Revisiting alkaline aerobic lignin oxidation

Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 20; no. 16; pp. 3828 - 3844
Main Authors Schutyser, Wouter, Kruger, Jacob S., Robinson, Allison M., Katahira, Rui, Brandner, David G., Cleveland, Nicholas S., Mittal, Ashutosh, Peterson, Darren J., Meilan, Richard, Román-Leshkov, Yuriy, Beckham, Gregg T.
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p -hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO 4 and LaMn 0.8 Cu 0.2 O 3 , accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p -hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates.
AbstractList Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p -hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO 4 and LaMn 0.8 Cu 0.2 O 3 , accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p -hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates.
Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO4 and LaMn0.8Cu0.2O3, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates.
Alkaline aerobic oxidation is an effective way to produce valuable aromatic chemicals from lignin.
Author Schutyser, Wouter
Cleveland, Nicholas S.
Meilan, Richard
Katahira, Rui
Mittal, Ashutosh
Beckham, Gregg T.
Kruger, Jacob S.
Román-Leshkov, Yuriy
Brandner, David G.
Robinson, Allison M.
Peterson, Darren J.
Author_xml – sequence: 1
  givenname: Wouter
  orcidid: 0000-0001-7248-2588
  surname: Schutyser
  fullname: Schutyser, Wouter
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA, Center for Surface Chemistry and Catalysis
– sequence: 2
  givenname: Jacob S.
  orcidid: 0000-0003-1730-5575
  surname: Kruger
  fullname: Kruger, Jacob S.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 3
  givenname: Allison M.
  surname: Robinson
  fullname: Robinson, Allison M.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 4
  givenname: Rui
  surname: Katahira
  fullname: Katahira, Rui
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 5
  givenname: David G.
  orcidid: 0000-0003-4296-4855
  surname: Brandner
  fullname: Brandner, David G.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 6
  givenname: Nicholas S.
  surname: Cleveland
  fullname: Cleveland, Nicholas S.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 7
  givenname: Ashutosh
  surname: Mittal
  fullname: Mittal, Ashutosh
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 8
  givenname: Darren J.
  surname: Peterson
  fullname: Peterson, Darren J.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
– sequence: 9
  givenname: Richard
  surname: Meilan
  fullname: Meilan, Richard
  organization: Department of Forestry and Natural Resources and Purdue Center for Plant Biology, Purdue University, West Lafayette, USA
– sequence: 10
  givenname: Yuriy
  surname: Román-Leshkov
  fullname: Román-Leshkov, Yuriy
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
– sequence: 11
  givenname: Gregg T.
  orcidid: 0000-0002-3480-212X
  surname: Beckham
  fullname: Beckham, Gregg T.
  organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA
BackLink https://www.osti.gov/biblio/1461588$$D View this record in Osti.gov
BookMark eNpFkEtLAzEUhYNUsK1u_AWD7sTRPGYmmaUM2goFQXQd8rhTU8ekJqnov3ekoqt7LnwczjkzNPHBA0KnBF8RzNrrTiw6jGtMlwdoSqqGlS3lePKnG3qEZiltMCaEN9UUXT7Ch0suO78u1PCqBuehUBCDdqYY3No7X4RPZ1V2wR-jw14NCU5-7xw9390-dcty9bC4725WpamaJpeCM2KJNVphAKuN0ZYJSjUGbKzg1PIej68WuoIxKmhQWvGqqjmoljHD5uhs7xtSdjIZl8G8mOA9mCzHJqQWYoTO99A2hvcdpCw3YRf9mEtSLHhdM9q0I3Wxp0wMKUXo5Ta6NxW_JMHyZzL5Pxn7BjrPXyg
CitedBy_id crossref_primary_10_1007_s13399_020_00897_6
crossref_primary_10_3390_molecules26102887
crossref_primary_10_1021_acs_iecr_2c03970
crossref_primary_10_1021_acsomega_3c04168
crossref_primary_10_1039_D0GC02505D
crossref_primary_10_1016_j_biortech_2019_121878
crossref_primary_10_3390_molecules26247444
crossref_primary_10_1021_acscentsci_1c00729
crossref_primary_10_1039_C9CY00846B
crossref_primary_10_1016_j_fuel_2023_129369
crossref_primary_10_1016_j_rser_2020_110359
crossref_primary_10_1002_cssc_202001025
crossref_primary_10_1016_j_ymben_2021_12_010
crossref_primary_10_1002_cssc_202000601
crossref_primary_10_1039_D1GC02102H
crossref_primary_10_1016_j_ymben_2021_02_005
crossref_primary_10_1016_j_biortech_2022_127183
crossref_primary_10_1016_j_ijbiomac_2023_125203
crossref_primary_10_1016_j_cattod_2019_12_037
crossref_primary_10_1016_j_cattod_2021_03_027
crossref_primary_10_1002_cssc_201802248
crossref_primary_10_1007_s13399_023_03745_5
crossref_primary_10_1063_5_0196825
crossref_primary_10_1016_j_mcat_2023_112947
crossref_primary_10_1016_j_molliq_2023_122378
crossref_primary_10_3389_fbioe_2022_1002145
crossref_primary_10_1016_j_cej_2024_153682
crossref_primary_10_1002_ange_202219217
crossref_primary_10_1016_j_ymben_2022_12_005
crossref_primary_10_1016_j_jclepro_2023_137816
crossref_primary_10_1039_D2GC02660K
crossref_primary_10_26599_NRE_2022_9120006
crossref_primary_10_1021_acssuschemeng_3c00115
crossref_primary_10_1080_02773813_2020_1835984
crossref_primary_10_1016_j_fuproc_2020_106485
crossref_primary_10_1016_j_biortech_2023_129790
crossref_primary_10_1016_j_envres_2019_108998
crossref_primary_10_1016_j_bej_2024_109347
crossref_primary_10_1002_cssc_202300208
crossref_primary_10_1021_acssuschemeng_9b04837
crossref_primary_10_1016_j_mcat_2020_110883
crossref_primary_10_1021_acscatal_3c01309
crossref_primary_10_1021_acssuschemeng_9b01605
crossref_primary_10_1039_D3GC00496A
crossref_primary_10_1016_j_jaap_2020_104853
crossref_primary_10_1016_j_trechm_2020_07_011
crossref_primary_10_1021_acscatal_9b02719
crossref_primary_10_1016_j_cej_2020_126237
crossref_primary_10_1016_j_rser_2019_05_034
crossref_primary_10_1021_acssuschemeng_3c00617
crossref_primary_10_1039_D3CC01555F
crossref_primary_10_3390_catal11111311
crossref_primary_10_1007_s10570_019_02690_9
crossref_primary_10_1016_j_fuproc_2019_106201
crossref_primary_10_1039_D2GC04132D
crossref_primary_10_1039_D4SE00038B
crossref_primary_10_1016_j_cej_2021_132365
crossref_primary_10_1021_jacs_1c08635
crossref_primary_10_3390_molecules29020442
crossref_primary_10_1021_acs_iecr_1c05004
crossref_primary_10_1021_acsomega_0c03953
crossref_primary_10_1039_D1GC02692E
crossref_primary_10_1016_j_cep_2022_109027
crossref_primary_10_1021_acssuschemeng_0c03360
crossref_primary_10_1002_cssc_202201232
crossref_primary_10_1186_s13068_023_02278_3
crossref_primary_10_3390_molecules26154602
crossref_primary_10_1039_D2GC00302C
crossref_primary_10_1002_celc_202101312
crossref_primary_10_1016_j_jechem_2020_08_060
crossref_primary_10_1039_D0CY02158J
crossref_primary_10_1039_D4SU00085D
crossref_primary_10_1021_acssuschemeng_3c08032
crossref_primary_10_1002_anie_201811630
crossref_primary_10_1039_D0CS00134A
crossref_primary_10_3390_polym13030364
crossref_primary_10_1016_j_cej_2023_147874
crossref_primary_10_1016_j_mcat_2023_113551
crossref_primary_10_1186_s13068_022_02139_5
crossref_primary_10_1021_acscatal_2c06206
crossref_primary_10_1016_j_tet_2019_02_009
crossref_primary_10_1039_D1GC02300D
crossref_primary_10_1021_acs_iecr_0c05085
crossref_primary_10_3390_polym14235100
crossref_primary_10_1002_cssc_202001228
crossref_primary_10_1016_j_gee_2022_07_003
crossref_primary_10_1039_D2IM00059H
crossref_primary_10_3390_separations8070096
crossref_primary_10_1016_j_apcata_2020_117567
crossref_primary_10_1039_D2RE00036A
crossref_primary_10_1038_s41467_023_38534_1
crossref_primary_10_1016_j_ijbiomac_2022_12_055
crossref_primary_10_1016_j_apcata_2023_119468
crossref_primary_10_1002_ange_201811630
crossref_primary_10_1039_D2GC03333J
crossref_primary_10_3390_en13205438
crossref_primary_10_1080_02773813_2021_1998127
crossref_primary_10_1016_j_seppur_2024_126780
crossref_primary_10_1016_j_indcrop_2023_116824
crossref_primary_10_1016_j_biombioe_2021_106232
crossref_primary_10_1016_j_apcata_2024_119583
crossref_primary_10_1021_jacs_9b07243
crossref_primary_10_3390_catal11040467
crossref_primary_10_1002_anie_202219217
crossref_primary_10_1002_adma_201901866
crossref_primary_10_1021_acssuschemeng_0c00162
crossref_primary_10_1016_j_cherd_2020_04_021
crossref_primary_10_1016_j_indcrop_2020_112869
crossref_primary_10_1016_j_fuel_2023_128486
crossref_primary_10_1016_j_biortech_2023_128956
crossref_primary_10_1007_s12649_023_02082_y
crossref_primary_10_1016_j_catcom_2022_106532
crossref_primary_10_1021_acsanm_3c01910
crossref_primary_10_1016_j_cattod_2022_08_007
crossref_primary_10_1016_j_indcrop_2020_112473
Cites_doi 10.1039/B916070A
10.1080/15422119.2015.1070178
10.1007/978-3-642-28418-2_12
10.1016/S0926-3373(00)00215-0
10.1002/cssc.201600648
10.1021/ie4007744
10.1126/science.aaf7810
10.1002/adsc.200800614
10.1046/j.1365-313x.2000.00727.x
10.1016/j.cherd.2010.01.021
10.1023/B:KICA.0000038087.95130.a5
10.1007/BF00350692
10.1039/C7GC01479A
10.1016/j.apcata.2008.01.006
10.1007/s12155-015-9583-4
10.1021/ie0601697
10.1039/C5GC01643F
10.1016/0021-9517(81)90171-8
10.1002/cssc.201402503
10.1080/02773819108050276
10.1080/02773813.2014.892993
10.1039/C5EE01322D
10.1039/C5GC01950H
10.1007/s12155-015-9655-5
10.1039/C5EE00204D
10.1039/C6GC00298F
10.1021/ef100768e
10.1002/9783527699827.ch23
10.1021/acs.chemrev.5b00155
10.1021/jacs.5b03693
10.1002/anie.201510351
10.1039/C7GC03110F
10.1021/ie00027a034
10.1016/S0040-6031(00)00532-3
10.1002/ceat.270190206
10.1104/pp.110.155119
10.1039/C7GC01676J
10.1002/cssc.201300964
10.1021/cr500032a
10.1021/cr900354u
10.1002/ceat.201400660
10.1021/acscatal.5b02906
10.1002/cssc.200900242
10.1002/cssc.200800050
10.1515/hfsg.1995.49.3.273
10.1146/annurev-chembioeng-061010-114205
10.1515/hf.2011.071
10.1039/C5EE03718B
10.1007/s10562-008-9588-0
10.3390/ijms18112421
10.1038/nprot.2012.064
10.1039/C5EE03051J
10.1016/j.joule.2017.10.004
10.1016/j.copbio.2015.10.009
10.1039/C7GC02731A
10.1002/cssc.201500131
10.1039/C4EE03230F
10.1021/ie102132a
10.1111/j.1469-8137.2012.04337.x
10.1006/jssc.1999.8327
10.1039/C7GC03747C
10.1021/acssuschemeng.5b01451
10.1016/j.indcrop.2008.03.008
10.1021/acssuschemeng.6b01858
10.1021/acssuschemeng.6b02892
10.1021/jf060722v
10.1039/b411428k
10.1039/C5GC03061G
10.1021/acs.chemrev.7b00588
10.1039/C7GC01324H
10.1080/02773819508009507
10.1021/ie303349j
10.1039/C7EE01298E
10.1021/sc400384w
10.1021/ie950267k
10.1021/acssuschemeng.5b01344
10.1016/j.biombioe.2017.10.046
10.1007/BF00350807
10.1002/cssc.201600237
10.1007/BF02075847
10.1021/op9900028
10.1002/14356007.a18_545.pub4
10.3390/molecules14082747
10.1002/9780470975831.ch10
10.1016/j.apcata.2014.08.023
10.1021/ef8005349
10.1007/s002260100089
10.1039/C5GC01120E
10.1021/ie101402t
10.1126/science.1246843
10.1385/ABAB:91-93:1-9:71
10.1385/1-59745-131-2:143
10.1023/A:1005620521240
10.1021/ie801542g
10.1039/C7GC00195A
10.1039/C7CS00566K
10.1080/02773819708003131
10.1139/v67-487
10.1021/cs500606g
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
OTOTI
DOI 10.1039/C8GC00502H
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 3844
ExternalDocumentID 1461588
10_1039_C8GC00502H
GroupedDBID -JG
0-7
0B8
0R~
0SF
0UZ
1TJ
29I
4.4
53G
5GY
705
70~
71~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AALRI
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAXUO
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACMRT
ADMRA
ADSRN
ADVLN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
AHGXI
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FDB
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
KC5
L-8
M4U
N9A
NDZJH
O9-
OK1
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
70J
AAGNR
ABGFH
ABPTK
OTOTI
ID FETCH-LOGICAL-c466t-8731d1dcba0eedbccbd3822b0e0cd872d7f022bb8b4e502ebeaba74457ea933c3
ISSN 1463-9262
IngestDate Fri May 19 02:18:56 EDT 2023
Thu Oct 10 23:08:12 EDT 2024
Fri Aug 23 02:05:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-8731d1dcba0eedbccbd3822b0e0cd872d7f022bb8b4e502ebeaba74457ea933c3
Notes USDOE
SC0000997
ORCID 0000-0001-7248-2588
0000-0003-4296-4855
0000-0002-3480-212X
0000-0003-1730-5575
0000000317305575
0000000342964855
000000023480212X
0000000172482588
OpenAccessLink https://dspace.mit.edu/bitstream/1721.1/134627/2/45bbbe6ccfebb41e6116c07ec5e3417b7434%281%29.pdf
PQID 2087553269
PQPubID 2047490
PageCount 17
ParticipantIDs osti_scitechconnect_1461588
proquest_journals_2087553269
crossref_primary_10_1039_C8GC00502H
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2018
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Werhan (C8GC00502H-(cit63)/*[position()=1]) 2011; 65
da Costa Sousa (C8GC00502H-(cit37)/*[position()=1]) 2016; 18
Wu (C8GC00502H-(cit75)/*[position()=1]) 1995; 15
Gierer (C8GC00502H-(cit20)/*[position()=1]) 1985; 19
Vanholme (C8GC00502H-(cit5)/*[position()=1]) 2010; 153
Crespin (C8GC00502H-(cit90)/*[position()=1]) 1981; 69
Pu (C8GC00502H-(cit21)/*[position()=1]) 2015; 8
Li (C8GC00502H-(cit1)/*[position()=1]) 2015; 115
Demesa (C8GC00502H-(cit47)/*[position()=1]) 2015; 38
Lu (C8GC00502H-(cit8)/*[position()=1]) 2015; 8
Mottiar (C8GC00502H-(cit93)/*[position()=1]) 2016; 37
Gillet (C8GC00502H-(cit12)/*[position()=1]) 2017; 19
Fargues (C8GC00502H-(cit52)/*[position()=1]) 1996; 35
Mittal (C8GC00502H-(cit36)/*[position()=1]) 2017; 5
Royer (C8GC00502H-(cit86)/*[position()=1]) 2014; 114
Araújo (C8GC00502H-(cit49)/*[position()=1]) 2010; 88
Franke (C8GC00502H-(cit91)/*[position()=1]) 2000; 22
Vardon (C8GC00502H-(cit96)/*[position()=1]) 2015; 8
Meilan (C8GC00502H-(cit92)/*[position()=1]) 2007; 2
Ma (C8GC00502H-(cit48)/*[position()=1]) 2015; 8
Pepper (C8GC00502H-(cit84)/*[position()=1]) 1967; 45
Mota (C8GC00502H-(cit99)/*[position()=1]) 2016; 45
Xiang (C8GC00502H-(cit58)/*[position()=1]) 2001; 91
Renders (C8GC00502H-(cit14)/*[position()=1]) 2017; 10
Voitl (C8GC00502H-(cit62)/*[position()=1]) 2008; 1
Galkin (C8GC00502H-(cit27)/*[position()=1]) 2016; 9
Rodrigues Pinto (C8GC00502H-(cit53)/*[position()=1]) 2011; 50
Buranov (C8GC00502H-(cit6)/*[position()=1]) 2008; 28
Huang (C8GC00502H-(cit39)/*[position()=1]) 2015; 17
Galkin (C8GC00502H-(cit94)/*[position()=1]) 2016; 9
Lu (C8GC00502H-(cit9)/*[position()=1]) 2004; 2
Lyu (C8GC00502H-(cit61)/*[position()=1]) 2018; 108
Mottweiler (C8GC00502H-(cit65)/*[position()=1]) 2015; 8
Dabral (C8GC00502H-(cit98)/*[position()=1]) 2018; 20
Van den Bosch (C8GC00502H-(cit31)/*[position()=1]) 2017; 19
Wu (C8GC00502H-(cit60)/*[position()=1]) 1994; 33
Partenheimer (C8GC00502H-(cit64)/*[position()=1]) 2009; 351
Chundawat (C8GC00502H-(cit18)/*[position()=1]) 2011; 2
Deuss (C8GC00502H-(cit42)/*[position()=1]) 2015; 137
Lisi (C8GC00502H-(cit88)/*[position()=1]) 1999; 146
Rodrigues Pinto (C8GC00502H-(cit43)/*[position()=1]) 2012
Fache (C8GC00502H-(cit44)/*[position()=1]) 2016; 4
Kumar (C8GC00502H-(cit19)/*[position()=1]) 2009; 48
Ma (C8GC00502H-(cit46)/*[position()=1]) 2014; 7
Sannigrahi (C8GC00502H-(cit17)/*[position()=1]) 2013
Narani (C8GC00502H-(cit40)/*[position()=1]) 2015; 17
Prado (C8GC00502H-(cit67)/*[position()=1]) 2016; 18
Ragauskas (C8GC00502H-(cit10)/*[position()=1]) 2014; 344
Zhang (C8GC00502H-(cit80)/*[position()=1]) 2009; 14
Tarabanko (C8GC00502H-(cit55)/*[position()=1]) 2000; 69
Villar (C8GC00502H-(cit83)/*[position()=1]) 1997; 17
Ciambelli (C8GC00502H-(cit87)/*[position()=1]) 2001; 29
Kshirsagar (C8GC00502H-(cit81)/*[position()=1]) 2008; 339
Mathias (C8GC00502H-(cit50)/*[position()=1]) 1995; 49
Zhu (C8GC00502H-(cit85)/*[position()=1]) 2014; 4
Anderson (C8GC00502H-(cit29)/*[position()=1]) 2017; 1
Ragnar (C8GC00502H-(cit16)/*[position()=1]) 2000
Renders (C8GC00502H-(cit97)/*[position()=1]) 2016; 6
Luterbacher (C8GC00502H-(cit38)/*[position()=1]) 2015; 8
Sultanov (C8GC00502H-(cit73)/*[position()=1]) 1991; 11
Saboe (C8GC00502H-(cit95)/*[position()=1]) 2018; 20
Anderson (C8GC00502H-(cit28)/*[position()=1]) 2016; 4
Chen (C8GC00502H-(cit35)/*[position()=1]) 2016; 9
Villar (C8GC00502H-(cit71)/*[position()=1]) 2001; 35
Rinaldi (C8GC00502H-(cit11)/*[position()=1]) 2016; 55
Gierer (C8GC00502H-(cit74)/*[position()=1]) 1986; 20
Vanholme (C8GC00502H-(cit7)/*[position()=1]) 2012; 196
Bjørsvik (C8GC00502H-(cit68)/*[position()=1]) 1999; 3
da Costa Sousa (C8GC00502H-(cit103)/*[position()=1]) 2016; 9
Shuai (C8GC00502H-(cit25)/*[position()=1]) 2017; 19
Guerra (C8GC00502H-(cit33)/*[position()=1]) 2006; 54
Tarabanko (C8GC00502H-(cit56)/*[position()=1]) 2004; 45
Fargues (C8GC00502H-(cit72)/*[position()=1]) 1996; 19
Lora (C8GC00502H-(cit23)/*[position()=1]) 2008
Pinto (C8GC00502H-(cit51)/*[position()=1]) 2013; 52
Stark (C8GC00502H-(cit66)/*[position()=1]) 2010; 3
Patcas (C8GC00502H-(cit89)/*[position()=1]) 2000; 360
Sun (C8GC00502H-(cit4)/*[position()=1]) 2018; 118
Schutyser (C8GC00502H-(cit13)/*[position()=1]) 2017
Sales (C8GC00502H-(cit76)/*[position()=1]) 2006; 45
Schutyser (C8GC00502H-(cit3)/*[position()=1]) 2018; 47
Tarabanko (C8GC00502H-(cit54)/*[position()=1]) 2003; 11
Behling (C8GC00502H-(cit45)/*[position()=1]) 2016; 18
Mate (C8GC00502H-(cit82)/*[position()=1]) 2014; 487
Mansfield (C8GC00502H-(cit102)/*[position()=1]) 2012; 7
Zakzeski (C8GC00502H-(cit2)/*[position()=1]) 2010; 110
Deng (C8GC00502H-(cit78)/*[position()=1]) 2009; 23
Kumaniaev (C8GC00502H-(cit32)/*[position()=1]) 2017; 19
Pacek (C8GC00502H-(cit69)/*[position()=1]) 2013; 52
Tarabanko (C8GC00502H-(cit57)/*[position()=1]) 2017; 18
Shuai (C8GC00502H-(cit26)/*[position()=1]) 2016; 354
Capanema (C8GC00502H-(cit34)/*[position()=1]) 2015; 35
Katahira (C8GC00502H-(cit100)/*[position()=1]) 2016; 4
Shuai (C8GC00502H-(cit15)/*[position()=1]) 2017; 19
Deuss (C8GC00502H-(cit41)/*[position()=1]) 2017; 19
Kim (C8GC00502H-(cit101)/*[position()=1]) 2010; 8
Sturgeon (C8GC00502H-(cit22)/*[position()=1]) 2014; 2
Deng (C8GC00502H-(cit79)/*[position()=1]) 2008; 126
Davis (C8GC00502H-(cit24)/*[position()=1])
Van den Bosch (C8GC00502H-(cit30)/*[position()=1]) 2015; 8
Santos (C8GC00502H-(cit59)/*[position()=1]) 2011; 50
Deng (C8GC00502H-(cit77)/*[position()=1]) 2010; 24
Tarabanko (C8GC00502H-(cit70)/*[position()=1]) 1995; 55
References_xml – volume: 8
  start-page: 576
  year: 2010
  ident: C8GC00502H-(cit101)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B916070A
  contributor:
    fullname: Kim
– volume: 45
  start-page: 227
  year: 2016
  ident: C8GC00502H-(cit99)/*[position()=1]
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2015.1070178
  contributor:
    fullname: Mota
– volume-title: Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science
  year: 2012
  ident: C8GC00502H-(cit43)/*[position()=1]
  doi: 10.1007/978-3-642-28418-2_12
  contributor:
    fullname: Rodrigues Pinto
– volume: 29
  start-page: 239
  year: 2001
  ident: C8GC00502H-(cit87)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/S0926-3373(00)00215-0
  contributor:
    fullname: Ciambelli
– volume: 9
  start-page: 3280
  year: 2016
  ident: C8GC00502H-(cit94)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600648
  contributor:
    fullname: Galkin
– volume: 52
  start-page: 8361
  year: 2013
  ident: C8GC00502H-(cit69)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4007744
  contributor:
    fullname: Pacek
– volume: 354
  start-page: 329
  year: 2016
  ident: C8GC00502H-(cit26)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf7810
  contributor:
    fullname: Shuai
– volume: 351
  start-page: 456
  year: 2009
  ident: C8GC00502H-(cit64)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200800614
  contributor:
    fullname: Partenheimer
– volume: 22
  start-page: 223
  year: 2000
  ident: C8GC00502H-(cit91)/*[position()=1]
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00727.x
  contributor:
    fullname: Franke
– volume: 88
  start-page: 1024
  year: 2010
  ident: C8GC00502H-(cit49)/*[position()=1]
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.01.021
  contributor:
    fullname: Araújo
– volume: 45
  start-page: 569
  year: 2004
  ident: C8GC00502H-(cit56)/*[position()=1]
  publication-title: Kinet. Catal.
  doi: 10.1023/B:KICA.0000038087.95130.a5
  contributor:
    fullname: Tarabanko
– volume: 20
  start-page: 1
  year: 1986
  ident: C8GC00502H-(cit74)/*[position()=1]
  publication-title: Wood Sci. Technol.
  doi: 10.1007/BF00350692
  contributor:
    fullname: Gierer
– volume: 19
  start-page: 4200
  year: 2017
  ident: C8GC00502H-(cit12)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01479A
  contributor:
    fullname: Gillet
– volume: 339
  start-page: 28
  year: 2008
  ident: C8GC00502H-(cit81)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2008.01.006
  contributor:
    fullname: Kshirsagar
– volume: 8
  start-page: 934
  year: 2015
  ident: C8GC00502H-(cit8)/*[position()=1]
  publication-title: BioEnergy Res.
  doi: 10.1007/s12155-015-9583-4
  contributor:
    fullname: Lu
– volume: 45
  start-page: 6627
  year: 2006
  ident: C8GC00502H-(cit76)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0601697
  contributor:
    fullname: Sales
– volume: 17
  start-page: 5046
  year: 2015
  ident: C8GC00502H-(cit40)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC01643F
  contributor:
    fullname: Narani
– volume: 69
  start-page: 359
  year: 1981
  ident: C8GC00502H-(cit90)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(81)90171-8
  contributor:
    fullname: Crespin
– volume: 8
  start-page: 24
  year: 2015
  ident: C8GC00502H-(cit48)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402503
  contributor:
    fullname: Ma
– volume: 11
  start-page: 291
  year: 1991
  ident: C8GC00502H-(cit73)/*[position()=1]
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773819108050276
  contributor:
    fullname: Sultanov
– volume: 35
  start-page: 17
  year: 2015
  ident: C8GC00502H-(cit34)/*[position()=1]
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773813.2014.892993
  contributor:
    fullname: Capanema
– volume: 8
  start-page: 2657
  year: 2015
  ident: C8GC00502H-(cit38)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01322D
  contributor:
    fullname: Luterbacher
– volume: 18
  start-page: 834
  year: 2016
  ident: C8GC00502H-(cit67)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC01950H
  contributor:
    fullname: Prado
– volume: 8
  start-page: 992
  year: 2015
  ident: C8GC00502H-(cit21)/*[position()=1]
  publication-title: BioEnergy Res.
  doi: 10.1007/s12155-015-9655-5
  contributor:
    fullname: Pu
– volume: 8
  start-page: 1748
  year: 2015
  ident: C8GC00502H-(cit30)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00204D
  contributor:
    fullname: Van den Bosch
– volume: 18
  start-page: 4205
  year: 2016
  ident: C8GC00502H-(cit37)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC00298F
  contributor:
    fullname: da Costa Sousa
– volume: 24
  start-page: 4797
  year: 2010
  ident: C8GC00502H-(cit77)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef100768e
  contributor:
    fullname: Deng
– volume-title: Nanotechnology in Catalysis
  year: 2017
  ident: C8GC00502H-(cit13)/*[position()=1]
  doi: 10.1002/9783527699827.ch23
  contributor:
    fullname: Schutyser
– volume: 115
  start-page: 11559
  year: 2015
  ident: C8GC00502H-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00155
  contributor:
    fullname: Li
– volume: 137
  start-page: 7456
  year: 2015
  ident: C8GC00502H-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03693
  contributor:
    fullname: Deuss
– volume: 55
  start-page: 8164
  year: 2016
  ident: C8GC00502H-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510351
  contributor:
    fullname: Rinaldi
– volume: 11
  start-page: 655
  year: 2003
  ident: C8GC00502H-(cit54)/*[position()=1]
  publication-title: Chem. Sustainable Dev.
  contributor:
    fullname: Tarabanko
– volume: 20
  start-page: 170
  year: 2018
  ident: C8GC00502H-(cit98)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC03110F
  contributor:
    fullname: Dabral
– volume: 33
  start-page: 718
  year: 1994
  ident: C8GC00502H-(cit60)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00027a034
  contributor:
    fullname: Wu
– volume: 360
  start-page: 71
  year: 2000
  ident: C8GC00502H-(cit89)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(00)00532-3
  contributor:
    fullname: Patcas
– volume: 19
  start-page: 127
  year: 1996
  ident: C8GC00502H-(cit72)/*[position()=1]
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.270190206
  contributor:
    fullname: Fargues
– volume: 153
  start-page: 895
  year: 2010
  ident: C8GC00502H-(cit5)/*[position()=1]
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.155119
  contributor:
    fullname: Vanholme
– volume: 19
  start-page: 3752
  year: 2017
  ident: C8GC00502H-(cit25)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01676J
  contributor:
    fullname: Shuai
– volume-title: Monomers, Polymers and Composites from Renewable Resources
  year: 2008
  ident: C8GC00502H-(cit23)/*[position()=1]
  contributor:
    fullname: Lora
– volume: 7
  start-page: 412
  year: 2014
  ident: C8GC00502H-(cit46)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300964
  contributor:
    fullname: Ma
– volume: 19
  start-page: 3752
  year: 2017
  ident: C8GC00502H-(cit15)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01676J
  contributor:
    fullname: Shuai
– volume: 114
  start-page: 10292
  year: 2014
  ident: C8GC00502H-(cit86)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500032a
  contributor:
    fullname: Royer
– volume: 110
  start-page: 3552
  year: 2010
  ident: C8GC00502H-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900354u
  contributor:
    fullname: Zakzeski
– volume: 38
  start-page: 2270
  year: 2015
  ident: C8GC00502H-(cit47)/*[position()=1]
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201400660
  contributor:
    fullname: Demesa
– volume: 6
  start-page: 2055
  year: 2016
  ident: C8GC00502H-(cit97)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02906
  contributor:
    fullname: Renders
– volume: 3
  start-page: 719
  year: 2010
  ident: C8GC00502H-(cit66)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900242
  contributor:
    fullname: Stark
– volume: 1
  start-page: 763
  year: 2008
  ident: C8GC00502H-(cit62)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800050
  contributor:
    fullname: Voitl
– volume: 49
  start-page: 273
  year: 1995
  ident: C8GC00502H-(cit50)/*[position()=1]
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1995.49.3.273
  contributor:
    fullname: Mathias
– volume: 2
  start-page: 121
  year: 2011
  ident: C8GC00502H-(cit18)/*[position()=1]
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-061010-114205
  contributor:
    fullname: Chundawat
– volume: 65
  start-page: 703
  year: 2011
  ident: C8GC00502H-(cit63)/*[position()=1]
  publication-title: Holzforschung
  doi: 10.1515/hf.2011.071
  contributor:
    fullname: Werhan
– volume: 9
  start-page: 1237
  year: 2016
  ident: C8GC00502H-(cit35)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03718B
  contributor:
    fullname: Chen
– volume: 126
  start-page: 106
  year: 2008
  ident: C8GC00502H-(cit79)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-008-9588-0
  contributor:
    fullname: Deng
– volume: 18
  start-page: 2421
  year: 2017
  ident: C8GC00502H-(cit57)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18112421
  contributor:
    fullname: Tarabanko
– volume: 7
  start-page: 1579
  year: 2012
  ident: C8GC00502H-(cit102)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.064
  contributor:
    fullname: Mansfield
– volume: 9
  start-page: 1215
  year: 2016
  ident: C8GC00502H-(cit103)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03051J
  contributor:
    fullname: da Costa Sousa
– volume: 1
  start-page: 613
  year: 2017
  ident: C8GC00502H-(cit29)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.004
  contributor:
    fullname: Anderson
– volume: 37
  start-page: 190
  year: 2016
  ident: C8GC00502H-(cit93)/*[position()=1]
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.10.009
  contributor:
    fullname: Mottiar
– volume: 19
  start-page: 5767
  year: 2017
  ident: C8GC00502H-(cit32)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC02731A
  contributor:
    fullname: Kumaniaev
– volume: 8
  start-page: 2106
  year: 2015
  ident: C8GC00502H-(cit65)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500131
  contributor:
    fullname: Mottweiler
– volume: 8
  start-page: 617
  year: 2015
  ident: C8GC00502H-(cit96)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03230F
  contributor:
    fullname: Vardon
– volume: 50
  start-page: 741
  year: 2011
  ident: C8GC00502H-(cit53)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102132a
  contributor:
    fullname: Rodrigues Pinto
– volume: 196
  start-page: 978
  year: 2012
  ident: C8GC00502H-(cit7)/*[position()=1]
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04337.x
  contributor:
    fullname: Vanholme
– volume: 146
  start-page: 176
  year: 1999
  ident: C8GC00502H-(cit88)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1999.8327
  contributor:
    fullname: Lisi
– volume: 20
  start-page: 1791
  year: 2018
  ident: C8GC00502H-(cit95)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC03747C
  contributor:
    fullname: Saboe
– volume: 4
  start-page: 1474
  year: 2016
  ident: C8GC00502H-(cit100)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01451
  contributor:
    fullname: Katahira
– volume: 28
  start-page: 237
  year: 2008
  ident: C8GC00502H-(cit6)/*[position()=1]
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2008.03.008
  contributor:
    fullname: Buranov
– volume: 4
  start-page: 6940
  year: 2016
  ident: C8GC00502H-(cit28)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01858
  contributor:
    fullname: Anderson
– volume: 5
  start-page: 2544
  year: 2017
  ident: C8GC00502H-(cit36)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02892
  contributor:
    fullname: Mittal
– volume: 54
  start-page: 5939
  year: 2006
  ident: C8GC00502H-(cit33)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf060722v
  contributor:
    fullname: Guerra
– volume: 2
  start-page: 2888
  year: 2004
  ident: C8GC00502H-(cit9)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b411428k
  contributor:
    fullname: Lu
– volume: 18
  start-page: 1839
  year: 2016
  ident: C8GC00502H-(cit45)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC03061G
  contributor:
    fullname: Behling
– volume: 118
  start-page: 614
  year: 2018
  ident: C8GC00502H-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00588
  contributor:
    fullname: Sun
– volume: 19
  start-page: 3313
  year: 2017
  ident: C8GC00502H-(cit31)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01324H
  contributor:
    fullname: Van den Bosch
– volume: 15
  start-page: 189
  year: 1995
  ident: C8GC00502H-(cit75)/*[position()=1]
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773819508009507
  contributor:
    fullname: Wu
– volume: 52
  start-page: 4421
  year: 2013
  ident: C8GC00502H-(cit51)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie303349j
  contributor:
    fullname: Pinto
– volume: 10
  start-page: 1551
  year: 2017
  ident: C8GC00502H-(cit14)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01298E
  contributor:
    fullname: Renders
– volume: 2
  start-page: 472
  year: 2014
  ident: C8GC00502H-(cit22)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc400384w
  contributor:
    fullname: Sturgeon
– volume: 35
  start-page: 28
  year: 1996
  ident: C8GC00502H-(cit52)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950267k
  contributor:
    fullname: Fargues
– ident: C8GC00502H-(cit24)/*[position()=1]
  contributor:
    fullname: Davis
– volume: 4
  start-page: 35
  year: 2016
  ident: C8GC00502H-(cit44)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01344
  contributor:
    fullname: Fache
– volume: 108
  start-page: 7
  year: 2018
  ident: C8GC00502H-(cit61)/*[position()=1]
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.10.046
  contributor:
    fullname: Lyu
– volume: 19
  start-page: 289
  year: 1985
  ident: C8GC00502H-(cit20)/*[position()=1]
  publication-title: Wood Sci. Technol.
  doi: 10.1007/BF00350807
  contributor:
    fullname: Gierer
– volume: 9
  start-page: 1544
  year: 2016
  ident: C8GC00502H-(cit27)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600237
  contributor:
    fullname: Galkin
– volume: 55
  start-page: 161
  year: 1995
  ident: C8GC00502H-(cit70)/*[position()=1]
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1007/BF02075847
  contributor:
    fullname: Tarabanko
– volume: 3
  start-page: 330
  year: 1999
  ident: C8GC00502H-(cit68)/*[position()=1]
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op9900028
  contributor:
    fullname: Bjørsvik
– volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2000
  ident: C8GC00502H-(cit16)/*[position()=1]
  doi: 10.1002/14356007.a18_545.pub4
  contributor:
    fullname: Ragnar
– volume: 14
  start-page: 2747
  year: 2009
  ident: C8GC00502H-(cit80)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules14082747
  contributor:
    fullname: Zhang
– volume-title: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
  year: 2013
  ident: C8GC00502H-(cit17)/*[position()=1]
  doi: 10.1002/9780470975831.ch10
  contributor:
    fullname: Sannigrahi
– volume: 487
  start-page: 130
  year: 2014
  ident: C8GC00502H-(cit82)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2014.08.023
  contributor:
    fullname: Mate
– volume: 23
  start-page: 19
  year: 2009
  ident: C8GC00502H-(cit78)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/ef8005349
  contributor:
    fullname: Deng
– volume: 35
  start-page: 245
  year: 2001
  ident: C8GC00502H-(cit71)/*[position()=1]
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s002260100089
  contributor:
    fullname: Villar
– volume: 17
  start-page: 4941
  year: 2015
  ident: C8GC00502H-(cit39)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC01120E
  contributor:
    fullname: Huang
– volume: 50
  start-page: 291
  year: 2011
  ident: C8GC00502H-(cit59)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101402t
  contributor:
    fullname: Santos
– volume: 344
  start-page: 709
  year: 2014
  ident: C8GC00502H-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1246843
  contributor:
    fullname: Ragauskas
– volume: 91
  start-page: 71
  year: 2001
  ident: C8GC00502H-(cit58)/*[position()=1]
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:91-93:1-9:71
  contributor:
    fullname: Xiang
– volume: 2
  volume-title: Agrobacterium Protocols
  year: 2007
  ident: C8GC00502H-(cit92)/*[position()=1]
  doi: 10.1385/1-59745-131-2:143
  contributor:
    fullname: Meilan
– volume: 69
  start-page: 361
  year: 2000
  ident: C8GC00502H-(cit55)/*[position()=1]
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1023/A:1005620521240
  contributor:
    fullname: Tarabanko
– volume: 48
  start-page: 3713
  year: 2009
  ident: C8GC00502H-(cit19)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801542g
  contributor:
    fullname: Kumar
– volume: 19
  start-page: 2774
  year: 2017
  ident: C8GC00502H-(cit41)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC00195A
  contributor:
    fullname: Deuss
– volume: 47
  start-page: 852
  year: 2018
  ident: C8GC00502H-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00566K
  contributor:
    fullname: Schutyser
– volume: 17
  start-page: 259
  year: 1997
  ident: C8GC00502H-(cit83)/*[position()=1]
  publication-title: J. Wood Chem. Technol.
  doi: 10.1080/02773819708003131
  contributor:
    fullname: Villar
– volume: 45
  start-page: 3009
  year: 1967
  ident: C8GC00502H-(cit84)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v67-487
  contributor:
    fullname: Pepper
– volume: 4
  start-page: 2917
  year: 2014
  ident: C8GC00502H-(cit85)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500606g
  contributor:
    fullname: Zhu
SSID ssj0011764
Score 2.600283
Snippet Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of...
Alkaline aerobic oxidation is an effective way to produce valuable aromatic chemicals from lignin.
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 3828
SubjectTerms Acetosyringone
Aromatic compounds
Benchmarks
Biorefineries
Carboxylic acids
Catalysis
Catalysts
Depolymerization
Fractionation
Green chemistry
Lignin
Lignocellulose
Lignosulfonates
Monomers
Nitrobenzene
Organic chemistry
Oxidation
Oxygen
Partial pressure
Phenolic compounds
Phenols
Poplar
Reaction time
Refining
Sodium hydroxide
Substrates
Sulfonation
Syringaldehyde
Vanillin
Viability
Yield
Title Revisiting alkaline aerobic lignin oxidation
URI https://www.proquest.com/docview/2087553269
https://www.osti.gov/biblio/1461588
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAcEAQq0hZkCW7FYHvX9voYRWlDGxUJOSI3ax92EhElKLGlwt_gDzP78AOKEHCxko12Zc9MZr4dz3yL0OsgTyCuJ9hlns9dwovQpUUcuFHAvKKQEkCsrvK9iaZzcrUIF73e907VUlXyt-Lbb_tK_kerMAZ6VV2y_6DZZlEYgM-gX7iChuH6Vzr-qFvDdeEy23xmGjGyXDErifPNeql4U3e3a9kK36JQXWxzLuqz3nRagG01dUSbHaw5JVRmffnLhL1N-uuZl22iVayq8uvBWMGnXdUp_b3eV0szfgU-mLcZ124D2miz0SciNtmga1ay1XpvAG617qYorD81VU0qBVLXn-r6EnujHZdLIuwq1kITkbpj5kiR2k8HXtceu14XU9tgntuvhlLyTnTwsCJXFXQpFO1NsGpjYP3e_-ZDdjGfzbJ0skjvoaMAvFfYR0ejSfp-1ryc8mPNStbceM16i5N37do_4Zz-Dvz1nWivIUz6GD2yew9nZAzpCerl2wG63whrgB522CkH6HjSNkHCNBsFDk_Rm9bunNruHGt3jrE7p7G7Z2h-MUnHU9eeuuEKEkUlhEfsS18KzjzAT1wILkG-AfdyT0gaBzIuAPdxTjnJ4UHBCTDOYkLCOGcJxgIfo_52t82fIycSiU8TRnEkCiJgpSiSMc6JpKQgWHhD9KqWUfbFkKtkuigCJ9mYXo61JKdDdKrElwEkVLzGQhWAiVLtWf2Q0iE6q6Wa2T_GIQvUOQ0h7EySkz__fIoeKIM1ObUz1C_3Vf4CUGbJX1qt_wDH-4NK
link.rule.ids 230,315,783,787,888,4031,27935,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+alkaline+aerobic+lignin+oxidation&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Schutyser%2C+Wouter&rft.au=Kruger%2C+Jacob+S&rft.au=Robinson%2C+Allison+M&rft.au=Katahira%2C+Rui&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=20&rft.issue=16&rft.spage=3828&rft.epage=3844&rft_id=info:doi/10.1039%2Fc8gc00502h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon