j.jare.2023.01.016_b0305) 2018; 50 Tao (10.1016/j.jare.2023.01.016_b0475) 2022; 13 Leng (10.1016/j.jare.2023.01.016_b0120) 2021; 9 Wen (10.1016/j.jare.2023.01.016_b0370) 2019; 510 Laranjeira-Silva (10.1016/j.jare.2023.01.016_b0225) 2018; 14 Zhou (10.1016/j.jare.2023.01.016_b0080) 2020; 42 10.1016/j.jare.2023.01.016_b0610 Zhang (10.1016/j.jare.2023.01.016_b0620) 2022; 933 Zhou (10.1016/j.jare.2023.01.016_b0600) 2022; 2022 McCullough (10.1016/j.jare.2023.01.016_b0605) 2022; 9 Bywaters (10.1016/j.jare.2023.01.016_b0065) 1941; 1 Majernikova (10.1016/j.jare.2023.01.016_b0125) 2021; 13 Hatcher (10.1016/j.jare.2023.01.016_b0555) 2009; 1 Linkermann (10.1016/j.jare.2023.01.016_b0535) 2014; 111 Baatarjav (10.1016/j.jare.2023.01.016_b0375) 2022; 29 Li (10.1016/j.jare.2023.01.016_b0020) 2022; 8 Hendgen-Cotta (10.1016/j.jare.2023.01.016_b0195) 2014; 73 Sever (10.1016/j.jare.2023.01.016_b0010) 2006; 354 Li (10.1016/j.jare.2023.01.016_b0035) 2020; 42 Rassu (10.1016/j.jare.2023.01.016_b0570) 2016; 136 Gao (10.1016/j.jare.2023.01.016_b0050) 2019; 73 Panizo (10.1016/j.jare.2023.01.016_b0205) 2015; 40 Jiang (10.1016/j.jare.2023.01.016_b0585) 2021; 23 Zhang (10.1016/j.jare.2023.01.016_b0490) 2021; 8 Musheshe (10.1016/j.jare.2023.01.016_b0055) 2022; 11 Guerrero-Hue (10.1016/j.jare.2023.01.016_b0060) 2019; 33 Ratiu (10.1016/j.jare.2023.01.016_b0390) 2022; 13 Pawlaczyk (10.1016/j.jare.2023.01.016_b0565) 2021; 6 Zhang (10.1016/j.jare.2023.01.016_b0330) 2022; 17 Xie (10.1016/j.jare.2023.01.016_b0320) 2022; 12 Oishi (10.1016/j.jare.2023.01.016_b0440) 2021; 5 Richards (10.1016/j.jare.2023.01.016_b0220) 2013; 18 Cui (10.1016/j.jare.2023.01.016_b0270) 2021; 93 Bao (10.1016/j.jare.2023.01.016_b0235) 2022; 163 Kagan (10.1016/j.jare.2023.01.016_b0460) 2017; 13 Zorova (10.1016/j.jare.2023.01.016_b0095) 2016; 256 Pertiwi (10.1016/j.jare.2023.01.016_b0430) 2019; 247 Ye (10.1016/j.jare.2023.01.016_b0360) 2019; 9 Sheng (10.1016/j.jare.2023.01.016_b0515) 2017; 19 Wu (10.1016/j.jare.2023.01.016_b0445) 2021; 178 Murata (10.1016/j.jare.2023.01.016_b0255) 2022; 23 Okubo (10.1016/j.jare.2023.01.016_b0435) 2018; 24 Roy (10.1016/j.jare.2023.01.016_b0075) 2020; 87 Fraenkel (10.1016/j.jare.2023.01.016_b0150) 2009; 113 Gburek (10.1016/j.jare.2023.01.016_b0210) 2003; 285 Yang (10.1016/j.jare.2023.01.016_b0345) 2018; 46 Shah (10.1016/j.jare.2023.01.016_b0540) 2017; 12 Li (10.1016/j.jare.2023.01.016_b0310) 2021; 6 Kang (10.1016/j.jare.2023.01.016_b0545) 2019; 10 Song (10.1016/j.jare.2023.01.016_b0245) 2020; 21 Yang (10.1016/j.jare.2023.01.016_b0500) 2019; 25 Fillebeen (10.1016/j.jare.2023.01.016_b0145) 2019; 133 Wang (10.1016/j.jare.2023.01.016_b0045) 2021; 28 Han (10.1016/j.jare.2023.01.016_b0285) 2021; 12 Liu (10.1016/j.jare.2023.01.016_b0005) 2022; 57 Taverna (10.1016/j.jare.2023.01.016_b0340) 2022; 11 Yang (10.1016/j.jare.2023.01.016_b0110) 2008; 15 Zhu (10.1016/j.jare.2023.01.016_b0280) 2022; 159 Yao (10.1016/j.jare.2023.01.016_b0040) 2021; 8 Zhang (10.1016/j.jare.2023.01.016_b0465) 2021; 16 Kruger (10.1016/j.jare.2023.01.016_b0200) 2017; 30 |
References_xml | – volume: 12 start-page: 3056 year: 2022 ident: b0320 article-title: Endothelial cell ferroptosis mediates monocrotaline-induced pulmonary hypertension in rats by modulating NLRP3 inflammasome activation publication-title: Sci Rep – volume: 2022 start-page: 8438528 year: 2022 ident: b0495 article-title: Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway publication-title: Oxid Med Cell Longev – volume: 510 start-page: 278 year: 2019 end-page: 283 ident: b0370 article-title: The release and activity of HMGB1 in ferroptosis publication-title: Biochem Biophys Res Commun – volume: 10 start-page: 1003 year: 2019 ident: b0425 article-title: Effects of neutrophil extracellular traps on bovine mammary epithelial cells in vitro publication-title: Front Immunol – volume: 5 start-page: e161 year: 2015 ident: b0505 article-title: Anti-HMGB1 antibody reduces weight gain in mice fed a high-fat diet publication-title: Nutr Diabetes – volume: 24 start-page: 232 year: 2018 end-page: 238 ident: b0435 article-title: Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury publication-title: Nat Med – volume: 34 start-page: 16262 year: 2020 end-page: 16275 ident: b0455 article-title: Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion publication-title: FASEB J – volume: 56 year: 2022 ident: b0640 article-title: Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation publication-title: Redox Biol – volume: 100 year: 2020 ident: b0090 article-title: Effectiveness of deferiprone-loaded nanocarrier in experimentally induced rhabdomyolysis: a dose-comparison study publication-title: Bioorg Chem – volume: 70 start-page: 4353 year: 2022 end-page: 4361 ident: b0290 article-title: Chlorogenic acid alleviates chronic stress-induced duodenal ferroptosis via the inhibition of the IL-6/JAK2/STAT3 signaling pathway in rats publication-title: J Agric Food Chem – volume: 1 start-page: 1643 year: 2009 end-page: 1670 ident: b0555 article-title: Synthetic and natural iron chelators: therapeutic potential and clinical use publication-title: Future Med Chem – volume: 389 year: 2022 ident: b0215 article-title: Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle publication-title: Food Chem – volume: 23 start-page: 369 year: 2016 end-page: 379 ident: b0135 article-title: Ferroptosis: process and function publication-title: Cell Death Differ – volume: 15 start-page: 1341 year: 2020 end-page: 1356 ident: b0575 article-title: Combating iron overload: a case for deferoxamine-based nanochelators publication-title: Nanomedicine (Lond) – volume: 11 year: 2022 ident: b0340 article-title: High mobility group box 1: biological functions and relevance in oxidative stress related chronic diseases publication-title: Cells – volume: 111 start-page: 16836 year: 2014 end-page: 16841 ident: b0535 article-title: Synchronized renal tubular cell death involves ferroptosis publication-title: Proc Natl Acad Sci U S A – volume: 17 start-page: 20 year: 2022 ident: b0330 article-title: Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries publication-title: J Orthop Surg Res – volume: 56 start-page: 1028 year: 2021 end-page: 1039 ident: b0070 article-title: The role of alpha-1-acid glycoprotein in the diagnosis and treatment of crush syndrome-induced acute kidney injury publication-title: Shock – volume: 5 start-page: 2017 year: 2021 end-page: 2026 ident: b0440 article-title: Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRgamma publication-title: Blood Adv – volume: 2022 start-page: 8223737 year: 2022 ident: b0615 article-title: Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis publication-title: Oxid Med Cell Longev – volume: 39 year: 2022 ident: b0300 article-title: Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction publication-title: Cell Rep – volume: 12 start-page: 2538 year: 2017 end-page: 2545 ident: b0540 article-title: The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death publication-title: ACS Chem Biol – volume: 285 start-page: F451 year: 2003 end-page: F458 ident: b0210 article-title: Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin publication-title: Am J Physiol Renal Physiol – volume: 70 start-page: 1213 year: 2011 end-page: 1217 ident: b0030 article-title: Crush syndrome and acute kidney injury in the Wenchuan Earthquake publication-title: J Trauma – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: b0100 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 46 start-page: 2532 year: 2018 end-page: 2542 ident: b0345 article-title: HMGB1 a-box reverses brain edema and deterioration of neurological function in a traumatic brain injury mouse model publication-title: Cell Physiol Biochem – volume: 623 start-page: 1 year: 2022 end-page: 8 ident: b0480 article-title: ACSL4 is overexpressed in psoriasis and enhances inflammatory responses by activating ferroptosis publication-title: Biochem Biophys Res Commun – volume: 1 start-page: 427 year: 1941 end-page: 432 ident: b0065 article-title: Crush Injuries with Impairment of Renal Function publication-title: Br Med J – reference: M.R. Marasco, A.M. Conteh, C.A. Reissaus, J.E.t. Cupit, E.M. Appleman, R.G. Mirmira, et al. Interleukin-6 reduces beta-cell oxidative stress by linking autophagy with the antioxidant response. Diabetes 2018;67:1576–88. doi: 10.2337/db17-1280. – volume: 28 start-page: 231 year: 2021 end-page: 243 ident: b0045 article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis publication-title: J Adv Res – volume: 418 start-page: 191 year: 2002 end-page: 195 ident: b0355 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature – volume: 247 start-page: 505 year: 2019 end-page: 512 ident: b0430 article-title: Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis publication-title: J Pathol – volume: 69 start-page: 423 year: 2017 end-page: 434 ident: b0160 article-title: Iron and ferroptosis: a still ill-defined liaison publication-title: IUBMB Life – volume: 93 start-page: 312 year: 2021 end-page: 321 ident: b0270 article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation publication-title: Brain Behav Immun – volume: 112 start-page: 1065 year: 2022 end-page: 1077 ident: b0590 article-title: Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells publication-title: J Leukoc Biol – volume: 73 start-page: 354 year: 2019 end-page: 63 e3 ident: b0050 article-title: Role of mitochondria in ferroptosis publication-title: Mol Cell – volume: 309 year: 2022 ident: b0085 article-title: EGFR mediated the renal cell apoptosis in rhabdomyolysis-induced model via upregulation of autophagy publication-title: Life Sci – volume: 13 year: 2022 ident: b0415 article-title: Taurine inhibits publication-title: Front Immunol – volume: 3 start-page: 285 year: 2003 end-page: 296 ident: b0105 article-title: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells publication-title: Cancer Cell – year: 2022 ident: b0395 article-title: SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function publication-title: J Med Virol – volume: 13 year: 2022 ident: b0475 article-title: Dexmedetomidine attenuates ferroptosis-mediated renal ischemia/reperfusion injury and inflammation by inhibiting ACSL4 via alpha2-AR publication-title: Front Pharmacol – volume: 51 year: 2022 ident: b0470 article-title: ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury publication-title: Redox Biol – volume: 48 start-page: 4585 year: 2022 end-page: 4593 ident: b0025 article-title: Remote ischemic postconditioning protects against crush-induced acute kidney injury via down-regulation of apoptosis and senescence publication-title: Eur J Trauma Emerg Surg – volume: 18 start-page: 2342 year: 2013 end-page: 2351 ident: b0220 article-title: Redox reactions of myoglobin publication-title: Antioxid Redox Signal – volume: 12 start-page: 9332 year: 2021 end-page: 9340 ident: b0295 article-title: Stigmasterol alleviates interleukin-1beta-induced chondrocyte injury by down-regulatingsterol regulatory element binding transcription factor 2 to regulateferroptosis publication-title: Bioengineered – volume: 13 start-page: 5685 year: 2022 ident: b0380 article-title: A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses publication-title: Nat Commun – volume: 45 start-page: 1087 year: 2019 end-page: 1095 ident: b0635 article-title: A novel method to assess the severity and prognosis in crush syndrome by assessment of skin damage in hairless rats publication-title: Eur J Trauma Emerg Surg – volume: 9 year: 2021 ident: b0120 article-title: A potential target in cardiovascular disease publication-title: Front Cell Dev Biol – reference: infection, J Exp Med. 2022;219. doi: 10.1084/jem.20220504. – volume: 73 start-page: 252 year: 2014 end-page: 259 ident: b0195 article-title: Myoglobin functions in the heart publication-title: Free Radic Biol Med – volume: 63 start-page: 2 year: 2022 ident: b0315 article-title: The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells publication-title: Invest Ophthalmol Vis Sci – volume: 16 start-page: 1180 year: 2014 end-page: 1191 ident: b0520 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat Cell Biol – volume: 178 start-page: 1182 year: 2021 end-page: 1199 ident: b0580 article-title: Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis publication-title: Br J Pharmacol – volume: 10 start-page: 5134 year: 2019 ident: b0545 article-title: Renal clearable nanochelators for iron overload therapy publication-title: Nat Commun – volume: 43 start-page: 2143 year: 2017 end-page: 2154 ident: b0250 article-title: Curcumin-loaded nanoparticles protect against rhabdomyolysis-induced acute kidney injury publication-title: Cell Physiol Biochem – volume: 361 start-page: 62 year: 2009 end-page: 72 ident: b0450 article-title: Rhabdomyolysis and acute kidney injury publication-title: N Engl J Med – volume: 10 start-page: 139 year: 2019 ident: b0170 article-title: Mechanisms of ferroptosis and relations with regulated cell death: a review publication-title: Front Physiol – reference: L. Wang, Y. Liu, T. Du, H. Yang, L. Lei, M. Guo, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc, Cell Death Differ. 27 (2020). 662–75. doi: 10.1038/s41418-019-0380-z. – volume: 13 year: 2022 ident: b0595 article-title: Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 pathway publication-title: Front Pharmacol – volume: 42 start-page: 656 year: 2020 end-page: 666 ident: b0035 article-title: Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues publication-title: Ren Fail – volume: 849 year: 2022 ident: b0275 article-title: Cadmium induces ferroptosis mediated inflammation by activating Gpx4/Ager/p65 axis in pancreatic beta-cells publication-title: Sci Total Environ – volume: 8 year: 2021 ident: b0490 article-title: Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1 publication-title: Front Cardiovasc Med – volume: 57 start-page: 469 year: 2022 end-page: 478 ident: b0005 article-title: Systemic review of animal models used in the study of crush syndrome publication-title: Shock – volume: 13 start-page: 5901 year: 2022 ident: b0390 article-title: Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-beta selection thymocytes publication-title: Nat Commun – volume: 13 year: 2022 ident: b0405 article-title: ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression publication-title: Front Pharmacol – volume: 6 year: 2021 ident: b0310 article-title: NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression publication-title: JCI Insight – volume: 550 year: 2022 ident: b0410 article-title: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer publication-title: Cancer Lett – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: b0165 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell – volume: 50 start-page: 32 year: 2018 end-page: 38 ident: b0305 article-title: Recent advances in inflammasome biology publication-title: Curr Opin Immunol – volume: 19 start-page: 13153 year: 2017 end-page: 13159 ident: b0515 article-title: Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1 publication-title: Phys Chem Chem Phys – volume: 29 start-page: 2487 year: 2022 end-page: 2502 ident: b0375 article-title: dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury publication-title: Cell Death Differ – volume: 58 start-page: 788 year: 2013 end-page: 798 ident: b0155 article-title: Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice publication-title: Hepatology – volume: 12 start-page: 5279 year: 2021 end-page: 5288 ident: b0285 article-title: Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis publication-title: Bioengineered – volume: 13 year: 2021 ident: b0125 article-title: The potential of ferroptosis-targeting therapies for Alzheimer's disease: from mechanism to transcriptomic analysis publication-title: Front Aging Neurosci – volume: 9 year: 2021 ident: b0325 article-title: The ferroptosis-NLRP1 inflammasome: the vicious cycle of an adverse pregnancy publication-title: Front Cell Dev Biol – volume: 23 year: 2022 ident: b0335 article-title: Role of HMGB1 in cutaneous melanoma: state of the art publication-title: Int J Mol Sci – volume: 136 start-page: 4551 year: 2014 end-page: 4556 ident: b0525 article-title: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models publication-title: J Am Chem Soc – volume: 14 start-page: e1007140 year: 2018 ident: b0225 article-title: A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity publication-title: PLoS Pathog – volume: 30 start-page: 745 year: 2002 end-page: 748 ident: b0240 article-title: Toxicity of myoglobin and haemoglobin: oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage publication-title: Biochem Soc Trans – volume: 7 start-page: 90 year: 2017 ident: b0265 article-title: Astragaloside-IV prevents acute kidney injury and inflammation by normalizing muscular mitochondrial function associated with a nitric oxide protective mechanism in crush syndrome rats publication-title: Ann Intensive Care – volume: 30 start-page: 20 year: 2017 end-page: 26 ident: b0200 article-title: Assessing acquired rhabdomyolysis in adults publication-title: JAAPA – volume: 81 year: 2020 ident: b0260 article-title: Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells publication-title: Int Immunopharmacol – volume: 21 year: 2020 ident: b0245 article-title: Rhabdomyolysis-induced AKI was ameliorated in NLRP3 KO mice via alleviation of mitochondrial lipid peroxidation in renal tubular cells publication-title: Int J Mol Sci – volume: 136 start-page: 1338 year: 2016 end-page: 1347 ident: b0570 article-title: Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases publication-title: Carbohydr Polym – volume: 59 start-page: 580 year: 2019 end-page: 596 ident: b0560 article-title: Lactoferrin: Structure, function, denaturation and digestion publication-title: Crit Rev Food Sci Nutr – volume: 40 start-page: 520 year: 2015 end-page: 532 ident: b0205 article-title: Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury publication-title: Kidney Blood Press Res – volume: 41 year: 2021 ident: b0365 article-title: HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose publication-title: Biosci Rep – volume: 113 start-page: 2843 year: 2009 end-page: 2850 ident: b0150 article-title: Transferrin-a modulates hepcidin expression in zebrafish embryos publication-title: Blood – volume: 32 start-page: 178 year: 2015 end-page: 184 ident: b0485 article-title: Dexrazoxane: a cardioprotectant for pediatric cancer patients receiving anthracyclines publication-title: J Pediatr Oncol Nurs – volume: 7 start-page: 980 year: 2021 end-page: 989 ident: b0510 article-title: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action publication-title: ACS Cent Sci – volume: 8 start-page: 90 year: 2022 ident: b0020 article-title: Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI publication-title: Cell Death Discov – reference: S. Hofmans, T. Vanden Berghe, L. Devisscher, B. Hassannia, S. Lyssens, J. Joossens, et al. Novel ferroptosis inhibitors with improved potency and ADME properties, J Med Chem. 59 (2016). 2041–53. doi: 10.1021/acs.jmedchem.5b01641. – volume: 934 year: 2022 ident: b0130 article-title: Identification of a new small molecule that initiates ferroptosis in cancer cells by inhibiting the system Xc(-) to deplete GSH publication-title: Eur J Pharmacol – volume: 16 start-page: 10 year: 2021 ident: b0465 article-title: High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma publication-title: Biol Direct – volume: 178 start-page: 3783 year: 2021 end-page: 3796 ident: b0445 article-title: Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury publication-title: Br J Pharmacol – volume: 8 start-page: e2100997 year: 2021 ident: b0040 article-title: Emerging roles of energy metabolism in ferroptosis regulation of tumor cells publication-title: Adv Sci (Weinh) – volume: 11 start-page: 518 year: 2020 ident: b0140 article-title: The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? publication-title: Cell Death Dis – reference: E.P. Amaral, T.W. Foreman, S. Namasivayam, K.L. Hilligan, K.D. Kauffman, C.C. Barbosa Bomfim, et al. GPX4 regulates cellular necrosis and host resistance in – volume: 8 start-page: 37 year: 2021 ident: b0015 article-title: RIG-I, a novel DAMPs sensor for myoglobin activates NF-kappaB/caspase-3 signaling in CS-AKI model publication-title: Mil Med Res – volume: 12 year: 2021 ident: b0180 article-title: A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis publication-title: Front Physiol – volume: 6 start-page: 15168 year: 2021 end-page: 15181 ident: b0565 article-title: Deferoxamine-modified hybrid materials for direct chelation of Fe(III) ions from aqueous solutions and indication of the competitiveness of in vitro complexing toward a biological system publication-title: ACS Omega – volume: 354 start-page: 1052 year: 2006 end-page: 1063 ident: b0010 article-title: Management of crush-related injuries after disasters publication-title: N Engl J Med – volume: 9 year: 2022 ident: b0605 article-title: Functional consequence of myeloid ferritin heavy chain on acute and chronic effects of rhabdomyolysis-induced kidney injury publication-title: Front Med (Lausanne) – volume: 11 year: 2022 ident: b0055 article-title: Pharmacological inhibition of Epac1 averts ferroptosis cell death by preserving mitochondrial integrity publication-title: Antioxidants (Basel) – volume: 133 start-page: 344 year: 2019 end-page: 355 ident: b0145 article-title: Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load publication-title: Blood – volume: 173 start-page: 524 year: 2021 end-page: 531 ident: b0190 article-title: Structure, functional properties and iron bioavailability of publication-title: Int J Biol Macromol – volume: 12 start-page: 4860 year: 2021 ident: b0115 article-title: GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis publication-title: Nat Commun – volume: 314 start-page: F702 year: 2018 end-page: F714 ident: b0185 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am J Physiol Renal Physiol – volume: 159 start-page: 21 year: 2022 ident: b0280 article-title: Inhibition of USP14 suppresses ferroptosis and inflammation in LPS-induced goat mammary epithelial cells through ubiquitylating the IL-6 protein publication-title: Hereditas – volume: 9 start-page: 730 year: 2019 end-page: 739 ident: b0360 article-title: HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells publication-title: Am J Cancer Res – volume: 33 start-page: 8961 year: 2019 end-page: 8975 ident: b0060 article-title: Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death publication-title: FASEB J – year: 2022 ident: b0385 article-title: The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity publication-title: Immunology – volume: 175 start-page: 236 year: 2021 end-page: 248 ident: b0550 article-title: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells publication-title: Free Radic Biol Med – volume: 256 start-page: 64 year: 2016 end-page: 70 ident: b0095 article-title: The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis publication-title: Chem Biol Interact – volume: 12 start-page: 160 year: 2021 ident: b0175 article-title: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions publication-title: Cell Death Dis – volume: 2022 start-page: 9947191 year: 2022 ident: b0600 article-title: Polydatin attenuates cisplatin-induced acute kidney injury by inhibiting ferroptosis publication-title: Oxid Med Cell Longev – volume: 303 start-page: 1532 year: 2004 end-page: 1535 ident: b0420 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science – volume: 23 start-page: 320 year: 2022 ident: b0255 article-title: Salvianolic acid B improves the survival rate, acute kidney dysfunction, inflammation and NETosis-mediated antibacterial action in a crush syndrome rat model publication-title: Exp Ther Med – volume: 87 start-page: 600 year: 2020 end-page: 607 ident: b0075 article-title: Acute kidney injury: diagnosis and management publication-title: Indian J Pediatr – volume: 163 year: 2022 ident: b0235 article-title: Ferritinophagy is involved in bisphenol A-induced ferroptosis of renal tubular epithelial cells through the activation of the AMPK-mTOR-ULK1 pathway publication-title: Food Chem Toxicol – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: b0460 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat Chem Biol – volume: 48 start-page: 112 year: 2017 end-page: 118 ident: b0630 article-title: Low-dose sodium nitrite fluid resuscitation prevents lethality from crush syndrome by improving nitric oxide consumption and preventing myoglobin cytotoxicity in kidney in a rat model publication-title: Shock – volume: 15 start-page: 234 year: 2008 end-page: 245 ident: b0110 article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells publication-title: Chem Biol – volume: 19 start-page: 231 year: 2022 ident: b0350 article-title: Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury publication-title: J Neuroinflammation – volume: 32 start-page: e2000038 year: 2020 ident: b0230 article-title: A Graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific fenton chemistry publication-title: Adv Mater – volume: 23 year: 2021 ident: b0585 article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury publication-title: Mol Med Rep – volume: 42 start-page: 37 year: 2020 end-page: 47 ident: b0080 article-title: Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-kappaB signaling pathway in macrophages publication-title: Immunopharmacol Immunotoxicol – volume: 25 start-page: 13 year: 2019 ident: b0500 article-title: Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation publication-title: Mol Med – volume: 933 year: 2022 ident: b0620 article-title: Trilobatin alleviates non-alcoholic fatty liver disease in high-fat diet plus streptozotocin-induced diabetic mice by suppressing NLRP3 inflammasome activation publication-title: Eur J Pharmacol – volume: 13 start-page: 5901 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0390 article-title: Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-beta selection thymocytes publication-title: Nat Commun doi: 10.1038/s41467-022-33610-4 – volume: 70 start-page: 1213 year: 2011 ident: 10.1016/j.jare.2023.01.016_b0030 article-title: Crush syndrome and acute kidney injury in the Wenchuan Earthquake publication-title: J Trauma – volume: 42 start-page: 656 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0035 article-title: Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues publication-title: Ren Fail doi: 10.1080/0886022X.2020.1792928 – volume: 28 start-page: 231 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0045 article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis publication-title: J Adv Res doi: 10.1016/j.jare.2020.07.007 – volume: 11 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0055 article-title: Pharmacological inhibition of Epac1 averts ferroptosis cell death by preserving mitochondrial integrity publication-title: Antioxidants (Basel) – volume: 11 start-page: 518 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0140 article-title: The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? publication-title: Cell Death Dis doi: 10.1038/s41419-020-2732-5 – volume: 16 start-page: 1180 year: 2014 ident: 10.1016/j.jare.2023.01.016_b0520 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat Cell Biol doi: 10.1038/ncb3064 – volume: 18 start-page: 2342 year: 2013 ident: 10.1016/j.jare.2023.01.016_b0220 article-title: Redox reactions of myoglobin publication-title: Antioxid Redox Signal doi: 10.1089/ars.2012.4887 – volume: 9 start-page: 730 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0360 article-title: HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells publication-title: Am J Cancer Res – volume: 2022 start-page: 8223737 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0615 article-title: Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis publication-title: Oxid Med Cell Longev – volume: 19 start-page: 231 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0350 article-title: Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury publication-title: J Neuroinflammation doi: 10.1186/s12974-022-02596-7 – volume: 12 start-page: 4860 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0115 article-title: GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis publication-title: Nat Commun doi: 10.1038/s41467-021-24859-2 – volume: 550 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0410 article-title: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2022.215919 – volume: 50 start-page: 32 year: 2018 ident: 10.1016/j.jare.2023.01.016_b0305 article-title: Recent advances in inflammasome biology publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2017.10.011 – volume: 9 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0120 article-title: A potential target in cardiovascular disease publication-title: Front Cell Dev Biol – volume: 934 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0130 article-title: Identification of a new small molecule that initiates ferroptosis in cancer cells by inhibiting the system Xc(-) to deplete GSH publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2022.175304 – volume: 256 start-page: 64 year: 2016 ident: 10.1016/j.jare.2023.01.016_b0095 article-title: The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2016.06.020 – volume: 100 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0090 article-title: Effectiveness of deferiprone-loaded nanocarrier in experimentally induced rhabdomyolysis: a dose-comparison study publication-title: Bioorg Chem doi: 10.1016/j.bioorg.2020.103913 – volume: 13 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0415 article-title: Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways publication-title: Front Immunol – volume: 10 start-page: 139 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0170 article-title: Mechanisms of ferroptosis and relations with regulated cell death: a review publication-title: Front Physiol doi: 10.3389/fphys.2019.00139 – volume: 849 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0275 article-title: Cadmium induces ferroptosis mediated inflammation by activating Gpx4/Ager/p65 axis in pancreatic beta-cells publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157819 – volume: 5 start-page: 2017 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0440 article-title: Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRgamma publication-title: Blood Adv doi: 10.1182/bloodadvances.2020001698 – volume: 175 start-page: 236 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0550 article-title: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2021.09.008 – volume: 8 start-page: e2100997 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0040 article-title: Emerging roles of energy metabolism in ferroptosis regulation of tumor cells publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202100997 – volume: 8 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0490 article-title: Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1 publication-title: Front Cardiovasc Med – volume: 9 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0605 article-title: Functional consequence of myeloid ferritin heavy chain on acute and chronic effects of rhabdomyolysis-induced kidney injury publication-title: Front Med (Lausanne) – ident: 10.1016/j.jare.2023.01.016_b0400 doi: 10.1038/s41418-019-0380-z – volume: 314 start-page: F702 year: 2018 ident: 10.1016/j.jare.2023.01.016_b0185 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00044.2017 – volume: 34 start-page: 16262 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0455 article-title: Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion publication-title: FASEB J doi: 10.1096/fj.202001758R – volume: 5 start-page: e161 year: 2015 ident: 10.1016/j.jare.2023.01.016_b0505 article-title: Anti-HMGB1 antibody reduces weight gain in mice fed a high-fat diet publication-title: Nutr Diabetes doi: 10.1038/nutd.2015.11 – volume: 39 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0300 article-title: Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110942 – volume: 45 start-page: 1087 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0635 article-title: A novel method to assess the severity and prognosis in crush syndrome by assessment of skin damage in hairless rats publication-title: Eur J Trauma Emerg Surg doi: 10.1007/s00068-018-0987-7 – volume: 13 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0405 article-title: ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression publication-title: Front Pharmacol – volume: 9 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0325 article-title: The ferroptosis-NLRP1 inflammasome: the vicious cycle of an adverse pregnancy publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.707959 – volume: 178 start-page: 3783 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0445 article-title: Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury publication-title: Br J Pharmacol doi: 10.1111/bph.15518 – volume: 58 start-page: 788 year: 2013 ident: 10.1016/j.jare.2023.01.016_b0155 article-title: Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice publication-title: Hepatology doi: 10.1002/hep.26401 – volume: 7 start-page: 980 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0510 article-title: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c01592 – volume: 12 start-page: 2538 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0540 article-title: The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death publication-title: ACS Chem Biol doi: 10.1021/acschembio.7b00730 – volume: 8 start-page: 37 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0015 article-title: RIG-I, a novel DAMPs sensor for myoglobin activates NF-kappaB/caspase-3 signaling in CS-AKI model publication-title: Mil Med Res – volume: 15 start-page: 1341 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0575 article-title: Combating iron overload: a case for deferoxamine-based nanochelators publication-title: Nanomedicine (Lond) doi: 10.2217/nnm-2020-0038 – volume: 93 start-page: 312 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0270 article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2021.01.003 – volume: 2022 start-page: 9947191 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0600 article-title: Polydatin attenuates cisplatin-induced acute kidney injury by inhibiting ferroptosis publication-title: Oxid Med Cell Longev doi: 10.1155/2022/9947191 – volume: 309 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0085 article-title: EGFR mediated the renal cell apoptosis in rhabdomyolysis-induced model via upregulation of autophagy publication-title: Life Sci doi: 10.1016/j.lfs.2022.121050 – volume: 133 start-page: 344 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0145 article-title: Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load publication-title: Blood doi: 10.1182/blood-2018-05-850404 – volume: 10 start-page: 1003 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0425 article-title: Effects of neutrophil extracellular traps on bovine mammary epithelial cells in vitro publication-title: Front Immunol doi: 10.3389/fimmu.2019.01003 – volume: 17 start-page: 20 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0330 article-title: Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries publication-title: J Orthop Surg Res doi: 10.1186/s13018-021-02903-7 – volume: 30 start-page: 745 year: 2002 ident: 10.1016/j.jare.2023.01.016_b0240 article-title: Toxicity of myoglobin and haemoglobin: oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage publication-title: Biochem Soc Trans doi: 10.1042/bst0300745 – volume: 12 start-page: 160 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0175 article-title: Characterization of ferroptosis in kidney tubular cell death under diabetic conditions publication-title: Cell Death Dis doi: 10.1038/s41419-021-03452-x – volume: 13 start-page: 81 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0460 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat Chem Biol doi: 10.1038/nchembio.2238 – volume: 113 start-page: 2843 year: 2009 ident: 10.1016/j.jare.2023.01.016_b0150 article-title: Transferrin-a modulates hepcidin expression in zebrafish embryos publication-title: Blood doi: 10.1182/blood-2008-06-165340 – volume: 10 start-page: 5134 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0545 article-title: Renal clearable nanochelators for iron overload therapy publication-title: Nat Commun doi: 10.1038/s41467-019-13143-z – volume: 418 start-page: 191 year: 2002 ident: 10.1016/j.jare.2023.01.016_b0355 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature doi: 10.1038/nature00858 – volume: 23 start-page: 369 year: 2016 ident: 10.1016/j.jare.2023.01.016_b0135 article-title: Ferroptosis: process and function publication-title: Cell Death Differ doi: 10.1038/cdd.2015.158 – volume: 63 start-page: 2 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0315 article-title: The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.63.3.2 – volume: 48 start-page: 4585 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0025 article-title: Remote ischemic postconditioning protects against crush-induced acute kidney injury via down-regulation of apoptosis and senescence publication-title: Eur J Trauma Emerg Surg doi: 10.1007/s00068-022-01910-5 – volume: 46 start-page: 2532 year: 2018 ident: 10.1016/j.jare.2023.01.016_b0345 article-title: HMGB1 a-box reverses brain edema and deterioration of neurological function in a traumatic brain injury mouse model publication-title: Cell Physiol Biochem doi: 10.1159/000489659 – volume: 51 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0470 article-title: ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury publication-title: Redox Biol doi: 10.1016/j.redox.2022.102262 – volume: 14 start-page: e1007140 year: 2018 ident: 10.1016/j.jare.2023.01.016_b0225 article-title: A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007140 – volume: 33 start-page: 8961 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0060 article-title: Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death publication-title: FASEB J doi: 10.1096/fj.201900077R – volume: 933 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0620 article-title: Trilobatin alleviates non-alcoholic fatty liver disease in high-fat diet plus streptozotocin-induced diabetic mice by suppressing NLRP3 inflammasome activation publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2022.175291 – volume: 23 start-page: 320 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0255 article-title: Salvianolic acid B improves the survival rate, acute kidney dysfunction, inflammation and NETosis-mediated antibacterial action in a crush syndrome rat model publication-title: Exp Ther Med doi: 10.3892/etm.2022.11249 – ident: 10.1016/j.jare.2023.01.016_b0625 doi: 10.2337/db17-1280 – volume: 171 start-page: 273 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0165 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 163 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0235 article-title: Ferritinophagy is involved in bisphenol A-induced ferroptosis of renal tubular epithelial cells through the activation of the AMPK-mTOR-ULK1 pathway publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2022.112909 – volume: 43 start-page: 2143 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0250 article-title: Curcumin-loaded nanoparticles protect against rhabdomyolysis-induced acute kidney injury publication-title: Cell Physiol Biochem doi: 10.1159/000484233 – volume: 56 start-page: 1028 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0070 article-title: The role of alpha-1-acid glycoprotein in the diagnosis and treatment of crush syndrome-induced acute kidney injury publication-title: Shock doi: 10.1097/SHK.0000000000001839 – volume: 42 start-page: 37 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0080 article-title: Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-kappaB signaling pathway in macrophages publication-title: Immunopharmacol Immunotoxicol doi: 10.1080/08923973.2019.1706555 – volume: 69 start-page: 423 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0160 article-title: Iron and ferroptosis: a still ill-defined liaison publication-title: IUBMB Life doi: 10.1002/iub.1616 – volume: 40 start-page: 520 year: 2015 ident: 10.1016/j.jare.2023.01.016_b0205 article-title: Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury publication-title: Kidney Blood Press Res doi: 10.1159/000368528 – volume: 73 start-page: 252 year: 2014 ident: 10.1016/j.jare.2023.01.016_b0195 article-title: Myoglobin functions in the heart publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2014.05.005 – volume: 178 start-page: 1182 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0580 article-title: Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis publication-title: Br J Pharmacol doi: 10.1111/bph.15364 – volume: 173 start-page: 524 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0190 article-title: Structure, functional properties and iron bioavailability of Pneumatophorus japonicus myoglobin and its glycosylation products publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.01.138 – volume: 32 start-page: 178 year: 2015 ident: 10.1016/j.jare.2023.01.016_b0485 article-title: Dexrazoxane: a cardioprotectant for pediatric cancer patients receiving anthracyclines publication-title: J Pediatr Oncol Nurs doi: 10.1177/1043454214554008 – volume: 41 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0365 article-title: HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose publication-title: Biosci Rep doi: 10.1042/BSR20202924 – volume: 57 start-page: 469 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0005 article-title: Systemic review of animal models used in the study of crush syndrome publication-title: Shock doi: 10.1097/SHK.0000000000001911 – volume: 285 start-page: F451 year: 2003 ident: 10.1016/j.jare.2023.01.016_b0210 article-title: Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00062.2003 – volume: 13 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0475 article-title: Dexmedetomidine attenuates ferroptosis-mediated renal ischemia/reperfusion injury and inflammation by inhibiting ACSL4 via alpha2-AR publication-title: Front Pharmacol doi: 10.3389/fphar.2022.782466 – volume: 56 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0640 article-title: Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation publication-title: Redox Biol doi: 10.1016/j.redox.2022.102435 – volume: 354 start-page: 1052 year: 2006 ident: 10.1016/j.jare.2023.01.016_b0010 article-title: Management of crush-related injuries after disasters publication-title: N Engl J Med doi: 10.1056/NEJMra054329 – volume: 32 start-page: e2000038 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0230 article-title: A Graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific fenton chemistry publication-title: Adv Mater doi: 10.1002/adma.202000038 – volume: 23 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0585 article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury publication-title: Mol Med Rep – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.jare.2023.01.016_b0100 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 12 start-page: 5279 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0285 article-title: Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis publication-title: Bioengineered doi: 10.1080/21655979.2021.1964158 – volume: 19 start-page: 13153 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0515 article-title: Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1 publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP00804J – volume: 510 start-page: 278 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0370 article-title: The release and activity of HMGB1 in ferroptosis publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.01.090 – volume: 6 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0310 article-title: NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression publication-title: JCI Insight doi: 10.1172/jci.insight.146852 – volume: 361 start-page: 62 year: 2009 ident: 10.1016/j.jare.2023.01.016_b0450 article-title: Rhabdomyolysis and acute kidney injury publication-title: N Engl J Med doi: 10.1056/NEJMra0801327 – volume: 12 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0180 article-title: A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis publication-title: Front Physiol doi: 10.3389/fphys.2021.680544 – volume: 48 start-page: 112 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0630 article-title: Low-dose sodium nitrite fluid resuscitation prevents lethality from crush syndrome by improving nitric oxide consumption and preventing myoglobin cytotoxicity in kidney in a rat model publication-title: Shock doi: 10.1097/SHK.0000000000000817 – volume: 15 start-page: 234 year: 2008 ident: 10.1016/j.jare.2023.01.016_b0110 article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells publication-title: Chem Biol doi: 10.1016/j.chembiol.2008.02.010 – volume: 81 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0260 article-title: Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2020.106265 – volume: 29 start-page: 2487 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0375 article-title: dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury publication-title: Cell Death Differ doi: 10.1038/s41418-022-01033-9 – volume: 1 start-page: 1643 year: 2009 ident: 10.1016/j.jare.2023.01.016_b0555 article-title: Synthetic and natural iron chelators: therapeutic potential and clinical use publication-title: Future Med Chem doi: 10.4155/fmc.09.121 – volume: 247 start-page: 505 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0430 article-title: Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis publication-title: J Pathol doi: 10.1002/path.5212 – year: 2022 ident: 10.1016/j.jare.2023.01.016_b0395 article-title: SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function publication-title: J Med Virol – volume: 159 start-page: 21 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0280 article-title: Inhibition of USP14 suppresses ferroptosis and inflammation in LPS-induced goat mammary epithelial cells through ubiquitylating the IL-6 protein publication-title: Hereditas doi: 10.1186/s41065-022-00235-y – volume: 111 start-page: 16836 year: 2014 ident: 10.1016/j.jare.2023.01.016_b0535 article-title: Synchronized renal tubular cell death involves ferroptosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1415518111 – ident: 10.1016/j.jare.2023.01.016_b0610 doi: 10.1084/jem.20220504 – volume: 13 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0595 article-title: Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 pathway publication-title: Front Pharmacol doi: 10.3389/fphar.2022.857067 – volume: 21 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0245 article-title: Rhabdomyolysis-induced AKI was ameliorated in NLRP3 KO mice via alleviation of mitochondrial lipid peroxidation in renal tubular cells publication-title: Int J Mol Sci doi: 10.3390/ijms21228564 – volume: 2022 start-page: 8438528 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0495 article-title: Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway publication-title: Oxid Med Cell Longev doi: 10.1155/2022/8438528 – volume: 6 start-page: 15168 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0565 article-title: Deferoxamine-modified hybrid materials for direct chelation of Fe(III) ions from aqueous solutions and indication of the competitiveness of in vitro complexing toward a biological system publication-title: ACS Omega doi: 10.1021/acsomega.1c01411 – volume: 3 start-page: 285 year: 2003 ident: 10.1016/j.jare.2023.01.016_b0105 article-title: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00050-3 – volume: 623 start-page: 1 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0480 article-title: ACSL4 is overexpressed in psoriasis and enhances inflammatory responses by activating ferroptosis publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2022.07.041 – volume: 136 start-page: 1338 year: 2016 ident: 10.1016/j.jare.2023.01.016_b0570 article-title: Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2015.10.048 – volume: 7 start-page: 90 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0265 article-title: Astragaloside-IV prevents acute kidney injury and inflammation by normalizing muscular mitochondrial function associated with a nitric oxide protective mechanism in crush syndrome rats publication-title: Ann Intensive Care doi: 10.1186/s13613-017-0313-2 – volume: 1 start-page: 427 year: 1941 ident: 10.1016/j.jare.2023.01.016_b0065 article-title: Crush Injuries with Impairment of Renal Function publication-title: Br Med J doi: 10.1136/bmj.1.4185.427 – volume: 11 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0340 article-title: High mobility group box 1: biological functions and relevance in oxidative stress related chronic diseases publication-title: Cells doi: 10.3390/cells11050849 – volume: 70 start-page: 4353 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0290 article-title: Chlorogenic acid alleviates chronic stress-induced duodenal ferroptosis via the inhibition of the IL-6/JAK2/STAT3 signaling pathway in rats publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.2c01196 – volume: 136 start-page: 4551 year: 2014 ident: 10.1016/j.jare.2023.01.016_b0525 article-title: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models publication-title: J Am Chem Soc doi: 10.1021/ja411006a – volume: 30 start-page: 20 year: 2017 ident: 10.1016/j.jare.2023.01.016_b0200 article-title: Assessing acquired rhabdomyolysis in adults publication-title: JAAPA doi: 10.1097/01.JAA.0000510986.14286.fd – volume: 303 start-page: 1532 year: 2004 ident: 10.1016/j.jare.2023.01.016_b0420 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science doi: 10.1126/science.1092385 – ident: 10.1016/j.jare.2023.01.016_b0530 doi: 10.1021/acs.jmedchem.5b01641 – volume: 25 start-page: 13 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0500 article-title: Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation publication-title: Mol Med doi: 10.1186/s10020-019-0081-6 – volume: 12 start-page: 9332 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0295 article-title: Stigmasterol alleviates interleukin-1beta-induced chondrocyte injury by down-regulatingsterol regulatory element binding transcription factor 2 to regulateferroptosis publication-title: Bioengineered doi: 10.1080/21655979.2021.2000742 – volume: 8 start-page: 90 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0020 article-title: Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI publication-title: Cell Death Discov doi: 10.1038/s41420-022-00894-w – volume: 24 start-page: 232 year: 2018 ident: 10.1016/j.jare.2023.01.016_b0435 article-title: Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury publication-title: Nat Med doi: 10.1038/nm.4462 – volume: 73 start-page: 354 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0050 article-title: Role of mitochondria in ferroptosis publication-title: Mol Cell doi: 10.1016/j.molcel.2018.10.042 – volume: 389 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0215 article-title: Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle publication-title: Food Chem doi: 10.1016/j.foodchem.2022.132972 – volume: 13 start-page: 5685 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0380 article-title: A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses publication-title: Nat Commun doi: 10.1038/s41467-022-33301-0 – volume: 12 start-page: 3056 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0320 article-title: Endothelial cell ferroptosis mediates monocrotaline-induced pulmonary hypertension in rats by modulating NLRP3 inflammasome activation publication-title: Sci Rep doi: 10.1038/s41598-022-06848-7 – volume: 23 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0335 article-title: Role of HMGB1 in cutaneous melanoma: state of the art publication-title: Int J Mol Sci doi: 10.3390/ijms23169327 – volume: 13 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0125 article-title: The potential of ferroptosis-targeting therapies for Alzheimer's disease: from mechanism to transcriptomic analysis publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.745046 – volume: 59 start-page: 580 year: 2019 ident: 10.1016/j.jare.2023.01.016_b0560 article-title: Lactoferrin: Structure, function, denaturation and digestion publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2017.1381583 – volume: 16 start-page: 10 year: 2021 ident: 10.1016/j.jare.2023.01.016_b0465 article-title: High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma publication-title: Biol Direct doi: 10.1186/s13062-021-00294-7 – volume: 112 start-page: 1065 year: 2022 ident: 10.1016/j.jare.2023.01.016_b0590 article-title: Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells publication-title: J Leukoc Biol doi: 10.1002/JLB.1A0422-211R – volume: 87 start-page: 600 year: 2020 ident: 10.1016/j.jare.2023.01.016_b0075 article-title: Acute kidney injury: diagnosis and management publication-title: Indian J Pediatr doi: 10.1007/s12098-019-03096-y – year: 2022 ident: 10.1016/j.jare.2023.01.016_b0385 article-title: The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity publication-title: Immunology |
SSID | ssj0000388911 |
Score | 2.4163878 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Inhibiting ferroptosis could alleviate acute kidney injury following crush syndrome.•Iron overload produced by myoglobin degradation is a... Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic... Background: Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | Acute kidney injury Acute Kidney Injury - etiology Acute Kidney Injury - metabolism Acute Kidney Injury - pathology Cell Death Crush syndrome Crush Syndrome - complications Crush Syndrome - pathology Drug development Ferroptosis Humans Myoglobin Systemic inflammatory responses |
Title | Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment |
URI | https://dx.doi.org/10.1016/j.jare.2023.01.016 https://www.ncbi.nlm.nih.gov/pubmed/36702249 https://www.proquest.com/docview/2770120898 https://doaj.org/article/b5b2fc6e8a6742ed8ceec7b9f466390c |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kffFFbP06tWUFHxQJXpJLdrdvp3gWiz6IxfNpmf2id5akJLkW_3tnsslxPlhfhBBIskmGyXySmd8w9hJVRhrrVZL70idoJV0CTokETSE17JXeCmpw_vylPD2ffVoWy51RX1QTFuGBI-PemsJkwZZeQolZnHcSrboVRoUZ-ko1tWR90eftJFO9Dc6lVP3wXbxI5Qd5NnTMxOKuNTSEkZnlPWYnDTvf8Uo9eP8fzulvwWfvhBb32b0heuTzSPUBu-OrQ3Yw6GfLXw0g0q8fsB8L3zT1VVe3q5avKg5203n-c-Uq_wuP18hKHlAG6hv0Xdw2m_aCj-gFJ3zOq_raX_JYJ44LG76tSH_Izhcfvr0_TYYxColFHnWJRfeTOwFgC58qI43ANEaZWTAitcYAmExMnbIAlH65IkDADNtIKEIqg7T5I7ZX1ZV_wngaAKZWOFd6QM-fK8AADjDoSk0uiuAmLB3ZqO2AMU6jLi71WEy21sR6TazX0xS3csLebO-5iggbt65-R19nu5LQsfsTKDN6kBn9L5mZsGL8tnoINGIAgY9a3fryF6MgaNRC-rUCla83rc6EoC5kqeSEPY4SsiWRIPIwUFJP_wfpz9hdIigW1Dxne12z8UcYFnXmmO3Pz75-PzvuNQH3H5fpb9dQDiA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroptosis+in+acute+kidney+injury+following+crush+syndrome%3A+A+novel+target+for+treatment&rft.jtitle=Journal+of+advanced+research&rft.au=Qiao%2C+Ou&rft.au=Wang%2C+Xinyue&rft.au=Wang%2C+Yuru&rft.au=Li%2C+Ning&rft.date=2023-12-01&rft.issn=2090-1224&rft.eissn=2090-1224&rft.volume=54&rft.spage=211&rft_id=info:doi/10.1016%2Fj.jare.2023.01.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |