Two-dimensional materials for next-generation computing technologies

Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 7; pp. 545 - 557
Main Authors Liu, Chunsen, Chen, Huawei, Wang, Shuiyuan, Liu, Qi, Jiang, Yu-Gang, Zhang, David Wei, Liu, Ming, Zhou, Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.
AbstractList Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.
Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.
Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.
Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.
Author Liu, Chunsen
Liu, Ming
Jiang, Yu-Gang
Wang, Shuiyuan
Chen, Huawei
Zhang, David Wei
Zhou, Peng
Liu, Qi
Author_xml – sequence: 1
  givenname: Chunsen
  surname: Liu
  fullname: Liu, Chunsen
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, School of Computer Science, Fudan University
– sequence: 2
  givenname: Huawei
  surname: Chen
  fullname: Chen, Huawei
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University
– sequence: 3
  givenname: Shuiyuan
  surname: Wang
  fullname: Wang, Shuiyuan
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-7062-831X
  surname: Liu
  fullname: Liu, Qi
  organization: Frontier Institute of Chip and System, Fudan University, Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences
– sequence: 5
  givenname: Yu-Gang
  surname: Jiang
  fullname: Jiang, Yu-Gang
  organization: School of Computer Science, Fudan University
– sequence: 6
  givenname: David Wei
  surname: Zhang
  fullname: Zhang, David Wei
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University
– sequence: 7
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Frontier Institute of Chip and System, Fudan University, Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences
– sequence: 8
  givenname: Peng
  orcidid: 0000-0002-7301-1013
  surname: Zhou
  fullname: Zhou, Peng
  email: pengzhou@fudan.edu.cn
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32647168$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLHTEYhkNR6qX9AW5kwI2b1NyTWYq9guBG1yHNfHOMzCTHJIP23zfHYxWEukkCeZ5c3vcA7cQUAaEjSr5Qws1ZEVQqiQkjmGgmMP-A9qkWBnPey52XtdF76KCUO0Ik65n4iPY4U0JTZfbR1-uHhIcwQywhRTd1s6uQg5tKN6bcRXiseAURsqttv_NpXi81xFVXwd_GNKVVgPIJ7Y7NgM_P8yG6-f7t-uInvrz68evi_BJ7oVTFZiBM8DYY40dDBqrJSEfKBhjU4LQSHqQEMTjT9yPVHJQHw6mTxvW-18AP0en23HVO9wuUaudQPEyTi5CWYplgnCimqGzoyRv0Li25fXBDaUmEMcq8TzGqOG1JNur4mVp-zzDYdQ6zy3_svxQbQLeAz6mUDOMLQondNGW3TdnWlN00ZXlz9BvHh_oUcs0uTO-abGuWdktcQX599P-lvy2ZpaQ
CitedBy_id crossref_primary_10_1002_smll_202311630
crossref_primary_10_1002_adfm_202100144
crossref_primary_10_1002_aelm_202001181
crossref_primary_10_1021_acsaelm_2c01435
crossref_primary_10_1063_5_0116505
crossref_primary_10_7498_aps_71_20221424
crossref_primary_10_1007_s12274_024_6942_5
crossref_primary_10_3389_fncom_2022_1015945
crossref_primary_10_1002_aelm_202200782
crossref_primary_10_1039_D2CP03350J
crossref_primary_10_1103_PhysRevMaterials_7_054005
crossref_primary_10_1016_j_measen_2024_101049
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1016_j_apsusc_2025_162318
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1039_D2NR01728H
crossref_primary_10_1002_pssr_202000465
crossref_primary_10_1016_j_nanoen_2024_109646
crossref_primary_10_1021_acs_nanolett_2c00820
crossref_primary_10_1002_smsc_202300213
crossref_primary_10_1039_D3CP02683C
crossref_primary_10_1038_s41467_022_32582_9
crossref_primary_10_1002_aelm_202001174
crossref_primary_10_1088_1361_6463_acd38e
crossref_primary_10_1116_5_0215419
crossref_primary_10_1002_adma_202106041
crossref_primary_10_1007_s11468_023_02109_z
crossref_primary_10_1002_adma_202108225
crossref_primary_10_1038_s41586_022_04523_5
crossref_primary_10_1016_j_apsusc_2022_156148
crossref_primary_10_1038_s41467_022_32725_y
crossref_primary_10_1039_D1NR07336B
crossref_primary_10_1016_j_jmat_2023_02_007
crossref_primary_10_1063_5_0196668
crossref_primary_10_1016_j_surfin_2023_102669
crossref_primary_10_1021_acsnano_4c15271
crossref_primary_10_1016_j_measen_2024_101056
crossref_primary_10_3389_femat_2022_1020076
crossref_primary_10_51889_2959_5894_2024_86_2_027
crossref_primary_10_1021_acsami_2c16950
crossref_primary_10_1007_s11433_022_2056_1
crossref_primary_10_1016_j_matt_2022_07_021
crossref_primary_10_1039_D2NR01042A
crossref_primary_10_1016_j_esci_2023_100178
crossref_primary_10_1016_j_jallcom_2021_159884
crossref_primary_10_1088_2053_1583_ad2f43
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1002_adfm_202424751
crossref_primary_10_1002_smll_202007053
crossref_primary_10_1021_acsaom_3c00296
crossref_primary_10_1088_2053_1583_acacac
crossref_primary_10_3390_cryst13081215
crossref_primary_10_1038_s41467_023_36512_1
crossref_primary_10_1002_aelm_202200768
crossref_primary_10_1063_5_0046207
crossref_primary_10_1016_j_isci_2021_103138
crossref_primary_10_1002_anie_202409948
crossref_primary_10_1002_adfm_202309869
crossref_primary_10_1088_1361_648X_acfdea
crossref_primary_10_1088_2053_1583_ada0b7
crossref_primary_10_1039_D4TA03126A
crossref_primary_10_1063_5_0213065
crossref_primary_10_1088_1402_4896_ad6cae
crossref_primary_10_1016_j_chip_2022_100014
crossref_primary_10_3390_solids5020013
crossref_primary_10_1038_s41928_021_00591_z
crossref_primary_10_1002_adma_202202408
crossref_primary_10_1016_j_xcrp_2020_100166
crossref_primary_10_3390_app131911037
crossref_primary_10_1016_j_chip_2022_100017
crossref_primary_10_3390_electronics13071356
crossref_primary_10_1002_adma_202208054
crossref_primary_10_1246_cl_230210
crossref_primary_10_1002_adfm_202305386
crossref_primary_10_1103_PhysRevB_109_115427
crossref_primary_10_1016_j_cej_2025_161622
crossref_primary_10_1002_smll_202307587
crossref_primary_10_1007_s12274_022_4724_5
crossref_primary_10_1002_aelm_202100829
crossref_primary_10_1021_acsami_4c22368
crossref_primary_10_1038_s41467_021_26314_8
crossref_primary_10_1038_s41467_023_42312_4
crossref_primary_10_1038_s41565_021_00921_4
crossref_primary_10_1021_acsami_4c05905
crossref_primary_10_1038_s41467_022_33053_x
crossref_primary_10_1007_s10825_024_02219_9
crossref_primary_10_1039_D4NR05342G
crossref_primary_10_1063_5_0165837
crossref_primary_10_1002_smll_202311317
crossref_primary_10_1021_acsphotonics_3c01253
crossref_primary_10_1002_aisy_202200068
crossref_primary_10_1002_aisy_202000206
crossref_primary_10_1016_j_carbon_2023_01_040
crossref_primary_10_1021_acs_nanolett_3c01248
crossref_primary_10_1021_acs_nanolett_3c03666
crossref_primary_10_1002_aelm_202100978
crossref_primary_10_1002_smll_202104459
crossref_primary_10_1039_D4NR03769C
crossref_primary_10_1063_5_0106620
crossref_primary_10_1002_aelm_202300108
crossref_primary_10_1002_adma_202414174
crossref_primary_10_1016_j_xpro_2023_102228
crossref_primary_10_1038_s41467_024_44884_1
crossref_primary_10_1038_s41928_023_01112_w
crossref_primary_10_1002_aelm_202200733
crossref_primary_10_1021_acsami_1c07665
crossref_primary_10_1021_acsami_3c09506
crossref_primary_10_1002_smll_202402217
crossref_primary_10_1007_s12274_023_5946_x
crossref_primary_10_1038_s41563_023_01671_5
crossref_primary_10_1080_00268976_2024_2421391
crossref_primary_10_1016_j_chaos_2024_115390
crossref_primary_10_1109_TED_2022_3206170
crossref_primary_10_1126_sciadv_adk1597
crossref_primary_10_1364_AO_510447
crossref_primary_10_1021_acsami_3c07684
crossref_primary_10_1126_science_abg3161
crossref_primary_10_1002_smm2_1283
crossref_primary_10_1007_s11432_024_3986_8
crossref_primary_10_1021_jacs_3c13696
crossref_primary_10_1038_s41565_023_01342_1
crossref_primary_10_1039_D2CP01831D
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1126_science_abl4110
crossref_primary_10_1088_1361_6528_ac5f96
crossref_primary_10_1002_adma_202305115
crossref_primary_10_1021_acsnano_1c05841
crossref_primary_10_1002_lpor_202400972
crossref_primary_10_1021_acsami_1c18329
crossref_primary_10_1021_acsnano_4c16251
crossref_primary_10_1038_s41467_024_47974_2
crossref_primary_10_1061_JCEMD4_COENG_12290
crossref_primary_10_1039_D4CP01897D
crossref_primary_10_3987_COM_20_14398
crossref_primary_10_1103_PhysRevMaterials_9_014001
crossref_primary_10_1021_acs_accounts_4c00495
crossref_primary_10_1039_D3QM00246B
crossref_primary_10_1021_acsaelm_3c01261
crossref_primary_10_1021_acsnano_3c05711
crossref_primary_10_1063_5_0067352
crossref_primary_10_1088_1361_6528_ac4b2f
crossref_primary_10_1016_j_ccr_2023_215281
crossref_primary_10_1038_s43246_024_00573_6
crossref_primary_10_1002_adom_202102102
crossref_primary_10_1002_adma_202308502
crossref_primary_10_1016_j_apsusc_2023_157817
crossref_primary_10_1088_2634_4386_ad7755
crossref_primary_10_3389_fmats_2021_775048
crossref_primary_10_1088_2053_1583_ad70c9
crossref_primary_10_1063_5_0131838
crossref_primary_10_1002_advs_202304785
crossref_primary_10_1016_j_isci_2021_103291
crossref_primary_10_1021_acs_jpclett_3c01780
crossref_primary_10_1038_s41563_025_02117_w
crossref_primary_10_1021_acs_chemrev_3c00931
crossref_primary_10_34133_2021_9862483
crossref_primary_10_1002_advs_202105201
crossref_primary_10_1021_acs_jpclett_1c03742
crossref_primary_10_1007_s40820_024_01461_x
crossref_primary_10_1109_TNANO_2022_3223183
crossref_primary_10_1002_pssr_202400206
crossref_primary_10_1021_acsnano_0c09666
crossref_primary_10_1038_s41467_021_23719_3
crossref_primary_10_1002_smll_202105211
crossref_primary_10_1007_s12274_021_3692_5
crossref_primary_10_1021_acsami_3c16128
crossref_primary_10_1038_s41565_023_01343_0
crossref_primary_10_1039_D4SM00177J
crossref_primary_10_1126_science_adp3575
crossref_primary_10_1002_sstr_202200064
crossref_primary_10_1039_D1CP01423D
crossref_primary_10_1002_aelm_202100869
crossref_primary_10_1021_acsami_3c17572
crossref_primary_10_1002_sstr_202200060
crossref_primary_10_1007_s12274_021_3670_y
crossref_primary_10_7566_JPSJ_92_114601
crossref_primary_10_1021_acsnano_4c18558
crossref_primary_10_1016_j_apsusc_2021_152338
crossref_primary_10_1063_5_0073650
crossref_primary_10_1063_5_0117436
crossref_primary_10_1063_5_0188990
crossref_primary_10_3390_photonics9020082
crossref_primary_10_1038_s41467_021_26230_x
crossref_primary_10_1002_admt_202100963
crossref_primary_10_1021_acsnano_3c03900
crossref_primary_10_1002_sstr_202400386
crossref_primary_10_1002_aelm_202400037
crossref_primary_10_1021_acsnano_3c10559
crossref_primary_10_1063_5_0198442
crossref_primary_10_1063_5_0061792
crossref_primary_10_1063_5_0092046
crossref_primary_10_3390_nano11112860
crossref_primary_10_1039_D4CP02099E
crossref_primary_10_1063_5_0126392
crossref_primary_10_1103_PhysRevApplied_19_024065
crossref_primary_10_1038_s41598_024_72757_6
crossref_primary_10_1039_D0CS01070G
crossref_primary_10_1016_j_apmate_2022_100080
crossref_primary_10_1021_acsami_3c01267
crossref_primary_10_1103_PhysRevApplied_20_014050
crossref_primary_10_1038_s41565_021_01003_1
crossref_primary_10_1039_D4TC00396A
crossref_primary_10_1038_s41928_024_01259_0
crossref_primary_10_1088_1742_6596_2613_1_012005
crossref_primary_10_1038_s42005_021_00719_9
crossref_primary_10_1080_14786435_2024_2348818
crossref_primary_10_1016_j_photonics_2023_101206
crossref_primary_10_1002_adom_202500295
crossref_primary_10_1002_adts_202200226
crossref_primary_10_1063_5_0098838
crossref_primary_10_1063_5_0196154
crossref_primary_10_1016_j_scib_2023_06_037
crossref_primary_10_1039_D2NH00568A
crossref_primary_10_1007_s00894_024_05857_9
crossref_primary_10_2478_amns_2024_3323
crossref_primary_10_1016_j_inoche_2024_113830
crossref_primary_10_1038_s41565_023_01497_x
crossref_primary_10_1038_s41563_022_01383_2
crossref_primary_10_1088_1361_6463_ac79db
crossref_primary_10_1088_1674_1056_ac1571
crossref_primary_10_1002_adfm_202316488
crossref_primary_10_1016_j_mseb_2023_117002
crossref_primary_10_1016_j_surfin_2023_102971
crossref_primary_10_1007_s12274_023_6128_6
crossref_primary_10_1063_5_0142613
crossref_primary_10_1021_acsnano_4c08554
crossref_primary_10_1103_PhysRevB_109_195405
crossref_primary_10_1002_aelm_202400022
crossref_primary_10_1038_s41565_021_00966_5
crossref_primary_10_1038_s41699_025_00533_9
crossref_primary_10_1093_nsr_nwac088
crossref_primary_10_7498_aps_72_20230729
crossref_primary_10_1002_aelm_202101401
crossref_primary_10_1016_j_commatsci_2021_110424
crossref_primary_10_1016_j_jmst_2023_04_025
crossref_primary_10_1063_5_0080294
crossref_primary_10_1002_aisy_202100198
crossref_primary_10_1039_D3MH01461D
crossref_primary_10_1002_cphc_202300095
crossref_primary_10_1007_s11432_023_3888_0
crossref_primary_10_1021_acsaelm_2c01005
crossref_primary_10_1088_2634_4386_acce61
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1002_smsc_202200008
crossref_primary_10_1038_s43246_024_00632_y
crossref_primary_10_1039_D2CP04536B
crossref_primary_10_1088_1361_6528_acebf4
crossref_primary_10_1021_acs_nanolett_4c03119
crossref_primary_10_1021_acsmaterialslett_3c01548
crossref_primary_10_1002_qute_202100072
crossref_primary_10_1016_j_mattod_2022_11_023
crossref_primary_10_1007_s40843_022_2359_6
crossref_primary_10_1007_s40843_021_1979_3
crossref_primary_10_1002_adfm_202308129
crossref_primary_10_1088_1674_4926_43_5_052003
crossref_primary_10_1109_TED_2023_3266309
crossref_primary_10_1016_j_apsusc_2021_150871
crossref_primary_10_1002_ange_202409948
crossref_primary_10_1038_s41598_022_10943_0
crossref_primary_10_1103_PhysRevApplied_20_014039
crossref_primary_10_1116_6_0001913
crossref_primary_10_1002_sstr_202300511
crossref_primary_10_1088_2632_959X_acd70c
crossref_primary_10_1038_s41928_021_00586_w
crossref_primary_10_1021_acs_nanolett_4c06512
crossref_primary_10_3390_c7040067
crossref_primary_10_1002_smll_202404228
crossref_primary_10_1038_s41586_023_06735_9
crossref_primary_10_1002_pssb_202200426
crossref_primary_10_1007_s40820_021_00618_2
crossref_primary_10_1002_adfm_202400008
crossref_primary_10_1002_adfm_202310438
crossref_primary_10_1002_cey2_154
crossref_primary_10_1103_PRXQuantum_2_030102
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1002_adma_202309531
crossref_primary_10_1063_5_0070333
crossref_primary_10_1002_aelm_202300621
crossref_primary_10_1021_acs_jpclett_2c01973
crossref_primary_10_1103_PhysRevApplied_22_064077
crossref_primary_10_1016_j_jmmm_2023_171267
crossref_primary_10_1103_PhysRevB_105_075413
crossref_primary_10_1002_adfm_202503094
crossref_primary_10_1038_s41928_022_00824_9
crossref_primary_10_1021_acsami_1c24260
crossref_primary_10_1142_S0217984921502900
crossref_primary_10_1002_advs_202404336
crossref_primary_10_1038_s41928_022_00847_2
crossref_primary_10_1021_acsaelm_3c01216
crossref_primary_10_1021_acsami_3c00092
crossref_primary_10_1021_acs_nanolett_4c06407
crossref_primary_10_1016_j_jallcom_2022_165586
crossref_primary_10_1021_acsnano_4c09114
crossref_primary_10_1039_D4TA01584C
crossref_primary_10_1103_PhysRevB_103_L161407
crossref_primary_10_1016_j_chip_2023_100057
crossref_primary_10_1126_science_abf5825
crossref_primary_10_1021_acsami_2c03019
crossref_primary_10_1063_5_0091289
crossref_primary_10_1021_acsnano_3c09369
crossref_primary_10_1088_2634_4386_ac4a84
crossref_primary_10_1039_D1NR04588A
crossref_primary_10_1038_s41586_023_05797_z
crossref_primary_10_1021_acs_nanolett_4c03264
crossref_primary_10_1088_1361_6528_ac723f
crossref_primary_10_1039_D3NR02995F
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1002_advs_202207443
crossref_primary_10_1088_2040_8986_ad83e0
crossref_primary_10_1016_j_matt_2021_02_018
crossref_primary_10_1103_PhysRevB_108_045412
crossref_primary_10_1002_smtd_202201719
crossref_primary_10_1016_j_chip_2024_100122
crossref_primary_10_1103_PhysRevMaterials_6_024803
crossref_primary_10_1360_nso_20230015
crossref_primary_10_1002_inf2_12317
crossref_primary_10_1021_acssuschemeng_2c00396
crossref_primary_10_1186_s11671_020_03458_y
crossref_primary_10_1002_adma_202204697
crossref_primary_10_1002_aelm_202100112
crossref_primary_10_1063_5_0130587
crossref_primary_10_1088_1361_6463_adb9fa
crossref_primary_10_1007_s11467_023_1305_3
crossref_primary_10_1021_acs_langmuir_4c02947
crossref_primary_10_1021_acsnano_3c12753
crossref_primary_10_1002_adma_202403785
crossref_primary_10_1021_acs_nanolett_3c05105
crossref_primary_10_1038_s41427_022_00437_w
crossref_primary_10_1021_acs_nanolett_3c02194
crossref_primary_10_1103_PhysRevB_109_125416
crossref_primary_10_1016_j_photonics_2023_101222
crossref_primary_10_1038_s41528_024_00313_3
crossref_primary_10_3389_fenrg_2021_802055
crossref_primary_10_1038_s41467_024_53864_4
crossref_primary_10_1002_adpr_202000183
crossref_primary_10_1021_accountsmr_3c00280
crossref_primary_10_1021_acs_nanolett_4c04363
crossref_primary_10_1002_adma_202109491
crossref_primary_10_1038_s41928_022_00800_3
crossref_primary_10_1021_acsanm_4c06483
crossref_primary_10_1016_j_chip_2023_100080
crossref_primary_10_3390_molecules28093893
crossref_primary_10_1002_adma_202208934
crossref_primary_10_1002_adma_202306290
crossref_primary_10_1088_1674_1056_ac2b20
crossref_primary_10_1007_s12274_024_6447_2
crossref_primary_10_1021_acsnano_3c09222
crossref_primary_10_1002_adma_202101895
crossref_primary_10_1021_acsnano_0c10005
crossref_primary_10_1142_S0218863524020016
crossref_primary_10_1002_adma_202301854
crossref_primary_10_1016_j_isci_2023_106673
crossref_primary_10_1038_s41467_022_29001_4
crossref_primary_10_1038_s41928_022_00858_z
crossref_primary_10_1039_D1RA08397J
crossref_primary_10_1063_5_0153256
crossref_primary_10_1088_1742_6596_2065_1_012001
crossref_primary_10_1021_acs_nanolett_4c03962
crossref_primary_10_1039_D4RA06977C
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1002_inf2_12215
crossref_primary_10_1039_D3NA00852E
crossref_primary_10_1002_adfm_202314439
crossref_primary_10_1103_PhysRevB_106_085418
crossref_primary_10_2139_ssrn_3995320
crossref_primary_10_1007_s12274_020_3247_1
crossref_primary_10_1063_5_0052300
crossref_primary_10_3390_molecules29174089
crossref_primary_10_1021_acsnano_4c10383
crossref_primary_10_1039_D4NH00508B
crossref_primary_10_1088_2634_4386_ac8a6a
crossref_primary_10_1038_s41467_023_41736_2
crossref_primary_10_1002_adma_202005907
crossref_primary_10_1002_aisy_202200434
crossref_primary_10_1016_j_enchem_2022_100071
crossref_primary_10_1002_adfm_202106015
crossref_primary_10_1021_acsnano_4c02996
crossref_primary_10_1002_aelm_202300839
crossref_primary_10_1002_aelm_202400685
crossref_primary_10_1002_smll_202403187
crossref_primary_10_1007_s40843_022_2115_6
crossref_primary_10_1002_adma_202007081
crossref_primary_10_1038_s41467_024_46050_z
crossref_primary_10_1088_1361_6528_abf2fd
crossref_primary_10_1002_inf2_12341
crossref_primary_10_1021_accountsmr_1c00209
crossref_primary_10_1002_aisy_202200316
crossref_primary_10_1002_adma_202312747
crossref_primary_10_1021_acsnano_0c06607
crossref_primary_10_1039_D3TC04510B
crossref_primary_10_1002_adfm_202312365
crossref_primary_10_1002_adma_202101036
crossref_primary_10_1038_s41928_024_01124_0
crossref_primary_10_1103_PhysRevMaterials_8_014603
crossref_primary_10_3390_electronics10030346
crossref_primary_10_1021_acs_jpclett_1c04068
crossref_primary_10_1002_aelm_202101370
crossref_primary_10_1039_D2MH01206E
crossref_primary_10_1002_adma_202409040
crossref_primary_10_1002_sstr_202200309
crossref_primary_10_1039_D1CS00497B
crossref_primary_10_1016_j_jmst_2022_12_012
crossref_primary_10_1021_acsmaterialslett_3c00965
crossref_primary_10_1021_acs_jpcc_0c09101
crossref_primary_10_1007_s10338_024_00552_x
crossref_primary_10_1016_j_scib_2023_08_051
crossref_primary_10_1016_j_eml_2022_101921
crossref_primary_10_1016_j_jcrysgro_2024_127876
crossref_primary_10_1002_adfm_202303520
crossref_primary_10_1002_adfm_202303641
crossref_primary_10_1016_j_jmst_2022_04_021
crossref_primary_10_1038_s41467_024_51379_6
crossref_primary_10_1002_aelm_202101127
crossref_primary_10_1002_inf2_12355
crossref_primary_10_1021_acsaelm_3c00530
crossref_primary_10_1021_acsami_3c14836
crossref_primary_10_1038_s41928_023_01018_7
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1021_acsphotonics_3c01708
crossref_primary_10_1103_PhysRevA_110_042604
crossref_primary_10_1088_1361_6528_ac43e8
crossref_primary_10_1002_adfm_202011083
crossref_primary_10_1021_acs_nanolett_3c04195
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1039_D3TA01479G
crossref_primary_10_1002_adfm_202108455
crossref_primary_10_1021_jacs_5c00033
crossref_primary_10_1016_j_physb_2023_415262
crossref_primary_10_1021_acsaelm_3c00544
crossref_primary_10_1038_s41467_024_55562_7
crossref_primary_10_1021_acsnano_1c07032
crossref_primary_10_1016_j_cjph_2024_11_004
crossref_primary_10_1021_acs_jpclett_1c04194
crossref_primary_10_1016_j_mtcomm_2022_103957
crossref_primary_10_1016_j_scib_2021_04_025
crossref_primary_10_1002_smll_202304518
crossref_primary_10_1021_acsami_4c23080
crossref_primary_10_1038_s41467_024_51322_9
crossref_primary_10_1021_acsaelm_4c02029
crossref_primary_10_1002_adma_202107839
crossref_primary_10_1021_acs_chemrev_4c00174
crossref_primary_10_1016_j_jmst_2022_05_055
crossref_primary_10_1039_D2TC00964A
crossref_primary_10_1002_adfm_202110415
crossref_primary_10_1016_j_isci_2022_105160
crossref_primary_10_1103_PhysRevA_109_L031502
crossref_primary_10_1177_14727978251322044
crossref_primary_10_1021_acsnano_3c01927
crossref_primary_10_1021_acsnano_4c16831
crossref_primary_10_1002_adom_202201396
crossref_primary_10_1002_smtd_202000837
crossref_primary_10_1007_s12274_021_3500_2
crossref_primary_10_1021_acsaelm_3c01607
crossref_primary_10_1038_s41467_023_39705_w
crossref_primary_10_1088_1674_4926_44_12_122101
crossref_primary_10_1002_adma_202300329
crossref_primary_10_1039_D4NR03583F
crossref_primary_10_1039_D4NR00821A
crossref_primary_10_1002_adma_202400214
crossref_primary_10_1002_adma_202400332
crossref_primary_10_1002_inf2_12376
crossref_primary_10_1021_acsami_2c15497
crossref_primary_10_1002_pssr_202200174
crossref_primary_10_1021_acsnano_2c00350
crossref_primary_10_1088_1361_6528_ad1202
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1038_s41566_023_01309_7
crossref_primary_10_1103_PhysRevB_110_115415
crossref_primary_10_1126_sciadv_abq1781
crossref_primary_10_1039_D3MH01734F
crossref_primary_10_1038_s41699_021_00250_z
crossref_primary_10_1007_s11467_022_1190_1
crossref_primary_10_1116_6_0004053
crossref_primary_10_1142_S0217984923502366
crossref_primary_10_1016_j_jece_2025_115418
crossref_primary_10_1002_adma_202312541
crossref_primary_10_1021_acsami_2c19743
crossref_primary_10_1038_s41699_024_00522_4
crossref_primary_10_1016_j_mtnano_2024_100477
crossref_primary_10_1038_s41586_024_07786_2
crossref_primary_10_3389_fimmu_2021_689519
crossref_primary_10_1088_2752_5724_acbe10
crossref_primary_10_1002_adma_202102201
crossref_primary_10_1016_j_mejo_2024_106133
crossref_primary_10_1038_s41586_021_04323_3
crossref_primary_10_1021_acs_nanolett_1c01729
crossref_primary_10_1002_adma_202407066
crossref_primary_10_1007_s40843_021_1925_x
crossref_primary_10_1007_s40820_024_01335_2
crossref_primary_10_1002_nano_202100367
crossref_primary_10_1016_j_physleta_2023_128976
crossref_primary_10_1007_s40242_020_0200_5
crossref_primary_10_1016_j_mtphys_2025_101710
crossref_primary_10_1002_adfm_202419841
crossref_primary_10_1021_acsnano_1c05167
crossref_primary_10_1002_advs_202204453
crossref_primary_10_1021_acs_jpcc_4c05079
crossref_primary_10_1039_D3TC03699E
crossref_primary_10_1016_j_apsusc_2022_153739
crossref_primary_10_1021_acsami_4c06540
crossref_primary_10_1063_5_0235614
crossref_primary_10_1002_inf2_12275
crossref_primary_10_1002_adfm_202204721
crossref_primary_10_1038_s41467_021_27644_3
crossref_primary_10_1063_5_0231491
crossref_primary_10_1002_adma_202106955
crossref_primary_10_1002_pssa_202200156
crossref_primary_10_1038_s41928_023_00983_3
crossref_primary_10_1038_s41524_022_00731_9
crossref_primary_10_1063_5_0097518
crossref_primary_10_1002_advs_202301817
crossref_primary_10_1038_s41699_023_00405_0
crossref_primary_10_1088_2053_1583_ada043
crossref_primary_10_1007_s10854_021_06737_1
crossref_primary_10_1002_smsc_202200041
crossref_primary_10_1021_acsami_4c18412
crossref_primary_10_1002_adma_202205381
crossref_primary_10_2139_ssrn_4015415
crossref_primary_10_1002_slct_202301599
crossref_primary_10_1021_acs_nanolett_4c03556
crossref_primary_10_1002_adma_202210735
crossref_primary_10_1002_adfm_202418615
crossref_primary_10_1038_s41467_020_20257_2
crossref_primary_10_1088_1361_6463_aca41c
crossref_primary_10_1038_s41524_025_01523_7
crossref_primary_10_1039_D4NH00405A
crossref_primary_10_1016_j_rinp_2023_106605
crossref_primary_10_1021_acsanm_2c03150
crossref_primary_10_1002_admt_202101494
crossref_primary_10_1109_TED_2023_3310942
crossref_primary_10_1186_s11671_021_03581_4
crossref_primary_10_1007_s40820_024_01417_1
crossref_primary_10_1002_pssr_202300498
crossref_primary_10_1002_admi_202300414
crossref_primary_10_1039_D4NH00656A
crossref_primary_10_1007_s11432_022_3626_5
crossref_primary_10_1038_s41565_023_01326_1
crossref_primary_10_1016_j_physleta_2024_129849
crossref_primary_10_1021_acsnano_3c02263
crossref_primary_10_1021_acsnano_3c07952
crossref_primary_10_1039_D3NH00246B
crossref_primary_10_1142_S0218625X21400059
crossref_primary_10_1016_j_mser_2024_100873
crossref_primary_10_1021_acs_cgd_4c00477
crossref_primary_10_1016_j_chempr_2021_08_013
crossref_primary_10_1063_5_0233898
crossref_primary_10_1002_adma_202211536
crossref_primary_10_1002_adfm_202418248
crossref_primary_10_1021_acs_nanolett_4c05071
crossref_primary_10_1002_smll_202202590
crossref_primary_10_1007_s12598_024_03197_4
crossref_primary_10_1039_D2MH00462C
crossref_primary_10_1002_aelm_202200393
crossref_primary_10_1039_D4NA00830H
crossref_primary_10_1016_j_rinp_2024_107886
crossref_primary_10_1021_acs_jpcc_2c04703
crossref_primary_10_1038_s41565_024_01695_1
crossref_primary_10_1080_14686996_2022_2162323
crossref_primary_10_1002_adma_202107894
crossref_primary_10_1016_j_cclet_2021_06_078
crossref_primary_10_1002_adts_202100063
crossref_primary_10_1021_acs_langmuir_4c02462
crossref_primary_10_1088_1361_6528_acd05f
crossref_primary_10_1002_adfm_202205150
crossref_primary_10_1038_s41699_023_00427_8
crossref_primary_10_1039_D0MH02029J
crossref_primary_10_1088_1674_1056_ad6b83
crossref_primary_10_1016_j_ces_2024_120782
crossref_primary_10_3390_electronics10243141
crossref_primary_10_1002_adfm_202304591
crossref_primary_10_1088_1361_648X_ad5094
crossref_primary_10_1002_adma_202211525
crossref_primary_10_1088_2632_959X_ad04f8
crossref_primary_10_1021_acsami_4c10991
crossref_primary_10_1021_acs_nanolett_2c00778
crossref_primary_10_1088_1361_6463_ac18eb
crossref_primary_10_1109_MWC_005_2200487
crossref_primary_10_1002_adma_202200734
crossref_primary_10_1021_acssensors_4c02517
crossref_primary_10_1021_acsaelm_2c00609
crossref_primary_10_1007_s12274_022_4070_7
crossref_primary_10_1088_2053_1583_ac210a
crossref_primary_10_1039_D4NH00339J
crossref_primary_10_1109_TED_2021_3098256
crossref_primary_10_1007_s11432_024_3993_5
crossref_primary_10_1016_j_scib_2023_09_006
crossref_primary_10_29026_oea_2022_210069
crossref_primary_10_1021_acs_jpcc_3c08058
crossref_primary_10_1021_acsnanoscienceau_4c00050
crossref_primary_10_1007_s12274_022_4755_y
crossref_primary_10_1021_acsanm_3c03109
crossref_primary_10_1039_D4CP00707G
crossref_primary_10_1038_s41699_022_00327_3
crossref_primary_10_1038_s41565_023_01339_w
crossref_primary_10_1002_adom_202202378
crossref_primary_10_1016_j_mattod_2022_09_012
crossref_primary_10_1002_admt_202301973
crossref_primary_10_1021_acsnano_3c03559
crossref_primary_10_1016_j_mtphys_2022_100730
crossref_primary_10_1109_TFUZZ_2024_3371026
crossref_primary_10_1016_j_mser_2024_100884
crossref_primary_10_1021_acs_jpcc_2c08053
crossref_primary_10_1021_acs_nanolett_3c02726
crossref_primary_10_1038_s41699_024_00521_5
crossref_primary_10_1088_1361_648X_acbb49
crossref_primary_10_1021_acsami_1c19062
crossref_primary_10_1021_acs_jpcc_1c02768
crossref_primary_10_1021_acsami_4c06116
crossref_primary_10_1063_5_0180434
crossref_primary_10_1039_D4CS00295D
crossref_primary_10_1039_D2TC01363K
crossref_primary_10_1002_smll_202402727
crossref_primary_10_1021_acsami_1c09796
crossref_primary_10_1016_j_jallcom_2021_161016
crossref_primary_10_1002_smtd_202401431
crossref_primary_10_1088_1361_6463_ad3b09
crossref_primary_10_1021_acsaelm_3c00919
crossref_primary_10_1016_j_optlastec_2024_111597
crossref_primary_10_1126_sciadv_abg1455
crossref_primary_10_1038_s41467_024_48690_7
crossref_primary_10_1002_adma_202209137
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1002_adma_202201880
crossref_primary_10_1021_acs_jpclett_4c01129
crossref_primary_10_1002_adfm_202113255
crossref_primary_10_1007_s40820_023_01273_5
crossref_primary_10_1021_acs_nanolett_1c00492
crossref_primary_10_1063_5_0145392
crossref_primary_10_1039_D1MH01012C
crossref_primary_10_1007_s40820_024_01559_2
crossref_primary_10_1021_acs_nanolett_1c04737
crossref_primary_10_1088_1361_648X_ad69ef
crossref_primary_10_1002_aesr_202100220
crossref_primary_10_1088_2752_5724_ac7067
crossref_primary_10_1109_JFLEX_2023_3298593
crossref_primary_10_1002_advs_202402819
crossref_primary_10_1039_D4TC04705B
crossref_primary_10_1002_cjoc_202100876
crossref_primary_10_1364_OL_422053
crossref_primary_10_1016_j_rinp_2024_107852
crossref_primary_10_1021_acsanm_5c00337
crossref_primary_10_1063_5_0098120
crossref_primary_10_1002_apxr_202400162
crossref_primary_10_1007_s11467_023_1258_6
crossref_primary_10_1063_5_0242551
crossref_primary_10_1002_aelm_202200334
crossref_primary_10_1021_acsaelm_3c00928
crossref_primary_10_1039_D3MH01762A
crossref_primary_10_1021_acsnano_3c07619
crossref_primary_10_1038_s41699_024_00489_2
crossref_primary_10_1021_acsnano_4c06642
crossref_primary_10_1021_acsanm_1c02013
crossref_primary_10_1016_j_ceramint_2022_02_175
crossref_primary_10_1007_s12274_024_6801_4
crossref_primary_10_1103_PhysRevB_110_014305
crossref_primary_10_1002_adfm_202410954
crossref_primary_10_1002_adma_202106886
crossref_primary_10_1002_adma_202103376
crossref_primary_10_1063_5_0242549
crossref_primary_10_1016_j_comptc_2024_114612
crossref_primary_10_1002_adfm_202313010
crossref_primary_10_1002_adma_202107734
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1039_D2NH00031H
crossref_primary_10_1063_5_0196918
crossref_primary_10_1038_s41928_024_01328_4
crossref_primary_10_1063_5_0228599
crossref_primary_10_1109_TED_2022_3197677
crossref_primary_10_1080_19475411_2024_2306837
crossref_primary_10_1088_1361_6528_ac3687
crossref_primary_10_1038_s41467_024_51178_z
crossref_primary_10_3390_nano13030373
crossref_primary_10_3390_mi13060956
crossref_primary_10_1038_s41586_024_07406_z
crossref_primary_10_1021_acs_jpcc_3c03882
crossref_primary_10_1038_s41467_024_52632_8
crossref_primary_10_1002_adfm_202304657
crossref_primary_10_1021_acs_nanolett_4c03828
crossref_primary_10_1016_j_mattod_2021_06_012
crossref_primary_10_1002_adma_202108615
crossref_primary_10_1038_s41699_022_00306_8
crossref_primary_10_1021_acsnano_3c02280
crossref_primary_10_1021_acs_jpclett_3c02214
crossref_primary_10_1039_D4CP00122B
crossref_primary_10_1002_adfm_202212722
crossref_primary_10_1002_advs_202106016
crossref_primary_10_1021_acsaelm_4c02180
crossref_primary_10_1039_D1NR06906C
crossref_primary_10_1021_acs_jpclett_0c03476
crossref_primary_10_1063_5_0165095
crossref_primary_10_1002_adma_202306850
crossref_primary_10_1016_j_heliyon_2023_e20619
crossref_primary_10_1016_j_mtnano_2023_100315
crossref_primary_10_1038_s41467_023_37887_x
crossref_primary_10_1103_PhysRevApplied_19_064058
crossref_primary_10_1109_TCSII_2021_3103553
crossref_primary_10_1016_j_rinp_2024_107958
crossref_primary_10_1039_D2CP03808K
crossref_primary_10_1002_adfm_202304409
crossref_primary_10_1002_adma_202107754
crossref_primary_10_1021_acsami_1c07286
Cites_doi 10.1109/LED.2016.2523681
10.1002/adfm.201806037
10.1038/nature14441
10.1109/16.141237
10.1038/nnano.2014.222
10.1021/nn501226z
10.1126/science.aar4851
10.1145/2463585.2463588
10.1021/nl301702r
10.1021/acsnano.7b05726
10.1038/s41565-019-0438-6
10.1002/aelm.201900955
10.1109/JSSC.1974.1050511
10.1038/s41467-018-07882-8
10.1002/adma.201806227
10.1038/s41563-018-0234-y
10.1002/smll.201402900
10.1039/C8TC00530C
10.1002/adfm.201804170
10.1038/s41928-019-0334-y
10.1115/1.4026615
10.1109/JPROC.2010.2070470
10.1038/s41928-019-0338-7
10.1038/s41928-019-0360-9
10.1126/sciadv.1500222
10.1002/adma.201904251
10.1021/acsnano.9b07421
10.1038/nature22994
10.1109/LED.2018.2824339
10.1126/science.aah4698
10.1109/IEDM.2011.6131666
10.1109/IEDM.2017.8268448
10.1038/s41586-018-0336-3
10.1109/TED.2015.2439635
10.1109/IEDM.2016.7838400
10.1143/JJAP.49.04DC10
10.1002/adma.201503033
10.1038/nnano.2014.35
10.1038/nature09405
10.1109/IEDM.2006.346811
10.1063/1.4885391
10.1002/adma.201800195
10.1038/s41565-019-0462-6
10.1038/nmat4080
10.1109/LED.2013.2258652
10.1038/nnano.2014.207
10.1002/adma.201901300
10.1038/nmat4856
10.1021/acs.nanolett.5b04260
10.1109/JSSC.2017.2782087
10.1002/adma.201603571
10.1109/JEDS.2014.2326622
10.1002/adfm.201901106
10.1002/adma.201603990
10.1039/C8CS00318A
10.1021/nl304777e
10.1002/adma.201502222
10.1109/IEDM.2011.6131532
10.1038/s41586-019-1493-8
10.1038/nnano.2010.89
10.1038/s41928-018-0092-2
10.1039/C4NR06331G
10.1109/JSSC.2016.2642198
10.1038/s41565-017-0010-1
10.1038/nnano.2015.70
10.1038/s41565-020-0647-z
10.1002/adma.201500990
10.1021/acsnano.7b03033
10.1103/PhysRevB.83.245213
10.1021/acs.nanolett.8b00816
10.1002/adma.201600166
10.1109/JPROC.2018.2790840
10.1038/s41563-018-0248-5
10.1002/advs.201801339
10.1073/pnas.1205696109
10.1038/s41467-018-03963-w
10.1002/adma.201703363
10.1021/acsnano.5b01341
10.1038/s41586-018-0180-5
10.1002/adma.201801447
10.1038/nature25747
10.1021/nn204838m
10.1038/natrevmats.2016.42
10.1038/nmat4135
10.1038/natrevmats.2016.52
10.1038/s41586-019-1013-x
10.1038/s41928-018-0115-z
10.1021/acsnano.5b00289
10.1038/s41586-020-2038-x
10.1002/adma.201603293
10.1038/s41563-019-0291-x
10.1126/science.1171245
10.1038/s41565-019-0623-7
10.1021/acs.nanolett.8b03940
10.1109/ISSCC.2016.7418008
10.1038/nature10679
10.1002/adma.201604457
10.1002/adma.201801548
10.1109/IEDM.2018.8614666
10.1126/science.aap9195
10.1021/nl303583v
10.1103/PhysRevB.80.235402
10.1002/advs.201903480
10.1038/nnano.2010.279
10.1038/nnano.2017.43
10.1109/TNNLS.2017.2778940
10.1038/nature08940
10.1002/aelm.201800143
10.1038/s41928-018-0021-4
10.1002/adma.201800220
10.1126/science.aaj1628
10.1038/s41928-019-0273-7
10.1021/ja107071g
10.1002/adma.201802353
10.1038/nmat4452
10.1038/ncomms14736
10.1109/VLSIT.2010.5556195
10.1038/nature15387
10.1002/adma.201700906
10.1038/s41565-019-0361-x
10.1088/0957-4484/24/38/382001
10.1109/ISSCC.2014.6757501
10.1002/adma.201902761
10.1038/nnano.2011.6
10.1002/adma.201502719
10.1038/s41928-018-0118-9
10.1109/LED.2011.2165331
10.1109/ISSCC.2014.6757323
ContentType Journal Article
Copyright Springer Nature Limited 2020
Springer Nature Limited 2020.
Copyright_xml – notice: Springer Nature Limited 2020
– notice: Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-020-0724-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
ProQuest Central Student
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 557
ExternalDocumentID 32647168
10_1038_s41565_020_0724_3
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c466t-8d0243d0288cf80d170f1f12ded6da764ce55e4da899f173e6ce831a58a9c97e3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 12:28:29 EDT 2025
Tue Aug 12 07:27:09 EDT 2025
Sat Aug 23 14:04:25 EDT 2025
Mon Jul 21 05:59:20 EDT 2025
Tue Jul 01 01:56:30 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Fri Feb 21 02:41:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-8d0243d0288cf80d170f1f12ded6da764ce55e4da899f173e6ce831a58a9c97e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7301-1013
0000-0001-7062-831X
PMID 32647168
PQID 2421631339
PQPubID 546299
PageCount 13
ParticipantIDs proquest_miscellaneous_2423062615
proquest_journals_2475048868
proquest_journals_2421631339
pubmed_primary_32647168
crossref_primary_10_1038_s41565_020_0724_3
crossref_citationtrail_10_1038_s41565_020_0724_3
springer_journals_10_1038_s41565_020_0724_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016).
JoJShinCNegative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switchingIEEE Electron Device Lett.2016372452481:CAS:528:DC%2BC28XitFGltbzK
LanzaMRecommended methods to study resistive switching devicesAdv. Electron. Mater.201951800143
Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017).
SchwierzFGraphene transistorsNat. Nanotechnol.201054874961:CAS:528:DC%2BC3cXotl2mt7k%3D
BurrGWExperimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight elementIEEE Trans. Electron Devices20156234983507
LiuCSmall footprint transistor architecture for photoswitching logic and in situ memoryNat. Nanotechnol.2019146626671:CAS:528:DC%2BC1MXhtVCiu7nF
MidyaRAnatomy of Ag/Hafnia-based selectors with 1010 nonlinearityAdv. Mater.2017291604457
GerasimovJYAn evolvable organic electrochemical transistor for neuromorphic applicationsAdv. Sci.201961801339
RadisavljevicBRadenovicABrivioJGiacomettiVKisASingle-layer MoS2 transistorsNat. Nanotechnol.201161471501:CAS:528:DC%2BC3MXislCjsro%3D
HuhWSynaptic barristor based on phase‐engineered 2D heterostructuresAdv. Mater.2018301801447
HeYYangYNieSLiuRWanQElectric-double-layer transistors for synaptic devices and neuromorphic systemsJ. Mater. Chem. C.20186533653521:CAS:528:DC%2BC1cXptlaqurc%3D
YuSNeuro-inspired computing with emerging nonvolatile memorysProc. IEEE20181062602851:CAS:528:DC%2BC1MXjt1GrtL8%3D
YoongHYEpitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computingAdv. Funct. Mater.2018281806037
WangMRobust memristors based on layered two-dimensional materialsNat. Electron.201811301:CAS:528:DC%2BC1MXhtFGqtbrE
SarkarDA subthermionic tunnel field-effect transistor with an atomically thin channelNature201552691951:CAS:528:DC%2BC2MXhs1SitLvN
KangMGonugondlaSKPatilAShanbhagNRA multi-functional in-memory inference processor using a standard 6T SRAM arrayIEEE J. Solid-State Circuits201853642655
Merrikh-BayatFHigh-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arraysIEEE Trans. Neural Netw. Learn. Syst.20172947824790
ZhuWPerebeinosVFreitagMAvourisPCarrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphenePhys. Rev. B200980235402
Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016).
YanRHOurmazdALeeKFScaling the Si MOSFET: from bulk to SOI to bulkIEEE Trans. Electron Devices199239170417101:CAS:528:DyaK38XkvVSksb8%3D
Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011).
ZhangFElectric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memoriesNat. Mater.20191855611:CAS:528:DC%2BC1cXisFWitrzP
MennelLUltrafast machine vision with 2D material neural network image sensorsNature202057962661:CAS:528:DC%2BB3cXksVWmsLo%3D
HillsGModern microprocessor built from complementary carbon nanotube transistorsNature20195725956021:CAS:528:DC%2BC1MXhs1OhurnI
BoynSLearning through ferroelectric domain dynamics in solid-state synapsesNat. Commun.201781:CAS:528:DC%2BC2sXls1KhtLc%3D
LembkeDAllainAKisAThickness-dependent mobility in two-dimensional MoS2 transistorsNanoscale20157625562601:CAS:528:DC%2BC2MXksV2ksrc%3D
LiaoLHigh-speed graphene transistors with a self-aligned nanowire gateNature20104673053081:CAS:528:DC%2BC3cXhtFSisLfI
FeiZFerroelectric switching of a two-dimensional metalNature20185603361:CAS:528:DC%2BC1cXhtlOis7zO
KnollLInverters with strained Si nanowire complementary tunnel field-effect transistorsIEEE Electron Device Lett.2013348138151:CAS:528:DC%2BC3sXhtVegt73J
BanszerusLUltrahigh-mobility graphene devices from chemical vapor deposition on reusable copperSci. Adv.20151e1500222
BessonovAALayered memristive and memcapacitive switches for printable electronicsNat. Mater.2015141992041:CAS:528:DC%2BC2cXhvFKlsrbF
XiaFPerebeinosVLinY-MWuYAvourisPThe origins and limits of metal–graphene junction resistanceNat. Nanotechnol.201161791841:CAS:528:DC%2BC3MXislequ70%3D
van de BurgtYA non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computingNat. Mater.201716414418
QiuCScaling carbon nanotube complementary transistors to 5-nm gate lengthsScience20173552712761:CAS:528:DC%2BC2sXhtVehtbw%3D
LiWUniform and ultrathin high-k gate dielectrics for two-dimensional electronic devicesNat. Electron.201925635711:CAS:528:DC%2BC1MXitlKhsb7O
LiuYHuangYDuanXvan der Waals integration before and beyond two-dimensional materialsNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D
Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).
WangSA MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatilityAdv. Mater.2019311806227
XiaFRediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronicsNat. Commun.201451:CAS:528:DC%2BC2cXitVShsrvI
ZhuJIon gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamicsAdv. Mater.2018301800195
ShiYElectronic synapses made of layered two-dimensional materialsNat. Electron.20181458465
LiuSEliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memoryAdv. Mater.20162810623106291:CAS:528:DC%2BC28Xhs12gu7vN
SunLSelf-selective van der Waals heterostructures for large scale memory arrayNat. Commun.20191017
TianHExtremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computingACS Nano20171112247122561:CAS:528:DC%2BC2sXhvFWhsLrI
Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006).
AvsarAAir-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistorsACS Nano20159413841451:CAS:528:DC%2BC2MXksFSlu78%3D
IelminiDWongHSPIn-memory computing with resistive switching devicesNat. Electron.20181333343
ZhuLQWanCJGuoLQShiYWanQArtificial synapse network on inorganic proton conductor for neuromorphic systemsNat. Commun.20145
CuiYHigh-performance monolayer WS2 field-effect transistors on high-κ dielectricsAdv. Mater.201527523052341:CAS:528:DC%2BC2MXhtlSlsrjE
LeeG-HHighly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltageACS nano20159701970261:CAS:528:DC%2BC2MXhtVarsrrK
YuZRealization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screeningAdv. Mater.2016285475521:CAS:528:DC%2BC2MXhvFentrvP
RyuGHStriated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2Adv. Mater.20193119042511:CAS:528:DC%2BC1MXhvVGnsbrK
VuQATwo-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratioNat. Commun.201671:CAS:528:DC%2BC28XhsVOru7fK
YangCSA synaptic transistor based on quasi-2D molybdenum oxideAdv. Mater.2017291700906
QiuCDirac-source field-effect transistors as energy-efficient, high-performance electronic switchesScience20183613873921:CAS:528:DC%2BC1cXhtlyitrrK
XiaQYangJJMemristive crossbar arrays for brain-inspired computingNat. Mater.2019183093231:CAS:528:DC%2BC1MXotFagu7w%3D
MuratoreCContinuous ultra-thin MoS2 films grown by low-temperature physical vapor depositionAppl Phys. Lett.2014104261604
LeeJMonolayer optical memory cells based on artificial trap-mediated charge storage and releaseNat. Commun.201781:CAS:528:DC%2BC2sXkvFajurg%3D
YangJ-TArtificial synapses emulated by an electrolyte-gated tungsten-oxide transistorAdv. Mater.2018301801548
BorghettiJ‘Memristive’ switches enable ‘stateful’ logic operations via material implicationNature20104648738761:CAS:528:DC%2BC3cXktlyntrg%3D
SeoSArtificial optic-neural synapse for colored and color-mixed pattern recognitionNat. Commun.20189
FioriGElectronics based on two-dimensional materialsNat. Nanotechnol.201497687791:CAS:528:DC%2BC2cXhs1yhtLvJ
JacksonBLNanoscale electronic synapses using phase change devicesACM J. Emerg. Technol. Comput. Syst.20139120
KimSThickness-controlled black phosphorus tunnel field-effect transistor for low-power switchesNat. Nanotechnol.2020152032061:CAS:528:DC%2BB3cXivVeksL8%3D
LiuDParkSThree-dimensional and 2.5 dimensional interconnection technology: state of the art. J. ElectronPackag2014136014001
WangLArtificial synapses based on multiterminal memtransistors for neuromorphic applicationAdv. Funct. Mater.2019291901106
LeeDMultibit MoS2 photoelectronic memory with ultrahigh sensitivityAdv. Mater.201628919692021:CAS:528:DC%2BC28XhsVWms7rJ
SongTGiant tunneling magnetoresistance in spin-filter van der Waals heterostructuresScience2018360121412181:CAS:528:DC%2BC1cXhtFWltrrN
CuiXMulti-terminal transport measurements of MoS2 using a van der Waals heterostructure device platformNat. Nanotechnol.2015105345401:CAS:528:DC%2BC2MXnvFSlurw%3D
DennardRHGaensslenFHRideoutVLBassousELeBlancARDesign of ion-implanted MOSFET's with very small physical dimensionsIEEE J. Solid-State Circuits19749256268
AllainAKangJBanerjeeKK
RH Yan (724_CR71) 1992; 39
D Lembke (724_CR74) 2015; 7
S Wang (724_CR65) 2019; 31
724_CR127
724_CR126
M Gibertini (724_CR23) 2019; 14
J Borghetti (724_CR9) 2010; 464
CS Yang (724_CR43) 2017; 29
Y Liu (724_CR21) 2016; 1
C Qiu (724_CR38) 2018; 361
MT Sharbati (724_CR48) 2018; 30
LQ Zhu (724_CR17) 2014; 5
D Ielmini (724_CR8) 2018; 1
J Zhu (724_CR45) 2018; 30
724_CR85
H Liu (724_CR116) 2014; 8
724_CR86
QA Vu (724_CR47) 2017; 29
Y He (724_CR137) 2018; 6
SB Desai (724_CR84) 2016; 354
M Prezioso (724_CR60) 2015; 521
GW Burr (724_CR12) 2015; 62
M Si (724_CR36) 2018; 18
B Ganjipour (724_CR121) 2012; 6
Z Yang (724_CR112) 2015; 27
T Liu (724_CR79) 2019; 14
R Cheng (724_CR102) 2012; 109
GH Ryu (724_CR105) 2019; 31
M Si (724_CR26) 2019; 2
S Kim (724_CR119) 2020; 15
W Liu (724_CR77) 2013; 13
724_CR123
Y Yang (724_CR136) 2018; 39
R Midya (724_CR59) 2017; 29
W Zhu (724_CR80) 2009; 80
724_CR125
H Tian (724_CR131) 2017; 11
M Chhowalla (724_CR22) 2016; 1
D He (724_CR99) 2018; 19
Y van de Burgt (724_CR18) 2017; 16
BL Jackson (724_CR42) 2013; 9
724_CR108
Y Zhao (724_CR98) 2017; 29
JY Gerasimov (724_CR19) 2019; 6
J Ji (724_CR88) 2016; 7
X Cui (724_CR95) 2015; 10
RA John (724_CR62) 2018; 30
724_CR68
724_CR66
S Boyn (724_CR14) 2017; 8
724_CR61
G Hills (724_CR110) 2019; 572
Z Yu (724_CR75) 2016; 28
PD Ye (724_CR35) 2018; 13
C Muratore (724_CR87) 2014; 104
HY Yoong (724_CR15) 2018; 28
S Yu (724_CR11) 2018; 106
X Zhu (724_CR64) 2019; 18
QA Vu (724_CR46) 2016; 7
D Kuzum (724_CR139) 2013; 24
L Liao (724_CR106) 2010; 467
MA Lastras-Montaño (724_CR50) 2018; 1
H Lu (724_CR118) 2014; 2
X Duan (724_CR96) 2014; 9
YH Liu (724_CR135) 2015; 27
X Li (724_CR89) 2009; 324
F Xia (724_CR114) 2014; 5
M Wang (724_CR29) 2018; 1
Y Cui (724_CR78) 2015; 27
P Cheng (724_CR33) 2015; 16
Y Shi (724_CR31) 2018; 1
S Wang (724_CR40) 2019; 2019
S Das (724_CR91) 2012; 13
D Lee (724_CR52) 2016; 28
MM Shulaker (724_CR4) 2017; 547
Y Liu (724_CR27) 2019; 567
H Fang (724_CR76) 2012; 12
AM Ionescu (724_CR73) 2011; 479
D Leonelli (724_CR124) 2010; 49
F Xue (724_CR25) 2019; 31
D Sarkar (724_CR37) 2015; 526
L Wang (724_CR39) 2019; 29
L Mennel (724_CR55) 2020; 579
G-H Lee (724_CR97) 2015; 9
R Gandhi (724_CR122) 2011; 32
X Lin (724_CR70) 2019; 2
G Fiori (724_CR20) 2014; 9
A Mizrahi (724_CR16) 2018; 9
S Ambrogio (724_CR49) 2018; 558
J Jo (724_CR128) 2016; 37
A Kuc (724_CR51) 2011; 83
Y Zhong (724_CR134) 2020; 6
S Seo (724_CR67) 2018; 9
L Sun (724_CR30) 2019; 10
F Schwierz (724_CR82) 2010; 5
J Zhang (724_CR109) 2017; 52
Q Xia (724_CR41) 2019; 18
J-T Yang (724_CR63) 2018; 30
M Lanza (724_CR138) 2019; 5
AA Bessonov (724_CR130) 2015; 14
VK Sangwan (724_CR56) 2018; 554
L Banszerus (724_CR81) 2015; 1
A Avsar (724_CR113) 2015; 9
H Tian (724_CR132) 2016; 28
W Huh (724_CR58) 2018; 30
T Yang (724_CR103) 2017; 8
A Allain (724_CR94) 2015; 14
724_CR1
724_CR2
TY Wang (724_CR129) 2020; 7
J Jadwiszczak (724_CR57) 2019; 13
F Merrikh-Bayat (724_CR13) 2017; 29
J Lee (724_CR53) 2017; 8
Y Liu (724_CR90) 2018; 47
W Li (724_CR101) 2019; 2
M Kang (724_CR107) 2018; 53
L Knoll (724_CR120) 2013; 34
C-S Yang (724_CR44) 2018; 28
J Tang (724_CR10) 2019; 31
D Xiang (724_CR54) 2018; 9
B Radisavljevic (724_CR83) 2011; 6
S Liu (724_CR28) 2016; 28
L Xie (724_CR104) 2010; 132
M Kamalakar (724_CR115) 2015; 11
F Zhang (724_CR32) 2019; 18
RH Dennard (724_CR5) 1974; 9
C Qiu (724_CR100) 2017; 355
D Liu (724_CR3) 2014; 136
R Kappera (724_CR92) 2014; 13
J Wu (724_CR117) 2017; 12
Z Fei (724_CR24) 2018; 560
724_CR7
F Xia (724_CR93) 2011; 6
C Liu (724_CR34) 2019; 14
724_CR6
T Song (724_CR69) 2018; 360
H Tian (724_CR133) 2017; 11
AC Seabaugh (724_CR72) 2010; 98
L Li (724_CR111) 2014; 9
References_xml – reference: CuiXMulti-terminal transport measurements of MoS2 using a van der Waals heterostructure device platformNat. Nanotechnol.2015105345401:CAS:528:DC%2BC2MXnvFSlurw%3D
– reference: DesaiSBMoS2 transistors with 1-nanometer gate lengthsScience2016354991021:CAS:528:DC%2BC28Xhs1SksbvJ
– reference: Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016).
– reference: LiuTCrested two-dimensional transistorsNat. Nanotechnol.2019142232261:CAS:528:DC%2BC1MXmtF2nsLY%3D
– reference: Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. In Proc. Technical Digest-International Electron Devices Meeting 47–50 (IEEE, 2002).
– reference: LiuSEliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memoryAdv. Mater.20162810623106291:CAS:528:DC%2BC28Xhs12gu7vN
– reference: WangSA photoelectric-stimulated MoS2 transistor for neuromorphic engineeringResearch201920191618798
– reference: BurrGWExperimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight elementIEEE Trans. Electron Devices20156234983507
– reference: XieLJiaoLDaiHSelective etching of graphene edges by hydrogen plasmaJ. Am. Chem. Soc.201013214751147531:CAS:528:DC%2BC3cXht1Cgs73P
– reference: LiuYHuangYDuanXvan der Waals integration before and beyond two-dimensional materialsNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D
– reference: XiaFPerebeinosVLinY-MWuYAvourisPThe origins and limits of metal–graphene junction resistanceNat. Nanotechnol.201161791841:CAS:528:DC%2BC3MXislequ70%3D
– reference: WangTYUltralow power wearable heterosynapse with photoelectric synergistic modulationAdv. Sci.202071903480
– reference: Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006).
– reference: ZhuJIon gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamicsAdv. Mater.2018301800195
– reference: CuiYHigh-performance monolayer WS2 field-effect transistors on high-κ dielectricsAdv. Mater.201527523052341:CAS:528:DC%2BC2MXhtlSlsrjE
– reference: RyuGHStriated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2Adv. Mater.20193119042511:CAS:528:DC%2BC1MXhvVGnsbrK
– reference: HeYYangYNieSLiuRWanQElectric-double-layer transistors for synaptic devices and neuromorphic systemsJ. Mater. Chem. C.20186533653521:CAS:528:DC%2BC1cXptlaqurc%3D
– reference: LiuYVan der Waals heterostructures and devicesNat. Rev. Mater.20161160421:CAS:528:DC%2BC2sXhtVerurc%3D
– reference: LiuCSmall footprint transistor architecture for photoswitching logic and in situ memoryNat. Nanotechnol.2019146626671:CAS:528:DC%2BC1MXhtVCiu7nF
– reference: HuhWSynaptic barristor based on phase‐engineered 2D heterostructuresAdv. Mater.2018301801447
– reference: LiuYHZhuLQFengPShiYWanQFreestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranesAdv. Mater.201527559956041:CAS:528:DC%2BC2MXhsVSjtLrI
– reference: LinXTwo-dimensional spintronics for low-power electronicsNat. Electron.201922742831:CAS:528:DC%2BC1MXhtlOlsLjI
– reference: HeDHigh-performance black phosphorus field-effect transistors with long-term air stabilityNano Lett.201819331337
– reference: YangTVan der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctionsNat. Commun.20178
– reference: LiWUniform and ultrathin high-k gate dielectrics for two-dimensional electronic devicesNat. Electron.201925635711:CAS:528:DC%2BC1MXitlKhsb7O
– reference: YoongHYEpitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computingAdv. Funct. Mater.2018281806037
– reference: XiaQYangJJMemristive crossbar arrays for brain-inspired computingNat. Mater.2019183093231:CAS:528:DC%2BC1MXotFagu7w%3D
– reference: Grollier, J. et al. Neuromorphic spintronics. Nat. Electron.https://doi.org/10.1038/s41928-019-0360-9 (2020).
– reference: IelminiDWongHSPIn-memory computing with resistive switching devicesNat. Electron.20181333343
– reference: YePDSteep-slope hysteresis-free negative-capacitance 2D transistorsNat. Nanotechnol.2018132428
– reference: ZhangJWangZVermaNIn-memory computation of a machine-learning classifier in a standard 6T SRAM arrayIEEE J. Solid-State Circuits201752915924
– reference: JoJShinCNegative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switchingIEEE Electron Device Lett.2016372452481:CAS:528:DC%2BC28XitFGltbzK
– reference: KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK
– reference: ZhaoYPassivation of black phosphorus via self‐assembled organic monolayers by van der Waals epitaxyAdv. Mater.2017291603990
– reference: LeeJMonolayer optical memory cells based on artificial trap-mediated charge storage and releaseNat. Commun.201781:CAS:528:DC%2BC2sXkvFajurg%3D
– reference: SharbatiMTLow-power, electrochemically tunable graphene synapses for neuromorphic computingAdv. Mater.2018301802353
– reference: SangwanVKMulti-terminal memtransistors from polycrystalline monolayer molybdenum disulfideNature201855450050471:CAS:528:DC%2BC1cXjtFCrt70%3D
– reference: PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D
– reference: LeeG-HHighly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltageACS nano20159701970261:CAS:528:DC%2BC2MXhtVarsrrK
– reference: SchwierzFGraphene transistorsNat. Nanotechnol.201054874961:CAS:528:DC%2BC3cXotl2mt7k%3D
– reference: WangLArtificial synapses based on multiterminal memtransistors for neuromorphic applicationAdv. Funct. Mater.2019291901106
– reference: BanszerusLUltrahigh-mobility graphene devices from chemical vapor deposition on reusable copperSci. Adv.20151e1500222
– reference: KucAZiboucheNHeineTInfluence of quantum confinement on the electronic structure of the transition metal sulfide TS2Phys. Rev. B201183245213
– reference: JadwiszczakJMoS2 memtransistors fabricated by localized helium ion beam irradiationACS nano20191314262142731:CAS:528:DC%2BC1MXit1OqtrrK
– reference: YangYHeYNieSShiYWanQLight stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devicesIEEE Electron Device Lett.2018398979001:CAS:528:DC%2BC1cXisVCmsL3N
– reference: DennardRHGaensslenFHRideoutVLBassousELeBlancARDesign of ion-implanted MOSFET's with very small physical dimensionsIEEE J. Solid-State Circuits19749256268
– reference: YangCSA synaptic transistor based on quasi-2D molybdenum oxideAdv. Mater.2017291700906
– reference: FangHHigh-performance single layered WSe2 p-FETs with chemically doped contactsNano Lett.201212378837921:CAS:528:DC%2BC38XosFekurs%3D
– reference: GandhiRCMOS-compatible vertical-silicon-nanowire Gate-All-Around p-type tunneling FETs with 50-mV/decade subthreshold swingIEEE Electron Device Lett.201132150415061:CAS:528:DC%2BC3MXhs1emurfP
– reference: WuJHigh electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2SeNat. Nanotechnol.2017125305341:CAS:528:DC%2BC2sXls1Gru74%3D
– reference: XiaFRediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronicsNat. Commun.201451:CAS:528:DC%2BC2cXitVShsrvI
– reference: LiuDParkSThree-dimensional and 2.5 dimensional interconnection technology: state of the art. J. ElectronPackag2014136014001
– reference: YanRHOurmazdALeeKFScaling the Si MOSFET: from bulk to SOI to bulkIEEE Trans. Electron Devices199239170417101:CAS:528:DyaK38XkvVSksb8%3D
– reference: LeeDMultibit MoS2 photoelectronic memory with ultrahigh sensitivityAdv. Mater.201628919692021:CAS:528:DC%2BC28XhsVWms7rJ
– reference: TianHAnisotropic black phosphorus synaptic device for neuromorphic applicationsAdv. Mater.201628499149971:CAS:528:DC%2BC28XmvFart74%3D
– reference: ChengPSunKHuYHMemristive behavior and ideal memristor of 1T Phase MoS2 nanosheetsNano Lett.201516572576
– reference: DasSChenH-YPenumatchaAVAppenzellerJHigh performance multilayer MoS2 transistors with scandium contactsNano Lett.201213100105
– reference: YangC-SAll-solid-state synaptic transistor with ultralow conductance for neuromorphic computingAdv. Funct. Mater.2018281804170
– reference: Lee, D. U. et al. A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 432–433 (IEEE, 2014).
– reference: JiJTwo-dimensional antimonene single crystals grown by van der Waals epitaxyNat. Commun.201671:CAS:528:DC%2BC28XhvVygtrvP
– reference: HillsGModern microprocessor built from complementary carbon nanotube transistorsNature20195725956021:CAS:528:DC%2BC1MXhs1OhurnI
– reference: TianHEmulating bilingual synaptic response using a junction-based artificial synaptic deviceACS Nano201711715671631:CAS:528:DC%2BC2sXhtVKhu77K
– reference: LuHSeabaughATunnel field-effect transistors: state-of-the-artIEEE J. Electron Devices Soc.2014244491:CAS:528:DC%2BC2sXntFyiurs%3D
– reference: SarkarDA subthermionic tunnel field-effect transistor with an atomically thin channelNature201552691951:CAS:528:DC%2BC2MXhs1SitLvN
– reference: SeoSArtificial optic-neural synapse for colored and color-mixed pattern recognitionNat. Commun.20189
– reference: KnollLInverters with strained Si nanowire complementary tunnel field-effect transistorsIEEE Electron Device Lett.2013348138151:CAS:528:DC%2BC3sXhtVegt73J
– reference: AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O
– reference: LembkeDAllainAKisAThickness-dependent mobility in two-dimensional MoS2 transistorsNanoscale20157625562601:CAS:528:DC%2BC2MXksV2ksrc%3D
– reference: DuanXLateral epitaxial growth of two-dimensional layered semiconductor heterojunctionsNat. Nanotechnol.20149102410301:CAS:528:DC%2BC2cXhs1ehsr7E
– reference: LiLBlack phosphorus field-effect transistorsNat. Nanotechnol.201493723771:CAS:528:DC%2BC2cXjtlyht7c%3D
– reference: LiuYDuanXHuangYDuanXTwo-dimensional transistors beyond graphene and TMDCsChem. Soc. Rev.201847638864091:CAS:528:DC%2BC1cXhsVCnsb%2FP
– reference: ChengRHigh-frequency self-aligned graphene transistors with transferred gate stacksProc. Natl Acad. Sci. USA201210911588115921:CAS:528:DC%2BC38Xht1Ciu7zO
– reference: Sangwan, V. et al. Neuromorphic nanoelectronic materials. Nat. Nanotechnol.https://doi.org/10.1038/s41565-020-0647-z (2020).
– reference: Khan, A. I., Yeung, C. W., Chenming, H. & Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proc. 2011 IEEE International Electron Devices Meeting (IEDM) 111.3.1.–11.3.4. (IEEE, 2011).
– reference: SongTGiant tunneling magnetoresistance in spin-filter van der Waals heterostructuresScience2018360121412181:CAS:528:DC%2BC1cXhtFWltrrN
– reference: ZhuWPerebeinosVFreitagMAvourisPCarrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphenePhys. Rev. B200980235402
– reference: Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011).
– reference: SeabaughACZhangQLow-voltage tunnel transistors for beyond CMOS logicProc. IEEE201098209521101:CAS:528:DC%2BC3cXhs1ais7jM
– reference: MidyaRAnatomy of Ag/Hafnia-based selectors with 1010 nonlinearityAdv. Mater.2017291604457
– reference: Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017).
– reference: GerasimovJYAn evolvable organic electrochemical transistor for neuromorphic applicationsAdv. Sci.201961801339
– reference: TianHExtremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computingACS Nano20171112247122561:CAS:528:DC%2BC2sXhvFWhsLrI
– reference: YangZField-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser depositionAdv. Mater.201527374837541:CAS:528:DC%2BC2MXot1Wqt70%3D
– reference: KamalakarMLow schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contactsSmall201511220922161:CAS:528:DC%2BC2MXosFGkuw%3D%3D
– reference: GanjipourBTunnel field-effect transistors based on InP-GaAs heterostructure nanowiresACS Nano20126310931131:CAS:528:DC%2BC38XjslKgtL0%3D
– reference: JacksonBLNanoscale electronic synapses using phase change devicesACM J. Emerg. Technol. Comput. Syst.20139120
– reference: AllainAKangJBanerjeeKKisAElectrical contacts to two-dimensional semiconductorsNat. Mater.201514119512051:CAS:528:DC%2BC2MXhvVOlsr3K
– reference: Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016).
– reference: YuZRealization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screeningAdv. Mater.2016285475521:CAS:528:DC%2BC2MXhvFentrvP
– reference: AvsarAAir-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistorsACS Nano20159413841451:CAS:528:DC%2BC2MXksFSlu78%3D
– reference: JohnRASynergistic gating of electro‐iono‐photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticityAdv. Mater.2018301800220
– reference: Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T.-L. High performance 2D perovskite/graphene optical synapses as artificial eyes. In Proc. 2018 IEEE International Electron Devices Meeting (IEDM) 38.6.1–38.6.4 (IEEE, 2018).
– reference: van de BurgtYA non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computingNat. Mater.201716414418
– reference: ZhuXLiDLiangXLuWDIonic modulation and ionic coupling effects in MoS2 devices for neuromorphic computingNat. Mater.2019181411481:CAS:528:DC%2BC1cXisFOnur3L
– reference: Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).
– reference: QiuCDirac-source field-effect transistors as energy-efficient, high-performance electronic switchesScience20183613873921:CAS:528:DC%2BC1cXhtlyitrrK
– reference: LiuWRole of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistorsNano Lett.201313198319901:CAS:528:DC%2BC3sXks1GisLs%3D
– reference: TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI
– reference: ShiYElectronic synapses made of layered two-dimensional materialsNat. Electron.20181458465
– reference: Jeon, K. et al. Si tunnel transistors with a novel silicided source and 46 mV/dec swing. In Proc. 2010 Symposium VLSI Technology 121–122 (IEEE, 2010).
– reference: BorghettiJ‘Memristive’ switches enable ‘stateful’ logic operations via material implicationNature20104648738761:CAS:528:DC%2BC3cXktlyntrg%3D
– reference: YangJ-TArtificial synapses emulated by an electrolyte-gated tungsten-oxide transistorAdv. Mater.2018301801548
– reference: KangMGonugondlaSKPatilAShanbhagNRA multi-functional in-memory inference processor using a standard 6T SRAM arrayIEEE J. Solid-State Circuits201853642655
– reference: BessonovAALayered memristive and memcapacitive switches for printable electronicsNat. Mater.2015141992041:CAS:528:DC%2BC2cXhvFKlsrbF
– reference: BoynSLearning through ferroelectric domain dynamics in solid-state synapsesNat. Commun.201781:CAS:528:DC%2BC2sXls1KhtLc%3D
– reference: Kim, S. et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. In Proc. 2009 Symposium VLSI Technology 178–179 (IEEE, 2009).
– reference: Merrikh-BayatFHigh-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arraysIEEE Trans. Neural Netw. Learn. Syst.20172947824790
– reference: MennelLUltrafast machine vision with 2D material neural network image sensorsNature202057962661:CAS:528:DC%2BB3cXksVWmsLo%3D
– reference: VuQAa high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stackingAdv. Mater.2017291703363
– reference: FioriGElectronics based on two-dimensional materialsNat. Nanotechnol.201497687791:CAS:528:DC%2BC2cXhs1yhtLvJ
– reference: LiXLarge-area synthesis of high-quality and uniform graphene films on copper foilsScience2009324131213141:CAS:528:DC%2BD1MXms12gtbY%3D
– reference: FeiZFerroelectric switching of a two-dimensional metalNature20185603361:CAS:528:DC%2BC1cXhtlOis7zO
– reference: ZhangFElectric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memoriesNat. Mater.20191855611:CAS:528:DC%2BC1cXisFWitrzP
– reference: LanzaMRecommended methods to study resistive switching devicesAdv. Electron. Mater.201951800143
– reference: WangSA MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatilityAdv. Mater.2019311806227
– reference: XueFGate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectricAdv. Mater.2019311901300
– reference: MuratoreCContinuous ultra-thin MoS2 films grown by low-temperature physical vapor depositionAppl Phys. Lett.2014104261604
– reference: KimSThickness-controlled black phosphorus tunnel field-effect transistor for low-power switchesNat. Nanotechnol.2020152032061:CAS:528:DC%2BB3cXivVeksL8%3D
– reference: ZhongYSelective UV‐gating organic memtransistors with modulable levels of synaptic plasticityAdv. Electron. Mater.2020619009551:CAS:528:DC%2BC1MXhvFCmsb7I
– reference: KuzumDYuSWongHPSynaptic electronics: materials, devices and applicationsNanotechnology201324382001
– reference: XiangDTwo-dimensional multibit optoelectronic memory with broadband spectrum distinctionNat. Commun.20189
– reference: SiMSteep-slope WSe2 negative capacitance field-effect transistorNano Lett.201818368236871:CAS:528:DC%2BC1cXptVCju7s%3D
– reference: VuQATwo-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratioNat. Commun.201671:CAS:528:DC%2BC28XhsVOru7fK
– reference: IonescuAMRielHTunnel field-effect transistors as energy-efficient electronic switchesNature20114793293371:CAS:528:DC%2BC3MXhsVykt7%2FM
– reference: GibertiniMKoperskiMMorpurgoANovoselovKMagnetic 2D materials and heterostructuresNat. Nanotechnol.2019144084191:CAS:528:DC%2BC1MXptVCktb0%3D
– reference: ZhuLQWanCJGuoLQShiYWanQArtificial synapse network on inorganic proton conductor for neuromorphic systemsNat. Commun.20145
– reference: Lastras-MontañoMAChengK-TJNEResistive random-access memory based on ratioed memristorsNat. Electron.20181466472
– reference: ShulakerMMThree-dimensional integration of nanotechnologies for computing and data storage on a single chipNature201754774781:CAS:528:DC%2BC2sXhtFaqt7nF
– reference: LiaoLHigh-speed graphene transistors with a self-aligned nanowire gateNature20104673053081:CAS:528:DC%2BC3cXhtFSisLfI
– reference: MizrahiANeural-like computing with populations of superparamagnetic basis functionsNat. Commun.20189
– reference: WangMRobust memristors based on layered two-dimensional materialsNat. Electron.201811301:CAS:528:DC%2BC1MXhtFGqtbrE
– reference: SunLSelf-selective van der Waals heterostructures for large scale memory arrayNat. Commun.20191017
– reference: ChhowallaMJenaDZhangHTwo-dimensional semiconductors for transistorsNat. Rev. Mater.20161160521:CAS:528:DC%2BC2sXhtVertb8%3D
– reference: SiMA ferroelectric semiconductor field-effect transistorNat. Electron.201925805861:CAS:528:DC%2BC1MXitlKhsb7M
– reference: LeonelliDPerformance enhancement in multi-gate tunneling field effect transistors by scaling the Fin-widthJpn. J. Appl. Phys.20104904DC10
– reference: YuSNeuro-inspired computing with emerging nonvolatile memorysProc. IEEE20181062602851:CAS:528:DC%2BC1MXjt1GrtL8%3D
– reference: QiuCScaling carbon nanotube complementary transistors to 5-nm gate lengthsScience20173552712761:CAS:528:DC%2BC2sXhtVehtbw%3D
– reference: RadisavljevicBRadenovicABrivioJGiacomettiVKisASingle-layer MoS2 transistorsNat. Nanotechnol.201161471501:CAS:528:DC%2BC3MXislCjsro%3D
– reference: LiuHPhosphorene: an unexplored 2D semiconductor with a high hole mobilityACS Nano20148403340411:CAS:528:DC%2BC2cXksVWisLo%3D
– volume: 2019
  start-page: 1618798
  year: 2019
  ident: 724_CR40
  publication-title: Research
– volume: 37
  start-page: 245
  year: 2016
  ident: 724_CR128
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2523681
– volume: 28
  start-page: 1806037
  year: 2018
  ident: 724_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806037
– volume: 521
  start-page: 61
  year: 2015
  ident: 724_CR60
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 39
  start-page: 1704
  year: 1992
  ident: 724_CR71
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.141237
– volume: 9
  start-page: 1024
  year: 2014
  ident: 724_CR96
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.222
– volume: 8
  start-page: 4033
  year: 2014
  ident: 724_CR116
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 360
  start-page: 1214
  year: 2018
  ident: 724_CR69
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 9
  start-page: 1
  year: 2013
  ident: 724_CR42
  publication-title: ACM J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/2463585.2463588
– volume: 12
  start-page: 3788
  year: 2012
  ident: 724_CR76
  publication-title: Nano Lett.
  doi: 10.1021/nl301702r
– volume: 11
  start-page: 12247
  year: 2017
  ident: 724_CR131
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05726
– volume: 14
  start-page: 408
  year: 2019
  ident: 724_CR23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
– volume: 6
  start-page: 1900955
  year: 2020
  ident: 724_CR134
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900955
– volume: 9
  start-page: 256
  year: 1974
  ident: 724_CR5
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.1974.1050511
– volume: 10
  start-page: 1
  year: 2019
  ident: 724_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 31
  start-page: 1806227
  year: 2019
  ident: 724_CR65
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806227
– volume: 18
  start-page: 55
  year: 2019
  ident: 724_CR32
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0234-y
– volume: 11
  start-page: 2209
  year: 2015
  ident: 724_CR115
  publication-title: Small
  doi: 10.1002/smll.201402900
– volume: 6
  start-page: 5336
  year: 2018
  ident: 724_CR137
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C8TC00530C
– volume: 28
  start-page: 1804170
  year: 2018
  ident: 724_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804170
– volume: 2
  start-page: 563
  year: 2019
  ident: 724_CR101
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0334-y
– volume: 136
  start-page: 014001
  year: 2014
  ident: 724_CR3
  publication-title: Packag
  doi: 10.1115/1.4026615
– volume: 98
  start-page: 2095
  year: 2010
  ident: 724_CR72
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2070470
– volume: 2
  start-page: 580
  year: 2019
  ident: 724_CR26
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0338-7
– ident: 724_CR68
  doi: 10.1038/s41928-019-0360-9
– volume: 1
  start-page: e1500222
  year: 2015
  ident: 724_CR81
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500222
– volume: 31
  start-page: 1904251
  year: 2019
  ident: 724_CR105
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904251
– volume: 13
  start-page: 14262
  year: 2019
  ident: 724_CR57
  publication-title: ACS nano
  doi: 10.1021/acsnano.9b07421
– volume: 547
  start-page: 74
  year: 2017
  ident: 724_CR4
  publication-title: Nature
  doi: 10.1038/nature22994
– volume: 39
  start-page: 897
  year: 2018
  ident: 724_CR136
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2824339
– volume: 354
  start-page: 99
  year: 2016
  ident: 724_CR84
  publication-title: Science
  doi: 10.1126/science.aah4698
– ident: 724_CR123
  doi: 10.1109/IEDM.2011.6131666
– ident: 724_CR86
  doi: 10.1109/IEDM.2017.8268448
– volume: 560
  start-page: 336
  year: 2018
  ident: 724_CR24
  publication-title: Nature
  doi: 10.1038/s41586-018-0336-3
– volume: 62
  start-page: 3498
  year: 2015
  ident: 724_CR12
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2439635
– ident: 724_CR127
  doi: 10.1109/IEDM.2016.7838400
– ident: 724_CR7
– volume: 49
  start-page: 04DC10
  year: 2010
  ident: 724_CR124
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.04DC10
– volume: 28
  start-page: 547
  year: 2016
  ident: 724_CR75
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503033
– volume: 9
  start-page: 372
  year: 2014
  ident: 724_CR111
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 467
  start-page: 305
  year: 2010
  ident: 724_CR106
  publication-title: Nature
  doi: 10.1038/nature09405
– ident: 724_CR6
  doi: 10.1109/IEDM.2006.346811
– volume: 104
  start-page: 261604
  year: 2014
  ident: 724_CR87
  publication-title: Appl Phys. Lett.
  doi: 10.1063/1.4885391
– volume: 30
  start-page: 1800195
  year: 2018
  ident: 724_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800195
– volume: 7
  year: 2016
  ident: 724_CR46
  publication-title: Nat. Commun.
– volume: 14
  start-page: 662
  year: 2019
  ident: 724_CR34
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0462-6
– volume: 13
  start-page: 1128
  year: 2014
  ident: 724_CR92
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4080
– volume: 34
  start-page: 813
  year: 2013
  ident: 724_CR120
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2258652
– volume: 9
  start-page: 768
  year: 2014
  ident: 724_CR20
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 31
  start-page: 1901300
  year: 2019
  ident: 724_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901300
– volume: 7
  year: 2016
  ident: 724_CR88
  publication-title: Nat. Commun.
– volume: 16
  start-page: 414
  year: 2017
  ident: 724_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4856
– volume: 16
  start-page: 572
  year: 2015
  ident: 724_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04260
– volume: 53
  start-page: 642
  year: 2018
  ident: 724_CR107
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2017.2782087
– volume: 28
  start-page: 9196
  year: 2016
  ident: 724_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603571
– volume: 2
  start-page: 44
  year: 2014
  ident: 724_CR118
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2014.2326622
– volume: 29
  start-page: 1901106
  year: 2019
  ident: 724_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901106
– volume: 29
  start-page: 1603990
  year: 2017
  ident: 724_CR98
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603990
– volume: 47
  start-page: 6388
  year: 2018
  ident: 724_CR90
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00318A
– volume: 13
  start-page: 1983
  year: 2013
  ident: 724_CR77
  publication-title: Nano Lett.
  doi: 10.1021/nl304777e
– volume: 27
  start-page: 5230
  year: 2015
  ident: 724_CR78
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502222
– ident: 724_CR85
  doi: 10.1109/IEDM.2011.6131532
– volume: 572
  start-page: 595
  year: 2019
  ident: 724_CR110
  publication-title: Nature
  doi: 10.1038/s41586-019-1493-8
– volume: 5
  year: 2014
  ident: 724_CR114
  publication-title: Nat. Commun.
– volume: 5
  start-page: 487
  year: 2010
  ident: 724_CR82
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 1
  start-page: 333
  year: 2018
  ident: 724_CR8
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– volume: 7
  start-page: 6255
  year: 2015
  ident: 724_CR74
  publication-title: Nanoscale
  doi: 10.1039/C4NR06331G
– volume: 52
  start-page: 915
  year: 2017
  ident: 724_CR109
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2642198
– volume: 13
  start-page: 24
  year: 2018
  ident: 724_CR35
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0010-1
– volume: 10
  start-page: 534
  year: 2015
  ident: 724_CR95
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.70
– ident: 724_CR61
  doi: 10.1038/s41565-020-0647-z
– volume: 27
  start-page: 3748
  year: 2015
  ident: 724_CR112
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500990
– volume: 11
  start-page: 7156
  year: 2017
  ident: 724_CR133
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03033
– volume: 83
  start-page: 245213
  year: 2011
  ident: 724_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245213
– volume: 18
  start-page: 3682
  year: 2018
  ident: 724_CR36
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00816
– volume: 28
  start-page: 4991
  year: 2016
  ident: 724_CR132
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600166
– volume: 106
  start-page: 260
  year: 2018
  ident: 724_CR11
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790840
– volume: 8
  year: 2017
  ident: 724_CR53
  publication-title: Nat. Commun.
– volume: 18
  start-page: 141
  year: 2019
  ident: 724_CR64
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0248-5
– volume: 6
  start-page: 1801339
  year: 2019
  ident: 724_CR19
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801339
– volume: 109
  start-page: 11588
  year: 2012
  ident: 724_CR102
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1205696109
– volume: 9
  year: 2018
  ident: 724_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03963-w
– volume: 29
  start-page: 1703363
  year: 2017
  ident: 724_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703363
– volume: 9
  start-page: 7019
  year: 2015
  ident: 724_CR97
  publication-title: ACS nano
  doi: 10.1021/acsnano.5b01341
– volume: 558
  start-page: 60
  year: 2018
  ident: 724_CR49
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 9
  year: 2018
  ident: 724_CR54
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1801447
  year: 2018
  ident: 724_CR58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801447
– volume: 554
  start-page: 500
  year: 2018
  ident: 724_CR56
  publication-title: Nature
  doi: 10.1038/nature25747
– volume: 6
  start-page: 3109
  year: 2012
  ident: 724_CR121
  publication-title: ACS Nano
  doi: 10.1021/nn204838m
– volume: 1
  start-page: 16042
  year: 2016
  ident: 724_CR21
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.42
– volume: 14
  start-page: 199
  year: 2015
  ident: 724_CR130
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4135
– volume: 1
  start-page: 16052
  year: 2016
  ident: 724_CR22
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.52
– volume: 567
  start-page: 323
  year: 2019
  ident: 724_CR27
  publication-title: Nature
  doi: 10.1038/s41586-019-1013-x
– volume: 9
  year: 2018
  ident: 724_CR67
  publication-title: Nat. Commun.
– volume: 1
  start-page: 466
  year: 2018
  ident: 724_CR50
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0115-z
– volume: 9
  start-page: 4138
  year: 2015
  ident: 724_CR113
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00289
– volume: 579
  start-page: 62
  year: 2020
  ident: 724_CR55
  publication-title: Nature
  doi: 10.1038/s41586-020-2038-x
– volume: 28
  start-page: 10623
  year: 2016
  ident: 724_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603293
– volume: 18
  start-page: 309
  year: 2019
  ident: 724_CR41
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0291-x
– volume: 324
  start-page: 1312
  year: 2009
  ident: 724_CR89
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 15
  start-page: 203
  year: 2020
  ident: 724_CR119
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0623-7
– volume: 19
  start-page: 331
  year: 2018
  ident: 724_CR99
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03940
– ident: 724_CR108
  doi: 10.1109/ISSCC.2016.7418008
– volume: 479
  start-page: 329
  year: 2011
  ident: 724_CR73
  publication-title: Nature
  doi: 10.1038/nature10679
– volume: 29
  start-page: 1604457
  year: 2017
  ident: 724_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604457
– volume: 30
  start-page: 1801548
  year: 2018
  ident: 724_CR63
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801548
– ident: 724_CR66
  doi: 10.1109/IEDM.2018.8614666
– volume: 361
  start-page: 387
  year: 2018
  ident: 724_CR38
  publication-title: Science
  doi: 10.1126/science.aap9195
– volume: 13
  start-page: 100
  year: 2012
  ident: 724_CR91
  publication-title: Nano Lett.
  doi: 10.1021/nl303583v
– volume: 8
  year: 2017
  ident: 724_CR103
  publication-title: Nat. Commun.
– volume: 80
  start-page: 235402
  year: 2009
  ident: 724_CR80
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235402
– volume: 7
  start-page: 1903480
  year: 2020
  ident: 724_CR129
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903480
– volume: 6
  start-page: 147
  year: 2011
  ident: 724_CR83
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 12
  start-page: 530
  year: 2017
  ident: 724_CR117
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.43
– volume: 29
  start-page: 4782
  year: 2017
  ident: 724_CR13
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2778940
– volume: 464
  start-page: 873
  year: 2010
  ident: 724_CR9
  publication-title: Nature
  doi: 10.1038/nature08940
– volume: 5
  year: 2014
  ident: 724_CR17
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1800143
  year: 2019
  ident: 724_CR138
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800143
– volume: 1
  start-page: 130
  year: 2018
  ident: 724_CR29
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0021-4
– volume: 30
  start-page: 1800220
  year: 2018
  ident: 724_CR62
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800220
– volume: 355
  start-page: 271
  year: 2017
  ident: 724_CR100
  publication-title: Science
  doi: 10.1126/science.aaj1628
– volume: 2
  start-page: 274
  year: 2019
  ident: 724_CR70
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 132
  start-page: 14751
  year: 2010
  ident: 724_CR104
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107071g
– volume: 30
  start-page: 1802353
  year: 2018
  ident: 724_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802353
– volume: 14
  start-page: 1195
  year: 2015
  ident: 724_CR94
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4452
– volume: 8
  year: 2017
  ident: 724_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14736
– ident: 724_CR125
  doi: 10.1109/VLSIT.2010.5556195
– volume: 526
  start-page: 91
  year: 2015
  ident: 724_CR37
  publication-title: Nature
  doi: 10.1038/nature15387
– ident: 724_CR126
– volume: 29
  start-page: 1700906
  year: 2017
  ident: 724_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700906
– volume: 14
  start-page: 223
  year: 2019
  ident: 724_CR79
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0361-x
– volume: 24
  start-page: 382001
  year: 2013
  ident: 724_CR139
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– ident: 724_CR2
  doi: 10.1109/ISSCC.2014.6757501
– volume: 31
  start-page: 1902761
  year: 2019
  ident: 724_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902761
– volume: 6
  start-page: 179
  year: 2011
  ident: 724_CR93
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.6
– volume: 27
  start-page: 5599
  year: 2015
  ident: 724_CR135
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502719
– volume: 1
  start-page: 458
  year: 2018
  ident: 724_CR31
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0118-9
– volume: 32
  start-page: 1504
  year: 2011
  ident: 724_CR122
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2011.2165331
– ident: 724_CR1
  doi: 10.1109/ISSCC.2014.6757323
SSID ssj0052924
Score 2.7226484
SecondaryResourceType review_article
Snippet Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 545
SubjectTerms 639/166/987
639/301/1005/1007
639/925/927/1007
Chemistry and Materials Science
Computing time
Energy efficiency
Materials Science
Metal oxide semiconductors
Nanoelectronics
Nanotechnology
Nanotechnology and Microengineering
New technology
Review Article
Semiconductor devices
Transistors
Two dimensional materials
Title Two-dimensional materials for next-generation computing technologies
URI https://link.springer.com/article/10.1038/s41565-020-0724-3
https://www.ncbi.nlm.nih.gov/pubmed/32647168
https://www.proquest.com/docview/2421631339
https://www.proquest.com/docview/2475048868
https://www.proquest.com/docview/2423062615
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgvl1dpYInJdg2r-lJfK0iKCIKeyvdPLxIV90V_74zfayK6CWXdMIwk8d8mfQbxvaFgUz5UHAhUsUleMeHTjieBqO19XqYBbrvuLnVV4_yeqAGzYXbuHlW2e6J1UbtRpbuyI8odakFIqrs-OWVU9Uoyq42JTRm2RxRl9GTLjOYAi6VZnVRWyMBdQHTZjUFHI0JuNC_yTGPTSq5-Hku_Qo2fyVKq_Onv8QWm8AxOqk9vcxmfLnCFr7RCa6y84ePEXdE119TbUQYjdYTLMLQNCoJ5D5VNNPkjchWBR1QMpq09-sIm9fYY__i4eyKN1USuJVaTzg4IhXEBsAGiF1i4pCEJHXeaVcYLa1XyktXILIKiREeXQAiKRQUmc2MF-usU45Kv8kihR4KWagIYaSCAFYrV6B9nPRDkKLL4tZGuW0oxKmSxXNepbIF5LVZczRrTmbNUeRgKvJS82f893GvNXzeLKVx_uX4P7qJoB5AQ5ftTbtxjVDioyj96L0aApERYkXVZRu1P6fKYPiK5zNJH7YO_hr8T023_td0m82n9dTicdJjncnbu9_B4GUy3K1mKLbQv9xlc6cXt3f3n8re60w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEM92oUCQ4AKymsSvyQFVFWXZ0sdpK_Vmsn5wQdnCblX1T_U3Mo7XW1DV3nrJxRlrMg97Pk88A_Cea2ykDy3jvJZMoHds4rhjddBKWa8mTYjnHYdHanQsvp_IkxW4zHdh4m-VeU3sF2o3tfGMfCumLhUnRNVsn_5msWtUzK7mFhrJLPb9xTlBttnnvV3S74e6Hn4dfxmxRVcBZoVSc4YuFuGjB6INWLpKl6EKVe28U67VSlgvpReuJSQSKs09sYy8aiW2jW205zTvPbgviJPoUTj8lld-WTepia4WSN-OOmdROW7NIlCKd6FLVupaMP7_PngtuL2WmO33u-FjeLQIVIudZFlPYMV3T2Htn_KFz2B3fD5lLrYHSKU9Cop-k0EXFAoXXQTVP_uy1lH7he0bSBBlMc_n-QTTn8PxncjvBax2085vQCHJIkIT-gI0QmJAq6RrST5O-AkKPoAyy8jYRcny2Dnjl-lT5xxNEqshsZooVkMkH5ckp6lex20vb2bBm4XrzsyVod0wHAviIyocwLvlMPlkTLS0nZ-e9VMQEiNsKgewnvS5ZIbCZYoHIvWnrOCryW_k9OXtnL6FB6Px4YE52DvafwUP62RmrKw2YXX-58y_psBpPnnTW2sBP-7aPf4Cxg4mFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VDzLlgJBggvI2iR-TQ4IIZZVS6Hi0Ep7C1k_uKBsYbeq-Gv8OmbiZAuq2lsvuThjWZ9n7Pk89gzAS2mx0iE2QspSC4XBi7mXXpTRGuOCmVeRzzu-HJq9Y_Vppmcb8Gd4C8PXKoc1sVuo_cLxGfmYQ5dGEqOqxrG_FvF1Mn138lNwBSmOtA7lNJKKHITfZ0Tflm_3JzTXr8py-vHow57oKwwIp4xZCfSckI8-iC5i7gubxyIWpQ_e-MYa5YLWQfmGWEksrAw0fJRFo7GpXGWDpH5vwE0rdcE2ZmdrsqfLKhXUtQoJB7RDRFXieMmkid9F5yK3pRLy_z3xgqN7IUjb7X3Tu7DVO63Z-6Rl92AjtPfhzj-pDB_A5OhsITyXCkhpPjLyhJNyZ-QWZy0T7O9dimvWhMx1xSRIMlsNZ_tE2R_C8bXg9wg220UbHkOmSTtiFbtkNEpjRGe0bwgfr8IclRxBPmBUuz59OVfR-FF3YXSJdYK1JlhrhrUmkddrkZOUu-Oqn3cH4OvejJf1udJd0szJ8RENjuDFupnsk4MuTRsWp10XxMqIp-oRbKf5XA-GXGfyDVj6zTDB551fOtKdq0f6HG6RYdSf9w8PnsDtMmmZyItd2Fz9Og1PyYdazZ91yprBt-u2jr932CpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+materials+for+next-generation+computing+technologies&rft.jtitle=Nature+nanotechnology&rft.au=Liu%2C+Chunsen&rft.au=Chen%2C+Huawei&rft.au=Wang%2C+Shuiyuan&rft.au=Liu%2C+Qi&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=7&rft.spage=545&rft.epage=557&rft_id=info:doi/10.1038%2Fs41565-020-0724-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon