Two-dimensional materials for next-generation computing technologies
Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as...
Saved in:
Published in | Nature nanotechnology Vol. 15; no. 7; pp. 545 - 557 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.
This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics. |
---|---|
AbstractList | Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies.This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics. Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal-oxide-semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics. |
Author | Liu, Chunsen Liu, Ming Jiang, Yu-Gang Wang, Shuiyuan Chen, Huawei Zhang, David Wei Zhou, Peng Liu, Qi |
Author_xml | – sequence: 1 givenname: Chunsen surname: Liu fullname: Liu, Chunsen organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, School of Computer Science, Fudan University – sequence: 2 givenname: Huawei surname: Chen fullname: Chen, Huawei organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University – sequence: 3 givenname: Shuiyuan surname: Wang fullname: Wang, Shuiyuan organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University – sequence: 4 givenname: Qi orcidid: 0000-0001-7062-831X surname: Liu fullname: Liu, Qi organization: Frontier Institute of Chip and System, Fudan University, Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences – sequence: 5 givenname: Yu-Gang surname: Jiang fullname: Jiang, Yu-Gang organization: School of Computer Science, Fudan University – sequence: 6 givenname: David Wei surname: Zhang fullname: Zhang, David Wei organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University – sequence: 7 givenname: Ming surname: Liu fullname: Liu, Ming organization: Frontier Institute of Chip and System, Fudan University, Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences – sequence: 8 givenname: Peng orcidid: 0000-0002-7301-1013 surname: Zhou fullname: Zhou, Peng email: pengzhou@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32647168$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLHTEYhkNR6qX9AW5kwI2b1NyTWYq9guBG1yHNfHOMzCTHJIP23zfHYxWEukkCeZ5c3vcA7cQUAaEjSr5Qws1ZEVQqiQkjmGgmMP-A9qkWBnPey52XtdF76KCUO0Ik65n4iPY4U0JTZfbR1-uHhIcwQywhRTd1s6uQg5tKN6bcRXiseAURsqttv_NpXi81xFVXwd_GNKVVgPIJ7Y7NgM_P8yG6-f7t-uInvrz68evi_BJ7oVTFZiBM8DYY40dDBqrJSEfKBhjU4LQSHqQEMTjT9yPVHJQHw6mTxvW-18AP0en23HVO9wuUaudQPEyTi5CWYplgnCimqGzoyRv0Li25fXBDaUmEMcq8TzGqOG1JNur4mVp-zzDYdQ6zy3_svxQbQLeAz6mUDOMLQondNGW3TdnWlN00ZXlz9BvHh_oUcs0uTO-abGuWdktcQX599P-lvy2ZpaQ |
CitedBy_id | crossref_primary_10_1002_smll_202311630 crossref_primary_10_1002_adfm_202100144 crossref_primary_10_1002_aelm_202001181 crossref_primary_10_1021_acsaelm_2c01435 crossref_primary_10_1063_5_0116505 crossref_primary_10_7498_aps_71_20221424 crossref_primary_10_1007_s12274_024_6942_5 crossref_primary_10_3389_fncom_2022_1015945 crossref_primary_10_1002_aelm_202200782 crossref_primary_10_1039_D2CP03350J crossref_primary_10_1103_PhysRevMaterials_7_054005 crossref_primary_10_1016_j_measen_2024_101049 crossref_primary_10_1021_acsnano_3c03505 crossref_primary_10_1016_j_apsusc_2025_162318 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1039_D2NR01728H crossref_primary_10_1002_pssr_202000465 crossref_primary_10_1016_j_nanoen_2024_109646 crossref_primary_10_1021_acs_nanolett_2c00820 crossref_primary_10_1002_smsc_202300213 crossref_primary_10_1039_D3CP02683C crossref_primary_10_1038_s41467_022_32582_9 crossref_primary_10_1002_aelm_202001174 crossref_primary_10_1088_1361_6463_acd38e crossref_primary_10_1116_5_0215419 crossref_primary_10_1002_adma_202106041 crossref_primary_10_1007_s11468_023_02109_z crossref_primary_10_1002_adma_202108225 crossref_primary_10_1038_s41586_022_04523_5 crossref_primary_10_1016_j_apsusc_2022_156148 crossref_primary_10_1038_s41467_022_32725_y crossref_primary_10_1039_D1NR07336B crossref_primary_10_1016_j_jmat_2023_02_007 crossref_primary_10_1063_5_0196668 crossref_primary_10_1016_j_surfin_2023_102669 crossref_primary_10_1021_acsnano_4c15271 crossref_primary_10_1016_j_measen_2024_101056 crossref_primary_10_3389_femat_2022_1020076 crossref_primary_10_51889_2959_5894_2024_86_2_027 crossref_primary_10_1021_acsami_2c16950 crossref_primary_10_1007_s11433_022_2056_1 crossref_primary_10_1016_j_matt_2022_07_021 crossref_primary_10_1039_D2NR01042A crossref_primary_10_1016_j_esci_2023_100178 crossref_primary_10_1016_j_jallcom_2021_159884 crossref_primary_10_1088_2053_1583_ad2f43 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1002_adfm_202424751 crossref_primary_10_1002_smll_202007053 crossref_primary_10_1021_acsaom_3c00296 crossref_primary_10_1088_2053_1583_acacac crossref_primary_10_3390_cryst13081215 crossref_primary_10_1038_s41467_023_36512_1 crossref_primary_10_1002_aelm_202200768 crossref_primary_10_1063_5_0046207 crossref_primary_10_1016_j_isci_2021_103138 crossref_primary_10_1002_anie_202409948 crossref_primary_10_1002_adfm_202309869 crossref_primary_10_1088_1361_648X_acfdea crossref_primary_10_1088_2053_1583_ada0b7 crossref_primary_10_1039_D4TA03126A crossref_primary_10_1063_5_0213065 crossref_primary_10_1088_1402_4896_ad6cae crossref_primary_10_1016_j_chip_2022_100014 crossref_primary_10_3390_solids5020013 crossref_primary_10_1038_s41928_021_00591_z crossref_primary_10_1002_adma_202202408 crossref_primary_10_1016_j_xcrp_2020_100166 crossref_primary_10_3390_app131911037 crossref_primary_10_1016_j_chip_2022_100017 crossref_primary_10_3390_electronics13071356 crossref_primary_10_1002_adma_202208054 crossref_primary_10_1246_cl_230210 crossref_primary_10_1002_adfm_202305386 crossref_primary_10_1103_PhysRevB_109_115427 crossref_primary_10_1016_j_cej_2025_161622 crossref_primary_10_1002_smll_202307587 crossref_primary_10_1007_s12274_022_4724_5 crossref_primary_10_1002_aelm_202100829 crossref_primary_10_1021_acsami_4c22368 crossref_primary_10_1038_s41467_021_26314_8 crossref_primary_10_1038_s41467_023_42312_4 crossref_primary_10_1038_s41565_021_00921_4 crossref_primary_10_1021_acsami_4c05905 crossref_primary_10_1038_s41467_022_33053_x crossref_primary_10_1007_s10825_024_02219_9 crossref_primary_10_1039_D4NR05342G crossref_primary_10_1063_5_0165837 crossref_primary_10_1002_smll_202311317 crossref_primary_10_1021_acsphotonics_3c01253 crossref_primary_10_1002_aisy_202200068 crossref_primary_10_1002_aisy_202000206 crossref_primary_10_1016_j_carbon_2023_01_040 crossref_primary_10_1021_acs_nanolett_3c01248 crossref_primary_10_1021_acs_nanolett_3c03666 crossref_primary_10_1002_aelm_202100978 crossref_primary_10_1002_smll_202104459 crossref_primary_10_1039_D4NR03769C crossref_primary_10_1063_5_0106620 crossref_primary_10_1002_aelm_202300108 crossref_primary_10_1002_adma_202414174 crossref_primary_10_1016_j_xpro_2023_102228 crossref_primary_10_1038_s41467_024_44884_1 crossref_primary_10_1038_s41928_023_01112_w crossref_primary_10_1002_aelm_202200733 crossref_primary_10_1021_acsami_1c07665 crossref_primary_10_1021_acsami_3c09506 crossref_primary_10_1002_smll_202402217 crossref_primary_10_1007_s12274_023_5946_x crossref_primary_10_1038_s41563_023_01671_5 crossref_primary_10_1080_00268976_2024_2421391 crossref_primary_10_1016_j_chaos_2024_115390 crossref_primary_10_1109_TED_2022_3206170 crossref_primary_10_1126_sciadv_adk1597 crossref_primary_10_1364_AO_510447 crossref_primary_10_1021_acsami_3c07684 crossref_primary_10_1126_science_abg3161 crossref_primary_10_1002_smm2_1283 crossref_primary_10_1007_s11432_024_3986_8 crossref_primary_10_1021_jacs_3c13696 crossref_primary_10_1038_s41565_023_01342_1 crossref_primary_10_1039_D2CP01831D crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1126_science_abl4110 crossref_primary_10_1088_1361_6528_ac5f96 crossref_primary_10_1002_adma_202305115 crossref_primary_10_1021_acsnano_1c05841 crossref_primary_10_1002_lpor_202400972 crossref_primary_10_1021_acsami_1c18329 crossref_primary_10_1021_acsnano_4c16251 crossref_primary_10_1038_s41467_024_47974_2 crossref_primary_10_1061_JCEMD4_COENG_12290 crossref_primary_10_1039_D4CP01897D crossref_primary_10_3987_COM_20_14398 crossref_primary_10_1103_PhysRevMaterials_9_014001 crossref_primary_10_1021_acs_accounts_4c00495 crossref_primary_10_1039_D3QM00246B crossref_primary_10_1021_acsaelm_3c01261 crossref_primary_10_1021_acsnano_3c05711 crossref_primary_10_1063_5_0067352 crossref_primary_10_1088_1361_6528_ac4b2f crossref_primary_10_1016_j_ccr_2023_215281 crossref_primary_10_1038_s43246_024_00573_6 crossref_primary_10_1002_adom_202102102 crossref_primary_10_1002_adma_202308502 crossref_primary_10_1016_j_apsusc_2023_157817 crossref_primary_10_1088_2634_4386_ad7755 crossref_primary_10_3389_fmats_2021_775048 crossref_primary_10_1088_2053_1583_ad70c9 crossref_primary_10_1063_5_0131838 crossref_primary_10_1002_advs_202304785 crossref_primary_10_1016_j_isci_2021_103291 crossref_primary_10_1021_acs_jpclett_3c01780 crossref_primary_10_1038_s41563_025_02117_w crossref_primary_10_1021_acs_chemrev_3c00931 crossref_primary_10_34133_2021_9862483 crossref_primary_10_1002_advs_202105201 crossref_primary_10_1021_acs_jpclett_1c03742 crossref_primary_10_1007_s40820_024_01461_x crossref_primary_10_1109_TNANO_2022_3223183 crossref_primary_10_1002_pssr_202400206 crossref_primary_10_1021_acsnano_0c09666 crossref_primary_10_1038_s41467_021_23719_3 crossref_primary_10_1002_smll_202105211 crossref_primary_10_1007_s12274_021_3692_5 crossref_primary_10_1021_acsami_3c16128 crossref_primary_10_1038_s41565_023_01343_0 crossref_primary_10_1039_D4SM00177J crossref_primary_10_1126_science_adp3575 crossref_primary_10_1002_sstr_202200064 crossref_primary_10_1039_D1CP01423D crossref_primary_10_1002_aelm_202100869 crossref_primary_10_1021_acsami_3c17572 crossref_primary_10_1002_sstr_202200060 crossref_primary_10_1007_s12274_021_3670_y crossref_primary_10_7566_JPSJ_92_114601 crossref_primary_10_1021_acsnano_4c18558 crossref_primary_10_1016_j_apsusc_2021_152338 crossref_primary_10_1063_5_0073650 crossref_primary_10_1063_5_0117436 crossref_primary_10_1063_5_0188990 crossref_primary_10_3390_photonics9020082 crossref_primary_10_1038_s41467_021_26230_x crossref_primary_10_1002_admt_202100963 crossref_primary_10_1021_acsnano_3c03900 crossref_primary_10_1002_sstr_202400386 crossref_primary_10_1002_aelm_202400037 crossref_primary_10_1021_acsnano_3c10559 crossref_primary_10_1063_5_0198442 crossref_primary_10_1063_5_0061792 crossref_primary_10_1063_5_0092046 crossref_primary_10_3390_nano11112860 crossref_primary_10_1039_D4CP02099E crossref_primary_10_1063_5_0126392 crossref_primary_10_1103_PhysRevApplied_19_024065 crossref_primary_10_1038_s41598_024_72757_6 crossref_primary_10_1039_D0CS01070G crossref_primary_10_1016_j_apmate_2022_100080 crossref_primary_10_1021_acsami_3c01267 crossref_primary_10_1103_PhysRevApplied_20_014050 crossref_primary_10_1038_s41565_021_01003_1 crossref_primary_10_1039_D4TC00396A crossref_primary_10_1038_s41928_024_01259_0 crossref_primary_10_1088_1742_6596_2613_1_012005 crossref_primary_10_1038_s42005_021_00719_9 crossref_primary_10_1080_14786435_2024_2348818 crossref_primary_10_1016_j_photonics_2023_101206 crossref_primary_10_1002_adom_202500295 crossref_primary_10_1002_adts_202200226 crossref_primary_10_1063_5_0098838 crossref_primary_10_1063_5_0196154 crossref_primary_10_1016_j_scib_2023_06_037 crossref_primary_10_1039_D2NH00568A crossref_primary_10_1007_s00894_024_05857_9 crossref_primary_10_2478_amns_2024_3323 crossref_primary_10_1016_j_inoche_2024_113830 crossref_primary_10_1038_s41565_023_01497_x crossref_primary_10_1038_s41563_022_01383_2 crossref_primary_10_1088_1361_6463_ac79db crossref_primary_10_1088_1674_1056_ac1571 crossref_primary_10_1002_adfm_202316488 crossref_primary_10_1016_j_mseb_2023_117002 crossref_primary_10_1016_j_surfin_2023_102971 crossref_primary_10_1007_s12274_023_6128_6 crossref_primary_10_1063_5_0142613 crossref_primary_10_1021_acsnano_4c08554 crossref_primary_10_1103_PhysRevB_109_195405 crossref_primary_10_1002_aelm_202400022 crossref_primary_10_1038_s41565_021_00966_5 crossref_primary_10_1038_s41699_025_00533_9 crossref_primary_10_1093_nsr_nwac088 crossref_primary_10_7498_aps_72_20230729 crossref_primary_10_1002_aelm_202101401 crossref_primary_10_1016_j_commatsci_2021_110424 crossref_primary_10_1016_j_jmst_2023_04_025 crossref_primary_10_1063_5_0080294 crossref_primary_10_1002_aisy_202100198 crossref_primary_10_1039_D3MH01461D crossref_primary_10_1002_cphc_202300095 crossref_primary_10_1007_s11432_023_3888_0 crossref_primary_10_1021_acsaelm_2c01005 crossref_primary_10_1088_2634_4386_acce61 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1002_smsc_202200008 crossref_primary_10_1038_s43246_024_00632_y crossref_primary_10_1039_D2CP04536B crossref_primary_10_1088_1361_6528_acebf4 crossref_primary_10_1021_acs_nanolett_4c03119 crossref_primary_10_1021_acsmaterialslett_3c01548 crossref_primary_10_1002_qute_202100072 crossref_primary_10_1016_j_mattod_2022_11_023 crossref_primary_10_1007_s40843_022_2359_6 crossref_primary_10_1007_s40843_021_1979_3 crossref_primary_10_1002_adfm_202308129 crossref_primary_10_1088_1674_4926_43_5_052003 crossref_primary_10_1109_TED_2023_3266309 crossref_primary_10_1016_j_apsusc_2021_150871 crossref_primary_10_1002_ange_202409948 crossref_primary_10_1038_s41598_022_10943_0 crossref_primary_10_1103_PhysRevApplied_20_014039 crossref_primary_10_1116_6_0001913 crossref_primary_10_1002_sstr_202300511 crossref_primary_10_1088_2632_959X_acd70c crossref_primary_10_1038_s41928_021_00586_w crossref_primary_10_1021_acs_nanolett_4c06512 crossref_primary_10_3390_c7040067 crossref_primary_10_1002_smll_202404228 crossref_primary_10_1038_s41586_023_06735_9 crossref_primary_10_1002_pssb_202200426 crossref_primary_10_1007_s40820_021_00618_2 crossref_primary_10_1002_adfm_202400008 crossref_primary_10_1002_adfm_202310438 crossref_primary_10_1002_cey2_154 crossref_primary_10_1103_PRXQuantum_2_030102 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1002_adma_202309531 crossref_primary_10_1063_5_0070333 crossref_primary_10_1002_aelm_202300621 crossref_primary_10_1021_acs_jpclett_2c01973 crossref_primary_10_1103_PhysRevApplied_22_064077 crossref_primary_10_1016_j_jmmm_2023_171267 crossref_primary_10_1103_PhysRevB_105_075413 crossref_primary_10_1002_adfm_202503094 crossref_primary_10_1038_s41928_022_00824_9 crossref_primary_10_1021_acsami_1c24260 crossref_primary_10_1142_S0217984921502900 crossref_primary_10_1002_advs_202404336 crossref_primary_10_1038_s41928_022_00847_2 crossref_primary_10_1021_acsaelm_3c01216 crossref_primary_10_1021_acsami_3c00092 crossref_primary_10_1021_acs_nanolett_4c06407 crossref_primary_10_1016_j_jallcom_2022_165586 crossref_primary_10_1021_acsnano_4c09114 crossref_primary_10_1039_D4TA01584C crossref_primary_10_1103_PhysRevB_103_L161407 crossref_primary_10_1016_j_chip_2023_100057 crossref_primary_10_1126_science_abf5825 crossref_primary_10_1021_acsami_2c03019 crossref_primary_10_1063_5_0091289 crossref_primary_10_1021_acsnano_3c09369 crossref_primary_10_1088_2634_4386_ac4a84 crossref_primary_10_1039_D1NR04588A crossref_primary_10_1038_s41586_023_05797_z crossref_primary_10_1021_acs_nanolett_4c03264 crossref_primary_10_1088_1361_6528_ac723f crossref_primary_10_1039_D3NR02995F crossref_primary_10_1002_adma_202006469 crossref_primary_10_1002_advs_202207443 crossref_primary_10_1088_2040_8986_ad83e0 crossref_primary_10_1016_j_matt_2021_02_018 crossref_primary_10_1103_PhysRevB_108_045412 crossref_primary_10_1002_smtd_202201719 crossref_primary_10_1016_j_chip_2024_100122 crossref_primary_10_1103_PhysRevMaterials_6_024803 crossref_primary_10_1360_nso_20230015 crossref_primary_10_1002_inf2_12317 crossref_primary_10_1021_acssuschemeng_2c00396 crossref_primary_10_1186_s11671_020_03458_y crossref_primary_10_1002_adma_202204697 crossref_primary_10_1002_aelm_202100112 crossref_primary_10_1063_5_0130587 crossref_primary_10_1088_1361_6463_adb9fa crossref_primary_10_1007_s11467_023_1305_3 crossref_primary_10_1021_acs_langmuir_4c02947 crossref_primary_10_1021_acsnano_3c12753 crossref_primary_10_1002_adma_202403785 crossref_primary_10_1021_acs_nanolett_3c05105 crossref_primary_10_1038_s41427_022_00437_w crossref_primary_10_1021_acs_nanolett_3c02194 crossref_primary_10_1103_PhysRevB_109_125416 crossref_primary_10_1016_j_photonics_2023_101222 crossref_primary_10_1038_s41528_024_00313_3 crossref_primary_10_3389_fenrg_2021_802055 crossref_primary_10_1038_s41467_024_53864_4 crossref_primary_10_1002_adpr_202000183 crossref_primary_10_1021_accountsmr_3c00280 crossref_primary_10_1021_acs_nanolett_4c04363 crossref_primary_10_1002_adma_202109491 crossref_primary_10_1038_s41928_022_00800_3 crossref_primary_10_1021_acsanm_4c06483 crossref_primary_10_1016_j_chip_2023_100080 crossref_primary_10_3390_molecules28093893 crossref_primary_10_1002_adma_202208934 crossref_primary_10_1002_adma_202306290 crossref_primary_10_1088_1674_1056_ac2b20 crossref_primary_10_1007_s12274_024_6447_2 crossref_primary_10_1021_acsnano_3c09222 crossref_primary_10_1002_adma_202101895 crossref_primary_10_1021_acsnano_0c10005 crossref_primary_10_1142_S0218863524020016 crossref_primary_10_1002_adma_202301854 crossref_primary_10_1016_j_isci_2023_106673 crossref_primary_10_1038_s41467_022_29001_4 crossref_primary_10_1038_s41928_022_00858_z crossref_primary_10_1039_D1RA08397J crossref_primary_10_1063_5_0153256 crossref_primary_10_1088_1742_6596_2065_1_012001 crossref_primary_10_1021_acs_nanolett_4c03962 crossref_primary_10_1039_D4RA06977C crossref_primary_10_1002_adma_202307393 crossref_primary_10_1002_inf2_12215 crossref_primary_10_1039_D3NA00852E crossref_primary_10_1002_adfm_202314439 crossref_primary_10_1103_PhysRevB_106_085418 crossref_primary_10_2139_ssrn_3995320 crossref_primary_10_1007_s12274_020_3247_1 crossref_primary_10_1063_5_0052300 crossref_primary_10_3390_molecules29174089 crossref_primary_10_1021_acsnano_4c10383 crossref_primary_10_1039_D4NH00508B crossref_primary_10_1088_2634_4386_ac8a6a crossref_primary_10_1038_s41467_023_41736_2 crossref_primary_10_1002_adma_202005907 crossref_primary_10_1002_aisy_202200434 crossref_primary_10_1016_j_enchem_2022_100071 crossref_primary_10_1002_adfm_202106015 crossref_primary_10_1021_acsnano_4c02996 crossref_primary_10_1002_aelm_202300839 crossref_primary_10_1002_aelm_202400685 crossref_primary_10_1002_smll_202403187 crossref_primary_10_1007_s40843_022_2115_6 crossref_primary_10_1002_adma_202007081 crossref_primary_10_1038_s41467_024_46050_z crossref_primary_10_1088_1361_6528_abf2fd crossref_primary_10_1002_inf2_12341 crossref_primary_10_1021_accountsmr_1c00209 crossref_primary_10_1002_aisy_202200316 crossref_primary_10_1002_adma_202312747 crossref_primary_10_1021_acsnano_0c06607 crossref_primary_10_1039_D3TC04510B crossref_primary_10_1002_adfm_202312365 crossref_primary_10_1002_adma_202101036 crossref_primary_10_1038_s41928_024_01124_0 crossref_primary_10_1103_PhysRevMaterials_8_014603 crossref_primary_10_3390_electronics10030346 crossref_primary_10_1021_acs_jpclett_1c04068 crossref_primary_10_1002_aelm_202101370 crossref_primary_10_1039_D2MH01206E crossref_primary_10_1002_adma_202409040 crossref_primary_10_1002_sstr_202200309 crossref_primary_10_1039_D1CS00497B crossref_primary_10_1016_j_jmst_2022_12_012 crossref_primary_10_1021_acsmaterialslett_3c00965 crossref_primary_10_1021_acs_jpcc_0c09101 crossref_primary_10_1007_s10338_024_00552_x crossref_primary_10_1016_j_scib_2023_08_051 crossref_primary_10_1016_j_eml_2022_101921 crossref_primary_10_1016_j_jcrysgro_2024_127876 crossref_primary_10_1002_adfm_202303520 crossref_primary_10_1002_adfm_202303641 crossref_primary_10_1016_j_jmst_2022_04_021 crossref_primary_10_1038_s41467_024_51379_6 crossref_primary_10_1002_aelm_202101127 crossref_primary_10_1002_inf2_12355 crossref_primary_10_1021_acsaelm_3c00530 crossref_primary_10_1021_acsami_3c14836 crossref_primary_10_1038_s41928_023_01018_7 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1021_acsphotonics_3c01708 crossref_primary_10_1103_PhysRevA_110_042604 crossref_primary_10_1088_1361_6528_ac43e8 crossref_primary_10_1002_adfm_202011083 crossref_primary_10_1021_acs_nanolett_3c04195 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1039_D3TA01479G crossref_primary_10_1002_adfm_202108455 crossref_primary_10_1021_jacs_5c00033 crossref_primary_10_1016_j_physb_2023_415262 crossref_primary_10_1021_acsaelm_3c00544 crossref_primary_10_1038_s41467_024_55562_7 crossref_primary_10_1021_acsnano_1c07032 crossref_primary_10_1016_j_cjph_2024_11_004 crossref_primary_10_1021_acs_jpclett_1c04194 crossref_primary_10_1016_j_mtcomm_2022_103957 crossref_primary_10_1016_j_scib_2021_04_025 crossref_primary_10_1002_smll_202304518 crossref_primary_10_1021_acsami_4c23080 crossref_primary_10_1038_s41467_024_51322_9 crossref_primary_10_1021_acsaelm_4c02029 crossref_primary_10_1002_adma_202107839 crossref_primary_10_1021_acs_chemrev_4c00174 crossref_primary_10_1016_j_jmst_2022_05_055 crossref_primary_10_1039_D2TC00964A crossref_primary_10_1002_adfm_202110415 crossref_primary_10_1016_j_isci_2022_105160 crossref_primary_10_1103_PhysRevA_109_L031502 crossref_primary_10_1177_14727978251322044 crossref_primary_10_1021_acsnano_3c01927 crossref_primary_10_1021_acsnano_4c16831 crossref_primary_10_1002_adom_202201396 crossref_primary_10_1002_smtd_202000837 crossref_primary_10_1007_s12274_021_3500_2 crossref_primary_10_1021_acsaelm_3c01607 crossref_primary_10_1038_s41467_023_39705_w crossref_primary_10_1088_1674_4926_44_12_122101 crossref_primary_10_1002_adma_202300329 crossref_primary_10_1039_D4NR03583F crossref_primary_10_1039_D4NR00821A crossref_primary_10_1002_adma_202400214 crossref_primary_10_1002_adma_202400332 crossref_primary_10_1002_inf2_12376 crossref_primary_10_1021_acsami_2c15497 crossref_primary_10_1002_pssr_202200174 crossref_primary_10_1021_acsnano_2c00350 crossref_primary_10_1088_1361_6528_ad1202 crossref_primary_10_1021_acsnano_3c12938 crossref_primary_10_1038_s41566_023_01309_7 crossref_primary_10_1103_PhysRevB_110_115415 crossref_primary_10_1126_sciadv_abq1781 crossref_primary_10_1039_D3MH01734F crossref_primary_10_1038_s41699_021_00250_z crossref_primary_10_1007_s11467_022_1190_1 crossref_primary_10_1116_6_0004053 crossref_primary_10_1142_S0217984923502366 crossref_primary_10_1016_j_jece_2025_115418 crossref_primary_10_1002_adma_202312541 crossref_primary_10_1021_acsami_2c19743 crossref_primary_10_1038_s41699_024_00522_4 crossref_primary_10_1016_j_mtnano_2024_100477 crossref_primary_10_1038_s41586_024_07786_2 crossref_primary_10_3389_fimmu_2021_689519 crossref_primary_10_1088_2752_5724_acbe10 crossref_primary_10_1002_adma_202102201 crossref_primary_10_1016_j_mejo_2024_106133 crossref_primary_10_1038_s41586_021_04323_3 crossref_primary_10_1021_acs_nanolett_1c01729 crossref_primary_10_1002_adma_202407066 crossref_primary_10_1007_s40843_021_1925_x crossref_primary_10_1007_s40820_024_01335_2 crossref_primary_10_1002_nano_202100367 crossref_primary_10_1016_j_physleta_2023_128976 crossref_primary_10_1007_s40242_020_0200_5 crossref_primary_10_1016_j_mtphys_2025_101710 crossref_primary_10_1002_adfm_202419841 crossref_primary_10_1021_acsnano_1c05167 crossref_primary_10_1002_advs_202204453 crossref_primary_10_1021_acs_jpcc_4c05079 crossref_primary_10_1039_D3TC03699E crossref_primary_10_1016_j_apsusc_2022_153739 crossref_primary_10_1021_acsami_4c06540 crossref_primary_10_1063_5_0235614 crossref_primary_10_1002_inf2_12275 crossref_primary_10_1002_adfm_202204721 crossref_primary_10_1038_s41467_021_27644_3 crossref_primary_10_1063_5_0231491 crossref_primary_10_1002_adma_202106955 crossref_primary_10_1002_pssa_202200156 crossref_primary_10_1038_s41928_023_00983_3 crossref_primary_10_1038_s41524_022_00731_9 crossref_primary_10_1063_5_0097518 crossref_primary_10_1002_advs_202301817 crossref_primary_10_1038_s41699_023_00405_0 crossref_primary_10_1088_2053_1583_ada043 crossref_primary_10_1007_s10854_021_06737_1 crossref_primary_10_1002_smsc_202200041 crossref_primary_10_1021_acsami_4c18412 crossref_primary_10_1002_adma_202205381 crossref_primary_10_2139_ssrn_4015415 crossref_primary_10_1002_slct_202301599 crossref_primary_10_1021_acs_nanolett_4c03556 crossref_primary_10_1002_adma_202210735 crossref_primary_10_1002_adfm_202418615 crossref_primary_10_1038_s41467_020_20257_2 crossref_primary_10_1088_1361_6463_aca41c crossref_primary_10_1038_s41524_025_01523_7 crossref_primary_10_1039_D4NH00405A crossref_primary_10_1016_j_rinp_2023_106605 crossref_primary_10_1021_acsanm_2c03150 crossref_primary_10_1002_admt_202101494 crossref_primary_10_1109_TED_2023_3310942 crossref_primary_10_1186_s11671_021_03581_4 crossref_primary_10_1007_s40820_024_01417_1 crossref_primary_10_1002_pssr_202300498 crossref_primary_10_1002_admi_202300414 crossref_primary_10_1039_D4NH00656A crossref_primary_10_1007_s11432_022_3626_5 crossref_primary_10_1038_s41565_023_01326_1 crossref_primary_10_1016_j_physleta_2024_129849 crossref_primary_10_1021_acsnano_3c02263 crossref_primary_10_1021_acsnano_3c07952 crossref_primary_10_1039_D3NH00246B crossref_primary_10_1142_S0218625X21400059 crossref_primary_10_1016_j_mser_2024_100873 crossref_primary_10_1021_acs_cgd_4c00477 crossref_primary_10_1016_j_chempr_2021_08_013 crossref_primary_10_1063_5_0233898 crossref_primary_10_1002_adma_202211536 crossref_primary_10_1002_adfm_202418248 crossref_primary_10_1021_acs_nanolett_4c05071 crossref_primary_10_1002_smll_202202590 crossref_primary_10_1007_s12598_024_03197_4 crossref_primary_10_1039_D2MH00462C crossref_primary_10_1002_aelm_202200393 crossref_primary_10_1039_D4NA00830H crossref_primary_10_1016_j_rinp_2024_107886 crossref_primary_10_1021_acs_jpcc_2c04703 crossref_primary_10_1038_s41565_024_01695_1 crossref_primary_10_1080_14686996_2022_2162323 crossref_primary_10_1002_adma_202107894 crossref_primary_10_1016_j_cclet_2021_06_078 crossref_primary_10_1002_adts_202100063 crossref_primary_10_1021_acs_langmuir_4c02462 crossref_primary_10_1088_1361_6528_acd05f crossref_primary_10_1002_adfm_202205150 crossref_primary_10_1038_s41699_023_00427_8 crossref_primary_10_1039_D0MH02029J crossref_primary_10_1088_1674_1056_ad6b83 crossref_primary_10_1016_j_ces_2024_120782 crossref_primary_10_3390_electronics10243141 crossref_primary_10_1002_adfm_202304591 crossref_primary_10_1088_1361_648X_ad5094 crossref_primary_10_1002_adma_202211525 crossref_primary_10_1088_2632_959X_ad04f8 crossref_primary_10_1021_acsami_4c10991 crossref_primary_10_1021_acs_nanolett_2c00778 crossref_primary_10_1088_1361_6463_ac18eb crossref_primary_10_1109_MWC_005_2200487 crossref_primary_10_1002_adma_202200734 crossref_primary_10_1021_acssensors_4c02517 crossref_primary_10_1021_acsaelm_2c00609 crossref_primary_10_1007_s12274_022_4070_7 crossref_primary_10_1088_2053_1583_ac210a crossref_primary_10_1039_D4NH00339J crossref_primary_10_1109_TED_2021_3098256 crossref_primary_10_1007_s11432_024_3993_5 crossref_primary_10_1016_j_scib_2023_09_006 crossref_primary_10_29026_oea_2022_210069 crossref_primary_10_1021_acs_jpcc_3c08058 crossref_primary_10_1021_acsnanoscienceau_4c00050 crossref_primary_10_1007_s12274_022_4755_y crossref_primary_10_1021_acsanm_3c03109 crossref_primary_10_1039_D4CP00707G crossref_primary_10_1038_s41699_022_00327_3 crossref_primary_10_1038_s41565_023_01339_w crossref_primary_10_1002_adom_202202378 crossref_primary_10_1016_j_mattod_2022_09_012 crossref_primary_10_1002_admt_202301973 crossref_primary_10_1021_acsnano_3c03559 crossref_primary_10_1016_j_mtphys_2022_100730 crossref_primary_10_1109_TFUZZ_2024_3371026 crossref_primary_10_1016_j_mser_2024_100884 crossref_primary_10_1021_acs_jpcc_2c08053 crossref_primary_10_1021_acs_nanolett_3c02726 crossref_primary_10_1038_s41699_024_00521_5 crossref_primary_10_1088_1361_648X_acbb49 crossref_primary_10_1021_acsami_1c19062 crossref_primary_10_1021_acs_jpcc_1c02768 crossref_primary_10_1021_acsami_4c06116 crossref_primary_10_1063_5_0180434 crossref_primary_10_1039_D4CS00295D crossref_primary_10_1039_D2TC01363K crossref_primary_10_1002_smll_202402727 crossref_primary_10_1021_acsami_1c09796 crossref_primary_10_1016_j_jallcom_2021_161016 crossref_primary_10_1002_smtd_202401431 crossref_primary_10_1088_1361_6463_ad3b09 crossref_primary_10_1021_acsaelm_3c00919 crossref_primary_10_1016_j_optlastec_2024_111597 crossref_primary_10_1126_sciadv_abg1455 crossref_primary_10_1038_s41467_024_48690_7 crossref_primary_10_1002_adma_202209137 crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1002_adma_202201880 crossref_primary_10_1021_acs_jpclett_4c01129 crossref_primary_10_1002_adfm_202113255 crossref_primary_10_1007_s40820_023_01273_5 crossref_primary_10_1021_acs_nanolett_1c00492 crossref_primary_10_1063_5_0145392 crossref_primary_10_1039_D1MH01012C crossref_primary_10_1007_s40820_024_01559_2 crossref_primary_10_1021_acs_nanolett_1c04737 crossref_primary_10_1088_1361_648X_ad69ef crossref_primary_10_1002_aesr_202100220 crossref_primary_10_1088_2752_5724_ac7067 crossref_primary_10_1109_JFLEX_2023_3298593 crossref_primary_10_1002_advs_202402819 crossref_primary_10_1039_D4TC04705B crossref_primary_10_1002_cjoc_202100876 crossref_primary_10_1364_OL_422053 crossref_primary_10_1016_j_rinp_2024_107852 crossref_primary_10_1021_acsanm_5c00337 crossref_primary_10_1063_5_0098120 crossref_primary_10_1002_apxr_202400162 crossref_primary_10_1007_s11467_023_1258_6 crossref_primary_10_1063_5_0242551 crossref_primary_10_1002_aelm_202200334 crossref_primary_10_1021_acsaelm_3c00928 crossref_primary_10_1039_D3MH01762A crossref_primary_10_1021_acsnano_3c07619 crossref_primary_10_1038_s41699_024_00489_2 crossref_primary_10_1021_acsnano_4c06642 crossref_primary_10_1021_acsanm_1c02013 crossref_primary_10_1016_j_ceramint_2022_02_175 crossref_primary_10_1007_s12274_024_6801_4 crossref_primary_10_1103_PhysRevB_110_014305 crossref_primary_10_1002_adfm_202410954 crossref_primary_10_1002_adma_202106886 crossref_primary_10_1002_adma_202103376 crossref_primary_10_1063_5_0242549 crossref_primary_10_1016_j_comptc_2024_114612 crossref_primary_10_1002_adfm_202313010 crossref_primary_10_1002_adma_202107734 crossref_primary_10_1002_smll_202412761 crossref_primary_10_1039_D2NH00031H crossref_primary_10_1063_5_0196918 crossref_primary_10_1038_s41928_024_01328_4 crossref_primary_10_1063_5_0228599 crossref_primary_10_1109_TED_2022_3197677 crossref_primary_10_1080_19475411_2024_2306837 crossref_primary_10_1088_1361_6528_ac3687 crossref_primary_10_1038_s41467_024_51178_z crossref_primary_10_3390_nano13030373 crossref_primary_10_3390_mi13060956 crossref_primary_10_1038_s41586_024_07406_z crossref_primary_10_1021_acs_jpcc_3c03882 crossref_primary_10_1038_s41467_024_52632_8 crossref_primary_10_1002_adfm_202304657 crossref_primary_10_1021_acs_nanolett_4c03828 crossref_primary_10_1016_j_mattod_2021_06_012 crossref_primary_10_1002_adma_202108615 crossref_primary_10_1038_s41699_022_00306_8 crossref_primary_10_1021_acsnano_3c02280 crossref_primary_10_1021_acs_jpclett_3c02214 crossref_primary_10_1039_D4CP00122B crossref_primary_10_1002_adfm_202212722 crossref_primary_10_1002_advs_202106016 crossref_primary_10_1021_acsaelm_4c02180 crossref_primary_10_1039_D1NR06906C crossref_primary_10_1021_acs_jpclett_0c03476 crossref_primary_10_1063_5_0165095 crossref_primary_10_1002_adma_202306850 crossref_primary_10_1016_j_heliyon_2023_e20619 crossref_primary_10_1016_j_mtnano_2023_100315 crossref_primary_10_1038_s41467_023_37887_x crossref_primary_10_1103_PhysRevApplied_19_064058 crossref_primary_10_1109_TCSII_2021_3103553 crossref_primary_10_1016_j_rinp_2024_107958 crossref_primary_10_1039_D2CP03808K crossref_primary_10_1002_adfm_202304409 crossref_primary_10_1002_adma_202107754 crossref_primary_10_1021_acsami_1c07286 |
Cites_doi | 10.1109/LED.2016.2523681 10.1002/adfm.201806037 10.1038/nature14441 10.1109/16.141237 10.1038/nnano.2014.222 10.1021/nn501226z 10.1126/science.aar4851 10.1145/2463585.2463588 10.1021/nl301702r 10.1021/acsnano.7b05726 10.1038/s41565-019-0438-6 10.1002/aelm.201900955 10.1109/JSSC.1974.1050511 10.1038/s41467-018-07882-8 10.1002/adma.201806227 10.1038/s41563-018-0234-y 10.1002/smll.201402900 10.1039/C8TC00530C 10.1002/adfm.201804170 10.1038/s41928-019-0334-y 10.1115/1.4026615 10.1109/JPROC.2010.2070470 10.1038/s41928-019-0338-7 10.1038/s41928-019-0360-9 10.1126/sciadv.1500222 10.1002/adma.201904251 10.1021/acsnano.9b07421 10.1038/nature22994 10.1109/LED.2018.2824339 10.1126/science.aah4698 10.1109/IEDM.2011.6131666 10.1109/IEDM.2017.8268448 10.1038/s41586-018-0336-3 10.1109/TED.2015.2439635 10.1109/IEDM.2016.7838400 10.1143/JJAP.49.04DC10 10.1002/adma.201503033 10.1038/nnano.2014.35 10.1038/nature09405 10.1109/IEDM.2006.346811 10.1063/1.4885391 10.1002/adma.201800195 10.1038/s41565-019-0462-6 10.1038/nmat4080 10.1109/LED.2013.2258652 10.1038/nnano.2014.207 10.1002/adma.201901300 10.1038/nmat4856 10.1021/acs.nanolett.5b04260 10.1109/JSSC.2017.2782087 10.1002/adma.201603571 10.1109/JEDS.2014.2326622 10.1002/adfm.201901106 10.1002/adma.201603990 10.1039/C8CS00318A 10.1021/nl304777e 10.1002/adma.201502222 10.1109/IEDM.2011.6131532 10.1038/s41586-019-1493-8 10.1038/nnano.2010.89 10.1038/s41928-018-0092-2 10.1039/C4NR06331G 10.1109/JSSC.2016.2642198 10.1038/s41565-017-0010-1 10.1038/nnano.2015.70 10.1038/s41565-020-0647-z 10.1002/adma.201500990 10.1021/acsnano.7b03033 10.1103/PhysRevB.83.245213 10.1021/acs.nanolett.8b00816 10.1002/adma.201600166 10.1109/JPROC.2018.2790840 10.1038/s41563-018-0248-5 10.1002/advs.201801339 10.1073/pnas.1205696109 10.1038/s41467-018-03963-w 10.1002/adma.201703363 10.1021/acsnano.5b01341 10.1038/s41586-018-0180-5 10.1002/adma.201801447 10.1038/nature25747 10.1021/nn204838m 10.1038/natrevmats.2016.42 10.1038/nmat4135 10.1038/natrevmats.2016.52 10.1038/s41586-019-1013-x 10.1038/s41928-018-0115-z 10.1021/acsnano.5b00289 10.1038/s41586-020-2038-x 10.1002/adma.201603293 10.1038/s41563-019-0291-x 10.1126/science.1171245 10.1038/s41565-019-0623-7 10.1021/acs.nanolett.8b03940 10.1109/ISSCC.2016.7418008 10.1038/nature10679 10.1002/adma.201604457 10.1002/adma.201801548 10.1109/IEDM.2018.8614666 10.1126/science.aap9195 10.1021/nl303583v 10.1103/PhysRevB.80.235402 10.1002/advs.201903480 10.1038/nnano.2010.279 10.1038/nnano.2017.43 10.1109/TNNLS.2017.2778940 10.1038/nature08940 10.1002/aelm.201800143 10.1038/s41928-018-0021-4 10.1002/adma.201800220 10.1126/science.aaj1628 10.1038/s41928-019-0273-7 10.1021/ja107071g 10.1002/adma.201802353 10.1038/nmat4452 10.1038/ncomms14736 10.1109/VLSIT.2010.5556195 10.1038/nature15387 10.1002/adma.201700906 10.1038/s41565-019-0361-x 10.1088/0957-4484/24/38/382001 10.1109/ISSCC.2014.6757501 10.1002/adma.201902761 10.1038/nnano.2011.6 10.1002/adma.201502719 10.1038/s41928-018-0118-9 10.1109/LED.2011.2165331 10.1109/ISSCC.2014.6757323 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2020 Springer Nature Limited 2020. |
Copyright_xml | – notice: Springer Nature Limited 2020 – notice: Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-020-0724-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 557 |
ExternalDocumentID | 32647168 10_1038_s41565_020_0724_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c466t-8d0243d0288cf80d170f1f12ded6da764ce55e4da899f173e6ce831a58a9c97e3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 12:28:29 EDT 2025 Tue Aug 12 07:27:09 EDT 2025 Sat Aug 23 14:04:25 EDT 2025 Mon Jul 21 05:59:20 EDT 2025 Tue Jul 01 01:56:30 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:41:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-8d0243d0288cf80d170f1f12ded6da764ce55e4da899f173e6ce831a58a9c97e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7301-1013 0000-0001-7062-831X |
PMID | 32647168 |
PQID | 2421631339 |
PQPubID | 546299 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2423062615 proquest_journals_2475048868 proquest_journals_2421631339 pubmed_primary_32647168 crossref_primary_10_1038_s41565_020_0724_3 crossref_citationtrail_10_1038_s41565_020_0724_3 springer_journals_10_1038_s41565_020_0724_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016). JoJShinCNegative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switchingIEEE Electron Device Lett.2016372452481:CAS:528:DC%2BC28XitFGltbzK LanzaMRecommended methods to study resistive switching devicesAdv. Electron. Mater.201951800143 Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017). SchwierzFGraphene transistorsNat. Nanotechnol.201054874961:CAS:528:DC%2BC3cXotl2mt7k%3D BurrGWExperimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight elementIEEE Trans. Electron Devices20156234983507 LiuCSmall footprint transistor architecture for photoswitching logic and in situ memoryNat. Nanotechnol.2019146626671:CAS:528:DC%2BC1MXhtVCiu7nF MidyaRAnatomy of Ag/Hafnia-based selectors with 1010 nonlinearityAdv. Mater.2017291604457 GerasimovJYAn evolvable organic electrochemical transistor for neuromorphic applicationsAdv. Sci.201961801339 RadisavljevicBRadenovicABrivioJGiacomettiVKisASingle-layer MoS2 transistorsNat. Nanotechnol.201161471501:CAS:528:DC%2BC3MXislCjsro%3D HuhWSynaptic barristor based on phase‐engineered 2D heterostructuresAdv. Mater.2018301801447 HeYYangYNieSLiuRWanQElectric-double-layer transistors for synaptic devices and neuromorphic systemsJ. Mater. Chem. C.20186533653521:CAS:528:DC%2BC1cXptlaqurc%3D YuSNeuro-inspired computing with emerging nonvolatile memorysProc. IEEE20181062602851:CAS:528:DC%2BC1MXjt1GrtL8%3D YoongHYEpitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computingAdv. Funct. Mater.2018281806037 WangMRobust memristors based on layered two-dimensional materialsNat. Electron.201811301:CAS:528:DC%2BC1MXhtFGqtbrE SarkarDA subthermionic tunnel field-effect transistor with an atomically thin channelNature201552691951:CAS:528:DC%2BC2MXhs1SitLvN KangMGonugondlaSKPatilAShanbhagNRA multi-functional in-memory inference processor using a standard 6T SRAM arrayIEEE J. Solid-State Circuits201853642655 Merrikh-BayatFHigh-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arraysIEEE Trans. Neural Netw. Learn. Syst.20172947824790 ZhuWPerebeinosVFreitagMAvourisPCarrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphenePhys. Rev. B200980235402 Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016). YanRHOurmazdALeeKFScaling the Si MOSFET: from bulk to SOI to bulkIEEE Trans. Electron Devices199239170417101:CAS:528:DyaK38XkvVSksb8%3D Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011). ZhangFElectric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memoriesNat. Mater.20191855611:CAS:528:DC%2BC1cXisFWitrzP MennelLUltrafast machine vision with 2D material neural network image sensorsNature202057962661:CAS:528:DC%2BB3cXksVWmsLo%3D HillsGModern microprocessor built from complementary carbon nanotube transistorsNature20195725956021:CAS:528:DC%2BC1MXhs1OhurnI BoynSLearning through ferroelectric domain dynamics in solid-state synapsesNat. Commun.201781:CAS:528:DC%2BC2sXls1KhtLc%3D LembkeDAllainAKisAThickness-dependent mobility in two-dimensional MoS2 transistorsNanoscale20157625562601:CAS:528:DC%2BC2MXksV2ksrc%3D LiaoLHigh-speed graphene transistors with a self-aligned nanowire gateNature20104673053081:CAS:528:DC%2BC3cXhtFSisLfI FeiZFerroelectric switching of a two-dimensional metalNature20185603361:CAS:528:DC%2BC1cXhtlOis7zO KnollLInverters with strained Si nanowire complementary tunnel field-effect transistorsIEEE Electron Device Lett.2013348138151:CAS:528:DC%2BC3sXhtVegt73J BanszerusLUltrahigh-mobility graphene devices from chemical vapor deposition on reusable copperSci. Adv.20151e1500222 BessonovAALayered memristive and memcapacitive switches for printable electronicsNat. Mater.2015141992041:CAS:528:DC%2BC2cXhvFKlsrbF XiaFPerebeinosVLinY-MWuYAvourisPThe origins and limits of metal–graphene junction resistanceNat. Nanotechnol.201161791841:CAS:528:DC%2BC3MXislequ70%3D van de BurgtYA non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computingNat. Mater.201716414418 QiuCScaling carbon nanotube complementary transistors to 5-nm gate lengthsScience20173552712761:CAS:528:DC%2BC2sXhtVehtbw%3D LiWUniform and ultrathin high-k gate dielectrics for two-dimensional electronic devicesNat. Electron.201925635711:CAS:528:DC%2BC1MXitlKhsb7O LiuYHuangYDuanXvan der Waals integration before and beyond two-dimensional materialsNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014). WangSA MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatilityAdv. Mater.2019311806227 XiaFRediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronicsNat. Commun.201451:CAS:528:DC%2BC2cXitVShsrvI ZhuJIon gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamicsAdv. Mater.2018301800195 ShiYElectronic synapses made of layered two-dimensional materialsNat. Electron.20181458465 LiuSEliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memoryAdv. Mater.20162810623106291:CAS:528:DC%2BC28Xhs12gu7vN SunLSelf-selective van der Waals heterostructures for large scale memory arrayNat. Commun.20191017 TianHExtremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computingACS Nano20171112247122561:CAS:528:DC%2BC2sXhvFWhsLrI Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006). AvsarAAir-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistorsACS Nano20159413841451:CAS:528:DC%2BC2MXksFSlu78%3D IelminiDWongHSPIn-memory computing with resistive switching devicesNat. Electron.20181333343 ZhuLQWanCJGuoLQShiYWanQArtificial synapse network on inorganic proton conductor for neuromorphic systemsNat. Commun.20145 CuiYHigh-performance monolayer WS2 field-effect transistors on high-κ dielectricsAdv. Mater.201527523052341:CAS:528:DC%2BC2MXhtlSlsrjE LeeG-HHighly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltageACS nano20159701970261:CAS:528:DC%2BC2MXhtVarsrrK YuZRealization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screeningAdv. Mater.2016285475521:CAS:528:DC%2BC2MXhvFentrvP RyuGHStriated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2Adv. Mater.20193119042511:CAS:528:DC%2BC1MXhvVGnsbrK VuQATwo-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratioNat. Commun.201671:CAS:528:DC%2BC28XhsVOru7fK YangCSA synaptic transistor based on quasi-2D molybdenum oxideAdv. Mater.2017291700906 QiuCDirac-source field-effect transistors as energy-efficient, high-performance electronic switchesScience20183613873921:CAS:528:DC%2BC1cXhtlyitrrK XiaQYangJJMemristive crossbar arrays for brain-inspired computingNat. Mater.2019183093231:CAS:528:DC%2BC1MXotFagu7w%3D MuratoreCContinuous ultra-thin MoS2 films grown by low-temperature physical vapor depositionAppl Phys. Lett.2014104261604 LeeJMonolayer optical memory cells based on artificial trap-mediated charge storage and releaseNat. Commun.201781:CAS:528:DC%2BC2sXkvFajurg%3D YangJ-TArtificial synapses emulated by an electrolyte-gated tungsten-oxide transistorAdv. Mater.2018301801548 BorghettiJ‘Memristive’ switches enable ‘stateful’ logic operations via material implicationNature20104648738761:CAS:528:DC%2BC3cXktlyntrg%3D SeoSArtificial optic-neural synapse for colored and color-mixed pattern recognitionNat. Commun.20189 FioriGElectronics based on two-dimensional materialsNat. Nanotechnol.201497687791:CAS:528:DC%2BC2cXhs1yhtLvJ JacksonBLNanoscale electronic synapses using phase change devicesACM J. Emerg. Technol. Comput. Syst.20139120 KimSThickness-controlled black phosphorus tunnel field-effect transistor for low-power switchesNat. Nanotechnol.2020152032061:CAS:528:DC%2BB3cXivVeksL8%3D LiuDParkSThree-dimensional and 2.5 dimensional interconnection technology: state of the art. J. ElectronPackag2014136014001 WangLArtificial synapses based on multiterminal memtransistors for neuromorphic applicationAdv. Funct. Mater.2019291901106 LeeDMultibit MoS2 photoelectronic memory with ultrahigh sensitivityAdv. Mater.201628919692021:CAS:528:DC%2BC28XhsVWms7rJ SongTGiant tunneling magnetoresistance in spin-filter van der Waals heterostructuresScience2018360121412181:CAS:528:DC%2BC1cXhtFWltrrN CuiXMulti-terminal transport measurements of MoS2 using a van der Waals heterostructure device platformNat. Nanotechnol.2015105345401:CAS:528:DC%2BC2MXnvFSlurw%3D DennardRHGaensslenFHRideoutVLBassousELeBlancARDesign of ion-implanted MOSFET's with very small physical dimensionsIEEE J. Solid-State Circuits19749256268 AllainAKangJBanerjeeKK RH Yan (724_CR71) 1992; 39 D Lembke (724_CR74) 2015; 7 S Wang (724_CR65) 2019; 31 724_CR127 724_CR126 M Gibertini (724_CR23) 2019; 14 J Borghetti (724_CR9) 2010; 464 CS Yang (724_CR43) 2017; 29 Y Liu (724_CR21) 2016; 1 C Qiu (724_CR38) 2018; 361 MT Sharbati (724_CR48) 2018; 30 LQ Zhu (724_CR17) 2014; 5 D Ielmini (724_CR8) 2018; 1 J Zhu (724_CR45) 2018; 30 724_CR85 H Liu (724_CR116) 2014; 8 724_CR86 QA Vu (724_CR47) 2017; 29 Y He (724_CR137) 2018; 6 SB Desai (724_CR84) 2016; 354 M Prezioso (724_CR60) 2015; 521 GW Burr (724_CR12) 2015; 62 M Si (724_CR36) 2018; 18 B Ganjipour (724_CR121) 2012; 6 Z Yang (724_CR112) 2015; 27 T Liu (724_CR79) 2019; 14 R Cheng (724_CR102) 2012; 109 GH Ryu (724_CR105) 2019; 31 M Si (724_CR26) 2019; 2 S Kim (724_CR119) 2020; 15 W Liu (724_CR77) 2013; 13 724_CR123 Y Yang (724_CR136) 2018; 39 R Midya (724_CR59) 2017; 29 W Zhu (724_CR80) 2009; 80 724_CR125 H Tian (724_CR131) 2017; 11 M Chhowalla (724_CR22) 2016; 1 D He (724_CR99) 2018; 19 Y van de Burgt (724_CR18) 2017; 16 BL Jackson (724_CR42) 2013; 9 724_CR108 Y Zhao (724_CR98) 2017; 29 JY Gerasimov (724_CR19) 2019; 6 J Ji (724_CR88) 2016; 7 X Cui (724_CR95) 2015; 10 RA John (724_CR62) 2018; 30 724_CR68 724_CR66 S Boyn (724_CR14) 2017; 8 724_CR61 G Hills (724_CR110) 2019; 572 Z Yu (724_CR75) 2016; 28 PD Ye (724_CR35) 2018; 13 C Muratore (724_CR87) 2014; 104 HY Yoong (724_CR15) 2018; 28 S Yu (724_CR11) 2018; 106 X Zhu (724_CR64) 2019; 18 QA Vu (724_CR46) 2016; 7 D Kuzum (724_CR139) 2013; 24 L Liao (724_CR106) 2010; 467 MA Lastras-Montaño (724_CR50) 2018; 1 H Lu (724_CR118) 2014; 2 X Duan (724_CR96) 2014; 9 YH Liu (724_CR135) 2015; 27 X Li (724_CR89) 2009; 324 F Xia (724_CR114) 2014; 5 M Wang (724_CR29) 2018; 1 Y Cui (724_CR78) 2015; 27 P Cheng (724_CR33) 2015; 16 Y Shi (724_CR31) 2018; 1 S Wang (724_CR40) 2019; 2019 S Das (724_CR91) 2012; 13 D Lee (724_CR52) 2016; 28 MM Shulaker (724_CR4) 2017; 547 Y Liu (724_CR27) 2019; 567 H Fang (724_CR76) 2012; 12 AM Ionescu (724_CR73) 2011; 479 D Leonelli (724_CR124) 2010; 49 F Xue (724_CR25) 2019; 31 D Sarkar (724_CR37) 2015; 526 L Wang (724_CR39) 2019; 29 L Mennel (724_CR55) 2020; 579 G-H Lee (724_CR97) 2015; 9 R Gandhi (724_CR122) 2011; 32 X Lin (724_CR70) 2019; 2 G Fiori (724_CR20) 2014; 9 A Mizrahi (724_CR16) 2018; 9 S Ambrogio (724_CR49) 2018; 558 J Jo (724_CR128) 2016; 37 A Kuc (724_CR51) 2011; 83 Y Zhong (724_CR134) 2020; 6 S Seo (724_CR67) 2018; 9 L Sun (724_CR30) 2019; 10 F Schwierz (724_CR82) 2010; 5 J Zhang (724_CR109) 2017; 52 Q Xia (724_CR41) 2019; 18 J-T Yang (724_CR63) 2018; 30 M Lanza (724_CR138) 2019; 5 AA Bessonov (724_CR130) 2015; 14 VK Sangwan (724_CR56) 2018; 554 L Banszerus (724_CR81) 2015; 1 A Avsar (724_CR113) 2015; 9 H Tian (724_CR132) 2016; 28 W Huh (724_CR58) 2018; 30 T Yang (724_CR103) 2017; 8 A Allain (724_CR94) 2015; 14 724_CR1 724_CR2 TY Wang (724_CR129) 2020; 7 J Jadwiszczak (724_CR57) 2019; 13 F Merrikh-Bayat (724_CR13) 2017; 29 J Lee (724_CR53) 2017; 8 Y Liu (724_CR90) 2018; 47 W Li (724_CR101) 2019; 2 M Kang (724_CR107) 2018; 53 L Knoll (724_CR120) 2013; 34 C-S Yang (724_CR44) 2018; 28 J Tang (724_CR10) 2019; 31 D Xiang (724_CR54) 2018; 9 B Radisavljevic (724_CR83) 2011; 6 S Liu (724_CR28) 2016; 28 L Xie (724_CR104) 2010; 132 M Kamalakar (724_CR115) 2015; 11 F Zhang (724_CR32) 2019; 18 RH Dennard (724_CR5) 1974; 9 C Qiu (724_CR100) 2017; 355 D Liu (724_CR3) 2014; 136 R Kappera (724_CR92) 2014; 13 J Wu (724_CR117) 2017; 12 Z Fei (724_CR24) 2018; 560 724_CR7 F Xia (724_CR93) 2011; 6 C Liu (724_CR34) 2019; 14 724_CR6 T Song (724_CR69) 2018; 360 H Tian (724_CR133) 2017; 11 AC Seabaugh (724_CR72) 2010; 98 L Li (724_CR111) 2014; 9 |
References_xml | – reference: CuiXMulti-terminal transport measurements of MoS2 using a van der Waals heterostructure device platformNat. Nanotechnol.2015105345401:CAS:528:DC%2BC2MXnvFSlurw%3D – reference: DesaiSBMoS2 transistors with 1-nanometer gate lengthsScience2016354991021:CAS:528:DC%2BC28Xhs1SksbvJ – reference: Sim, J. et al. A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE system. In Proc. 2016 IEEE International Solid-State Circuits Conference (ISSCC) 264–265 (IEEE, 2016). – reference: LiuTCrested two-dimensional transistorsNat. Nanotechnol.2019142232261:CAS:528:DC%2BC1MXmtF2nsLY%3D – reference: Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. In Proc. Technical Digest-International Electron Devices Meeting 47–50 (IEEE, 2002). – reference: LiuSEliminating negative‐SET behavior by suppressing nanofilament overgrowth in cation‐based memoryAdv. Mater.20162810623106291:CAS:528:DC%2BC28Xhs12gu7vN – reference: WangSA photoelectric-stimulated MoS2 transistor for neuromorphic engineeringResearch201920191618798 – reference: BurrGWExperimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight elementIEEE Trans. Electron Devices20156234983507 – reference: XieLJiaoLDaiHSelective etching of graphene edges by hydrogen plasmaJ. Am. Chem. Soc.201013214751147531:CAS:528:DC%2BC3cXht1Cgs73P – reference: LiuYHuangYDuanXvan der Waals integration before and beyond two-dimensional materialsNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D – reference: XiaFPerebeinosVLinY-MWuYAvourisPThe origins and limits of metal–graphene junction resistanceNat. Nanotechnol.201161791841:CAS:528:DC%2BC3MXislequ70%3D – reference: WangTYUltralow power wearable heterosynapse with photoelectric synergistic modulationAdv. Sci.202071903480 – reference: Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S. I. Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain. In Proc. 2006 International Electron Devices Meeting 1–4 (IEEE, 2006). – reference: ZhuJIon gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamicsAdv. Mater.2018301800195 – reference: CuiYHigh-performance monolayer WS2 field-effect transistors on high-κ dielectricsAdv. Mater.201527523052341:CAS:528:DC%2BC2MXhtlSlsrjE – reference: RyuGHStriated 2D lattice with sub‐nm 1D etch channels by controlled thermally induced phase transformations of PdSe2Adv. Mater.20193119042511:CAS:528:DC%2BC1MXhvVGnsbrK – reference: HeYYangYNieSLiuRWanQElectric-double-layer transistors for synaptic devices and neuromorphic systemsJ. Mater. Chem. C.20186533653521:CAS:528:DC%2BC1cXptlaqurc%3D – reference: LiuYVan der Waals heterostructures and devicesNat. Rev. Mater.20161160421:CAS:528:DC%2BC2sXhtVerurc%3D – reference: LiuCSmall footprint transistor architecture for photoswitching logic and in situ memoryNat. Nanotechnol.2019146626671:CAS:528:DC%2BC1MXhtVCiu7nF – reference: HuhWSynaptic barristor based on phase‐engineered 2D heterostructuresAdv. Mater.2018301801447 – reference: LiuYHZhuLQFengPShiYWanQFreestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranesAdv. Mater.201527559956041:CAS:528:DC%2BC2MXhsVSjtLrI – reference: LinXTwo-dimensional spintronics for low-power electronicsNat. Electron.201922742831:CAS:528:DC%2BC1MXhtlOlsLjI – reference: HeDHigh-performance black phosphorus field-effect transistors with long-term air stabilityNano Lett.201819331337 – reference: YangTVan der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctionsNat. Commun.20178 – reference: LiWUniform and ultrathin high-k gate dielectrics for two-dimensional electronic devicesNat. Electron.201925635711:CAS:528:DC%2BC1MXitlKhsb7O – reference: YoongHYEpitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain‐inspired computingAdv. Funct. Mater.2018281806037 – reference: XiaQYangJJMemristive crossbar arrays for brain-inspired computingNat. Mater.2019183093231:CAS:528:DC%2BC1MXotFagu7w%3D – reference: Grollier, J. et al. Neuromorphic spintronics. Nat. Electron.https://doi.org/10.1038/s41928-019-0360-9 (2020). – reference: IelminiDWongHSPIn-memory computing with resistive switching devicesNat. Electron.20181333343 – reference: YePDSteep-slope hysteresis-free negative-capacitance 2D transistorsNat. Nanotechnol.2018132428 – reference: ZhangJWangZVermaNIn-memory computation of a machine-learning classifier in a standard 6T SRAM arrayIEEE J. Solid-State Circuits201752915924 – reference: JoJShinCNegative capacitance field effect transistor with hysteresis-free Sub-60-mV/decade switchingIEEE Electron Device Lett.2016372452481:CAS:528:DC%2BC28XitFGltbzK – reference: KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK – reference: ZhaoYPassivation of black phosphorus via self‐assembled organic monolayers by van der Waals epitaxyAdv. Mater.2017291603990 – reference: LeeJMonolayer optical memory cells based on artificial trap-mediated charge storage and releaseNat. Commun.201781:CAS:528:DC%2BC2sXkvFajurg%3D – reference: SharbatiMTLow-power, electrochemically tunable graphene synapses for neuromorphic computingAdv. Mater.2018301802353 – reference: SangwanVKMulti-terminal memtransistors from polycrystalline monolayer molybdenum disulfideNature201855450050471:CAS:528:DC%2BC1cXjtFCrt70%3D – reference: PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D – reference: LeeG-HHighly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltageACS nano20159701970261:CAS:528:DC%2BC2MXhtVarsrrK – reference: SchwierzFGraphene transistorsNat. Nanotechnol.201054874961:CAS:528:DC%2BC3cXotl2mt7k%3D – reference: WangLArtificial synapses based on multiterminal memtransistors for neuromorphic applicationAdv. Funct. Mater.2019291901106 – reference: BanszerusLUltrahigh-mobility graphene devices from chemical vapor deposition on reusable copperSci. Adv.20151e1500222 – reference: KucAZiboucheNHeineTInfluence of quantum confinement on the electronic structure of the transition metal sulfide TS2Phys. Rev. B201183245213 – reference: JadwiszczakJMoS2 memtransistors fabricated by localized helium ion beam irradiationACS nano20191314262142731:CAS:528:DC%2BC1MXit1OqtrrK – reference: YangYHeYNieSShiYWanQLight stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devicesIEEE Electron Device Lett.2018398979001:CAS:528:DC%2BC1cXisVCmsL3N – reference: DennardRHGaensslenFHRideoutVLBassousELeBlancARDesign of ion-implanted MOSFET's with very small physical dimensionsIEEE J. Solid-State Circuits19749256268 – reference: YangCSA synaptic transistor based on quasi-2D molybdenum oxideAdv. Mater.2017291700906 – reference: FangHHigh-performance single layered WSe2 p-FETs with chemically doped contactsNano Lett.201212378837921:CAS:528:DC%2BC38XosFekurs%3D – reference: GandhiRCMOS-compatible vertical-silicon-nanowire Gate-All-Around p-type tunneling FETs with 50-mV/decade subthreshold swingIEEE Electron Device Lett.201132150415061:CAS:528:DC%2BC3MXhs1emurfP – reference: WuJHigh electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2SeNat. Nanotechnol.2017125305341:CAS:528:DC%2BC2sXls1Gru74%3D – reference: XiaFRediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronicsNat. Commun.201451:CAS:528:DC%2BC2cXitVShsrvI – reference: LiuDParkSThree-dimensional and 2.5 dimensional interconnection technology: state of the art. J. ElectronPackag2014136014001 – reference: YanRHOurmazdALeeKFScaling the Si MOSFET: from bulk to SOI to bulkIEEE Trans. Electron Devices199239170417101:CAS:528:DyaK38XkvVSksb8%3D – reference: LeeDMultibit MoS2 photoelectronic memory with ultrahigh sensitivityAdv. Mater.201628919692021:CAS:528:DC%2BC28XhsVWms7rJ – reference: TianHAnisotropic black phosphorus synaptic device for neuromorphic applicationsAdv. Mater.201628499149971:CAS:528:DC%2BC28XmvFart74%3D – reference: ChengPSunKHuYHMemristive behavior and ideal memristor of 1T Phase MoS2 nanosheetsNano Lett.201516572576 – reference: DasSChenH-YPenumatchaAVAppenzellerJHigh performance multilayer MoS2 transistors with scandium contactsNano Lett.201213100105 – reference: YangC-SAll-solid-state synaptic transistor with ultralow conductance for neuromorphic computingAdv. Funct. Mater.2018281804170 – reference: Lee, D. U. et al. A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 432–433 (IEEE, 2014). – reference: JiJTwo-dimensional antimonene single crystals grown by van der Waals epitaxyNat. Commun.201671:CAS:528:DC%2BC28XhvVygtrvP – reference: HillsGModern microprocessor built from complementary carbon nanotube transistorsNature20195725956021:CAS:528:DC%2BC1MXhs1OhurnI – reference: TianHEmulating bilingual synaptic response using a junction-based artificial synaptic deviceACS Nano201711715671631:CAS:528:DC%2BC2sXhtVKhu77K – reference: LuHSeabaughATunnel field-effect transistors: state-of-the-artIEEE J. Electron Devices Soc.2014244491:CAS:528:DC%2BC2sXntFyiurs%3D – reference: SarkarDA subthermionic tunnel field-effect transistor with an atomically thin channelNature201552691951:CAS:528:DC%2BC2MXhs1SitLvN – reference: SeoSArtificial optic-neural synapse for colored and color-mixed pattern recognitionNat. Commun.20189 – reference: KnollLInverters with strained Si nanowire complementary tunnel field-effect transistorsIEEE Electron Device Lett.2013348138151:CAS:528:DC%2BC3sXhtVegt73J – reference: AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O – reference: LembkeDAllainAKisAThickness-dependent mobility in two-dimensional MoS2 transistorsNanoscale20157625562601:CAS:528:DC%2BC2MXksV2ksrc%3D – reference: DuanXLateral epitaxial growth of two-dimensional layered semiconductor heterojunctionsNat. Nanotechnol.20149102410301:CAS:528:DC%2BC2cXhs1ehsr7E – reference: LiLBlack phosphorus field-effect transistorsNat. Nanotechnol.201493723771:CAS:528:DC%2BC2cXjtlyht7c%3D – reference: LiuYDuanXHuangYDuanXTwo-dimensional transistors beyond graphene and TMDCsChem. Soc. Rev.201847638864091:CAS:528:DC%2BC1cXhsVCnsb%2FP – reference: ChengRHigh-frequency self-aligned graphene transistors with transferred gate stacksProc. Natl Acad. Sci. USA201210911588115921:CAS:528:DC%2BC38Xht1Ciu7zO – reference: Sangwan, V. et al. Neuromorphic nanoelectronic materials. Nat. Nanotechnol.https://doi.org/10.1038/s41565-020-0647-z (2020). – reference: Khan, A. I., Yeung, C. W., Chenming, H. & Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proc. 2011 IEEE International Electron Devices Meeting (IEDM) 111.3.1.–11.3.4. (IEEE, 2011). – reference: SongTGiant tunneling magnetoresistance in spin-filter van der Waals heterostructuresScience2018360121412181:CAS:528:DC%2BC1cXhtFWltrrN – reference: ZhuWPerebeinosVFreitagMAvourisPCarrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphenePhys. Rev. B200980235402 – reference: Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In. Proc. 2011 International Electron Devices Meet 33.36.31–33.36.34 (IEEE, 2011). – reference: SeabaughACZhangQLow-voltage tunnel transistors for beyond CMOS logicProc. IEEE201098209521101:CAS:528:DC%2BC3cXhs1ais7jM – reference: MidyaRAnatomy of Ag/Hafnia-based selectors with 1010 nonlinearityAdv. Mater.2017291604457 – reference: Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 23.26.21–23.26.24 (IEEE, 2017). – reference: GerasimovJYAn evolvable organic electrochemical transistor for neuromorphic applicationsAdv. Sci.201961801339 – reference: TianHExtremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computingACS Nano20171112247122561:CAS:528:DC%2BC2sXhvFWhsLrI – reference: YangZField-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser depositionAdv. Mater.201527374837541:CAS:528:DC%2BC2MXot1Wqt70%3D – reference: KamalakarMLow schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contactsSmall201511220922161:CAS:528:DC%2BC2MXosFGkuw%3D%3D – reference: GanjipourBTunnel field-effect transistors based on InP-GaAs heterostructure nanowiresACS Nano20126310931131:CAS:528:DC%2BC38XjslKgtL0%3D – reference: JacksonBLNanoscale electronic synapses using phase change devicesACM J. Emerg. Technol. Comput. Syst.20139120 – reference: AllainAKangJBanerjeeKKisAElectrical contacts to two-dimensional semiconductorsNat. Mater.201514119512051:CAS:528:DC%2BC2MXhvVOlsr3K – reference: Lee, M.-H. et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 12.11.11–12.11. 14 (IEEE, 2016). – reference: YuZRealization of room‐temperature phonon‐limited carrier transport in monolayer MoS2 by dielectric and carrier screeningAdv. Mater.2016285475521:CAS:528:DC%2BC2MXhvFentrvP – reference: AvsarAAir-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-Effect transistorsACS Nano20159413841451:CAS:528:DC%2BC2MXksFSlu78%3D – reference: JohnRASynergistic gating of electro‐iono‐photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticityAdv. Mater.2018301800220 – reference: Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T.-L. High performance 2D perovskite/graphene optical synapses as artificial eyes. In Proc. 2018 IEEE International Electron Devices Meeting (IEDM) 38.6.1–38.6.4 (IEEE, 2018). – reference: van de BurgtYA non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computingNat. Mater.201716414418 – reference: ZhuXLiDLiangXLuWDIonic modulation and ionic coupling effects in MoS2 devices for neuromorphic computingNat. Mater.2019181411481:CAS:528:DC%2BC1cXisFOnur3L – reference: Horowitz, M. Computing's energy problem (and what we can do about it). In Proc. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014). – reference: QiuCDirac-source field-effect transistors as energy-efficient, high-performance electronic switchesScience20183613873921:CAS:528:DC%2BC1cXhtlyitrrK – reference: LiuWRole of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistorsNano Lett.201313198319901:CAS:528:DC%2BC3sXks1GisLs%3D – reference: TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI – reference: ShiYElectronic synapses made of layered two-dimensional materialsNat. Electron.20181458465 – reference: Jeon, K. et al. Si tunnel transistors with a novel silicided source and 46 mV/dec swing. In Proc. 2010 Symposium VLSI Technology 121–122 (IEEE, 2010). – reference: BorghettiJ‘Memristive’ switches enable ‘stateful’ logic operations via material implicationNature20104648738761:CAS:528:DC%2BC3cXktlyntrg%3D – reference: YangJ-TArtificial synapses emulated by an electrolyte-gated tungsten-oxide transistorAdv. Mater.2018301801548 – reference: KangMGonugondlaSKPatilAShanbhagNRA multi-functional in-memory inference processor using a standard 6T SRAM arrayIEEE J. Solid-State Circuits201853642655 – reference: BessonovAALayered memristive and memcapacitive switches for printable electronicsNat. Mater.2015141992041:CAS:528:DC%2BC2cXhvFKlsrbF – reference: BoynSLearning through ferroelectric domain dynamics in solid-state synapsesNat. Commun.201781:CAS:528:DC%2BC2sXls1KhtLc%3D – reference: Kim, S. et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. In Proc. 2009 Symposium VLSI Technology 178–179 (IEEE, 2009). – reference: Merrikh-BayatFHigh-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arraysIEEE Trans. Neural Netw. Learn. Syst.20172947824790 – reference: MennelLUltrafast machine vision with 2D material neural network image sensorsNature202057962661:CAS:528:DC%2BB3cXksVWmsLo%3D – reference: VuQAa high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stackingAdv. Mater.2017291703363 – reference: FioriGElectronics based on two-dimensional materialsNat. Nanotechnol.201497687791:CAS:528:DC%2BC2cXhs1yhtLvJ – reference: LiXLarge-area synthesis of high-quality and uniform graphene films on copper foilsScience2009324131213141:CAS:528:DC%2BD1MXms12gtbY%3D – reference: FeiZFerroelectric switching of a two-dimensional metalNature20185603361:CAS:528:DC%2BC1cXhtlOis7zO – reference: ZhangFElectric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memoriesNat. Mater.20191855611:CAS:528:DC%2BC1cXisFWitrzP – reference: LanzaMRecommended methods to study resistive switching devicesAdv. Electron. Mater.201951800143 – reference: WangSA MoS2 /PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatilityAdv. Mater.2019311806227 – reference: XueFGate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectricAdv. Mater.2019311901300 – reference: MuratoreCContinuous ultra-thin MoS2 films grown by low-temperature physical vapor depositionAppl Phys. Lett.2014104261604 – reference: KimSThickness-controlled black phosphorus tunnel field-effect transistor for low-power switchesNat. Nanotechnol.2020152032061:CAS:528:DC%2BB3cXivVeksL8%3D – reference: ZhongYSelective UV‐gating organic memtransistors with modulable levels of synaptic plasticityAdv. Electron. Mater.2020619009551:CAS:528:DC%2BC1MXhvFCmsb7I – reference: KuzumDYuSWongHPSynaptic electronics: materials, devices and applicationsNanotechnology201324382001 – reference: XiangDTwo-dimensional multibit optoelectronic memory with broadband spectrum distinctionNat. Commun.20189 – reference: SiMSteep-slope WSe2 negative capacitance field-effect transistorNano Lett.201818368236871:CAS:528:DC%2BC1cXptVCju7s%3D – reference: VuQATwo-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratioNat. Commun.201671:CAS:528:DC%2BC28XhsVOru7fK – reference: IonescuAMRielHTunnel field-effect transistors as energy-efficient electronic switchesNature20114793293371:CAS:528:DC%2BC3MXhsVykt7%2FM – reference: GibertiniMKoperskiMMorpurgoANovoselovKMagnetic 2D materials and heterostructuresNat. Nanotechnol.2019144084191:CAS:528:DC%2BC1MXptVCktb0%3D – reference: ZhuLQWanCJGuoLQShiYWanQArtificial synapse network on inorganic proton conductor for neuromorphic systemsNat. Commun.20145 – reference: Lastras-MontañoMAChengK-TJNEResistive random-access memory based on ratioed memristorsNat. Electron.20181466472 – reference: ShulakerMMThree-dimensional integration of nanotechnologies for computing and data storage on a single chipNature201754774781:CAS:528:DC%2BC2sXhtFaqt7nF – reference: LiaoLHigh-speed graphene transistors with a self-aligned nanowire gateNature20104673053081:CAS:528:DC%2BC3cXhtFSisLfI – reference: MizrahiANeural-like computing with populations of superparamagnetic basis functionsNat. Commun.20189 – reference: WangMRobust memristors based on layered two-dimensional materialsNat. Electron.201811301:CAS:528:DC%2BC1MXhtFGqtbrE – reference: SunLSelf-selective van der Waals heterostructures for large scale memory arrayNat. Commun.20191017 – reference: ChhowallaMJenaDZhangHTwo-dimensional semiconductors for transistorsNat. Rev. Mater.20161160521:CAS:528:DC%2BC2sXhtVertb8%3D – reference: SiMA ferroelectric semiconductor field-effect transistorNat. Electron.201925805861:CAS:528:DC%2BC1MXitlKhsb7M – reference: LeonelliDPerformance enhancement in multi-gate tunneling field effect transistors by scaling the Fin-widthJpn. J. Appl. Phys.20104904DC10 – reference: YuSNeuro-inspired computing with emerging nonvolatile memorysProc. IEEE20181062602851:CAS:528:DC%2BC1MXjt1GrtL8%3D – reference: QiuCScaling carbon nanotube complementary transistors to 5-nm gate lengthsScience20173552712761:CAS:528:DC%2BC2sXhtVehtbw%3D – reference: RadisavljevicBRadenovicABrivioJGiacomettiVKisASingle-layer MoS2 transistorsNat. Nanotechnol.201161471501:CAS:528:DC%2BC3MXislCjsro%3D – reference: LiuHPhosphorene: an unexplored 2D semiconductor with a high hole mobilityACS Nano20148403340411:CAS:528:DC%2BC2cXksVWisLo%3D – volume: 2019 start-page: 1618798 year: 2019 ident: 724_CR40 publication-title: Research – volume: 37 start-page: 245 year: 2016 ident: 724_CR128 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2523681 – volume: 28 start-page: 1806037 year: 2018 ident: 724_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806037 – volume: 521 start-page: 61 year: 2015 ident: 724_CR60 publication-title: Nature doi: 10.1038/nature14441 – volume: 39 start-page: 1704 year: 1992 ident: 724_CR71 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.141237 – volume: 9 start-page: 1024 year: 2014 ident: 724_CR96 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.222 – volume: 8 start-page: 4033 year: 2014 ident: 724_CR116 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 360 start-page: 1214 year: 2018 ident: 724_CR69 publication-title: Science doi: 10.1126/science.aar4851 – volume: 9 start-page: 1 year: 2013 ident: 724_CR42 publication-title: ACM J. Emerg. Technol. Comput. Syst. doi: 10.1145/2463585.2463588 – volume: 12 start-page: 3788 year: 2012 ident: 724_CR76 publication-title: Nano Lett. doi: 10.1021/nl301702r – volume: 11 start-page: 12247 year: 2017 ident: 724_CR131 publication-title: ACS Nano doi: 10.1021/acsnano.7b05726 – volume: 14 start-page: 408 year: 2019 ident: 724_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0438-6 – volume: 6 start-page: 1900955 year: 2020 ident: 724_CR134 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900955 – volume: 9 start-page: 256 year: 1974 ident: 724_CR5 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.1974.1050511 – volume: 10 start-page: 1 year: 2019 ident: 724_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 31 start-page: 1806227 year: 2019 ident: 724_CR65 publication-title: Adv. Mater. doi: 10.1002/adma.201806227 – volume: 18 start-page: 55 year: 2019 ident: 724_CR32 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0234-y – volume: 11 start-page: 2209 year: 2015 ident: 724_CR115 publication-title: Small doi: 10.1002/smll.201402900 – volume: 6 start-page: 5336 year: 2018 ident: 724_CR137 publication-title: J. Mater. Chem. C. doi: 10.1039/C8TC00530C – volume: 28 start-page: 1804170 year: 2018 ident: 724_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804170 – volume: 2 start-page: 563 year: 2019 ident: 724_CR101 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0334-y – volume: 136 start-page: 014001 year: 2014 ident: 724_CR3 publication-title: Packag doi: 10.1115/1.4026615 – volume: 98 start-page: 2095 year: 2010 ident: 724_CR72 publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2070470 – volume: 2 start-page: 580 year: 2019 ident: 724_CR26 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0338-7 – ident: 724_CR68 doi: 10.1038/s41928-019-0360-9 – volume: 1 start-page: e1500222 year: 2015 ident: 724_CR81 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500222 – volume: 31 start-page: 1904251 year: 2019 ident: 724_CR105 publication-title: Adv. Mater. doi: 10.1002/adma.201904251 – volume: 13 start-page: 14262 year: 2019 ident: 724_CR57 publication-title: ACS nano doi: 10.1021/acsnano.9b07421 – volume: 547 start-page: 74 year: 2017 ident: 724_CR4 publication-title: Nature doi: 10.1038/nature22994 – volume: 39 start-page: 897 year: 2018 ident: 724_CR136 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2824339 – volume: 354 start-page: 99 year: 2016 ident: 724_CR84 publication-title: Science doi: 10.1126/science.aah4698 – ident: 724_CR123 doi: 10.1109/IEDM.2011.6131666 – ident: 724_CR86 doi: 10.1109/IEDM.2017.8268448 – volume: 560 start-page: 336 year: 2018 ident: 724_CR24 publication-title: Nature doi: 10.1038/s41586-018-0336-3 – volume: 62 start-page: 3498 year: 2015 ident: 724_CR12 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2439635 – ident: 724_CR127 doi: 10.1109/IEDM.2016.7838400 – ident: 724_CR7 – volume: 49 start-page: 04DC10 year: 2010 ident: 724_CR124 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.49.04DC10 – volume: 28 start-page: 547 year: 2016 ident: 724_CR75 publication-title: Adv. Mater. doi: 10.1002/adma.201503033 – volume: 9 start-page: 372 year: 2014 ident: 724_CR111 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 467 start-page: 305 year: 2010 ident: 724_CR106 publication-title: Nature doi: 10.1038/nature09405 – ident: 724_CR6 doi: 10.1109/IEDM.2006.346811 – volume: 104 start-page: 261604 year: 2014 ident: 724_CR87 publication-title: Appl Phys. Lett. doi: 10.1063/1.4885391 – volume: 30 start-page: 1800195 year: 2018 ident: 724_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201800195 – volume: 7 year: 2016 ident: 724_CR46 publication-title: Nat. Commun. – volume: 14 start-page: 662 year: 2019 ident: 724_CR34 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0462-6 – volume: 13 start-page: 1128 year: 2014 ident: 724_CR92 publication-title: Nat. Mater. doi: 10.1038/nmat4080 – volume: 34 start-page: 813 year: 2013 ident: 724_CR120 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2258652 – volume: 9 start-page: 768 year: 2014 ident: 724_CR20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 31 start-page: 1901300 year: 2019 ident: 724_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201901300 – volume: 7 year: 2016 ident: 724_CR88 publication-title: Nat. Commun. – volume: 16 start-page: 414 year: 2017 ident: 724_CR18 publication-title: Nat. Mater. doi: 10.1038/nmat4856 – volume: 16 start-page: 572 year: 2015 ident: 724_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04260 – volume: 53 start-page: 642 year: 2018 ident: 724_CR107 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2017.2782087 – volume: 28 start-page: 9196 year: 2016 ident: 724_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.201603571 – volume: 2 start-page: 44 year: 2014 ident: 724_CR118 publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2014.2326622 – volume: 29 start-page: 1901106 year: 2019 ident: 724_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901106 – volume: 29 start-page: 1603990 year: 2017 ident: 724_CR98 publication-title: Adv. Mater. doi: 10.1002/adma.201603990 – volume: 47 start-page: 6388 year: 2018 ident: 724_CR90 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00318A – volume: 13 start-page: 1983 year: 2013 ident: 724_CR77 publication-title: Nano Lett. doi: 10.1021/nl304777e – volume: 27 start-page: 5230 year: 2015 ident: 724_CR78 publication-title: Adv. Mater. doi: 10.1002/adma.201502222 – ident: 724_CR85 doi: 10.1109/IEDM.2011.6131532 – volume: 572 start-page: 595 year: 2019 ident: 724_CR110 publication-title: Nature doi: 10.1038/s41586-019-1493-8 – volume: 5 year: 2014 ident: 724_CR114 publication-title: Nat. Commun. – volume: 5 start-page: 487 year: 2010 ident: 724_CR82 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 1 start-page: 333 year: 2018 ident: 724_CR8 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – volume: 7 start-page: 6255 year: 2015 ident: 724_CR74 publication-title: Nanoscale doi: 10.1039/C4NR06331G – volume: 52 start-page: 915 year: 2017 ident: 724_CR109 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2642198 – volume: 13 start-page: 24 year: 2018 ident: 724_CR35 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0010-1 – volume: 10 start-page: 534 year: 2015 ident: 724_CR95 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.70 – ident: 724_CR61 doi: 10.1038/s41565-020-0647-z – volume: 27 start-page: 3748 year: 2015 ident: 724_CR112 publication-title: Adv. Mater. doi: 10.1002/adma.201500990 – volume: 11 start-page: 7156 year: 2017 ident: 724_CR133 publication-title: ACS Nano doi: 10.1021/acsnano.7b03033 – volume: 83 start-page: 245213 year: 2011 ident: 724_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.245213 – volume: 18 start-page: 3682 year: 2018 ident: 724_CR36 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00816 – volume: 28 start-page: 4991 year: 2016 ident: 724_CR132 publication-title: Adv. Mater. doi: 10.1002/adma.201600166 – volume: 106 start-page: 260 year: 2018 ident: 724_CR11 publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2790840 – volume: 8 year: 2017 ident: 724_CR53 publication-title: Nat. Commun. – volume: 18 start-page: 141 year: 2019 ident: 724_CR64 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0248-5 – volume: 6 start-page: 1801339 year: 2019 ident: 724_CR19 publication-title: Adv. Sci. doi: 10.1002/advs.201801339 – volume: 109 start-page: 11588 year: 2012 ident: 724_CR102 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1205696109 – volume: 9 year: 2018 ident: 724_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03963-w – volume: 29 start-page: 1703363 year: 2017 ident: 724_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201703363 – volume: 9 start-page: 7019 year: 2015 ident: 724_CR97 publication-title: ACS nano doi: 10.1021/acsnano.5b01341 – volume: 558 start-page: 60 year: 2018 ident: 724_CR49 publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 9 year: 2018 ident: 724_CR54 publication-title: Nat. Commun. – volume: 30 start-page: 1801447 year: 2018 ident: 724_CR58 publication-title: Adv. Mater. doi: 10.1002/adma.201801447 – volume: 554 start-page: 500 year: 2018 ident: 724_CR56 publication-title: Nature doi: 10.1038/nature25747 – volume: 6 start-page: 3109 year: 2012 ident: 724_CR121 publication-title: ACS Nano doi: 10.1021/nn204838m – volume: 1 start-page: 16042 year: 2016 ident: 724_CR21 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.42 – volume: 14 start-page: 199 year: 2015 ident: 724_CR130 publication-title: Nat. Mater. doi: 10.1038/nmat4135 – volume: 1 start-page: 16052 year: 2016 ident: 724_CR22 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 567 start-page: 323 year: 2019 ident: 724_CR27 publication-title: Nature doi: 10.1038/s41586-019-1013-x – volume: 9 year: 2018 ident: 724_CR67 publication-title: Nat. Commun. – volume: 1 start-page: 466 year: 2018 ident: 724_CR50 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0115-z – volume: 9 start-page: 4138 year: 2015 ident: 724_CR113 publication-title: ACS Nano doi: 10.1021/acsnano.5b00289 – volume: 579 start-page: 62 year: 2020 ident: 724_CR55 publication-title: Nature doi: 10.1038/s41586-020-2038-x – volume: 28 start-page: 10623 year: 2016 ident: 724_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201603293 – volume: 18 start-page: 309 year: 2019 ident: 724_CR41 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0291-x – volume: 324 start-page: 1312 year: 2009 ident: 724_CR89 publication-title: Science doi: 10.1126/science.1171245 – volume: 15 start-page: 203 year: 2020 ident: 724_CR119 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0623-7 – volume: 19 start-page: 331 year: 2018 ident: 724_CR99 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03940 – ident: 724_CR108 doi: 10.1109/ISSCC.2016.7418008 – volume: 479 start-page: 329 year: 2011 ident: 724_CR73 publication-title: Nature doi: 10.1038/nature10679 – volume: 29 start-page: 1604457 year: 2017 ident: 724_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201604457 – volume: 30 start-page: 1801548 year: 2018 ident: 724_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.201801548 – ident: 724_CR66 doi: 10.1109/IEDM.2018.8614666 – volume: 361 start-page: 387 year: 2018 ident: 724_CR38 publication-title: Science doi: 10.1126/science.aap9195 – volume: 13 start-page: 100 year: 2012 ident: 724_CR91 publication-title: Nano Lett. doi: 10.1021/nl303583v – volume: 8 year: 2017 ident: 724_CR103 publication-title: Nat. Commun. – volume: 80 start-page: 235402 year: 2009 ident: 724_CR80 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235402 – volume: 7 start-page: 1903480 year: 2020 ident: 724_CR129 publication-title: Adv. Sci. doi: 10.1002/advs.201903480 – volume: 6 start-page: 147 year: 2011 ident: 724_CR83 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 12 start-page: 530 year: 2017 ident: 724_CR117 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.43 – volume: 29 start-page: 4782 year: 2017 ident: 724_CR13 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2778940 – volume: 464 start-page: 873 year: 2010 ident: 724_CR9 publication-title: Nature doi: 10.1038/nature08940 – volume: 5 year: 2014 ident: 724_CR17 publication-title: Nat. Commun. – volume: 5 start-page: 1800143 year: 2019 ident: 724_CR138 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800143 – volume: 1 start-page: 130 year: 2018 ident: 724_CR29 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0021-4 – volume: 30 start-page: 1800220 year: 2018 ident: 724_CR62 publication-title: Adv. Mater. doi: 10.1002/adma.201800220 – volume: 355 start-page: 271 year: 2017 ident: 724_CR100 publication-title: Science doi: 10.1126/science.aaj1628 – volume: 2 start-page: 274 year: 2019 ident: 724_CR70 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 132 start-page: 14751 year: 2010 ident: 724_CR104 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107071g – volume: 30 start-page: 1802353 year: 2018 ident: 724_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201802353 – volume: 14 start-page: 1195 year: 2015 ident: 724_CR94 publication-title: Nat. Mater. doi: 10.1038/nmat4452 – volume: 8 year: 2017 ident: 724_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms14736 – ident: 724_CR125 doi: 10.1109/VLSIT.2010.5556195 – volume: 526 start-page: 91 year: 2015 ident: 724_CR37 publication-title: Nature doi: 10.1038/nature15387 – ident: 724_CR126 – volume: 29 start-page: 1700906 year: 2017 ident: 724_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.201700906 – volume: 14 start-page: 223 year: 2019 ident: 724_CR79 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0361-x – volume: 24 start-page: 382001 year: 2013 ident: 724_CR139 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – ident: 724_CR2 doi: 10.1109/ISSCC.2014.6757501 – volume: 31 start-page: 1902761 year: 2019 ident: 724_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201902761 – volume: 6 start-page: 179 year: 2011 ident: 724_CR93 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.6 – volume: 27 start-page: 5599 year: 2015 ident: 724_CR135 publication-title: Adv. Mater. doi: 10.1002/adma.201502719 – volume: 1 start-page: 458 year: 2018 ident: 724_CR31 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0118-9 – volume: 32 start-page: 1504 year: 2011 ident: 724_CR122 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2165331 – ident: 724_CR1 doi: 10.1109/ISSCC.2014.6757323 |
SSID | ssj0052924 |
Score | 2.7226484 |
SecondaryResourceType | review_article |
Snippet | Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 545 |
SubjectTerms | 639/166/987 639/301/1005/1007 639/925/927/1007 Chemistry and Materials Science Computing time Energy efficiency Materials Science Metal oxide semiconductors Nanoelectronics Nanotechnology Nanotechnology and Microengineering New technology Review Article Semiconductor devices Transistors Two dimensional materials |
Title | Two-dimensional materials for next-generation computing technologies |
URI | https://link.springer.com/article/10.1038/s41565-020-0724-3 https://www.ncbi.nlm.nih.gov/pubmed/32647168 https://www.proquest.com/docview/2421631339 https://www.proquest.com/docview/2475048868 https://www.proquest.com/docview/2423062615 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgvl1dpYInJdg2r-lJfK0iKCIKeyvdPLxIV90V_74zfayK6CWXdMIwk8d8mfQbxvaFgUz5UHAhUsUleMeHTjieBqO19XqYBbrvuLnVV4_yeqAGzYXbuHlW2e6J1UbtRpbuyI8odakFIqrs-OWVU9Uoyq42JTRm2RxRl9GTLjOYAi6VZnVRWyMBdQHTZjUFHI0JuNC_yTGPTSq5-Hku_Qo2fyVKq_Onv8QWm8AxOqk9vcxmfLnCFr7RCa6y84ePEXdE119TbUQYjdYTLMLQNCoJ5D5VNNPkjchWBR1QMpq09-sIm9fYY__i4eyKN1USuJVaTzg4IhXEBsAGiF1i4pCEJHXeaVcYLa1XyktXILIKiREeXQAiKRQUmc2MF-usU45Kv8kihR4KWagIYaSCAFYrV6B9nPRDkKLL4tZGuW0oxKmSxXNepbIF5LVZczRrTmbNUeRgKvJS82f893GvNXzeLKVx_uX4P7qJoB5AQ5ftTbtxjVDioyj96L0aApERYkXVZRu1P6fKYPiK5zNJH7YO_hr8T023_td0m82n9dTicdJjncnbu9_B4GUy3K1mKLbQv9xlc6cXt3f3n8re60w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEM92oUCQ4AKymsSvyQFVFWXZ0sdpK_Vmsn5wQdnCblX1T_U3Mo7XW1DV3nrJxRlrMg97Pk88A_Cea2ykDy3jvJZMoHds4rhjddBKWa8mTYjnHYdHanQsvp_IkxW4zHdh4m-VeU3sF2o3tfGMfCumLhUnRNVsn_5msWtUzK7mFhrJLPb9xTlBttnnvV3S74e6Hn4dfxmxRVcBZoVSc4YuFuGjB6INWLpKl6EKVe28U67VSlgvpReuJSQSKs09sYy8aiW2jW205zTvPbgviJPoUTj8lld-WTepia4WSN-OOmdROW7NIlCKd6FLVupaMP7_PngtuL2WmO33u-FjeLQIVIudZFlPYMV3T2Htn_KFz2B3fD5lLrYHSKU9Cop-k0EXFAoXXQTVP_uy1lH7he0bSBBlMc_n-QTTn8PxncjvBax2085vQCHJIkIT-gI0QmJAq6RrST5O-AkKPoAyy8jYRcny2Dnjl-lT5xxNEqshsZooVkMkH5ckp6lex20vb2bBm4XrzsyVod0wHAviIyocwLvlMPlkTLS0nZ-e9VMQEiNsKgewnvS5ZIbCZYoHIvWnrOCryW_k9OXtnL6FB6Px4YE52DvafwUP62RmrKw2YXX-58y_psBpPnnTW2sBP-7aPf4Cxg4mFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VDzLlgJBggvI2iR-TQ4IIZZVS6Hi0Ep7C1k_uKBsYbeq-Gv8OmbiZAuq2lsvuThjWZ9n7Pk89gzAS2mx0iE2QspSC4XBi7mXXpTRGuOCmVeRzzu-HJq9Y_Vppmcb8Gd4C8PXKoc1sVuo_cLxGfmYQ5dGEqOqxrG_FvF1Mn138lNwBSmOtA7lNJKKHITfZ0Tflm_3JzTXr8py-vHow57oKwwIp4xZCfSckI8-iC5i7gubxyIWpQ_e-MYa5YLWQfmGWEksrAw0fJRFo7GpXGWDpH5vwE0rdcE2ZmdrsqfLKhXUtQoJB7RDRFXieMmkid9F5yK3pRLy_z3xgqN7IUjb7X3Tu7DVO63Z-6Rl92AjtPfhzj-pDB_A5OhsITyXCkhpPjLyhJNyZ-QWZy0T7O9dimvWhMx1xSRIMlsNZ_tE2R_C8bXg9wg220UbHkOmSTtiFbtkNEpjRGe0bwgfr8IclRxBPmBUuz59OVfR-FF3YXSJdYK1JlhrhrUmkddrkZOUu-Oqn3cH4OvejJf1udJd0szJ8RENjuDFupnsk4MuTRsWp10XxMqIp-oRbKf5XA-GXGfyDVj6zTDB551fOtKdq0f6HG6RYdSf9w8PnsDtMmmZyItd2Fz9Og1PyYdazZ91yprBt-u2jr932CpE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+materials+for+next-generation+computing+technologies&rft.jtitle=Nature+nanotechnology&rft.au=Liu%2C+Chunsen&rft.au=Chen%2C+Huawei&rft.au=Wang%2C+Shuiyuan&rft.au=Liu%2C+Qi&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=7&rft.spage=545&rft.epage=557&rft_id=info:doi/10.1038%2Fs41565-020-0724-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |