Endogenous d-serine exists in the mammalian brain independent of synthesis by serine racemase

Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to re...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 641; pp. 186 - 191
Main Authors Osaki, Akina, Aoyama, Marie, Mita, Masashi, Hamase, Kenji, Yasui, Masato, Sasabe, Jumpei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression. •Mammalian brain contains d-serine unoriginated from serine racemase throughout life (83).•d-serine production by symbiotic microbes has no contribution to brain d-serine level (85).•Non-dietary d-serine derived not from serine racemase exists in the brain (73).
AbstractList Activation of N-methyl- -aspartate receptors (NMDARs) requires binding of a co-agonist in addition to glutamate. serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of serine in the brain remain unclarified. In the present study, we investigated the origin of brain serine in mice. Loss of SR significantly reduced serine in the cerebral cortex, but a portion of serine remained in both neonates and adults. Although serine was also produced by intestinal bacteria, germ-free experiments did not influence serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of serine and resulted in a slight decrease of serine in the cerebral cortex, but did not account for brain serine found in the SR-knockout mice. Therefore, our findings show that endogenous serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.
Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression. •Mammalian brain contains d-serine unoriginated from serine racemase throughout life (83).•d-serine production by symbiotic microbes has no contribution to brain d-serine level (85).•Non-dietary d-serine derived not from serine racemase exists in the brain (73).
Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.
Author Sasabe, Jumpei
Osaki, Akina
Yasui, Masato
Aoyama, Marie
Mita, Masashi
Hamase, Kenji
Author_xml – sequence: 1
  givenname: Akina
  orcidid: 0000-0001-7084-5883
  surname: Osaki
  fullname: Osaki, Akina
  organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan
– sequence: 2
  givenname: Marie
  surname: Aoyama
  fullname: Aoyama, Marie
  organization: Vita-Salute San Raffaele University, 20132, Milano, Italy
– sequence: 3
  givenname: Masashi
  surname: Mita
  fullname: Mita, Masashi
  organization: KAGAMI INC., 567-0085, Osaka, Japan
– sequence: 4
  givenname: Kenji
  surname: Hamase
  fullname: Hamase, Kenji
  organization: Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
– sequence: 5
  givenname: Masato
  surname: Yasui
  fullname: Yasui, Masato
  organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan
– sequence: 6
  givenname: Jumpei
  orcidid: 0000-0002-5093-2987
  surname: Sasabe
  fullname: Sasabe, Jumpei
  email: sasabe@keio.jp
  organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36535077$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9rFDEUgINU7Hb1H_AgOXqZ8SWZZDrgRUrVQqGXCr2UkB9vNMtMZk2ypfvfm2VXDx56SUL4vgfvuyBncYlIyHsGLQOmPm1aa5NrOXDeMt6C6F-RFYMBGs6gOyMrAFANH9jDObnIeQPAWKeGN-RcKCkk9P2KPF5Hv_zEuOwy9U3GFCJSfA65ZBoiLb-QzmaezRRMpDaZ-heixy3WIxa6jDTvY6VyyNTu6WlAMg5nk_EteT2aKeO7070mP75e3199b27vvt1cfbltXKdUaQbpe7TeXhrmheuYqe8BvUUhjQQuBYwWOhil8cL04BTCIGXvh1H0vVVWrMnH49xtWn7vMBc9h-xwmkzEupnmvVSMc1XXXpMPJ3RnZ_R6m8Js0l7_TVIBfgRcWnJOOP5DGOhDd73Rh-760F0zrmv3Kl3-J7lQTAlLLLXZ9LL6-ahiDfQUMOnsAkaHPiR0RfslvKT_AWn_nyE
CitedBy_id crossref_primary_10_1073_pnas_2300817120
crossref_primary_10_1111_cns_14704
crossref_primary_10_1016_j_scitotenv_2024_172033
crossref_primary_10_1038_s41422_024_00931_6
crossref_primary_10_15583_jpchrom_2024_001
crossref_primary_10_1016_j_molmed_2023_09_001
Cites_doi 10.1016/j.phytochem.2019.112164
10.1124/pr.109.002451
10.1002/cne.21822
10.1016/S0896-6273(00)80051-3
10.1006/bbrc.2002.6441
10.1038/sj.bjp.0706029
10.1016/j.cell.2012.06.029
10.1128/JB.182.21.6228-6232.2000
10.1111/j.1471-4159.2011.07313.x
10.1128/jb.114.2.685-694.1973
10.1523/JNEUROSCI.0801-20.2020
10.1523/JNEUROSCI.5034-08.2008
10.1016/S0092-8674(00)81972-8
10.1038/mp.2008.130
10.1016/j.neuron.2014.02.026
10.1046/j.1471-4159.1995.65010454.x
10.1073/pnas.96.2.721
10.1093/hmg/ddp261
10.3389/fphys.2020.00973
10.1016/0896-6273(94)90350-6
10.1074/jbc.M005166200
10.1007/s00726-012-1398-4
10.1371/journal.pone.0156551
10.1007/s00726-015-2092-0
10.1038/nmicrobiol.2016.125
10.1002/1873-3468.14417
10.1016/j.bbamem.2010.07.032
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbrc.2022.12.037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 191
ExternalDocumentID 36535077
10_1016_j_bbrc_2022_12_037
S0006291X22017028
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
53G
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
RIG
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-95d7ebdb8a1d3c41abdb9edbe35a502530fb040f5ad3a70c6e09557d9f377b6b3
IEDL.DBID .~1
ISSN 0006-291X
1090-2104
IngestDate Fri Jul 11 09:51:56 EDT 2025
Wed Feb 19 02:24:57 EST 2025
Tue Jul 01 01:44:31 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Fri Feb 23 02:39:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GluN1
NMDAR
And d-amino acids
Serine racemase
d-serine
(d)(-)serine
And (d)(-)amino acids
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-95d7ebdb8a1d3c41abdb9edbe35a502530fb040f5ad3a70c6e09557d9f377b6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5093-2987
0000-0001-7084-5883
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006291X22017028
PMID 36535077
PQID 2756122665
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2756122665
pubmed_primary_36535077
crossref_primary_10_1016_j_bbrc_2022_12_037
crossref_citationtrail_10_1016_j_bbrc_2022_12_037
elsevier_sciencedirect_doi_10_1016_j_bbrc_2022_12_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-22
PublicationDateYYYYMMDD 2023-01-22
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zaragozá (bib24) 2020; 11
Foster, Farnsworth, Lind, Li, Yang, Dang, Penjwini, Viswanath, Staubli, Kavanaugh (bib23) 2016; 11
Papouin, Ladépêche, Ruel, Sacchi, Labasque, Hanini, Groc, Pollegioni, Mothet, Oliet (bib1) 2012; 150
Soutourina, Plateau, Blanquet (bib12) 2000; 275
Matsui, Sekiguchi, Hashimoto, Tomita, Nishikawa, Wada (bib5) 1995; 65
Hatanaka, Huang, Nakanishi, Bridges, Smith, Prasad, Ganapathy, Ganapathy (bib20) 2002; 291
Bodner, Radzishevsky, Foltyn, Touitou, Valenta, Rangel, Panizzutti, Kennedy, Billard, Wolosker (bib25) 2020; 40
Kasai, Tachikawa, Hirose, Akanuma, Hosoya (bib19) 2011; 118
Gonda, Ishii, Mita, Nishizaki, Ohtomo, Hamase, Shimizu, Sasabe (bib18) 2022
Kutsuwada, Sakimura, Manabe, Takayama, Katakura, Kushiya, Natsume, Watanabe, Inoue, Yagi, Aizawa, Arakawa, Takahashi, Nakamura, Mori, Mishina (bib28) 1996; 16
Inoue, Hashimoto, Harai, Mori (bib7) 2008; 28
Basu, Tsai, Ma, Ehmsen, Mustafa, Han, Jiang, Benneyworth, Froimowitz, Lange, Snyder, Bergeron, Coyle (bib10) 2009; 14
Grohs, Gutmann, Legrand, Schoot, Mainardi (bib13) 2000; 182
Forrest, Yuzaki, Soares, Ng, Luk, Sheng, Stewart, Morgan, Connor, Curran (bib4) 1994; 13
Miya, Inoue, Takata, Abe, Natsume, Sakimura, Hongou, Miyawaki, Mori (bib9) 2008; 510
Mohn, Gainetdinov, Caron, Koller (bib27) 1999; 98
Li, Erxurumlu, Jhaveri (bib3)
Uda, Abe, Dehara, Mizobata, Sogawa, Akagi, Saigan, Radkov, Moe (bib14) 2016; 48
Mizuno, Luo, Tarusawa, Saito, Sato, Yoshimura, Itohara, Iwasato (bib29) 2014; 82
Cosloy, McFall (bib11) 1973; 114
Uda, Edashige, Nishimura, Shikano, Matsui, Radkov, Moe (bib15) 2020; 169
Wolosker, Sheth, Takahashi, Mothet, Brady, Ferris, Snyder (bib6) 1999; 96
Edwards, Anderson, Gatfield, Jevons, Ganapathy, Thwaites (bib22) 2011; 1808
Kennedy, Gatfield, Winpenny, Ganapathy, Thwaites (bib21) 2005; 144
Labrie, Fukumura, Rastogi, Fick, Wang, Boutros, Kennedy, Semeralul, Lee, Baker, Belsham, Barger, Gondo, Wong, Roder (bib8) 2009; 18
Matsui, Sekiguchi, Hashimoto, Tomita, Nishikawa, Wada (bib26) 1995; 65
Traynelis, Wollmuth, McBain, Menniti, Vance, Ogden, Hansen, Yuan, Myers, Dingledine (bib2) 2010; 62
Sasabe (bib17) 2016; 1
Miyoshi, Konno, Sasabe, Ueno, Tojo, Mita, Aiso, Hamase (bib16) 2012; 43
Zaragozá (10.1016/j.bbrc.2022.12.037_bib24) 2020; 11
Forrest (10.1016/j.bbrc.2022.12.037_bib4) 1994; 13
Gonda (10.1016/j.bbrc.2022.12.037_bib18) 2022
Sasabe (10.1016/j.bbrc.2022.12.037_bib17) 2016; 1
Uda (10.1016/j.bbrc.2022.12.037_bib15) 2020; 169
Kennedy (10.1016/j.bbrc.2022.12.037_bib21) 2005; 144
Foster (10.1016/j.bbrc.2022.12.037_bib23) 2016; 11
Soutourina (10.1016/j.bbrc.2022.12.037_bib12) 2000; 275
Basu (10.1016/j.bbrc.2022.12.037_bib10) 2009; 14
Inoue (10.1016/j.bbrc.2022.12.037_bib7) 2008; 28
Traynelis (10.1016/j.bbrc.2022.12.037_bib2) 2010; 62
Mohn (10.1016/j.bbrc.2022.12.037_bib27) 1999; 98
Miyoshi (10.1016/j.bbrc.2022.12.037_bib16) 2012; 43
Matsui (10.1016/j.bbrc.2022.12.037_bib5) 1995; 65
Bodner (10.1016/j.bbrc.2022.12.037_bib25) 2020; 40
Labrie (10.1016/j.bbrc.2022.12.037_bib8) 2009; 18
Miya (10.1016/j.bbrc.2022.12.037_bib9) 2008; 510
Hatanaka (10.1016/j.bbrc.2022.12.037_bib20) 2002; 291
Mizuno (10.1016/j.bbrc.2022.12.037_bib29) 2014; 82
Grohs (10.1016/j.bbrc.2022.12.037_bib13) 2000; 182
Kasai (10.1016/j.bbrc.2022.12.037_bib19) 2011; 118
Papouin (10.1016/j.bbrc.2022.12.037_bib1) 2012; 150
Wolosker (10.1016/j.bbrc.2022.12.037_bib6) 1999; 96
Cosloy (10.1016/j.bbrc.2022.12.037_bib11) 1973; 114
Kutsuwada (10.1016/j.bbrc.2022.12.037_bib28) 1996; 16
Li (10.1016/j.bbrc.2022.12.037_bib3)
Edwards (10.1016/j.bbrc.2022.12.037_bib22) 2011; 1808
Matsui (10.1016/j.bbrc.2022.12.037_bib26) 1995; 65
Uda (10.1016/j.bbrc.2022.12.037_bib14) 2016; 48
References_xml – volume: 62
  start-page: 405
  year: 2010
  end-page: 496
  ident: bib2
  article-title: Glutamate receptor ion channels: structure, regulation, and function
  publication-title: Pharmacol. Rev.
– volume: 510
  start-page: 641
  year: 2008
  end-page: 654
  ident: bib9
  article-title: Serine racemase is predominantly localized in neurons in mouse brain
  publication-title: J. Comp. Neurol.
– volume: 150
  start-page: 633
  year: 2012
  end-page: 646
  ident: bib1
  article-title: Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists
  publication-title: Cell
– volume: 118
  start-page: 304
  year: 2011
  end-page: 313
  ident: bib19
  article-title: Transport systems of serine at the brain barriers and in brain parenchymal cells
  publication-title: J. Neurochem.
– volume: 144
  start-page: 28
  year: 2005
  end-page: 41
  ident: bib21
  article-title: Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2)
  publication-title: Br. J. Pharmacol.
– volume: 182
  start-page: 6228
  year: 2000
  end-page: 6232
  ident: bib13
  article-title: Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum
  publication-title: J. Bacteriol.
– volume: 65
  start-page: 454
  year: 1995
  end-page: 458
  ident: bib26
  article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration
  publication-title: J. Neurochem.
– volume: 291
  start-page: 291
  year: 2002
  end-page: 295
  ident: bib20
  article-title: Transport of d-serine via the amino acid transporter ATB0,+ expressed in the colon
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 13
  start-page: 325
  year: 1994
  end-page: 338
  ident: bib4
  article-title: Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death
  publication-title: Neuron
– volume: 1808
  start-page: 260
  year: 2011
  end-page: 270
  ident: bib22
  article-title: Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2)
  publication-title: Biochim. Biophys. Acta
– volume: 65
  start-page: 454
  year: 1995
  end-page: 458
  ident: bib5
  article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration
  publication-title: J. Neurochem.
– volume: 11
  year: 2016
  ident: bib23
  article-title: D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures
  publication-title: PLoS One
– volume: 275
  start-page: 32535
  year: 2000
  end-page: 32542
  ident: bib12
  article-title: Metabolism of d-Aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae Cells
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 1919
  year: 2012
  end-page: 1931
  ident: bib16
  article-title: Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase
  publication-title: Amino Acids
– volume: 11
  start-page: 973
  year: 2020
  ident: bib24
  article-title: Transport of amino acids across the blood-brain barrier
  publication-title: Front. Physiol.
– volume: 114
  start-page: 685
  year: 1973
  end-page: 694
  ident: bib11
  article-title: Metabolism of d -serine in
  publication-title: J. Bacteriol.
– ident: bib3
  article-title: Whisker-Related Neuronal Patterns Fail to Develop in the Trigeminal Brainstem Nuclei of NMDARI Knockout Mice
– volume: 14
  start-page: 719
  year: 2009
  end-page: 727
  ident: bib10
  article-title: Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior
  publication-title: Mol. Psychiatr.
– volume: 98
  start-page: 427
  year: 1999
  end-page: 436
  ident: bib27
  article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia
  publication-title: Cell
– volume: 28
  start-page: 14486
  year: 2008
  end-page: 14491
  ident: bib7
  article-title: NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice
  publication-title: J. Neurosci.
– volume: 48
  start-page: 387
  year: 2016
  end-page: 402
  ident: bib14
  article-title: Distribution and evolution of the serine/aspartate racemase family in invertebrates
  publication-title: Amino Acids
– volume: 16
  start-page: 333
  year: 1996
  end-page: 344
  ident: bib28
  article-title: Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice
  publication-title: Neuron
– volume: 96
  start-page: 721
  year: 1999
  end-page: 725
  ident: bib6
  article-title: Purification of serine racemase: biosynthesis of the neuromodulator d -serine
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 3227
  year: 2009
  end-page: 3243
  ident: bib8
  article-title: Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model
  publication-title: Hum. Mol. Genet.
– volume: 1
  year: 2016
  ident: bib17
  article-title: Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota
  publication-title: Nat. Microbiol.
– volume: 40
  start-page: 6489
  year: 2020
  end-page: 6502
  ident: bib25
  article-title: D-serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/D-serine dual transporters
  publication-title: J. Neurosci.
– volume: 169
  year: 2020
  ident: bib15
  article-title: Distribution and evolution of the serine/aspartate racemase family in plants
  publication-title: Phytochemistry
– year: 2022
  ident: bib18
  article-title: Astrocytic d-amino acid oxidase degrades d-serine in the hindbrain
  publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett.
– volume: 82
  start-page: 365
  year: 2014
  end-page: 379
  ident: bib29
  article-title: NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates
  publication-title: Neuron
– volume: 169
  year: 2020
  ident: 10.1016/j.bbrc.2022.12.037_bib15
  article-title: Distribution and evolution of the serine/aspartate racemase family in plants
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2019.112164
– volume: 62
  start-page: 405
  year: 2010
  ident: 10.1016/j.bbrc.2022.12.037_bib2
  article-title: Glutamate receptor ion channels: structure, regulation, and function
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.109.002451
– volume: 510
  start-page: 641
  year: 2008
  ident: 10.1016/j.bbrc.2022.12.037_bib9
  article-title: Serine racemase is predominantly localized in neurons in mouse brain
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21822
– volume: 16
  start-page: 333
  year: 1996
  ident: 10.1016/j.bbrc.2022.12.037_bib28
  article-title: Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80051-3
– volume: 291
  start-page: 291
  year: 2002
  ident: 10.1016/j.bbrc.2022.12.037_bib20
  article-title: Transport of d-serine via the amino acid transporter ATB0,+ expressed in the colon
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2002.6441
– volume: 144
  start-page: 28
  year: 2005
  ident: 10.1016/j.bbrc.2022.12.037_bib21
  article-title: Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2)
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0706029
– volume: 150
  start-page: 633
  year: 2012
  ident: 10.1016/j.bbrc.2022.12.037_bib1
  article-title: Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.029
– volume: 182
  start-page: 6228
  year: 2000
  ident: 10.1016/j.bbrc.2022.12.037_bib13
  article-title: Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.21.6228-6232.2000
– volume: 118
  start-page: 304
  year: 2011
  ident: 10.1016/j.bbrc.2022.12.037_bib19
  article-title: Transport systems of serine at the brain barriers and in brain parenchymal cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07313.x
– volume: 114
  start-page: 685
  year: 1973
  ident: 10.1016/j.bbrc.2022.12.037_bib11
  article-title: Metabolism of d -serine in Escherichia coli K-12: mechanism of growth inhibition
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.114.2.685-694.1973
– volume: 40
  start-page: 6489
  year: 2020
  ident: 10.1016/j.bbrc.2022.12.037_bib25
  article-title: D-serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/D-serine dual transporters
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0801-20.2020
– volume: 28
  start-page: 14486
  year: 2008
  ident: 10.1016/j.bbrc.2022.12.037_bib7
  article-title: NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5034-08.2008
– volume: 98
  start-page: 427
  year: 1999
  ident: 10.1016/j.bbrc.2022.12.037_bib27
  article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81972-8
– volume: 14
  start-page: 719
  year: 2009
  ident: 10.1016/j.bbrc.2022.12.037_bib10
  article-title: Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2008.130
– volume: 82
  start-page: 365
  year: 2014
  ident: 10.1016/j.bbrc.2022.12.037_bib29
  article-title: NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.026
– volume: 65
  start-page: 454
  year: 1995
  ident: 10.1016/j.bbrc.2022.12.037_bib26
  article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1995.65010454.x
– volume: 65
  start-page: 454
  year: 1995
  ident: 10.1016/j.bbrc.2022.12.037_bib5
  article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1995.65010454.x
– volume: 96
  start-page: 721
  year: 1999
  ident: 10.1016/j.bbrc.2022.12.037_bib6
  article-title: Purification of serine racemase: biosynthesis of the neuromodulator d -serine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.2.721
– volume: 18
  start-page: 3227
  year: 2009
  ident: 10.1016/j.bbrc.2022.12.037_bib8
  article-title: Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp261
– volume: 11
  start-page: 973
  year: 2020
  ident: 10.1016/j.bbrc.2022.12.037_bib24
  article-title: Transport of amino acids across the blood-brain barrier
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00973
– volume: 13
  start-page: 325
  year: 1994
  ident: 10.1016/j.bbrc.2022.12.037_bib4
  article-title: Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death
  publication-title: Neuron
  doi: 10.1016/0896-6273(94)90350-6
– volume: 275
  start-page: 32535
  year: 2000
  ident: 10.1016/j.bbrc.2022.12.037_bib12
  article-title: Metabolism of d-Aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae Cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005166200
– volume: 43
  start-page: 1919
  year: 2012
  ident: 10.1016/j.bbrc.2022.12.037_bib16
  article-title: Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase
  publication-title: Amino Acids
  doi: 10.1007/s00726-012-1398-4
– volume: 11
  year: 2016
  ident: 10.1016/j.bbrc.2022.12.037_bib23
  article-title: D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156551
– volume: 48
  start-page: 387
  year: 2016
  ident: 10.1016/j.bbrc.2022.12.037_bib14
  article-title: Distribution and evolution of the serine/aspartate racemase family in invertebrates
  publication-title: Amino Acids
  doi: 10.1007/s00726-015-2092-0
– volume: 1
  year: 2016
  ident: 10.1016/j.bbrc.2022.12.037_bib17
  article-title: Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.125
– year: 2022
  ident: 10.1016/j.bbrc.2022.12.037_bib18
  article-title: Astrocytic d-amino acid oxidase degrades d-serine in the hindbrain
  publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett.
  doi: 10.1002/1873-3468.14417
– ident: 10.1016/j.bbrc.2022.12.037_bib3
– volume: 1808
  start-page: 260
  year: 2011
  ident: 10.1016/j.bbrc.2022.12.037_bib22
  article-title: Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2)
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.07.032
SSID ssj0011469
Score 2.4486291
Snippet Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on...
Activation of N-methyl- -aspartate receptors (NMDARs) requires binding of a co-agonist in addition to glutamate. serine binds to the co-agonist site on GluN1...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms And d-amino acids
Animals
Brain - metabolism
d-serine
GluN1
Mammals - metabolism
Mice
Mice, Knockout
NMDAR
Racemases and Epimerases - genetics
Racemases and Epimerases - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Serine - metabolism
Serine racemase
Title Endogenous d-serine exists in the mammalian brain independent of synthesis by serine racemase
URI https://dx.doi.org/10.1016/j.bbrc.2022.12.037
https://www.ncbi.nlm.nih.gov/pubmed/36535077
https://www.proquest.com/docview/2756122665
Volume 641
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIgQXVFo-lkJlJMQFmcZObG-O21WrBURPVNoLsjy2IwWRbLUJh73w2_EkzkpItAduUWQnkZ_jeR7PvCHknbPaOi_mzJdCsWgCKlbaMGfALZQ22tgQ8ET367Va3RSf13J9QJZTLgyGVaa1f1zTh9U63TlPo3l-W9eY45spUfK1EKgBIzDhtyg0zvKPv_dhHph0myiwYtg6Jc6MMV4AW5QxFGJwCWIt9H8bp7vI52CEro7Ik8Qe6WL8wKfkILTH5GTRxp1zs6Pv6RDPOTjKj8nDi-nq0XKq6nZCvl-2fjMKs1LPuiH5j6IcZt_RuqWRDtLGNs3g_aCA9SNova-U29NNRbtdG1t1dUdhR9MDttaFJtrDZ-Tm6vLbcsVSiQXmCqV6VkqvA3iYW-5zV0SAPJTBQ8illZEO5VkF8TevpPW51ZlTASXrtC-rXGtQkD8nh-2mDS8JlRIstxI4SF04lwHPC6913G5lwWWunBE-ja1xSX8cy2D8NFOg2Q-DeBjEw3BhIh4z8mHf53ZU37i3tZwgM3_NIRPNw7393k74mogGnpjYNkQcDGrj80hQlZyRFyPw--_Ilcwjmdav_vOtp-Qxlq5Hd44Qr8lhv_0V3kSC08PZMIPPyIPFpy-r6z-ulPqr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCFoey9NIwAWZJk5sbw4cSmm1pY9TK-0FGb8iBZFstQlCe-FP8QcZJ85KSNADUm9RYifWfM7M2J75BuCV1VJbx6bUFUxQNAElLbSfUpNqU2i0sd6HE93TMzG7yD_N-XwDfo25MCGsMur-Qaf32jre2Y3S3L2sqpDjmwhWpHPGAgcMm8bIymO_-oHrtvb90UcE-TVjhwfn-zMaSwtQmwvR0YI76Y0zU526zOY4MGcK74zPuOboBmRJaXB6l1y7TMvECh-o2qQrykxKI0yG770BN3NUF6Fswruf67iSkOUbfW5Bw_Bips4QVGbMMvAmMtbvQYbi63-3hv_ydnurd3gX7kR3lewNErkHG77Zhp29Bpfq9Yq8IX0Aab8zvw23PoxXW_tjGbkd-HzQuMXABEscbftsQxL4N7uWVA1B_5PUuq777RZiQsEKUq1L83ZkUZJ21WCrtmqJWZH4gqW2vkYDfB8urkXwD2CzWTT-ERDOjU41N6nhMrc2MWmWOylxfZd4m9hiAukoW2Uj4Xmou_FNjZFtX1XAQwU8VMoU4jGBt-s-lwPdx5Wt-QiZ-mPSKrRHV_Z7OeKrEI1wRKMbjzioQMafokcs-AQeDsCvx5EJnqH3Lh__51dfwNbs_PREnRydHT-B2_gkRNJRxp7CZrf87p-hd9WZ5_1sJvDlun-f34g9N-o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endogenous+d-serine+exists+in+the+mammalian+brain+independent+of+synthesis+by+serine+racemase&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Osaki%2C+Akina&rft.au=Aoyama%2C+Marie&rft.au=Mita%2C+Masashi&rft.au=Hamase%2C+Kenji&rft.date=2023-01-22&rft.eissn=1090-2104&rft.volume=641&rft.spage=186&rft_id=info:doi/10.1016%2Fj.bbrc.2022.12.037&rft_id=info%3Apmid%2F36535077&rft.externalDocID=36535077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon