Revolutionizing tomato disease detection in complex environments

In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task’s extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1409544
Main Authors Xin, Diye, Li, Tianqi
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 16.09.2024
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2024.1409544

Cover

Loading…
Abstract In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task’s extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm’s backbone network, aimed at reducing the model’s size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model’s performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.
AbstractList In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task’s extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm’s backbone network, aimed at reducing the model’s size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model’s performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.
In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task's extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm's backbone network, aimed at reducing the model's size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model's performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task's extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm's backbone network, aimed at reducing the model's size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model's performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.
Author Xin, Diye
Li, Tianqi
AuthorAffiliation 2 East China University of Science and Technology, School of Biotechnology , Shanghai , China
1 East China University of Science and Technology, School of Information Science and Engineering , Shanghai , China
AuthorAffiliation_xml – name: 1 East China University of Science and Technology, School of Information Science and Engineering , Shanghai , China
– name: 2 East China University of Science and Technology, School of Biotechnology , Shanghai , China
Author_xml – sequence: 1
  givenname: Diye
  surname: Xin
  fullname: Xin, Diye
– sequence: 2
  givenname: Tianqi
  surname: Li
  fullname: Li, Tianqi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39354942$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtrFDEUDlKxtfYH-CLz6MuuuZzJTJ5UipdCQRAF30ImOVlTZpJ1kl2qv96Mu5bWB_OSkPPdDt9TchJTREKeM7oWolev_HbMa045rBlQ1QI8ImdMSliB5N9O7r1PyUXON7SellKluifkVCjRggJ-Rt58xn0adyWkGH6FuGlKmkxJjQsZTcbGYUG7TJsQG5um7Yi3DcZ9mFOcMJb8jDz2Zsx4cbzPydf3775cflxdf_pwdfn2emVByrLql4TU9giMutbyas4YRRBUGelhoNB76F0rBz5Q2XW27aUXOFCDg6g8cU6uDroumRu9ncNk5p86maD_fKR5o81cgh1Rd9Z5ztF4wSjQziswILxyXChJBXNV6_VBa7sbJnS27jGb8YHow0kM3_Um7TVjAMBBVoWXR4U5_dhhLnoK2eI4mohpl7VgrO4ne1iCv7hvdufyt4MKYAeAnVPOM_o7CKN6qVovVeulan2sunK6fzg2FLP0VPOG8T_M30sort4
CitedBy_id crossref_primary_10_3390_agriculture15010081
Cites_doi 10.1016/j.matpr.2021.11.398
10.48550/arXiv.2004.10934
10.1016/j.foodchem.2022.135319
10.18174/642267
10.3390/e23091160
10.5281/zenodo.7002879
10.3390/agriculture13071361
10.1109/TPAMI.2015.2439281
10.1016/j.procs.2020.03.225
10.48550/arXiv.1312.4400
10.48550/arXiv.2304.08069
10.3390/agronomy12071580
10.1109/5.726791
10.1109/tpami.2016.2577031
10.3389/fpls.2022.1091655
10.1109/ICDAR.2003.1227801
10.1016/j.compbiomed.2024.107917
10.48550/arXiv.1804.02767
10.3389/fpls.2022.810546
10.3390/agriculture13102021
10.2352/J.ImagingSci.Technol.2009.53.3.030201
10.12791/KSBEC.2022.31.4.376
10.1109/TPAMI.2019.2938758
10.1038/s41396-020-00882-x
10.48550/arXiv.2402.13616
10.1016/j.micpro.2020.103615
10.1016/j.asoc.2014.01.020
10.48550/arXiv.2401.10525
10.3390/agronomy13071779
ContentType Journal Article
Copyright Copyright © 2024 Xin and Li.
Copyright © 2024 Xin and Li 2024 Xin and Li
Copyright_xml – notice: Copyright © 2024 Xin and Li.
– notice: Copyright © 2024 Xin and Li 2024 Xin and Li
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2024.1409544
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_7cdf22eaf310407f94a43f9d2396031d
PMC11444246
39354942
10_3389_fpls_2024_1409544
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c466t-895440c8e410d5c2942110e4309a6f4b048f48d56b2b0677c586f3eb0aeb30c83
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 18:31:11 EDT 2025
Fri Jul 11 05:20:16 EDT 2025
Thu Apr 03 06:55:36 EDT 2025
Tue Jul 01 01:39:51 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Real-Time-Detection-Transformer
feature fusion
Cascaded Group Attention
Focaler-CIoU loss function
lightweight backbone
tomato leaf disease
Language English
License Copyright © 2024 Xin and Li.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-895440c8e410d5c2942110e4309a6f4b048f48d56b2b0677c586f3eb0aeb30c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Jakub Nalepa, Silesian University of Technology, Poland
Edited by: Mohsen Yoosefzadeh Najafabadi, University of Guelph, Canada
Sreedevi A., K L University, India
These authors have contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2024.1409544
PMID 39354942
PQID 3112116848
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7cdf22eaf310407f94a43f9d2396031d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11444246
proquest_miscellaneous_3112116848
pubmed_primary_39354942
crossref_primary_10_3389_fpls_2024_1409544
crossref_citationtrail_10_3389_fpls_2024_1409544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-16
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Agarwal (B1) 2020; 167
Liu (B22) 2018
Rahman (B28) 2016
Saleem (B31) 2022; 12
Zhang (B44) 2022
Wang (B35) 2023
Coelho (B8) 2023; 410
Simard (B32) 2003
Sujatha (B33) 2021; 80
Geisseler (B11) 2014; 1
Howard (B15) 2019
Chen (B6) 2024; 170
Bochkovskiy (B3) 2020
Pallathadka (B27) 2022; 51
Ren (B30) 2016; 39
Lv (B25) 2024
Liu (B23) 2016
Yang (B42) 2021
Hernandez (B14) 2021; 15
He (B12) 2017
Redmon (B29) 2018
Wang (B37) 2021; 23
Lin (B21) 2013
Gao (B10) 2019; 43
Dong (B9) 2015; 38
Wang (B36) 2022; 13
Yang (B41) 2023; 13
Zhang (B43) 2023; 13
Azim (B2) 2014; 18
LeCun (B19) 1998; 86
Jocher (B17) 2022
Zhang (B45) 2024
Chollet (B7) 2017
Teng (B34) 2022; 13
Wang (B38) 2020
Lee (B20) 2022; 31
Wang (B39) 2024
He (B13) 2016
Hu (B16) 2018
Chen (B5) 2023
Lambooij (B18) 2009; 53
Woo (B40) 2018
Min (B26) 2023
Carion (B4) 2020
Lu (B24) 2023; 13
References_xml – volume: 51
  start-page: 2277
  year: 2022
  ident: B27
  article-title: Application of machine learning techniques in rice leaf disease detection
  publication-title: Materials Today: Proc.
  doi: 10.1016/j.matpr.2021.11.398
– start-page: 2961
  year: 2017
  ident: B12
  article-title: Mask r-cnn
– start-page: 11534
  year: 2020
  ident: B38
  article-title: ECA-Net: Efficient channel attention for deep convolutional neural networks
– year: 2020
  ident: B3
  article-title: Yolov4: Optimal speed and accuracy of object detection
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.2004.10934
– volume: 410
  year: 2023
  ident: B8
  article-title: Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.135319
– volume-title: Bio-economic modelling of high-tech greenhouse production systems in China
  year: 2023
  ident: B26
  doi: 10.18174/642267
– volume: 23
  year: 2021
  ident: B37
  article-title: A crop image segmentation and extraction algorithm based on mask RCNN
  publication-title: Entropy
  doi: 10.3390/e23091160
– start-page: 11863
  year: 2021
  ident: B42
  article-title: Simam: A simple, parameter-free attention module for convolutional neural networks
– year: 2022
  ident: B17
  article-title: ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations
  publication-title: Zenodo
  doi: 10.5281/zenodo.7002879
– start-page: 7464
  year: 2023
  ident: B35
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– volume: 13
  year: 2023
  ident: B41
  article-title: Disease detection and identification of rice leaf based on improved detection transformer
  publication-title: Agriculture
  doi: 10.3390/agriculture13071361
– volume: 38
  start-page: 295
  year: 2015
  ident: B9
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– start-page: 1251
  year: 2017
  ident: B7
  article-title: Xception: Deep learning with depthwise separable convolutions
– start-page: 770
  year: 2016
  ident: B13
  article-title: Deep residual learning for image recognition
– volume: 167
  start-page: 293
  year: 2020
  ident: B1
  article-title: ToLeD: Tomato leaf disease detection using convolution neural network
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.03.225
– start-page: 1314
  year: 2019
  ident: B15
  article-title: Searching for mobilenetv3
– year: 2013
  ident: B21
  article-title: Network in network
  publication-title: arXiv preprint
  doi: 10.48550/arXiv.1312.4400
– year: 2024
  ident: B25
  article-title: Detrs beat yolos on real-time object detection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
  doi: 10.48550/arXiv.2304.08069
– start-page: 234
  year: 2016
  ident: B28
  article-title: Optimizing intersection-over-union in deep neural networks for image segmentation
– volume: 12
  start-page: 1580
  year: 2022
  ident: B31
  article-title: Weed detection by faster RCNN model: An enhanced anchor box approach
  publication-title: Agronomy
  doi: 10.3390/agronomy12071580
– start-page: 21
  year: 2016
  ident: B23
  article-title: Ssd: Single shot multibox detector
– volume: 86
  start-page: 2278
  year: 1998
  ident: B19
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 39
  start-page: 1137
  year: 2016
  ident: B30
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2016.2577031
– volume: 13
  year: 2022
  ident: B36
  article-title: TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1091655
– start-page: 7132
  year: 2018
  ident: B16
  article-title: Squeeze-and-excitation networks
– volume-title: Best practices for convolutional neural networks applied to visual document analysis
  year: 2003
  ident: B32
  doi: 10.1109/ICDAR.2003.1227801
– volume: 170
  year: 2024
  ident: B6
  article-title: Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.107917
– year: 2018
  ident: B29
  article-title: Yolov3: An incremental improvement
  publication-title: arXiv preprint arXiv:1804.02767
  doi: 10.48550/arXiv.1804.02767
– volume: 13
  year: 2022
  ident: B34
  article-title: MSR-RCNN: a multi-class crop pest detection network based on a multi-scale super-resolution feature enhancement module
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.810546
– volume: 13
  year: 2023
  ident: B24
  article-title: Green total factor efficiency in vegetable production: A comprehensive ecological analysis of China’s practices
  publication-title: Agriculture
  doi: 10.3390/agriculture13102021
– start-page: 3
  year: 2018
  ident: B40
  article-title: Cbam: Convolutional block attention module
– volume: 53
  start-page: 30201
  year: 2009
  ident: B18
  article-title: Visual discomfort and visual fatigue of stereoscopic displays: A review
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2009.53.3.030201
– volume: 31
  start-page: 376
  year: 2022
  ident: B20
  article-title: Forecasting leaf mold and gray leaf spot incidence in tomato and fungicide spray scheduling
  publication-title: J. Bio-Environment Control
  doi: 10.12791/KSBEC.2022.31.4.376
– volume: 43
  start-page: 652
  year: 2019
  ident: B10
  article-title: Res2net: A new multi-scale backbone architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– volume: 15
  start-page: 1722
  year: 2021
  ident: B14
  article-title: Environmental stress destabilizes microbial networks
  publication-title: ISME J.
  doi: 10.1038/s41396-020-00882-x
– start-page: 12021
  year: 2023
  ident: B5
  article-title: Run, Don’t walk: Chasing higher FLOPS for faster neural networks
– year: 2024
  ident: B39
  article-title: YOLOv9: learning what you want to learn using programmable gradient information
  publication-title: arXiv preprint arXiv:2402.13616
  doi: 10.48550/arXiv.2402.13616
– start-page: 6662
  year: 2022
  ident: B44
  article-title: K-converter: An unsupervised singing voice conversion system
– volume: 80
  year: 2021
  ident: B33
  article-title: Performance of deep learning vs machine learning in plant leaf disease detection
  publication-title: Microprocessors Microsystems
  doi: 10.1016/j.micpro.2020.103615
– volume: 1
  year: 2014
  ident: B11
  article-title: Production of processing tomatoes in California
  publication-title: Assess. Plant fertility fertilizer requirements Agric. Crops California
– start-page: 8759
  year: 2018
  ident: B22
  article-title: Path aggregation network for instance segmentation
– volume: 18
  start-page: 25
  year: 2014
  ident: B2
  article-title: Fully automated real time fatigue detection of drivers through fuzzy expert systems
  publication-title: Appl. Soft Computing
  doi: 10.1016/j.asoc.2014.01.020
– start-page: 213
  volume-title: European conference on computer vision
  year: 2020
  ident: B4
  article-title: End-to-end object detection with transformers
– year: 2024
  ident: B45
  article-title: Focaler-ioU: more focused intersection over union loss
  publication-title: arXiv preprint arXiv:2401.10525
  doi: 10.48550/arXiv.2401.10525
– volume: 13
  year: 2023
  ident: B43
  article-title: A lightweight crop pest detection algorithm based on improved yolov5s
  publication-title: Agronomy
  doi: 10.3390/agronomy13071779
SSID ssj0000500997
Score 2.4140654
Snippet In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1409544
SubjectTerms Cascaded Group Attention
feature fusion
Focaler-CIoU loss function
lightweight backbone
Plant Science
Real-Time-Detection-Transformer
tomato leaf disease
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePAiflu_qOBJqHbTadredEVZBD2IC95C0iS4sLSLdkX99c603WVXRC9e24QmL5POPDJ5w9hJbiI0XZMFTiRJADYWgbbOBi5UkUUXZE1dreHuXvQHcPsUP82V-qKcsEYeuAHuPMmN49wqh3EIkg-XgYLIZYZHGRVINvT3RZ83R6YaVW8KfZLmGBNZWHbuxiNS5-ZwRhJPMcCCI6r1-n8KMr_nSs45n5s1ttpGjf5lM9p1tmSLDbbcKzGy-9hkFw_2rbWg4Se6Ir8qMQ4t_fbwxTe2qhOuCn9Y-HUOuX3352-4bbHBzfXjVT9oKyMEOQhRBSlNIMxTC93QxDnPgHichSjMlHCgcVs6SBFmzTVJxOVxKlxkdaiQO2O_aJt1irKwu8zvaq0o19MJ5yBHvgQxNzxWOlFcmcR5LJzCJPNWNpyqV4wk0gdCVhKykpCVLbIeO511GTeaGb817hH2s4Ykd10_QCOQrRHIv4zAY8fTlZO4PejMQxW2nLzKqEsadiKF1GM7zUrOPkW3knG-3GPpwhovjGXxTTF8riW4kUUCcBB7_zH6fbZCiFAWSlccsE71MrGHGOpU-qi26i8GYfxZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Revolutionizing tomato disease detection in complex environments
URI https://www.ncbi.nlm.nih.gov/pubmed/39354942
https://www.proquest.com/docview/3112116848
https://pubmed.ncbi.nlm.nih.gov/PMC11444246
https://doaj.org/article/7cdf22eaf310407f94a43f9d2396031d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2VglAvqHwHShUkTkgpiTNxkgOiLaJUSOWAWGlvkR3bZaVVUrYpavn1zDjeVRctXHJIbCcez2jexOM3AG9ak5PqmjpxsiwTtIVMtHU2canKLbkga3y1hrOv8nSCX6bFdAuW5a2CAC83hnZcT2qymB9c_7z5QAb_niNO8rfv3MWcibcFHjB7U4F4B-6SYyrZTs8C2h-pvhkP-XIrUmKCUkzHfc7No-zAfT63ijWKNafluf03AdK_8ypvOaqTXXgQEGZ8NKrEQ9iy3SO4d9wTCrx5DIff7K-gbbPf5LbioSfM2sdhoyY2dvDJWV0862Kfb26v49un4Z7A5OTT94-nSaiikLQo5ZBUPJe0rSxmqSlaQdMhl28xT2slHWoyYYcVLYkWmunk2qKSLrc6VRRnU7_8KWx3fWefQ5xprTgv1EnnsKXYCgthRKF0qYQypYsgXYqpaQPFOFe6mDcUarCQGxZyw0JugpAjeLvqcjHya_yv8THLftWQqbH9jX5x3gRLa8rWOCGscgRcKVp1NSrMXW1EXnNFbRPB6-XKNWRKvD-iOttfXTZ5xnx3ssIqgmfjSq5etdSECKq1NV77lvUn3eyHp-umiBNRoHzxz0Ffwg5Pk9NQMrkH28Piyr4irDPoff-PgK6fp9m-1-Y_y577oA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+tomato+disease+detection+in+complex+environments&rft.jtitle=Frontiers+in+plant+science&rft.au=Xin%2C+Diye&rft.au=Li%2C+Tianqi&rft.date=2024-09-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=15&rft.spage=1409544&rft_id=info:doi/10.3389%2Ffpls.2024.1409544&rft_id=info%3Apmid%2F39354942&rft.externalDocID=39354942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon