Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capa...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 22933 - 34 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.07.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery. |
---|---|
AbstractList | Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery. Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery. Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery. |
ArticleNumber | 22933 |
Author | Jabbar, Ayesha ur Rehman, Khalil Jianjun, Huang Bilal, Anas Jabbar, Muhammad Kashif |
Author_xml | – sequence: 1 givenname: Ayesha surname: Jabbar fullname: Jabbar, Ayesha organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University – sequence: 2 givenname: Huang surname: Jianjun fullname: Jianjun, Huang email: huangjin@szu.edu.cn organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University – sequence: 3 givenname: Muhammad Kashif surname: Jabbar fullname: Jabbar, Muhammad Kashif organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University – sequence: 4 givenname: Khalil surname: ur Rehman fullname: ur Rehman, Khalil organization: College of Mechatronics and Control Engineering, Shenzhen University – sequence: 5 givenname: Anas surname: Bilal fullname: Bilal, Anas organization: College of Information Science and Technology, Hainan Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40594900$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNUREvpH2CBvGST4nfiFUIV0EqVWABry7Enub5K7GAnrfrv8b0pVbvBGz_mnG8kz3lbnYQYoKreE3xJMGs_ZU6EamtMRY0lb1UtX1VnFHNRU0bpybPzaXWR8x6XJajiRL2pTjkWiiuMzyr_cwa7JDOiHsyyJkBTdDD6MKB7v-zQkMy8Q9kPoUjmFC3kfCj2MaEuGR-QjSEUhL_zywMqd7MuPk8oH7nrhJzPMTlI76rXvRkzXDzu59Xvb19_XV3Xtz--31x9ua0tl3KpVSt72xve4M6BUUQ40jXSdc5ajjnrDLTYMdoa1ihuiXUd5hQIa6HpVWM4O69uNq6LZq_n5CeTHnQ0Xh8fYhq0SYu3I2hpKMdKCCX7jguJDcOW9a3ABnpqLS6szxtrXrsJnIVw-KoX0JeV4Hd6iHeaUEoawlUhfHwkpPhnhbzoyWcL42gCxDXrMh_JBKfq0OzD82ZPXf4NqwjoJrAp5pygf5IQrA-h0FsodAmFPoZCy2JimykXcRgg6X1cU5lm_p_rL5EjvCs |
Cites_doi | 10.3389/fnins.2023.926321 10.1007/s12559-021-09981-z 10.1038/s41598-024-79817-x 10.3390/bioengineering10010056 10.3389/fninf.2021.802305 10.1007/s11517-022-02558-4 10.1016/j.neuroimage.2019.06.046 10.1007/s44196-023-00380-w 10.1038/s41380-023-02079-y 10.34133/cbsystems.0028 10.1016/j.compbiomed.2022.105643 10.1109/TBME.2024.3376603 10.3174/ajnr.A8067 10.1109/JBHI.2024.3409163 10.1002/ddr.21726 10.3233/SHTI230734 10.1016/j.cogsys.2021.10.002 10.34133/cbsystems.0121 10.1007/s11571-022-09828-9 10.1016/j.pscychresns.2024.111858 10.1007/s40120-021-00279-8 10.1177/15500594211054990 10.1007/978-3-031-51893-5_1 10.52294/001c.124565 10.1016/j.nicl.2020.102251 10.3389/fnins.2023.1184601 10.34133/research.0355 10.1038/s41598-024-72919-6 10.1002/mp.14038 10.1080/10255842.2025.2477801 10.1016/j.neuroimage.2020.116603 10.1109/ISBI56570.2024.10635496 10.1038/s41598-023-35910-1 10.1093/cercor/bhae226 10.1109/ICASSP.2017.7952296 10.1109/ISBI56570.2024.10635215 10.1016/j.neuroimage.2022.119591 10.1016/j.compbiomed.2022.106521 10.1002/ddr.21515 10.1016/j.compbiomed.2024.108415 10.3390/brainsci13010130 10.4015/S1016237222500466 10.1007/s11571-021-09730-w 10.1002/hbm.25829 10.34133/cbsystems.0045 10.1007/s11682-020-00312-8 10.1016/j.cmpb.2024.108110 10.1186/s13677-024-00675-z 10.1109/ICCCNT61001.2024.10723846 10.1016/j.jad.2023.04.102 10.1016/j.asoc.2023.110363 10.1016/j.bbr.2019.112262 10.1038/s41598-023-34650-6 10.3390/jimaging9060110 10.1109/THMS.2024.3407875 10.34133/cbsystems.0047 10.1093/scan/nsad071 10.1109/ACCESS.2024.3373467 10.3390/brainsci12050535 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1038/s41598-025-06489-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 34 |
ExternalDocumentID | oai_doaj_org_article_6a24095596fb4560a30c3f850aef2cc0 PMC12217149 40594900 10_1038_s41598_025_06489_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Guangdong Provincial Key Laboratory grantid: 2023B1212060076 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20220818100004008 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PPXIY PQGLB CGR CUY CVF ECM EIF NPM PJZUB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c466t-986fcfa470bdea915d1b76dbdcc4043bae80d328a3794c1cdb042e138e7f97a43 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Thu Aug 21 18:33:14 EDT 2025 Tue Aug 26 08:58:24 EDT 2025 Mon Jul 21 06:03:38 EDT 2025 Tue Jul 15 05:56:23 EDT 2025 Wed Jul 02 02:43:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Graph Fourier transform Spectral clustering Graph signal processing Autism spectrum disorder Brain connectivity analysis |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-986fcfa470bdea915d1b76dbdcc4043bae80d328a3794c1cdb042e138e7f97a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-06489-6 |
PMID | 40594900 |
PQID | 3226354290 |
PQPubID | 23479 |
PageCount | 34 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a24095596fb4560a30c3f850aef2cc0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217149 proquest_miscellaneous_3226354290 pubmed_primary_40594900 crossref_primary_10_1038_s41598_025_06489_6 springer_journals_10_1038_s41598_025_06489_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-02 |
PublicationDateYYYYMMDD | 2025-07-02 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | K-W Park (6489_CR52) 2023; 142 6489_CR5 H Fang (6489_CR59) 2020; 378 6489_CR42 6489_CR3 L Kang (6489_CR38) 2024; 248 6489_CR4 L Waller (6489_CR43) 2022; 43 L Liu (6489_CR27) 2023; 153 V Kumar (6489_CR44) 2024; 45 T Zhou (6489_CR53) 2020; 26 CL Alves (6489_CR26) 2023; 13 F Salehi (6489_CR51) 2022; 16 MS Farooq (6489_CR61) 2023; 13 6489_CR47 6489_CR48 TA Manoharan (6489_CR56) 2023; 54 Y ElNakieb (6489_CR54) 2023; 10 A Jabbar (6489_CR40) 2024; 14 C Bao (6489_CR6) 2023; 4 X Yang (6489_CR30) 2022; 8 6489_CR33 Y Lin (6489_CR11) 2023; 4 FZ Benabdallah (6489_CR41) 2023; 9 Z Liu (6489_CR1) 2024; 28 AT Jafadideh (6489_CR19) 2022; 146 A Pedroni (6489_CR45) 2019; 200 MK Jabbar (6489_CR25) 2022; 12 J Shi (6489_CR17) 2024; 5 6489_CR35 6489_CR37 FZ Esfahlani (6489_CR55) 2022; 263 J Zhang (6489_CR28) 2023; 335 E Scalco (6489_CR46) 2020; 47 L Chen (6489_CR34) 2021; 15 Q Mohi ud Din (6489_CR58) 2023; 35 6489_CR22 R Kashef (6489_CR21) 2022; 71 C Zhu (6489_CR18) 2024; 13 X Gao (6489_CR13) 2019; 80 A Jabbar (6489_CR39) 2024; 17 X Geng (6489_CR24) 2023; 13 6489_CR23 Q Lu (6489_CR14) 2020; 81 J Zhang (6489_CR29) 2023; 15 R Blanco (6489_CR20) 2024; 14 6489_CR50 Z Guan (6489_CR36) 2024; 174 TC Ramos (6489_CR49) 2023; 17 Y Du (6489_CR12) 2023; 28 X Si (6489_CR10) 2023; 4 L Kang (6489_CR57) 2023; 17 Y Chu (6489_CR60) 2022; 15 B Shen (6489_CR9) 2024; 34 C Zhang (6489_CR7) 2021; 10 C Nicolini (6489_CR15) 2020; 211 H Pan (6489_CR16) 2024; 54 H Feng (6489_CR8) 2024; 7 H Pan (6489_CR2) 2024; 71 J Sachdeva (6489_CR31) 2024; 343 P Cao (6489_CR32) 2022; 60 |
References_xml | – volume: 17 start-page: 926321 year: 2023 ident: 6489_CR49 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.926321 – volume: 8 start-page: 100290 year: 2022 ident: 6489_CR30 publication-title: Mach. Learn. Appl. – volume: 15 start-page: 1106 year: 2023 ident: 6489_CR29 publication-title: Cognit. Comput. doi: 10.1007/s12559-021-09981-z – volume: 14 start-page: 28976 year: 2024 ident: 6489_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-024-79817-x – volume: 10 start-page: 56 year: 2023 ident: 6489_CR54 publication-title: Bioengineering doi: 10.3390/bioengineering10010056 – volume: 15 start-page: 802305 year: 2022 ident: 6489_CR60 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2021.802305 – volume: 60 start-page: 1897 year: 2022 ident: 6489_CR32 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02558-4 – volume: 200 start-page: 460 year: 2019 ident: 6489_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.046 – volume: 17 start-page: 1 year: 2024 ident: 6489_CR39 publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-023-00380-w – volume: 28 start-page: 3092 year: 2023 ident: 6489_CR12 publication-title: Mol. Psychiatry doi: 10.1038/s41380-023-02079-y – volume: 4 start-page: 0028 year: 2023 ident: 6489_CR6 publication-title: Cyborg Bionic Syst. doi: 10.34133/cbsystems.0028 – volume: 146 start-page: 105643 year: 2022 ident: 6489_CR19 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105643 – volume: 71 start-page: 2454 year: 2024 ident: 6489_CR2 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2024.3376603 – volume: 45 start-page: 139 year: 2024 ident: 6489_CR44 publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A8067 – volume: 28 start-page: 5270 year: 2024 ident: 6489_CR1 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3409163 – volume: 81 start-page: 1037 year: 2020 ident: 6489_CR14 publication-title: Drug Dev. Res. doi: 10.1002/ddr.21726 – ident: 6489_CR50 doi: 10.3233/SHTI230734 – volume: 71 start-page: 41 year: 2022 ident: 6489_CR21 publication-title: Cognit. Syst. Res. doi: 10.1016/j.cogsys.2021.10.002 – ident: 6489_CR35 – volume: 5 start-page: 0121 issue: Article year: 2024 ident: 6489_CR17 publication-title: Cyborg. Bionic Syst. doi: 10.34133/cbsystems.0121 – volume: 17 start-page: 345 year: 2023 ident: 6489_CR57 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-022-09828-9 – volume: 343 start-page: 111858 year: 2024 ident: 6489_CR31 publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2024.111858 – volume: 10 start-page: 1001 year: 2021 ident: 6489_CR7 publication-title: Neurol. Ther. doi: 10.1007/s40120-021-00279-8 – volume: 54 start-page: 461 year: 2023 ident: 6489_CR56 publication-title: Clin. EEG Neurosci. doi: 10.1177/15500594211054990 – ident: 6489_CR33 doi: 10.1007/978-3-031-51893-5_1 – ident: 6489_CR47 doi: 10.52294/001c.124565 – volume: 26 start-page: 102251 year: 2020 ident: 6489_CR53 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2020.102251 – ident: 6489_CR3 doi: 10.3389/fnins.2023.1184601 – volume: 7 start-page: 0355 year: 2024 ident: 6489_CR8 publication-title: Research doi: 10.34133/research.0355 – volume: 14 start-page: 23255 year: 2024 ident: 6489_CR40 publication-title: Sci. Rep. doi: 10.1038/s41598-024-72919-6 – volume: 47 start-page: 1680 year: 2020 ident: 6489_CR46 publication-title: Med. Phys. doi: 10.1002/mp.14038 – ident: 6489_CR5 doi: 10.1080/10255842.2025.2477801 – volume: 211 start-page: 116603 year: 2020 ident: 6489_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116603 – ident: 6489_CR37 doi: 10.1109/ISBI56570.2024.10635496 – volume: 13 start-page: 9605 year: 2023 ident: 6489_CR61 publication-title: Sci. Rep. doi: 10.1038/s41598-023-35910-1 – volume: 34 start-page: bhae226 year: 2024 ident: 6489_CR9 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhae226 – ident: 6489_CR22 doi: 10.1109/ICASSP.2017.7952296 – ident: 6489_CR48 doi: 10.1109/ISBI56570.2024.10635215 – volume: 263 start-page: 119591 year: 2022 ident: 6489_CR55 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119591 – volume: 153 start-page: 106521 year: 2023 ident: 6489_CR27 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106521 – volume: 80 start-page: 438 year: 2019 ident: 6489_CR13 publication-title: Drug Dev. Res. doi: 10.1002/ddr.21515 – volume: 174 start-page: 108415 year: 2024 ident: 6489_CR36 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108415 – volume: 13 start-page: 130 year: 2023 ident: 6489_CR24 publication-title: Brain Sci. doi: 10.3390/brainsci13010130 – volume: 35 start-page: 2250046 year: 2023 ident: 6489_CR58 publication-title: Biomed. Eng. Appl. Basis Commun. doi: 10.4015/S1016237222500466 – volume: 16 start-page: 519 year: 2022 ident: 6489_CR51 publication-title: Cognit. Neurodyn. doi: 10.1007/s11571-021-09730-w – volume: 43 start-page: 2727 year: 2022 ident: 6489_CR43 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25829 – volume: 4 start-page: 0045 year: 2023 ident: 6489_CR10 publication-title: Cyborg Bionic Syst. doi: 10.34133/cbsystems.0045 – volume: 15 start-page: 1058 year: 2021 ident: 6489_CR34 publication-title: Brain Imag. Behav. doi: 10.1007/s11682-020-00312-8 – volume: 248 start-page: 108110 year: 2024 ident: 6489_CR38 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2024.108110 – volume: 13 start-page: 119 year: 2024 ident: 6489_CR18 publication-title: J. Cloud Comput. doi: 10.1186/s13677-024-00675-z – ident: 6489_CR23 doi: 10.1109/ICCCNT61001.2024.10723846 – volume: 335 start-page: 36 year: 2023 ident: 6489_CR28 publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2023.04.102 – volume: 142 start-page: 110363 year: 2023 ident: 6489_CR52 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110363 – volume: 378 start-page: 112262 year: 2020 ident: 6489_CR59 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2019.112262 – volume: 13 start-page: 8072 year: 2023 ident: 6489_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-023-34650-6 – volume: 9 start-page: 110 year: 2023 ident: 6489_CR41 publication-title: J. Imaging doi: 10.3390/jimaging9060110 – volume: 54 start-page: 711 year: 2024 ident: 6489_CR16 publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2024.3407875 – volume: 4 start-page: 0047 year: 2023 ident: 6489_CR11 publication-title: Cyborg Bionic Syst. doi: 10.34133/cbsystems.0047 – ident: 6489_CR4 doi: 10.1093/scan/nsad071 – ident: 6489_CR42 doi: 10.1109/ACCESS.2024.3373467 – volume: 12 start-page: 535 year: 2022 ident: 6489_CR25 publication-title: Brain Sci. doi: 10.3390/brainsci12050535 |
SSID | ssj0000529419 |
Score | 2.4510953 |
Snippet | Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches... Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22933 |
SubjectTerms | 631/61 639/4077 Autism spectrum disorder Autism Spectrum Disorder - diagnostic imaging Autism Spectrum Disorder - physiopathology Brain - diagnostic imaging Brain - physiopathology Brain connectivity analysis Child Connectome - methods Electroencephalography Female Graph Fourier transform Graph signal processing Humanities and Social Sciences Humans Magnetic Resonance Imaging Male multidisciplinary Principal Component Analysis Science Science (multidisciplinary) Signal Processing, Computer-Assisted Spectral clustering Support Vector Machine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUiUuFS1Q0gcyEjeINrEdxz62CIQqlRMr7c3yU3AgoC574N93xs6udltELxwTW07s-ZyZiWe-IeREdQk9LlbLkFwtYq9rFzlgmTHXtTJql5mYfl3Lq6n4Oetma6W-MCas0AOXhZtICzoHadJkcqDsG8sbz5PqGhsT8z5766Dz1pypwurNtGj1mCXTcDWZg6bCbDLW1aCFla7lhibKhP0vWZn_Bkv-dWKaFdHlLnk_WpD0e3nzD2QrDh_Ju1JT8nmP3GFFeRyCpphJO2kudgNDUfznSjNDNcWwDejyWNIEsBGMV-qwXgT1GPviS1UJCtcWsDm_pzkn8_finoaRsHOfTC8vbs6v6rGeQu2FlE-1VjL5ZEXfuBCtbrvQul4GF7xHjh1no2oCZ8py2KS-9cHBjo4tV7FPureCH5Dt4WGIh4QKJzyLvQVvxArlO6vQD3Kss1w3yYaKnC7X1jwW2gyTj7u5MkUSBiRhsiSMrMgPXP5VT6S8zjcACGYEgvkfECpyvBSegS2C5x52iA-LuQHcgVkFihf6fCrCXD1KIF-NbqBFbYh54102W4a720zD3TKG1eN1Rc6WiDDjB2D-ymQ_v8Vkv5AdlqHcA6K_km0Qf_wG1tGTO8ob4Q8gaAzY priority: 102 providerName: Directory of Open Access Journals |
Title | Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder |
URI | https://link.springer.com/article/10.1038/s41598-025-06489-6 https://www.ncbi.nlm.nih.gov/pubmed/40594900 https://www.proquest.com/docview/3226354290 https://pubmed.ncbi.nlm.nih.gov/PMC12217149 https://doaj.org/article/6a24095596fb4560a30c3f850aef2cc0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLafrKts2iQG-tqS3JsnTcLAlhoSG0DexNSLLU5hBvyCaH_vvOyPbCtqHQk7Ely5JmxjOSZr4B-KDrRCsuXqg2-ULGxhQ-CuRlzn1dqWh8RmL6cqHOr-RiWS93gI-xMNlpP0Na5t_06B32eY2KhoLBeF2gEtWmULuwT9DtxNVzNd_sq9DJlazMEB9TCv3Iq1s6KEP1P2Zf_u0m-cdZaVZBZ8_h2WA7slnf2wPYid0LeNJnk_z1Eq4plzw1wVLMY2M5zQ02xWi3lWVsakYOG1jltg8QoEI0W5mnTBEskNdL6PNJMLx3yJXrG5ajMe8eblg7QHW-gquz0-_z82LIpFAEqdR9YbRKITnZlL6NzlR1W_lGtb4NgdB1vIu6bAXXTqB4hiq0HmU5VkLHJpnGSfEa9rpVFw-BSS8Dj43DdYiTOtRO0wrI89oJUybXTuDjOLf2tgfMsPmgW2jbU8IiJWymhFUTOKHp39QksOv8YHX3ww7Et8qh2UFIeSp5tPdKJ8ogkq5LFxMPoZzA8Ug8i8JBJx6ui6uHtUWOQ4MKVS7WedMTc_MpSUg1psQSvUXmrb5sl3TXPzMAd8U55Y03E_g0coQdRH_9j8G-_b_q7-Apz0zbIO--hz0kdDxCC-jeT2G3WTZT2J_NFt8WeD05vbj8Os2CMM27Cr8ByNQHoQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJgQXxDcPGASJG1SkSZomR3ja9AbbTpu0W5SkydhhfdPeduC_x07bJz2YkDi2cdskdmontn8G-GiaTDsuUekuh0ql1lYhSZRlIUJT62RDQWI6OtaLU_X9rDnbAjHlwpSg_QJpWX7TU3TYlxUqGkoGE02FStTYSt-DHbS1NYVxzfV8fa5CnitV2zE_hktzx6MbOqhA9d9lX_4dJvmHr7SooP3H8Gi0HdnXobdPYCv1T-H-UE3y1zO4oFry9AqWUxkbK2Vu8FWMTltZwaZmFLCBJFdDggA1otnKAlWKYJGiXuJQT4LhtUepXF2yko15fXvJuhGq8zmc7u-dzBfVWEmhikrrm8oanWP2quWhS97WTVeHVnehi5HQdYJPhndSGC9xecY6dgHXcqqlSW22rVfyBWz3yz69AqaCiiK1HvchXpnYeEM7oCAaLy3PvpvBp2lu3dUAmOGKo1saN3DCISdc4YTTM_hG07-mJLDrcmN5fe5G5jvt0ewgpDydA9p73EseZTYN9ymLGPkMPkzMc7g4yOPh-7S8XTmUODSoUOUizcuBmetPKUKqsRxbzAabN_qy2dJf_CwA3LUQVDfezuDzJBFuXPqrfwz29f-Rv4cHi5OjQ3d4cPzjDTwURYBblOO3sI1MT7toDd2Ed0X8fwOIrgWO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEagXBAXK8nQlbhDq2I5jH2HbVaGl4kCl3iw_Sw_Nrrrtof-eGSdZaaFC4ph4ktiemczYnvmGkPe6ybji4pWK2VcytabySYAsc-6bWiXjCxLT9xN1eCq_nTVnG0SNuTAlaL9AWpbf9BgdtrcEQ4PJYLypwIhqU6lPi5jvkfvgbzNcdE3VdLW3gqdXsjZDjgwT-o7H1-xQgeu_y8f8O1Tyj_PSYoZmj8mjwX-kn_sePyEbqdsmD_qKkrdPyQXWk8dX0JzK-GgpdQOvorjjSgs-NcWgDSBZ9EkC2AiuK_VYLYIGjHwJfU0JCtcOJHN5SUtG5tXNJY0DXOczcjo7-Dk9rIZqClWQSl1XRqscspMt8zE5Uzex9q2KPoaACDveJc2i4NoJUNFQh-hBn1MtdGqzaZ0Uz8lmN-_SC0Kll4Gn1sFaxEkdGqdxFeR544Rh2cUJ-TDOrV30oBm2HHYLbXtOWOCELZywakK-4PSvKBHwutyYX53bQQCscuB6IFqeyh58PuYECyLrhrmUeQhsQnZH5llQEDz1cF2a3ywtSB04VWB2gWanZ-bqUxLRagyDFr3G5rW-rLd0F78KCHfNOdaONxPycZQIO6j_8h-Dffl_5O_Iwx_7M3v89eToFdniRX5bEOPXZBN4nt6AQ3Tt3xbp_w0yzwaX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+feature+modeling+with+graph+signal+processing+for+brain+connectivity+in+autism+spectrum+disorder&rft.jtitle=Scientific+reports&rft.au=Jabbar%2C+Ayesha&rft.au=Jianjun%2C+Huang&rft.au=Jabbar%2C+Muhammad+Kashif&rft.au=ur+Rehman%2C+Khalil&rft.date=2025-07-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-06489-6&rft.externalDocID=10_1038_s41598_025_06489_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |