Endogenous d-serine exists in the mammalian brain independent of synthesis by serine racemase
Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to re...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 641; pp. 186 - 191 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.
•Mammalian brain contains d-serine unoriginated from serine racemase throughout life (83).•d-serine production by symbiotic microbes has no contribution to brain d-serine level (85).•Non-dietary d-serine derived not from serine racemase exists in the brain (73). |
---|---|
AbstractList | Activation of N-methyl-
-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to
glutamate.
serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a
serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of
serine in the brain remain unclarified. In the present study, we investigated the origin of brain
serine in mice. Loss of SR significantly reduced
serine in the cerebral cortex, but a portion of
serine remained in both neonates and adults. Although
serine was also produced by intestinal bacteria, germ-free experiments did not influence
serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal
serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of
serine and resulted in a slight decrease of
serine in the cerebral cortex, but did not account for brain
serine found in the SR-knockout mice. Therefore, our findings show that endogenous
serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous
serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression. Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression. •Mammalian brain contains d-serine unoriginated from serine racemase throughout life (83).•d-serine production by symbiotic microbes has no contribution to brain d-serine level (85).•Non-dietary d-serine derived not from serine racemase exists in the brain (73). Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression. |
Author | Sasabe, Jumpei Osaki, Akina Yasui, Masato Aoyama, Marie Mita, Masashi Hamase, Kenji |
Author_xml | – sequence: 1 givenname: Akina orcidid: 0000-0001-7084-5883 surname: Osaki fullname: Osaki, Akina organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan – sequence: 2 givenname: Marie surname: Aoyama fullname: Aoyama, Marie organization: Vita-Salute San Raffaele University, 20132, Milano, Italy – sequence: 3 givenname: Masashi surname: Mita fullname: Mita, Masashi organization: KAGAMI INC., 567-0085, Osaka, Japan – sequence: 4 givenname: Kenji surname: Hamase fullname: Hamase, Kenji organization: Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Fukuoka, Japan – sequence: 5 givenname: Masato surname: Yasui fullname: Yasui, Masato organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan – sequence: 6 givenname: Jumpei orcidid: 0000-0002-5093-2987 surname: Sasabe fullname: Sasabe, Jumpei email: sasabe@keio.jp organization: Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36535077$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9rFDEUgINU7Hb1H_AgOXqZ8SWZZDrgRUrVQqGXCr2UkB9vNMtMZk2ypfvfm2VXDx56SUL4vgfvuyBncYlIyHsGLQOmPm1aa5NrOXDeMt6C6F-RFYMBGs6gOyMrAFANH9jDObnIeQPAWKeGN-RcKCkk9P2KPF5Hv_zEuOwy9U3GFCJSfA65ZBoiLb-QzmaezRRMpDaZ-heixy3WIxa6jDTvY6VyyNTu6WlAMg5nk_EteT2aKeO7070mP75e3199b27vvt1cfbltXKdUaQbpe7TeXhrmheuYqe8BvUUhjQQuBYwWOhil8cL04BTCIGXvh1H0vVVWrMnH49xtWn7vMBc9h-xwmkzEupnmvVSMc1XXXpMPJ3RnZ_R6m8Js0l7_TVIBfgRcWnJOOP5DGOhDd73Rh-760F0zrmv3Kl3-J7lQTAlLLLXZ9LL6-ahiDfQUMOnsAkaHPiR0RfslvKT_AWn_nyE |
CitedBy_id | crossref_primary_10_1073_pnas_2300817120 crossref_primary_10_1111_cns_14704 crossref_primary_10_1016_j_scitotenv_2024_172033 crossref_primary_10_1038_s41422_024_00931_6 crossref_primary_10_15583_jpchrom_2024_001 crossref_primary_10_1016_j_molmed_2023_09_001 |
Cites_doi | 10.1016/j.phytochem.2019.112164 10.1124/pr.109.002451 10.1002/cne.21822 10.1016/S0896-6273(00)80051-3 10.1006/bbrc.2002.6441 10.1038/sj.bjp.0706029 10.1016/j.cell.2012.06.029 10.1128/JB.182.21.6228-6232.2000 10.1111/j.1471-4159.2011.07313.x 10.1128/jb.114.2.685-694.1973 10.1523/JNEUROSCI.0801-20.2020 10.1523/JNEUROSCI.5034-08.2008 10.1016/S0092-8674(00)81972-8 10.1038/mp.2008.130 10.1016/j.neuron.2014.02.026 10.1046/j.1471-4159.1995.65010454.x 10.1073/pnas.96.2.721 10.1093/hmg/ddp261 10.3389/fphys.2020.00973 10.1016/0896-6273(94)90350-6 10.1074/jbc.M005166200 10.1007/s00726-012-1398-4 10.1371/journal.pone.0156551 10.1007/s00726-015-2092-0 10.1038/nmicrobiol.2016.125 10.1002/1873-3468.14417 10.1016/j.bbamem.2010.07.032 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbrc.2022.12.037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 191 |
ExternalDocumentID | 36535077 10_1016_j_bbrc_2022_12_037 S0006291X22017028 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 53G 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- RIG SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-95d7ebdb8a1d3c41abdb9edbe35a502530fb040f5ad3a70c6e09557d9f377b6b3 |
IEDL.DBID | .~1 |
ISSN | 0006-291X 1090-2104 |
IngestDate | Fri Jul 11 09:51:56 EDT 2025 Wed Feb 19 02:24:57 EST 2025 Tue Jul 01 01:44:31 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Fri Feb 23 02:39:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GluN1 NMDAR And d-amino acids Serine racemase d-serine (d)(-)serine And (d)(-)amino acids |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-95d7ebdb8a1d3c41abdb9edbe35a502530fb040f5ad3a70c6e09557d9f377b6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5093-2987 0000-0001-7084-5883 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006291X22017028 |
PMID | 36535077 |
PQID | 2756122665 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2756122665 pubmed_primary_36535077 crossref_primary_10_1016_j_bbrc_2022_12_037 crossref_citationtrail_10_1016_j_bbrc_2022_12_037 elsevier_sciencedirect_doi_10_1016_j_bbrc_2022_12_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-22 |
PublicationDateYYYYMMDD | 2023-01-22 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zaragozá (bib24) 2020; 11 Foster, Farnsworth, Lind, Li, Yang, Dang, Penjwini, Viswanath, Staubli, Kavanaugh (bib23) 2016; 11 Papouin, Ladépêche, Ruel, Sacchi, Labasque, Hanini, Groc, Pollegioni, Mothet, Oliet (bib1) 2012; 150 Soutourina, Plateau, Blanquet (bib12) 2000; 275 Matsui, Sekiguchi, Hashimoto, Tomita, Nishikawa, Wada (bib5) 1995; 65 Hatanaka, Huang, Nakanishi, Bridges, Smith, Prasad, Ganapathy, Ganapathy (bib20) 2002; 291 Bodner, Radzishevsky, Foltyn, Touitou, Valenta, Rangel, Panizzutti, Kennedy, Billard, Wolosker (bib25) 2020; 40 Kasai, Tachikawa, Hirose, Akanuma, Hosoya (bib19) 2011; 118 Gonda, Ishii, Mita, Nishizaki, Ohtomo, Hamase, Shimizu, Sasabe (bib18) 2022 Kutsuwada, Sakimura, Manabe, Takayama, Katakura, Kushiya, Natsume, Watanabe, Inoue, Yagi, Aizawa, Arakawa, Takahashi, Nakamura, Mori, Mishina (bib28) 1996; 16 Inoue, Hashimoto, Harai, Mori (bib7) 2008; 28 Basu, Tsai, Ma, Ehmsen, Mustafa, Han, Jiang, Benneyworth, Froimowitz, Lange, Snyder, Bergeron, Coyle (bib10) 2009; 14 Grohs, Gutmann, Legrand, Schoot, Mainardi (bib13) 2000; 182 Forrest, Yuzaki, Soares, Ng, Luk, Sheng, Stewart, Morgan, Connor, Curran (bib4) 1994; 13 Miya, Inoue, Takata, Abe, Natsume, Sakimura, Hongou, Miyawaki, Mori (bib9) 2008; 510 Mohn, Gainetdinov, Caron, Koller (bib27) 1999; 98 Li, Erxurumlu, Jhaveri (bib3) Uda, Abe, Dehara, Mizobata, Sogawa, Akagi, Saigan, Radkov, Moe (bib14) 2016; 48 Mizuno, Luo, Tarusawa, Saito, Sato, Yoshimura, Itohara, Iwasato (bib29) 2014; 82 Cosloy, McFall (bib11) 1973; 114 Uda, Edashige, Nishimura, Shikano, Matsui, Radkov, Moe (bib15) 2020; 169 Wolosker, Sheth, Takahashi, Mothet, Brady, Ferris, Snyder (bib6) 1999; 96 Edwards, Anderson, Gatfield, Jevons, Ganapathy, Thwaites (bib22) 2011; 1808 Kennedy, Gatfield, Winpenny, Ganapathy, Thwaites (bib21) 2005; 144 Labrie, Fukumura, Rastogi, Fick, Wang, Boutros, Kennedy, Semeralul, Lee, Baker, Belsham, Barger, Gondo, Wong, Roder (bib8) 2009; 18 Matsui, Sekiguchi, Hashimoto, Tomita, Nishikawa, Wada (bib26) 1995; 65 Traynelis, Wollmuth, McBain, Menniti, Vance, Ogden, Hansen, Yuan, Myers, Dingledine (bib2) 2010; 62 Sasabe (bib17) 2016; 1 Miyoshi, Konno, Sasabe, Ueno, Tojo, Mita, Aiso, Hamase (bib16) 2012; 43 Zaragozá (10.1016/j.bbrc.2022.12.037_bib24) 2020; 11 Forrest (10.1016/j.bbrc.2022.12.037_bib4) 1994; 13 Gonda (10.1016/j.bbrc.2022.12.037_bib18) 2022 Sasabe (10.1016/j.bbrc.2022.12.037_bib17) 2016; 1 Uda (10.1016/j.bbrc.2022.12.037_bib15) 2020; 169 Kennedy (10.1016/j.bbrc.2022.12.037_bib21) 2005; 144 Foster (10.1016/j.bbrc.2022.12.037_bib23) 2016; 11 Soutourina (10.1016/j.bbrc.2022.12.037_bib12) 2000; 275 Basu (10.1016/j.bbrc.2022.12.037_bib10) 2009; 14 Inoue (10.1016/j.bbrc.2022.12.037_bib7) 2008; 28 Traynelis (10.1016/j.bbrc.2022.12.037_bib2) 2010; 62 Mohn (10.1016/j.bbrc.2022.12.037_bib27) 1999; 98 Miyoshi (10.1016/j.bbrc.2022.12.037_bib16) 2012; 43 Matsui (10.1016/j.bbrc.2022.12.037_bib5) 1995; 65 Bodner (10.1016/j.bbrc.2022.12.037_bib25) 2020; 40 Labrie (10.1016/j.bbrc.2022.12.037_bib8) 2009; 18 Miya (10.1016/j.bbrc.2022.12.037_bib9) 2008; 510 Hatanaka (10.1016/j.bbrc.2022.12.037_bib20) 2002; 291 Mizuno (10.1016/j.bbrc.2022.12.037_bib29) 2014; 82 Grohs (10.1016/j.bbrc.2022.12.037_bib13) 2000; 182 Kasai (10.1016/j.bbrc.2022.12.037_bib19) 2011; 118 Papouin (10.1016/j.bbrc.2022.12.037_bib1) 2012; 150 Wolosker (10.1016/j.bbrc.2022.12.037_bib6) 1999; 96 Cosloy (10.1016/j.bbrc.2022.12.037_bib11) 1973; 114 Kutsuwada (10.1016/j.bbrc.2022.12.037_bib28) 1996; 16 Li (10.1016/j.bbrc.2022.12.037_bib3) Edwards (10.1016/j.bbrc.2022.12.037_bib22) 2011; 1808 Matsui (10.1016/j.bbrc.2022.12.037_bib26) 1995; 65 Uda (10.1016/j.bbrc.2022.12.037_bib14) 2016; 48 |
References_xml | – volume: 62 start-page: 405 year: 2010 end-page: 496 ident: bib2 article-title: Glutamate receptor ion channels: structure, regulation, and function publication-title: Pharmacol. Rev. – volume: 510 start-page: 641 year: 2008 end-page: 654 ident: bib9 article-title: Serine racemase is predominantly localized in neurons in mouse brain publication-title: J. Comp. Neurol. – volume: 150 start-page: 633 year: 2012 end-page: 646 ident: bib1 article-title: Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists publication-title: Cell – volume: 118 start-page: 304 year: 2011 end-page: 313 ident: bib19 article-title: Transport systems of serine at the brain barriers and in brain parenchymal cells publication-title: J. Neurochem. – volume: 144 start-page: 28 year: 2005 end-page: 41 ident: bib21 article-title: Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2) publication-title: Br. J. Pharmacol. – volume: 182 start-page: 6228 year: 2000 end-page: 6232 ident: bib13 article-title: Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum publication-title: J. Bacteriol. – volume: 65 start-page: 454 year: 1995 end-page: 458 ident: bib26 article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration publication-title: J. Neurochem. – volume: 291 start-page: 291 year: 2002 end-page: 295 ident: bib20 article-title: Transport of d-serine via the amino acid transporter ATB0,+ expressed in the colon publication-title: Biochem. Biophys. Res. Commun. – volume: 13 start-page: 325 year: 1994 end-page: 338 ident: bib4 article-title: Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death publication-title: Neuron – volume: 1808 start-page: 260 year: 2011 end-page: 270 ident: bib22 article-title: Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2) publication-title: Biochim. Biophys. Acta – volume: 65 start-page: 454 year: 1995 end-page: 458 ident: bib5 article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration publication-title: J. Neurochem. – volume: 11 year: 2016 ident: bib23 article-title: D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures publication-title: PLoS One – volume: 275 start-page: 32535 year: 2000 end-page: 32542 ident: bib12 article-title: Metabolism of d-Aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae Cells publication-title: J. Biol. Chem. – volume: 43 start-page: 1919 year: 2012 end-page: 1931 ident: bib16 article-title: Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase publication-title: Amino Acids – volume: 11 start-page: 973 year: 2020 ident: bib24 article-title: Transport of amino acids across the blood-brain barrier publication-title: Front. Physiol. – volume: 114 start-page: 685 year: 1973 end-page: 694 ident: bib11 article-title: Metabolism of d -serine in publication-title: J. Bacteriol. – ident: bib3 article-title: Whisker-Related Neuronal Patterns Fail to Develop in the Trigeminal Brainstem Nuclei of NMDARI Knockout Mice – volume: 14 start-page: 719 year: 2009 end-page: 727 ident: bib10 article-title: Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior publication-title: Mol. Psychiatr. – volume: 98 start-page: 427 year: 1999 end-page: 436 ident: bib27 article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia publication-title: Cell – volume: 28 start-page: 14486 year: 2008 end-page: 14491 ident: bib7 article-title: NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice publication-title: J. Neurosci. – volume: 48 start-page: 387 year: 2016 end-page: 402 ident: bib14 article-title: Distribution and evolution of the serine/aspartate racemase family in invertebrates publication-title: Amino Acids – volume: 16 start-page: 333 year: 1996 end-page: 344 ident: bib28 article-title: Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice publication-title: Neuron – volume: 96 start-page: 721 year: 1999 end-page: 725 ident: bib6 article-title: Purification of serine racemase: biosynthesis of the neuromodulator d -serine publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 3227 year: 2009 end-page: 3243 ident: bib8 article-title: Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model publication-title: Hum. Mol. Genet. – volume: 1 year: 2016 ident: bib17 article-title: Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota publication-title: Nat. Microbiol. – volume: 40 start-page: 6489 year: 2020 end-page: 6502 ident: bib25 article-title: D-serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/D-serine dual transporters publication-title: J. Neurosci. – volume: 169 year: 2020 ident: bib15 article-title: Distribution and evolution of the serine/aspartate racemase family in plants publication-title: Phytochemistry – year: 2022 ident: bib18 article-title: Astrocytic d-amino acid oxidase degrades d-serine in the hindbrain publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett. – volume: 82 start-page: 365 year: 2014 end-page: 379 ident: bib29 article-title: NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates publication-title: Neuron – volume: 169 year: 2020 ident: 10.1016/j.bbrc.2022.12.037_bib15 article-title: Distribution and evolution of the serine/aspartate racemase family in plants publication-title: Phytochemistry doi: 10.1016/j.phytochem.2019.112164 – volume: 62 start-page: 405 year: 2010 ident: 10.1016/j.bbrc.2022.12.037_bib2 article-title: Glutamate receptor ion channels: structure, regulation, and function publication-title: Pharmacol. Rev. doi: 10.1124/pr.109.002451 – volume: 510 start-page: 641 year: 2008 ident: 10.1016/j.bbrc.2022.12.037_bib9 article-title: Serine racemase is predominantly localized in neurons in mouse brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.21822 – volume: 16 start-page: 333 year: 1996 ident: 10.1016/j.bbrc.2022.12.037_bib28 article-title: Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice publication-title: Neuron doi: 10.1016/S0896-6273(00)80051-3 – volume: 291 start-page: 291 year: 2002 ident: 10.1016/j.bbrc.2022.12.037_bib20 article-title: Transport of d-serine via the amino acid transporter ATB0,+ expressed in the colon publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2002.6441 – volume: 144 start-page: 28 year: 2005 ident: 10.1016/j.bbrc.2022.12.037_bib21 article-title: Substrate specificity and functional characterisation of the H+/amino acid transporter rat PAT2 (Slc36a2) publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706029 – volume: 150 start-page: 633 year: 2012 ident: 10.1016/j.bbrc.2022.12.037_bib1 article-title: Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists publication-title: Cell doi: 10.1016/j.cell.2012.06.029 – volume: 182 start-page: 6228 year: 2000 ident: 10.1016/j.bbrc.2022.12.037_bib13 article-title: Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum publication-title: J. Bacteriol. doi: 10.1128/JB.182.21.6228-6232.2000 – volume: 118 start-page: 304 year: 2011 ident: 10.1016/j.bbrc.2022.12.037_bib19 article-title: Transport systems of serine at the brain barriers and in brain parenchymal cells publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07313.x – volume: 114 start-page: 685 year: 1973 ident: 10.1016/j.bbrc.2022.12.037_bib11 article-title: Metabolism of d -serine in Escherichia coli K-12: mechanism of growth inhibition publication-title: J. Bacteriol. doi: 10.1128/jb.114.2.685-694.1973 – volume: 40 start-page: 6489 year: 2020 ident: 10.1016/j.bbrc.2022.12.037_bib25 article-title: D-serine signaling and NMDAR-mediated synaptic plasticity are regulated by system A-type of glutamine/D-serine dual transporters publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0801-20.2020 – volume: 28 start-page: 14486 year: 2008 ident: 10.1016/j.bbrc.2022.12.037_bib7 article-title: NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5034-08.2008 – volume: 98 start-page: 427 year: 1999 ident: 10.1016/j.bbrc.2022.12.037_bib27 article-title: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia publication-title: Cell doi: 10.1016/S0092-8674(00)81972-8 – volume: 14 start-page: 719 year: 2009 ident: 10.1016/j.bbrc.2022.12.037_bib10 article-title: Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior publication-title: Mol. Psychiatr. doi: 10.1038/mp.2008.130 – volume: 82 start-page: 365 year: 2014 ident: 10.1016/j.bbrc.2022.12.037_bib29 article-title: NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates publication-title: Neuron doi: 10.1016/j.neuron.2014.02.026 – volume: 65 start-page: 454 year: 1995 ident: 10.1016/j.bbrc.2022.12.037_bib26 article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.65010454.x – volume: 65 start-page: 454 year: 1995 ident: 10.1016/j.bbrc.2022.12.037_bib5 article-title: Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.65010454.x – volume: 96 start-page: 721 year: 1999 ident: 10.1016/j.bbrc.2022.12.037_bib6 article-title: Purification of serine racemase: biosynthesis of the neuromodulator d -serine publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.2.721 – volume: 18 start-page: 3227 year: 2009 ident: 10.1016/j.bbrc.2022.12.037_bib8 article-title: Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp261 – volume: 11 start-page: 973 year: 2020 ident: 10.1016/j.bbrc.2022.12.037_bib24 article-title: Transport of amino acids across the blood-brain barrier publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00973 – volume: 13 start-page: 325 year: 1994 ident: 10.1016/j.bbrc.2022.12.037_bib4 article-title: Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death publication-title: Neuron doi: 10.1016/0896-6273(94)90350-6 – volume: 275 start-page: 32535 year: 2000 ident: 10.1016/j.bbrc.2022.12.037_bib12 article-title: Metabolism of d-Aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae Cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005166200 – volume: 43 start-page: 1919 year: 2012 ident: 10.1016/j.bbrc.2022.12.037_bib16 article-title: Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase publication-title: Amino Acids doi: 10.1007/s00726-012-1398-4 – volume: 11 year: 2016 ident: 10.1016/j.bbrc.2022.12.037_bib23 article-title: D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures publication-title: PLoS One doi: 10.1371/journal.pone.0156551 – volume: 48 start-page: 387 year: 2016 ident: 10.1016/j.bbrc.2022.12.037_bib14 article-title: Distribution and evolution of the serine/aspartate racemase family in invertebrates publication-title: Amino Acids doi: 10.1007/s00726-015-2092-0 – volume: 1 year: 2016 ident: 10.1016/j.bbrc.2022.12.037_bib17 article-title: Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.125 – year: 2022 ident: 10.1016/j.bbrc.2022.12.037_bib18 article-title: Astrocytic d-amino acid oxidase degrades d-serine in the hindbrain publication-title: FEBS (Fed. Eur. Biochem. Soc.) Lett. doi: 10.1002/1873-3468.14417 – ident: 10.1016/j.bbrc.2022.12.037_bib3 – volume: 1808 start-page: 260 year: 2011 ident: 10.1016/j.bbrc.2022.12.037_bib22 article-title: Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2) publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.07.032 |
SSID | ssj0011469 |
Score | 2.4486291 |
Snippet | Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on... Activation of N-methyl- -aspartate receptors (NMDARs) requires binding of a co-agonist in addition to glutamate. serine binds to the co-agonist site on GluN1... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 186 |
SubjectTerms | And d-amino acids Animals Brain - metabolism d-serine GluN1 Mammals - metabolism Mice Mice, Knockout NMDAR Racemases and Epimerases - genetics Racemases and Epimerases - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Serine - metabolism Serine racemase |
Title | Endogenous d-serine exists in the mammalian brain independent of synthesis by serine racemase |
URI | https://dx.doi.org/10.1016/j.bbrc.2022.12.037 https://www.ncbi.nlm.nih.gov/pubmed/36535077 https://www.proquest.com/docview/2756122665 |
Volume | 641 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIgQXVFo-lkJlJMQFmcZObG-O21WrBURPVNoLsjy2IwWRbLUJh73w2_EkzkpItAduUWQnkZ_jeR7PvCHknbPaOi_mzJdCsWgCKlbaMGfALZQ22tgQ8ET367Va3RSf13J9QJZTLgyGVaa1f1zTh9U63TlPo3l-W9eY45spUfK1EKgBIzDhtyg0zvKPv_dhHph0myiwYtg6Jc6MMV4AW5QxFGJwCWIt9H8bp7vI52CEro7Ik8Qe6WL8wKfkILTH5GTRxp1zs6Pv6RDPOTjKj8nDi-nq0XKq6nZCvl-2fjMKs1LPuiH5j6IcZt_RuqWRDtLGNs3g_aCA9SNova-U29NNRbtdG1t1dUdhR9MDttaFJtrDZ-Tm6vLbcsVSiQXmCqV6VkqvA3iYW-5zV0SAPJTBQ8illZEO5VkF8TevpPW51ZlTASXrtC-rXGtQkD8nh-2mDS8JlRIstxI4SF04lwHPC6913G5lwWWunBE-ja1xSX8cy2D8NFOg2Q-DeBjEw3BhIh4z8mHf53ZU37i3tZwgM3_NIRPNw7393k74mogGnpjYNkQcDGrj80hQlZyRFyPw--_Ilcwjmdav_vOtp-Qxlq5Hd44Qr8lhv_0V3kSC08PZMIPPyIPFpy-r6z-ulPqr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCFoey9NIwAWZJk5sbw4cSmm1pY9TK-0FGb8iBZFstQlCe-FP8QcZJ85KSNADUm9RYifWfM7M2J75BuCV1VJbx6bUFUxQNAElLbSfUpNqU2i0sd6HE93TMzG7yD_N-XwDfo25MCGsMur-Qaf32jre2Y3S3L2sqpDjmwhWpHPGAgcMm8bIymO_-oHrtvb90UcE-TVjhwfn-zMaSwtQmwvR0YI76Y0zU526zOY4MGcK74zPuOboBmRJaXB6l1y7TMvECh-o2qQrykxKI0yG770BN3NUF6Fswruf67iSkOUbfW5Bw_Bips4QVGbMMvAmMtbvQYbi63-3hv_ydnurd3gX7kR3lewNErkHG77Zhp29Bpfq9Yq8IX0Aab8zvw23PoxXW_tjGbkd-HzQuMXABEscbftsQxL4N7uWVA1B_5PUuq777RZiQsEKUq1L83ZkUZJ21WCrtmqJWZH4gqW2vkYDfB8urkXwD2CzWTT-ERDOjU41N6nhMrc2MWmWOylxfZd4m9hiAukoW2Uj4Xmou_FNjZFtX1XAQwU8VMoU4jGBt-s-lwPdx5Wt-QiZ-mPSKrRHV_Z7OeKrEI1wRKMbjzioQMafokcs-AQeDsCvx5EJnqH3Lh__51dfwNbs_PREnRydHT-B2_gkRNJRxp7CZrf87p-hd9WZ5_1sJvDlun-f34g9N-o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endogenous+d-serine+exists+in+the+mammalian+brain+independent+of+synthesis+by+serine+racemase&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Osaki%2C+Akina&rft.au=Aoyama%2C+Marie&rft.au=Mita%2C+Masashi&rft.au=Hamase%2C+Kenji&rft.date=2023-01-22&rft.eissn=1090-2104&rft.volume=641&rft.spage=186&rft_id=info:doi/10.1016%2Fj.bbrc.2022.12.037&rft_id=info%3Apmid%2F36535077&rft.externalDocID=36535077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |