Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions

The Fontan procedure is a palliative surgical technique that is used to treat patients with congenital heart defects that include complex lesions such as those with a hypoplastic ventricle. In vitro, in vivo, and computational models of a set of modifications to the Fontan procedure, called the tota...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 27; no. 2; pp. 135 - 146
Main Authors DeGroff, Curt, Birnbaum, Brian, Shandas, Robin, Orlando, Wendy, Hertzberg, Jean
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Fontan procedure is a palliative surgical technique that is used to treat patients with congenital heart defects that include complex lesions such as those with a hypoplastic ventricle. In vitro, in vivo, and computational models of a set of modifications to the Fontan procedure, called the total cavopulmonary connection (TCPC), have been developed. Using these modeling methods, attempts have been made at finding the most energy efficient TCPC circuit. Computational modeling has distinct advantages to other modeling methods. However, discrepancies have been found in validation studies of TCPC computational models. There is little in the literature available to help explain and correct for such discrepancies. Differences in computational results can occur when choosing between steady flow versus transient flow numerical solvers. In this study transient flow solver results were shown to be more consistent with results from previous TCPC in vitro experiments. Using a transient flow solver we found complex fluctuating flow patterns can exist with steady inflow boundary conditions in computational models of the TCPC. To date such findings have not been reported in the literature. Furthermore, our computational modeling results suggest fluctuating flow patterns as well as the magnitudes of these secondary flow structures diminish if the TCPC offset between vena cavae is increased or if flanged connections are added. An association was found between these modifications and improvements in TCPC circuit flow efficiencies. In summary, development of accurate computational simulations in the validation process is critical to efforts in finding the most efficient TCPC circuits, efforts aimed at potentially improving the long term outcome for Fontan patients.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2004.09.012