Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capa...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 22933 - 34
Main Authors Jabbar, Ayesha, Jianjun, Huang, Jabbar, Muhammad Kashif, ur Rehman, Khalil, Bilal, Anas
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.
AbstractList Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.
Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches have been widely employed to study ASD biomarkers; however, these methods are often limited to static topological measures and lack the capacity to capture spectral characteristics of brain activity, especially in multimodal data settings. This limits their ability to model dynamic neural interactions and reduces their diagnostic precision. To overcome these limitations, we propose a Graph Signal Processing (GSP)-based framework that integrates spectral-domain features with topological descriptors to model brain connectivity more comprehensively. Using publicly available fMRI and EEG datasets, we construct subject-specific connectivity graphs where nodes represent brain regions and edges encode functional interactions. We extract advanced GSP features such as Graph Fourier Transform coefficients, spectral entropy, and clustering coefficients, and combine them using Principal Component Analysis (PCA). These are classified using a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The proposed model achieves 98.8% classification accuracy, significantly outperforming prior multimodal GSP studies. Feature ablation analysis reveals that spectral entropy contributes most to this improvement, with its removal resulting in a nearly 30% performance drop. Additionally, a 25% sparsity threshold in graph construction was found to maximize both robustness and computational efficiency. These findings demonstrate that incorporating frequency-domain information through GSP enables a more discriminative and biologically meaningful representation of ASD-related neural patterns, offering a promising direction for accurate diagnosis and biomarker discovery.
ArticleNumber 22933
Author Jabbar, Ayesha
ur Rehman, Khalil
Jianjun, Huang
Bilal, Anas
Jabbar, Muhammad Kashif
Author_xml – sequence: 1
  givenname: Ayesha
  surname: Jabbar
  fullname: Jabbar, Ayesha
  organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University
– sequence: 2
  givenname: Huang
  surname: Jianjun
  fullname: Jianjun, Huang
  email: huangjin@szu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University
– sequence: 3
  givenname: Muhammad Kashif
  surname: Jabbar
  fullname: Jabbar, Muhammad Kashif
  organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, College of Electronics and Information Engineering, Shenzhen University
– sequence: 4
  givenname: Khalil
  surname: ur Rehman
  fullname: ur Rehman, Khalil
  organization: College of Mechatronics and Control Engineering, Shenzhen University
– sequence: 5
  givenname: Anas
  surname: Bilal
  fullname: Bilal, Anas
  organization: College of Information Science and Technology, Hainan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594900$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNUREvpH2CBvGST4nfiFUIV0EqVWABry7Enub5K7GAnrfrv8b0pVbvBGz_mnG8kz3lbnYQYoKreE3xJMGs_ZU6EamtMRY0lb1UtX1VnFHNRU0bpybPzaXWR8x6XJajiRL2pTjkWiiuMzyr_cwa7JDOiHsyyJkBTdDD6MKB7v-zQkMy8Q9kPoUjmFC3kfCj2MaEuGR-QjSEUhL_zywMqd7MuPk8oH7nrhJzPMTlI76rXvRkzXDzu59Xvb19_XV3Xtz--31x9ua0tl3KpVSt72xve4M6BUUQ40jXSdc5ajjnrDLTYMdoa1ihuiXUd5hQIa6HpVWM4O69uNq6LZq_n5CeTHnQ0Xh8fYhq0SYu3I2hpKMdKCCX7jguJDcOW9a3ABnpqLS6szxtrXrsJnIVw-KoX0JeV4Hd6iHeaUEoawlUhfHwkpPhnhbzoyWcL42gCxDXrMh_JBKfq0OzD82ZPXf4NqwjoJrAp5pygf5IQrA-h0FsodAmFPoZCy2JimykXcRgg6X1cU5lm_p_rL5EjvCs
Cites_doi 10.3389/fnins.2023.926321
10.1007/s12559-021-09981-z
10.1038/s41598-024-79817-x
10.3390/bioengineering10010056
10.3389/fninf.2021.802305
10.1007/s11517-022-02558-4
10.1016/j.neuroimage.2019.06.046
10.1007/s44196-023-00380-w
10.1038/s41380-023-02079-y
10.34133/cbsystems.0028
10.1016/j.compbiomed.2022.105643
10.1109/TBME.2024.3376603
10.3174/ajnr.A8067
10.1109/JBHI.2024.3409163
10.1002/ddr.21726
10.3233/SHTI230734
10.1016/j.cogsys.2021.10.002
10.34133/cbsystems.0121
10.1007/s11571-022-09828-9
10.1016/j.pscychresns.2024.111858
10.1007/s40120-021-00279-8
10.1177/15500594211054990
10.1007/978-3-031-51893-5_1
10.52294/001c.124565
10.1016/j.nicl.2020.102251
10.3389/fnins.2023.1184601
10.34133/research.0355
10.1038/s41598-024-72919-6
10.1002/mp.14038
10.1080/10255842.2025.2477801
10.1016/j.neuroimage.2020.116603
10.1109/ISBI56570.2024.10635496
10.1038/s41598-023-35910-1
10.1093/cercor/bhae226
10.1109/ICASSP.2017.7952296
10.1109/ISBI56570.2024.10635215
10.1016/j.neuroimage.2022.119591
10.1016/j.compbiomed.2022.106521
10.1002/ddr.21515
10.1016/j.compbiomed.2024.108415
10.3390/brainsci13010130
10.4015/S1016237222500466
10.1007/s11571-021-09730-w
10.1002/hbm.25829
10.34133/cbsystems.0045
10.1007/s11682-020-00312-8
10.1016/j.cmpb.2024.108110
10.1186/s13677-024-00675-z
10.1109/ICCCNT61001.2024.10723846
10.1016/j.jad.2023.04.102
10.1016/j.asoc.2023.110363
10.1016/j.bbr.2019.112262
10.1038/s41598-023-34650-6
10.3390/jimaging9060110
10.1109/THMS.2024.3407875
10.34133/cbsystems.0047
10.1093/scan/nsad071
10.1109/ACCESS.2024.3373467
10.3390/brainsci12050535
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06489-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 34
ExternalDocumentID oai_doaj_org_article_6a24095596fb4560a30c3f850aef2cc0
PMC12217149
40594900
10_1038_s41598_025_06489_6
Genre Journal Article
GrantInformation_xml – fundername: Guangdong Provincial Key Laboratory
  grantid: 2023B1212060076
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20220818100004008
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c466t-986fcfa470bdea915d1b76dbdcc4043bae80d328a3794c1cdb042e138e7f97a43
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 18:33:14 EDT 2025
Tue Aug 26 08:58:24 EDT 2025
Mon Jul 21 06:03:38 EDT 2025
Tue Jul 15 05:56:23 EDT 2025
Wed Jul 02 02:43:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Graph Fourier transform
Spectral clustering
Graph signal processing
Autism spectrum disorder
Brain connectivity analysis
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-986fcfa470bdea915d1b76dbdcc4043bae80d328a3794c1cdb042e138e7f97a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-06489-6
PMID 40594900
PQID 3226354290
PQPubID 23479
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_6a24095596fb4560a30c3f850aef2cc0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217149
proquest_miscellaneous_3226354290
pubmed_primary_40594900
crossref_primary_10_1038_s41598_025_06489_6
springer_journals_10_1038_s41598_025_06489_6
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References K-W Park (6489_CR52) 2023; 142
6489_CR5
H Fang (6489_CR59) 2020; 378
6489_CR42
6489_CR3
L Kang (6489_CR38) 2024; 248
6489_CR4
L Waller (6489_CR43) 2022; 43
L Liu (6489_CR27) 2023; 153
V Kumar (6489_CR44) 2024; 45
T Zhou (6489_CR53) 2020; 26
CL Alves (6489_CR26) 2023; 13
F Salehi (6489_CR51) 2022; 16
MS Farooq (6489_CR61) 2023; 13
6489_CR47
6489_CR48
TA Manoharan (6489_CR56) 2023; 54
Y ElNakieb (6489_CR54) 2023; 10
A Jabbar (6489_CR40) 2024; 14
C Bao (6489_CR6) 2023; 4
X Yang (6489_CR30) 2022; 8
6489_CR33
Y Lin (6489_CR11) 2023; 4
FZ Benabdallah (6489_CR41) 2023; 9
Z Liu (6489_CR1) 2024; 28
AT Jafadideh (6489_CR19) 2022; 146
A Pedroni (6489_CR45) 2019; 200
MK Jabbar (6489_CR25) 2022; 12
J Shi (6489_CR17) 2024; 5
6489_CR35
6489_CR37
FZ Esfahlani (6489_CR55) 2022; 263
J Zhang (6489_CR28) 2023; 335
E Scalco (6489_CR46) 2020; 47
L Chen (6489_CR34) 2021; 15
Q Mohi ud Din (6489_CR58) 2023; 35
6489_CR22
R Kashef (6489_CR21) 2022; 71
C Zhu (6489_CR18) 2024; 13
X Gao (6489_CR13) 2019; 80
A Jabbar (6489_CR39) 2024; 17
X Geng (6489_CR24) 2023; 13
6489_CR23
Q Lu (6489_CR14) 2020; 81
J Zhang (6489_CR29) 2023; 15
R Blanco (6489_CR20) 2024; 14
6489_CR50
Z Guan (6489_CR36) 2024; 174
TC Ramos (6489_CR49) 2023; 17
Y Du (6489_CR12) 2023; 28
X Si (6489_CR10) 2023; 4
L Kang (6489_CR57) 2023; 17
Y Chu (6489_CR60) 2022; 15
B Shen (6489_CR9) 2024; 34
C Zhang (6489_CR7) 2021; 10
C Nicolini (6489_CR15) 2020; 211
H Pan (6489_CR16) 2024; 54
H Feng (6489_CR8) 2024; 7
H Pan (6489_CR2) 2024; 71
J Sachdeva (6489_CR31) 2024; 343
P Cao (6489_CR32) 2022; 60
References_xml – volume: 17
  start-page: 926321
  year: 2023
  ident: 6489_CR49
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.926321
– volume: 8
  start-page: 100290
  year: 2022
  ident: 6489_CR30
  publication-title: Mach. Learn. Appl.
– volume: 15
  start-page: 1106
  year: 2023
  ident: 6489_CR29
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-021-09981-z
– volume: 14
  start-page: 28976
  year: 2024
  ident: 6489_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-79817-x
– volume: 10
  start-page: 56
  year: 2023
  ident: 6489_CR54
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10010056
– volume: 15
  start-page: 802305
  year: 2022
  ident: 6489_CR60
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2021.802305
– volume: 60
  start-page: 1897
  year: 2022
  ident: 6489_CR32
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02558-4
– volume: 200
  start-page: 460
  year: 2019
  ident: 6489_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.046
– volume: 17
  start-page: 1
  year: 2024
  ident: 6489_CR39
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-023-00380-w
– volume: 28
  start-page: 3092
  year: 2023
  ident: 6489_CR12
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-023-02079-y
– volume: 4
  start-page: 0028
  year: 2023
  ident: 6489_CR6
  publication-title: Cyborg Bionic Syst.
  doi: 10.34133/cbsystems.0028
– volume: 146
  start-page: 105643
  year: 2022
  ident: 6489_CR19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105643
– volume: 71
  start-page: 2454
  year: 2024
  ident: 6489_CR2
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2024.3376603
– volume: 45
  start-page: 139
  year: 2024
  ident: 6489_CR44
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A8067
– volume: 28
  start-page: 5270
  year: 2024
  ident: 6489_CR1
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3409163
– volume: 81
  start-page: 1037
  year: 2020
  ident: 6489_CR14
  publication-title: Drug Dev. Res.
  doi: 10.1002/ddr.21726
– ident: 6489_CR50
  doi: 10.3233/SHTI230734
– volume: 71
  start-page: 41
  year: 2022
  ident: 6489_CR21
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2021.10.002
– ident: 6489_CR35
– volume: 5
  start-page: 0121
  issue: Article
  year: 2024
  ident: 6489_CR17
  publication-title: Cyborg. Bionic Syst.
  doi: 10.34133/cbsystems.0121
– volume: 17
  start-page: 345
  year: 2023
  ident: 6489_CR57
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09828-9
– volume: 343
  start-page: 111858
  year: 2024
  ident: 6489_CR31
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2024.111858
– volume: 10
  start-page: 1001
  year: 2021
  ident: 6489_CR7
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-021-00279-8
– volume: 54
  start-page: 461
  year: 2023
  ident: 6489_CR56
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/15500594211054990
– ident: 6489_CR33
  doi: 10.1007/978-3-031-51893-5_1
– ident: 6489_CR47
  doi: 10.52294/001c.124565
– volume: 26
  start-page: 102251
  year: 2020
  ident: 6489_CR53
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2020.102251
– ident: 6489_CR3
  doi: 10.3389/fnins.2023.1184601
– volume: 7
  start-page: 0355
  year: 2024
  ident: 6489_CR8
  publication-title: Research
  doi: 10.34133/research.0355
– volume: 14
  start-page: 23255
  year: 2024
  ident: 6489_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-72919-6
– volume: 47
  start-page: 1680
  year: 2020
  ident: 6489_CR46
  publication-title: Med. Phys.
  doi: 10.1002/mp.14038
– ident: 6489_CR5
  doi: 10.1080/10255842.2025.2477801
– volume: 211
  start-page: 116603
  year: 2020
  ident: 6489_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116603
– ident: 6489_CR37
  doi: 10.1109/ISBI56570.2024.10635496
– volume: 13
  start-page: 9605
  year: 2023
  ident: 6489_CR61
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35910-1
– volume: 34
  start-page: bhae226
  year: 2024
  ident: 6489_CR9
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhae226
– ident: 6489_CR22
  doi: 10.1109/ICASSP.2017.7952296
– ident: 6489_CR48
  doi: 10.1109/ISBI56570.2024.10635215
– volume: 263
  start-page: 119591
  year: 2022
  ident: 6489_CR55
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119591
– volume: 153
  start-page: 106521
  year: 2023
  ident: 6489_CR27
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106521
– volume: 80
  start-page: 438
  year: 2019
  ident: 6489_CR13
  publication-title: Drug Dev. Res.
  doi: 10.1002/ddr.21515
– volume: 174
  start-page: 108415
  year: 2024
  ident: 6489_CR36
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108415
– volume: 13
  start-page: 130
  year: 2023
  ident: 6489_CR24
  publication-title: Brain Sci.
  doi: 10.3390/brainsci13010130
– volume: 35
  start-page: 2250046
  year: 2023
  ident: 6489_CR58
  publication-title: Biomed. Eng. Appl. Basis Commun.
  doi: 10.4015/S1016237222500466
– volume: 16
  start-page: 519
  year: 2022
  ident: 6489_CR51
  publication-title: Cognit. Neurodyn.
  doi: 10.1007/s11571-021-09730-w
– volume: 43
  start-page: 2727
  year: 2022
  ident: 6489_CR43
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25829
– volume: 4
  start-page: 0045
  year: 2023
  ident: 6489_CR10
  publication-title: Cyborg Bionic Syst.
  doi: 10.34133/cbsystems.0045
– volume: 15
  start-page: 1058
  year: 2021
  ident: 6489_CR34
  publication-title: Brain Imag. Behav.
  doi: 10.1007/s11682-020-00312-8
– volume: 248
  start-page: 108110
  year: 2024
  ident: 6489_CR38
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2024.108110
– volume: 13
  start-page: 119
  year: 2024
  ident: 6489_CR18
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-024-00675-z
– ident: 6489_CR23
  doi: 10.1109/ICCCNT61001.2024.10723846
– volume: 335
  start-page: 36
  year: 2023
  ident: 6489_CR28
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2023.04.102
– volume: 142
  start-page: 110363
  year: 2023
  ident: 6489_CR52
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110363
– volume: 378
  start-page: 112262
  year: 2020
  ident: 6489_CR59
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2019.112262
– volume: 13
  start-page: 8072
  year: 2023
  ident: 6489_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34650-6
– volume: 9
  start-page: 110
  year: 2023
  ident: 6489_CR41
  publication-title: J. Imaging
  doi: 10.3390/jimaging9060110
– volume: 54
  start-page: 711
  year: 2024
  ident: 6489_CR16
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2024.3407875
– volume: 4
  start-page: 0047
  year: 2023
  ident: 6489_CR11
  publication-title: Cyborg Bionic Syst.
  doi: 10.34133/cbsystems.0047
– ident: 6489_CR4
  doi: 10.1093/scan/nsad071
– ident: 6489_CR42
  doi: 10.1109/ACCESS.2024.3373467
– volume: 12
  start-page: 535
  year: 2022
  ident: 6489_CR25
  publication-title: Brain Sci.
  doi: 10.3390/brainsci12050535
SSID ssj0000529419
Score 2.4510953
Snippet Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical approaches...
Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental condition associated with disrupted brain connectivity. Traditional graph-theoretical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22933
SubjectTerms 631/61
639/4077
Autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Autism Spectrum Disorder - physiopathology
Brain - diagnostic imaging
Brain - physiopathology
Brain connectivity analysis
Child
Connectome - methods
Electroencephalography
Female
Graph Fourier transform
Graph signal processing
Humanities and Social Sciences
Humans
Magnetic Resonance Imaging
Male
multidisciplinary
Principal Component Analysis
Science
Science (multidisciplinary)
Signal Processing, Computer-Assisted
Spectral clustering
Support Vector Machine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUiUuFS1Q0gcyEjeINrEdxz62CIQqlRMr7c3yU3AgoC574N93xs6udltELxwTW07s-ZyZiWe-IeREdQk9LlbLkFwtYq9rFzlgmTHXtTJql5mYfl3Lq6n4Oetma6W-MCas0AOXhZtICzoHadJkcqDsG8sbz5PqGhsT8z5766Dz1pypwurNtGj1mCXTcDWZg6bCbDLW1aCFla7lhibKhP0vWZn_Bkv-dWKaFdHlLnk_WpD0e3nzD2QrDh_Ju1JT8nmP3GFFeRyCpphJO2kudgNDUfznSjNDNcWwDejyWNIEsBGMV-qwXgT1GPviS1UJCtcWsDm_pzkn8_finoaRsHOfTC8vbs6v6rGeQu2FlE-1VjL5ZEXfuBCtbrvQul4GF7xHjh1no2oCZ8py2KS-9cHBjo4tV7FPureCH5Dt4WGIh4QKJzyLvQVvxArlO6vQD3Kss1w3yYaKnC7X1jwW2gyTj7u5MkUSBiRhsiSMrMgPXP5VT6S8zjcACGYEgvkfECpyvBSegS2C5x52iA-LuQHcgVkFihf6fCrCXD1KIF-NbqBFbYh54102W4a720zD3TKG1eN1Rc6WiDDjB2D-ymQ_v8Vkv5AdlqHcA6K_km0Qf_wG1tGTO8ob4Q8gaAzY
  priority: 102
  providerName: Directory of Open Access Journals
Title Spectral feature modeling with graph signal processing for brain connectivity in autism spectrum disorder
URI https://link.springer.com/article/10.1038/s41598-025-06489-6
https://www.ncbi.nlm.nih.gov/pubmed/40594900
https://www.proquest.com/docview/3226354290
https://pubmed.ncbi.nlm.nih.gov/PMC12217149
https://doaj.org/article/6a24095596fb4560a30c3f850aef2cc0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLafrKts2iQG-tqS3JsnTcLAlhoSG0DexNSLLU5hBvyCaH_vvOyPbCtqHQk7Ely5JmxjOSZr4B-KDrRCsuXqg2-ULGxhQ-CuRlzn1dqWh8RmL6cqHOr-RiWS93gI-xMNlpP0Na5t_06B32eY2KhoLBeF2gEtWmULuwT9DtxNVzNd_sq9DJlazMEB9TCv3Iq1s6KEP1P2Zf_u0m-cdZaVZBZ8_h2WA7slnf2wPYid0LeNJnk_z1Eq4plzw1wVLMY2M5zQ02xWi3lWVsakYOG1jltg8QoEI0W5mnTBEskNdL6PNJMLx3yJXrG5ajMe8eblg7QHW-gquz0-_z82LIpFAEqdR9YbRKITnZlL6NzlR1W_lGtb4NgdB1vIu6bAXXTqB4hiq0HmU5VkLHJpnGSfEa9rpVFw-BSS8Dj43DdYiTOtRO0wrI89oJUybXTuDjOLf2tgfMsPmgW2jbU8IiJWymhFUTOKHp39QksOv8YHX3ww7Et8qh2UFIeSp5tPdKJ8ogkq5LFxMPoZzA8Ug8i8JBJx6ui6uHtUWOQ4MKVS7WedMTc_MpSUg1psQSvUXmrb5sl3TXPzMAd8U55Y03E_g0coQdRH_9j8G-_b_q7-Apz0zbIO--hz0kdDxCC-jeT2G3WTZT2J_NFt8WeD05vbj8Os2CMM27Cr8ByNQHoQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJgQXxDcPGASJG1SkSZomR3ja9AbbTpu0W5SkydhhfdPeduC_x07bJz2YkDi2cdskdmontn8G-GiaTDsuUekuh0ql1lYhSZRlIUJT62RDQWI6OtaLU_X9rDnbAjHlwpSg_QJpWX7TU3TYlxUqGkoGE02FStTYSt-DHbS1NYVxzfV8fa5CnitV2zE_hktzx6MbOqhA9d9lX_4dJvmHr7SooP3H8Gi0HdnXobdPYCv1T-H-UE3y1zO4oFry9AqWUxkbK2Vu8FWMTltZwaZmFLCBJFdDggA1otnKAlWKYJGiXuJQT4LhtUepXF2yko15fXvJuhGq8zmc7u-dzBfVWEmhikrrm8oanWP2quWhS97WTVeHVnehi5HQdYJPhndSGC9xecY6dgHXcqqlSW22rVfyBWz3yz69AqaCiiK1HvchXpnYeEM7oCAaLy3PvpvBp2lu3dUAmOGKo1saN3DCISdc4YTTM_hG07-mJLDrcmN5fe5G5jvt0ewgpDydA9p73EseZTYN9ymLGPkMPkzMc7g4yOPh-7S8XTmUODSoUOUizcuBmetPKUKqsRxbzAabN_qy2dJf_CwA3LUQVDfezuDzJBFuXPqrfwz29f-Rv4cHi5OjQ3d4cPzjDTwURYBblOO3sI1MT7toDd2Ed0X8fwOIrgWO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEagXBAXK8nQlbhDq2I5jH2HbVaGl4kCl3iw_Sw_Nrrrtof-eGSdZaaFC4ph4ktiemczYnvmGkPe6ybji4pWK2VcytabySYAsc-6bWiXjCxLT9xN1eCq_nTVnG0SNuTAlaL9AWpbf9BgdtrcEQ4PJYLypwIhqU6lPi5jvkfvgbzNcdE3VdLW3gqdXsjZDjgwT-o7H1-xQgeu_y8f8O1Tyj_PSYoZmj8mjwX-kn_sePyEbqdsmD_qKkrdPyQXWk8dX0JzK-GgpdQOvorjjSgs-NcWgDSBZ9EkC2AiuK_VYLYIGjHwJfU0JCtcOJHN5SUtG5tXNJY0DXOczcjo7-Dk9rIZqClWQSl1XRqscspMt8zE5Uzex9q2KPoaACDveJc2i4NoJUNFQh-hBn1MtdGqzaZ0Uz8lmN-_SC0Kll4Gn1sFaxEkdGqdxFeR544Rh2cUJ-TDOrV30oBm2HHYLbXtOWOCELZywakK-4PSvKBHwutyYX53bQQCscuB6IFqeyh58PuYECyLrhrmUeQhsQnZH5llQEDz1cF2a3ywtSB04VWB2gWanZ-bqUxLRagyDFr3G5rW-rLd0F78KCHfNOdaONxPycZQIO6j_8h-Dffl_5O_Iwx_7M3v89eToFdniRX5bEOPXZBN4nt6AQ3Tt3xbp_w0yzwaX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+feature+modeling+with+graph+signal+processing+for+brain+connectivity+in+autism+spectrum+disorder&rft.jtitle=Scientific+reports&rft.au=Jabbar%2C+Ayesha&rft.au=Jianjun%2C+Huang&rft.au=Jabbar%2C+Muhammad+Kashif&rft.au=ur+Rehman%2C+Khalil&rft.date=2025-07-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-06489-6&rft.externalDocID=10_1038_s41598_025_06489_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon