Revisiting alkaline aerobic lignin oxidation
Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 20; no. 16; pp. 3828 - 3844 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and
p
-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO
4
and LaMn
0.8
Cu
0.2
O
3
, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or
p
-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates. |
---|---|
AbstractList | Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and
p
-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO
4
and LaMn
0.8
Cu
0.2
O
3
, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or
p
-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates. Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO4 and LaMn0.8Cu0.2O3, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates. Alkaline aerobic oxidation is an effective way to produce valuable aromatic chemicals from lignin. |
Author | Schutyser, Wouter Cleveland, Nicholas S. Meilan, Richard Katahira, Rui Mittal, Ashutosh Beckham, Gregg T. Kruger, Jacob S. Román-Leshkov, Yuriy Brandner, David G. Robinson, Allison M. Peterson, Darren J. |
Author_xml | – sequence: 1 givenname: Wouter orcidid: 0000-0001-7248-2588 surname: Schutyser fullname: Schutyser, Wouter organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA, Center for Surface Chemistry and Catalysis – sequence: 2 givenname: Jacob S. orcidid: 0000-0003-1730-5575 surname: Kruger fullname: Kruger, Jacob S. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 3 givenname: Allison M. surname: Robinson fullname: Robinson, Allison M. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 4 givenname: Rui surname: Katahira fullname: Katahira, Rui organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 5 givenname: David G. orcidid: 0000-0003-4296-4855 surname: Brandner fullname: Brandner, David G. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 6 givenname: Nicholas S. surname: Cleveland fullname: Cleveland, Nicholas S. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 7 givenname: Ashutosh surname: Mittal fullname: Mittal, Ashutosh organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 8 givenname: Darren J. surname: Peterson fullname: Peterson, Darren J. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA – sequence: 9 givenname: Richard surname: Meilan fullname: Meilan, Richard organization: Department of Forestry and Natural Resources and Purdue Center for Plant Biology, Purdue University, West Lafayette, USA – sequence: 10 givenname: Yuriy surname: Román-Leshkov fullname: Román-Leshkov, Yuriy organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA – sequence: 11 givenname: Gregg T. orcidid: 0000-0002-3480-212X surname: Beckham fullname: Beckham, Gregg T. organization: National Bioenergy Center, National Renewable Energy Laboratory, Golden, USA |
BackLink | https://www.osti.gov/biblio/1461588$$D View this record in Osti.gov |
BookMark | eNpFkEtLAzEUhYNUsK1u_AWD7sTRPGYmmaUM2goFQXQd8rhTU8ekJqnov3ekoqt7LnwczjkzNPHBA0KnBF8RzNrrTiw6jGtMlwdoSqqGlS3lePKnG3qEZiltMCaEN9UUXT7Ch0suO78u1PCqBuehUBCDdqYY3No7X4RPZ1V2wR-jw14NCU5-7xw9390-dcty9bC4725WpamaJpeCM2KJNVphAKuN0ZYJSjUGbKzg1PIej68WuoIxKmhQWvGqqjmoljHD5uhs7xtSdjIZl8G8mOA9mCzHJqQWYoTO99A2hvcdpCw3YRf9mEtSLHhdM9q0I3Wxp0wMKUXo5Ta6NxW_JMHyZzL5Pxn7BjrPXyg |
CitedBy_id | crossref_primary_10_1007_s13399_020_00897_6 crossref_primary_10_3390_molecules26102887 crossref_primary_10_1021_acs_iecr_2c03970 crossref_primary_10_1021_acsomega_3c04168 crossref_primary_10_1039_D0GC02505D crossref_primary_10_1016_j_biortech_2019_121878 crossref_primary_10_3390_molecules26247444 crossref_primary_10_1021_acscentsci_1c00729 crossref_primary_10_1039_C9CY00846B crossref_primary_10_1016_j_fuel_2023_129369 crossref_primary_10_1016_j_rser_2020_110359 crossref_primary_10_1002_cssc_202001025 crossref_primary_10_1016_j_ymben_2021_12_010 crossref_primary_10_1002_cssc_202000601 crossref_primary_10_1039_D1GC02102H crossref_primary_10_1016_j_ymben_2021_02_005 crossref_primary_10_1016_j_biortech_2022_127183 crossref_primary_10_1016_j_ijbiomac_2023_125203 crossref_primary_10_1016_j_cattod_2019_12_037 crossref_primary_10_1016_j_cattod_2021_03_027 crossref_primary_10_1002_cssc_201802248 crossref_primary_10_1007_s13399_023_03745_5 crossref_primary_10_1063_5_0196825 crossref_primary_10_1016_j_mcat_2023_112947 crossref_primary_10_1016_j_molliq_2023_122378 crossref_primary_10_3389_fbioe_2022_1002145 crossref_primary_10_1016_j_cej_2024_153682 crossref_primary_10_1002_ange_202219217 crossref_primary_10_1016_j_ymben_2022_12_005 crossref_primary_10_1016_j_jclepro_2023_137816 crossref_primary_10_1039_D2GC02660K crossref_primary_10_26599_NRE_2022_9120006 crossref_primary_10_1021_acssuschemeng_3c00115 crossref_primary_10_1080_02773813_2020_1835984 crossref_primary_10_1016_j_fuproc_2020_106485 crossref_primary_10_1016_j_biortech_2023_129790 crossref_primary_10_1016_j_envres_2019_108998 crossref_primary_10_1016_j_bej_2024_109347 crossref_primary_10_1002_cssc_202300208 crossref_primary_10_1021_acssuschemeng_9b04837 crossref_primary_10_1016_j_mcat_2020_110883 crossref_primary_10_1021_acscatal_3c01309 crossref_primary_10_1021_acssuschemeng_9b01605 crossref_primary_10_1039_D3GC00496A crossref_primary_10_1016_j_jaap_2020_104853 crossref_primary_10_1016_j_trechm_2020_07_011 crossref_primary_10_1021_acscatal_9b02719 crossref_primary_10_1016_j_cej_2020_126237 crossref_primary_10_1016_j_rser_2019_05_034 crossref_primary_10_1021_acssuschemeng_3c00617 crossref_primary_10_1039_D3CC01555F crossref_primary_10_3390_catal11111311 crossref_primary_10_1007_s10570_019_02690_9 crossref_primary_10_1016_j_fuproc_2019_106201 crossref_primary_10_1039_D2GC04132D crossref_primary_10_1039_D4SE00038B crossref_primary_10_1016_j_cej_2021_132365 crossref_primary_10_1021_jacs_1c08635 crossref_primary_10_3390_molecules29020442 crossref_primary_10_1021_acs_iecr_1c05004 crossref_primary_10_1021_acsomega_0c03953 crossref_primary_10_1039_D1GC02692E crossref_primary_10_1016_j_cep_2022_109027 crossref_primary_10_1021_acssuschemeng_0c03360 crossref_primary_10_1002_cssc_202201232 crossref_primary_10_1186_s13068_023_02278_3 crossref_primary_10_3390_molecules26154602 crossref_primary_10_1039_D2GC00302C crossref_primary_10_1002_celc_202101312 crossref_primary_10_1016_j_jechem_2020_08_060 crossref_primary_10_1039_D0CY02158J crossref_primary_10_1039_D4SU00085D crossref_primary_10_1021_acssuschemeng_3c08032 crossref_primary_10_1002_anie_201811630 crossref_primary_10_1039_D0CS00134A crossref_primary_10_3390_polym13030364 crossref_primary_10_1016_j_cej_2023_147874 crossref_primary_10_1016_j_mcat_2023_113551 crossref_primary_10_1186_s13068_022_02139_5 crossref_primary_10_1021_acscatal_2c06206 crossref_primary_10_1016_j_tet_2019_02_009 crossref_primary_10_1039_D1GC02300D crossref_primary_10_1021_acs_iecr_0c05085 crossref_primary_10_3390_polym14235100 crossref_primary_10_1002_cssc_202001228 crossref_primary_10_1016_j_gee_2022_07_003 crossref_primary_10_1039_D2IM00059H crossref_primary_10_3390_separations8070096 crossref_primary_10_1016_j_apcata_2020_117567 crossref_primary_10_1039_D2RE00036A crossref_primary_10_1038_s41467_023_38534_1 crossref_primary_10_1016_j_ijbiomac_2022_12_055 crossref_primary_10_1016_j_apcata_2023_119468 crossref_primary_10_1002_ange_201811630 crossref_primary_10_1039_D2GC03333J crossref_primary_10_3390_en13205438 crossref_primary_10_1080_02773813_2021_1998127 crossref_primary_10_1016_j_seppur_2024_126780 crossref_primary_10_1016_j_indcrop_2023_116824 crossref_primary_10_1016_j_biombioe_2021_106232 crossref_primary_10_1016_j_apcata_2024_119583 crossref_primary_10_1021_jacs_9b07243 crossref_primary_10_3390_catal11040467 crossref_primary_10_1002_anie_202219217 crossref_primary_10_1002_adma_201901866 crossref_primary_10_1021_acssuschemeng_0c00162 crossref_primary_10_1016_j_cherd_2020_04_021 crossref_primary_10_1016_j_indcrop_2020_112869 crossref_primary_10_1016_j_fuel_2023_128486 crossref_primary_10_1016_j_biortech_2023_128956 crossref_primary_10_1007_s12649_023_02082_y crossref_primary_10_1016_j_catcom_2022_106532 crossref_primary_10_1021_acsanm_3c01910 crossref_primary_10_1016_j_cattod_2022_08_007 crossref_primary_10_1016_j_indcrop_2020_112473 |
Cites_doi | 10.1039/B916070A 10.1080/15422119.2015.1070178 10.1007/978-3-642-28418-2_12 10.1016/S0926-3373(00)00215-0 10.1002/cssc.201600648 10.1021/ie4007744 10.1126/science.aaf7810 10.1002/adsc.200800614 10.1046/j.1365-313x.2000.00727.x 10.1016/j.cherd.2010.01.021 10.1023/B:KICA.0000038087.95130.a5 10.1007/BF00350692 10.1039/C7GC01479A 10.1016/j.apcata.2008.01.006 10.1007/s12155-015-9583-4 10.1021/ie0601697 10.1039/C5GC01643F 10.1016/0021-9517(81)90171-8 10.1002/cssc.201402503 10.1080/02773819108050276 10.1080/02773813.2014.892993 10.1039/C5EE01322D 10.1039/C5GC01950H 10.1007/s12155-015-9655-5 10.1039/C5EE00204D 10.1039/C6GC00298F 10.1021/ef100768e 10.1002/9783527699827.ch23 10.1021/acs.chemrev.5b00155 10.1021/jacs.5b03693 10.1002/anie.201510351 10.1039/C7GC03110F 10.1021/ie00027a034 10.1016/S0040-6031(00)00532-3 10.1002/ceat.270190206 10.1104/pp.110.155119 10.1039/C7GC01676J 10.1002/cssc.201300964 10.1021/cr500032a 10.1021/cr900354u 10.1002/ceat.201400660 10.1021/acscatal.5b02906 10.1002/cssc.200900242 10.1002/cssc.200800050 10.1515/hfsg.1995.49.3.273 10.1146/annurev-chembioeng-061010-114205 10.1515/hf.2011.071 10.1039/C5EE03718B 10.1007/s10562-008-9588-0 10.3390/ijms18112421 10.1038/nprot.2012.064 10.1039/C5EE03051J 10.1016/j.joule.2017.10.004 10.1016/j.copbio.2015.10.009 10.1039/C7GC02731A 10.1002/cssc.201500131 10.1039/C4EE03230F 10.1021/ie102132a 10.1111/j.1469-8137.2012.04337.x 10.1006/jssc.1999.8327 10.1039/C7GC03747C 10.1021/acssuschemeng.5b01451 10.1016/j.indcrop.2008.03.008 10.1021/acssuschemeng.6b01858 10.1021/acssuschemeng.6b02892 10.1021/jf060722v 10.1039/b411428k 10.1039/C5GC03061G 10.1021/acs.chemrev.7b00588 10.1039/C7GC01324H 10.1080/02773819508009507 10.1021/ie303349j 10.1039/C7EE01298E 10.1021/sc400384w 10.1021/ie950267k 10.1021/acssuschemeng.5b01344 10.1016/j.biombioe.2017.10.046 10.1007/BF00350807 10.1002/cssc.201600237 10.1007/BF02075847 10.1021/op9900028 10.1002/14356007.a18_545.pub4 10.3390/molecules14082747 10.1002/9780470975831.ch10 10.1016/j.apcata.2014.08.023 10.1021/ef8005349 10.1007/s002260100089 10.1039/C5GC01120E 10.1021/ie101402t 10.1126/science.1246843 10.1385/ABAB:91-93:1-9:71 10.1385/1-59745-131-2:143 10.1023/A:1005620521240 10.1021/ie801542g 10.1039/C7GC00195A 10.1039/C7CS00566K 10.1080/02773819708003131 10.1139/v67-487 10.1021/cs500606g |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 OTOTI |
DOI | 10.1039/C8GC00502H |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 3844 |
ExternalDocumentID | 1461588 10_1039_C8GC00502H |
GroupedDBID | -JG 0-7 0B8 0R~ 0SF 0UZ 1TJ 29I 4.4 53G 5GY 705 70~ 71~ 7~J AAEMU AAHBH AAIWI AAJAE AALRI AAMEH AANOJ AAWGC AAXHV AAXPP AAXUO AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACMRT ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF AHGXI AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FDB FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I KC5 L-8 M4U N9A NDZJH O9- OK1 P2P R56 R7B RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SLH VH6 7SR 7ST 7U6 8BQ 8FD C1K JG9 70J AAGNR ABGFH ABPTK OTOTI |
ID | FETCH-LOGICAL-c466t-8731d1dcba0eedbccbd3822b0e0cd872d7f022bb8b4e502ebeaba74457ea933c3 |
ISSN | 1463-9262 |
IngestDate | Fri May 19 02:18:56 EDT 2023 Thu Oct 10 23:08:12 EDT 2024 Fri Aug 23 02:05:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-8731d1dcba0eedbccbd3822b0e0cd872d7f022bb8b4e502ebeaba74457ea933c3 |
Notes | USDOE SC0000997 |
ORCID | 0000-0001-7248-2588 0000-0003-4296-4855 0000-0002-3480-212X 0000-0003-1730-5575 0000000317305575 0000000342964855 000000023480212X 0000000172482588 |
OpenAccessLink | https://dspace.mit.edu/bitstream/1721.1/134627/2/45bbbe6ccfebb41e6116c07ec5e3417b7434%281%29.pdf |
PQID | 2087553269 |
PQPubID | 2047490 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_1461588 proquest_journals_2087553269 crossref_primary_10_1039_C8GC00502H |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United Kingdom |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Werhan (C8GC00502H-(cit63)/*[position()=1]) 2011; 65 da Costa Sousa (C8GC00502H-(cit37)/*[position()=1]) 2016; 18 Wu (C8GC00502H-(cit75)/*[position()=1]) 1995; 15 Gierer (C8GC00502H-(cit20)/*[position()=1]) 1985; 19 Vanholme (C8GC00502H-(cit5)/*[position()=1]) 2010; 153 Crespin (C8GC00502H-(cit90)/*[position()=1]) 1981; 69 Pu (C8GC00502H-(cit21)/*[position()=1]) 2015; 8 Li (C8GC00502H-(cit1)/*[position()=1]) 2015; 115 Demesa (C8GC00502H-(cit47)/*[position()=1]) 2015; 38 Lu (C8GC00502H-(cit8)/*[position()=1]) 2015; 8 Mottiar (C8GC00502H-(cit93)/*[position()=1]) 2016; 37 Gillet (C8GC00502H-(cit12)/*[position()=1]) 2017; 19 Fargues (C8GC00502H-(cit52)/*[position()=1]) 1996; 35 Mittal (C8GC00502H-(cit36)/*[position()=1]) 2017; 5 Royer (C8GC00502H-(cit86)/*[position()=1]) 2014; 114 Araújo (C8GC00502H-(cit49)/*[position()=1]) 2010; 88 Franke (C8GC00502H-(cit91)/*[position()=1]) 2000; 22 Vardon (C8GC00502H-(cit96)/*[position()=1]) 2015; 8 Meilan (C8GC00502H-(cit92)/*[position()=1]) 2007; 2 Ma (C8GC00502H-(cit48)/*[position()=1]) 2015; 8 Pepper (C8GC00502H-(cit84)/*[position()=1]) 1967; 45 Mota (C8GC00502H-(cit99)/*[position()=1]) 2016; 45 Xiang (C8GC00502H-(cit58)/*[position()=1]) 2001; 91 Renders (C8GC00502H-(cit14)/*[position()=1]) 2017; 10 Voitl (C8GC00502H-(cit62)/*[position()=1]) 2008; 1 Galkin (C8GC00502H-(cit27)/*[position()=1]) 2016; 9 Rodrigues Pinto (C8GC00502H-(cit53)/*[position()=1]) 2011; 50 Buranov (C8GC00502H-(cit6)/*[position()=1]) 2008; 28 Huang (C8GC00502H-(cit39)/*[position()=1]) 2015; 17 Galkin (C8GC00502H-(cit94)/*[position()=1]) 2016; 9 Lu (C8GC00502H-(cit9)/*[position()=1]) 2004; 2 Lyu (C8GC00502H-(cit61)/*[position()=1]) 2018; 108 Mottweiler (C8GC00502H-(cit65)/*[position()=1]) 2015; 8 Dabral (C8GC00502H-(cit98)/*[position()=1]) 2018; 20 Van den Bosch (C8GC00502H-(cit31)/*[position()=1]) 2017; 19 Wu (C8GC00502H-(cit60)/*[position()=1]) 1994; 33 Partenheimer (C8GC00502H-(cit64)/*[position()=1]) 2009; 351 Chundawat (C8GC00502H-(cit18)/*[position()=1]) 2011; 2 Deuss (C8GC00502H-(cit42)/*[position()=1]) 2015; 137 Lisi (C8GC00502H-(cit88)/*[position()=1]) 1999; 146 Rodrigues Pinto (C8GC00502H-(cit43)/*[position()=1]) 2012 Fache (C8GC00502H-(cit44)/*[position()=1]) 2016; 4 Kumar (C8GC00502H-(cit19)/*[position()=1]) 2009; 48 Ma (C8GC00502H-(cit46)/*[position()=1]) 2014; 7 Sannigrahi (C8GC00502H-(cit17)/*[position()=1]) 2013 Narani (C8GC00502H-(cit40)/*[position()=1]) 2015; 17 Prado (C8GC00502H-(cit67)/*[position()=1]) 2016; 18 Ragauskas (C8GC00502H-(cit10)/*[position()=1]) 2014; 344 Zhang (C8GC00502H-(cit80)/*[position()=1]) 2009; 14 Tarabanko (C8GC00502H-(cit55)/*[position()=1]) 2000; 69 Villar (C8GC00502H-(cit83)/*[position()=1]) 1997; 17 Ciambelli (C8GC00502H-(cit87)/*[position()=1]) 2001; 29 Kshirsagar (C8GC00502H-(cit81)/*[position()=1]) 2008; 339 Mathias (C8GC00502H-(cit50)/*[position()=1]) 1995; 49 Zhu (C8GC00502H-(cit85)/*[position()=1]) 2014; 4 Anderson (C8GC00502H-(cit29)/*[position()=1]) 2017; 1 Ragnar (C8GC00502H-(cit16)/*[position()=1]) 2000 Renders (C8GC00502H-(cit97)/*[position()=1]) 2016; 6 Luterbacher (C8GC00502H-(cit38)/*[position()=1]) 2015; 8 Sultanov (C8GC00502H-(cit73)/*[position()=1]) 1991; 11 Saboe (C8GC00502H-(cit95)/*[position()=1]) 2018; 20 Anderson (C8GC00502H-(cit28)/*[position()=1]) 2016; 4 Chen (C8GC00502H-(cit35)/*[position()=1]) 2016; 9 Villar (C8GC00502H-(cit71)/*[position()=1]) 2001; 35 Rinaldi (C8GC00502H-(cit11)/*[position()=1]) 2016; 55 Gierer (C8GC00502H-(cit74)/*[position()=1]) 1986; 20 Vanholme (C8GC00502H-(cit7)/*[position()=1]) 2012; 196 Bjørsvik (C8GC00502H-(cit68)/*[position()=1]) 1999; 3 da Costa Sousa (C8GC00502H-(cit103)/*[position()=1]) 2016; 9 Shuai (C8GC00502H-(cit25)/*[position()=1]) 2017; 19 Guerra (C8GC00502H-(cit33)/*[position()=1]) 2006; 54 Tarabanko (C8GC00502H-(cit56)/*[position()=1]) 2004; 45 Fargues (C8GC00502H-(cit72)/*[position()=1]) 1996; 19 Lora (C8GC00502H-(cit23)/*[position()=1]) 2008 Pinto (C8GC00502H-(cit51)/*[position()=1]) 2013; 52 Stark (C8GC00502H-(cit66)/*[position()=1]) 2010; 3 Patcas (C8GC00502H-(cit89)/*[position()=1]) 2000; 360 Sun (C8GC00502H-(cit4)/*[position()=1]) 2018; 118 Schutyser (C8GC00502H-(cit13)/*[position()=1]) 2017 Sales (C8GC00502H-(cit76)/*[position()=1]) 2006; 45 Schutyser (C8GC00502H-(cit3)/*[position()=1]) 2018; 47 Tarabanko (C8GC00502H-(cit54)/*[position()=1]) 2003; 11 Behling (C8GC00502H-(cit45)/*[position()=1]) 2016; 18 Mate (C8GC00502H-(cit82)/*[position()=1]) 2014; 487 Mansfield (C8GC00502H-(cit102)/*[position()=1]) 2012; 7 Zakzeski (C8GC00502H-(cit2)/*[position()=1]) 2010; 110 Deng (C8GC00502H-(cit78)/*[position()=1]) 2009; 23 Kumaniaev (C8GC00502H-(cit32)/*[position()=1]) 2017; 19 Pacek (C8GC00502H-(cit69)/*[position()=1]) 2013; 52 Tarabanko (C8GC00502H-(cit57)/*[position()=1]) 2017; 18 Shuai (C8GC00502H-(cit26)/*[position()=1]) 2016; 354 Capanema (C8GC00502H-(cit34)/*[position()=1]) 2015; 35 Katahira (C8GC00502H-(cit100)/*[position()=1]) 2016; 4 Shuai (C8GC00502H-(cit15)/*[position()=1]) 2017; 19 Deuss (C8GC00502H-(cit41)/*[position()=1]) 2017; 19 Kim (C8GC00502H-(cit101)/*[position()=1]) 2010; 8 Sturgeon (C8GC00502H-(cit22)/*[position()=1]) 2014; 2 Deng (C8GC00502H-(cit79)/*[position()=1]) 2008; 126 Davis (C8GC00502H-(cit24)/*[position()=1]) Van den Bosch (C8GC00502H-(cit30)/*[position()=1]) 2015; 8 Santos (C8GC00502H-(cit59)/*[position()=1]) 2011; 50 Deng (C8GC00502H-(cit77)/*[position()=1]) 2010; 24 Tarabanko (C8GC00502H-(cit70)/*[position()=1]) 1995; 55 |
References_xml | – volume: 8 start-page: 576 year: 2010 ident: C8GC00502H-(cit101)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/B916070A contributor: fullname: Kim – volume: 45 start-page: 227 year: 2016 ident: C8GC00502H-(cit99)/*[position()=1] publication-title: Sep. Purif. Rev. doi: 10.1080/15422119.2015.1070178 contributor: fullname: Mota – volume-title: Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science year: 2012 ident: C8GC00502H-(cit43)/*[position()=1] doi: 10.1007/978-3-642-28418-2_12 contributor: fullname: Rodrigues Pinto – volume: 29 start-page: 239 year: 2001 ident: C8GC00502H-(cit87)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/S0926-3373(00)00215-0 contributor: fullname: Ciambelli – volume: 9 start-page: 3280 year: 2016 ident: C8GC00502H-(cit94)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201600648 contributor: fullname: Galkin – volume: 52 start-page: 8361 year: 2013 ident: C8GC00502H-(cit69)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4007744 contributor: fullname: Pacek – volume: 354 start-page: 329 year: 2016 ident: C8GC00502H-(cit26)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf7810 contributor: fullname: Shuai – volume: 351 start-page: 456 year: 2009 ident: C8GC00502H-(cit64)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200800614 contributor: fullname: Partenheimer – volume: 22 start-page: 223 year: 2000 ident: C8GC00502H-(cit91)/*[position()=1] publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00727.x contributor: fullname: Franke – volume: 88 start-page: 1024 year: 2010 ident: C8GC00502H-(cit49)/*[position()=1] publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.01.021 contributor: fullname: Araújo – volume: 45 start-page: 569 year: 2004 ident: C8GC00502H-(cit56)/*[position()=1] publication-title: Kinet. Catal. doi: 10.1023/B:KICA.0000038087.95130.a5 contributor: fullname: Tarabanko – volume: 20 start-page: 1 year: 1986 ident: C8GC00502H-(cit74)/*[position()=1] publication-title: Wood Sci. Technol. doi: 10.1007/BF00350692 contributor: fullname: Gierer – volume: 19 start-page: 4200 year: 2017 ident: C8GC00502H-(cit12)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01479A contributor: fullname: Gillet – volume: 339 start-page: 28 year: 2008 ident: C8GC00502H-(cit81)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2008.01.006 contributor: fullname: Kshirsagar – volume: 8 start-page: 934 year: 2015 ident: C8GC00502H-(cit8)/*[position()=1] publication-title: BioEnergy Res. doi: 10.1007/s12155-015-9583-4 contributor: fullname: Lu – volume: 45 start-page: 6627 year: 2006 ident: C8GC00502H-(cit76)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0601697 contributor: fullname: Sales – volume: 17 start-page: 5046 year: 2015 ident: C8GC00502H-(cit40)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC01643F contributor: fullname: Narani – volume: 69 start-page: 359 year: 1981 ident: C8GC00502H-(cit90)/*[position()=1] publication-title: J. Catal. doi: 10.1016/0021-9517(81)90171-8 contributor: fullname: Crespin – volume: 8 start-page: 24 year: 2015 ident: C8GC00502H-(cit48)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201402503 contributor: fullname: Ma – volume: 11 start-page: 291 year: 1991 ident: C8GC00502H-(cit73)/*[position()=1] publication-title: J. Wood Chem. Technol. doi: 10.1080/02773819108050276 contributor: fullname: Sultanov – volume: 35 start-page: 17 year: 2015 ident: C8GC00502H-(cit34)/*[position()=1] publication-title: J. Wood Chem. Technol. doi: 10.1080/02773813.2014.892993 contributor: fullname: Capanema – volume: 8 start-page: 2657 year: 2015 ident: C8GC00502H-(cit38)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01322D contributor: fullname: Luterbacher – volume: 18 start-page: 834 year: 2016 ident: C8GC00502H-(cit67)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC01950H contributor: fullname: Prado – volume: 8 start-page: 992 year: 2015 ident: C8GC00502H-(cit21)/*[position()=1] publication-title: BioEnergy Res. doi: 10.1007/s12155-015-9655-5 contributor: fullname: Pu – volume: 8 start-page: 1748 year: 2015 ident: C8GC00502H-(cit30)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00204D contributor: fullname: Van den Bosch – volume: 18 start-page: 4205 year: 2016 ident: C8GC00502H-(cit37)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC00298F contributor: fullname: da Costa Sousa – volume: 24 start-page: 4797 year: 2010 ident: C8GC00502H-(cit77)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef100768e contributor: fullname: Deng – volume-title: Nanotechnology in Catalysis year: 2017 ident: C8GC00502H-(cit13)/*[position()=1] doi: 10.1002/9783527699827.ch23 contributor: fullname: Schutyser – volume: 115 start-page: 11559 year: 2015 ident: C8GC00502H-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00155 contributor: fullname: Li – volume: 137 start-page: 7456 year: 2015 ident: C8GC00502H-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03693 contributor: fullname: Deuss – volume: 55 start-page: 8164 year: 2016 ident: C8GC00502H-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510351 contributor: fullname: Rinaldi – volume: 11 start-page: 655 year: 2003 ident: C8GC00502H-(cit54)/*[position()=1] publication-title: Chem. Sustainable Dev. contributor: fullname: Tarabanko – volume: 20 start-page: 170 year: 2018 ident: C8GC00502H-(cit98)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC03110F contributor: fullname: Dabral – volume: 33 start-page: 718 year: 1994 ident: C8GC00502H-(cit60)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00027a034 contributor: fullname: Wu – volume: 360 start-page: 71 year: 2000 ident: C8GC00502H-(cit89)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(00)00532-3 contributor: fullname: Patcas – volume: 19 start-page: 127 year: 1996 ident: C8GC00502H-(cit72)/*[position()=1] publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.270190206 contributor: fullname: Fargues – volume: 153 start-page: 895 year: 2010 ident: C8GC00502H-(cit5)/*[position()=1] publication-title: Plant Physiol. doi: 10.1104/pp.110.155119 contributor: fullname: Vanholme – volume: 19 start-page: 3752 year: 2017 ident: C8GC00502H-(cit25)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01676J contributor: fullname: Shuai – volume-title: Monomers, Polymers and Composites from Renewable Resources year: 2008 ident: C8GC00502H-(cit23)/*[position()=1] contributor: fullname: Lora – volume: 7 start-page: 412 year: 2014 ident: C8GC00502H-(cit46)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201300964 contributor: fullname: Ma – volume: 19 start-page: 3752 year: 2017 ident: C8GC00502H-(cit15)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01676J contributor: fullname: Shuai – volume: 114 start-page: 10292 year: 2014 ident: C8GC00502H-(cit86)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500032a contributor: fullname: Royer – volume: 110 start-page: 3552 year: 2010 ident: C8GC00502H-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900354u contributor: fullname: Zakzeski – volume: 38 start-page: 2270 year: 2015 ident: C8GC00502H-(cit47)/*[position()=1] publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201400660 contributor: fullname: Demesa – volume: 6 start-page: 2055 year: 2016 ident: C8GC00502H-(cit97)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b02906 contributor: fullname: Renders – volume: 3 start-page: 719 year: 2010 ident: C8GC00502H-(cit66)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.200900242 contributor: fullname: Stark – volume: 1 start-page: 763 year: 2008 ident: C8GC00502H-(cit62)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.200800050 contributor: fullname: Voitl – volume: 49 start-page: 273 year: 1995 ident: C8GC00502H-(cit50)/*[position()=1] publication-title: Holzforschung doi: 10.1515/hfsg.1995.49.3.273 contributor: fullname: Mathias – volume: 2 start-page: 121 year: 2011 ident: C8GC00502H-(cit18)/*[position()=1] publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-061010-114205 contributor: fullname: Chundawat – volume: 65 start-page: 703 year: 2011 ident: C8GC00502H-(cit63)/*[position()=1] publication-title: Holzforschung doi: 10.1515/hf.2011.071 contributor: fullname: Werhan – volume: 9 start-page: 1237 year: 2016 ident: C8GC00502H-(cit35)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03718B contributor: fullname: Chen – volume: 126 start-page: 106 year: 2008 ident: C8GC00502H-(cit79)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/s10562-008-9588-0 contributor: fullname: Deng – volume: 18 start-page: 2421 year: 2017 ident: C8GC00502H-(cit57)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18112421 contributor: fullname: Tarabanko – volume: 7 start-page: 1579 year: 2012 ident: C8GC00502H-(cit102)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.064 contributor: fullname: Mansfield – volume: 9 start-page: 1215 year: 2016 ident: C8GC00502H-(cit103)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03051J contributor: fullname: da Costa Sousa – volume: 1 start-page: 613 year: 2017 ident: C8GC00502H-(cit29)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.10.004 contributor: fullname: Anderson – volume: 37 start-page: 190 year: 2016 ident: C8GC00502H-(cit93)/*[position()=1] publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.10.009 contributor: fullname: Mottiar – volume: 19 start-page: 5767 year: 2017 ident: C8GC00502H-(cit32)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC02731A contributor: fullname: Kumaniaev – volume: 8 start-page: 2106 year: 2015 ident: C8GC00502H-(cit65)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500131 contributor: fullname: Mottweiler – volume: 8 start-page: 617 year: 2015 ident: C8GC00502H-(cit96)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03230F contributor: fullname: Vardon – volume: 50 start-page: 741 year: 2011 ident: C8GC00502H-(cit53)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102132a contributor: fullname: Rodrigues Pinto – volume: 196 start-page: 978 year: 2012 ident: C8GC00502H-(cit7)/*[position()=1] publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04337.x contributor: fullname: Vanholme – volume: 146 start-page: 176 year: 1999 ident: C8GC00502H-(cit88)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.1999.8327 contributor: fullname: Lisi – volume: 20 start-page: 1791 year: 2018 ident: C8GC00502H-(cit95)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC03747C contributor: fullname: Saboe – volume: 4 start-page: 1474 year: 2016 ident: C8GC00502H-(cit100)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01451 contributor: fullname: Katahira – volume: 28 start-page: 237 year: 2008 ident: C8GC00502H-(cit6)/*[position()=1] publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2008.03.008 contributor: fullname: Buranov – volume: 4 start-page: 6940 year: 2016 ident: C8GC00502H-(cit28)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01858 contributor: fullname: Anderson – volume: 5 start-page: 2544 year: 2017 ident: C8GC00502H-(cit36)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b02892 contributor: fullname: Mittal – volume: 54 start-page: 5939 year: 2006 ident: C8GC00502H-(cit33)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf060722v contributor: fullname: Guerra – volume: 2 start-page: 2888 year: 2004 ident: C8GC00502H-(cit9)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/b411428k contributor: fullname: Lu – volume: 18 start-page: 1839 year: 2016 ident: C8GC00502H-(cit45)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC03061G contributor: fullname: Behling – volume: 118 start-page: 614 year: 2018 ident: C8GC00502H-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00588 contributor: fullname: Sun – volume: 19 start-page: 3313 year: 2017 ident: C8GC00502H-(cit31)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01324H contributor: fullname: Van den Bosch – volume: 15 start-page: 189 year: 1995 ident: C8GC00502H-(cit75)/*[position()=1] publication-title: J. Wood Chem. Technol. doi: 10.1080/02773819508009507 contributor: fullname: Wu – volume: 52 start-page: 4421 year: 2013 ident: C8GC00502H-(cit51)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie303349j contributor: fullname: Pinto – volume: 10 start-page: 1551 year: 2017 ident: C8GC00502H-(cit14)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01298E contributor: fullname: Renders – volume: 2 start-page: 472 year: 2014 ident: C8GC00502H-(cit22)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc400384w contributor: fullname: Sturgeon – volume: 35 start-page: 28 year: 1996 ident: C8GC00502H-(cit52)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950267k contributor: fullname: Fargues – ident: C8GC00502H-(cit24)/*[position()=1] contributor: fullname: Davis – volume: 4 start-page: 35 year: 2016 ident: C8GC00502H-(cit44)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01344 contributor: fullname: Fache – volume: 108 start-page: 7 year: 2018 ident: C8GC00502H-(cit61)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.10.046 contributor: fullname: Lyu – volume: 19 start-page: 289 year: 1985 ident: C8GC00502H-(cit20)/*[position()=1] publication-title: Wood Sci. Technol. doi: 10.1007/BF00350807 contributor: fullname: Gierer – volume: 9 start-page: 1544 year: 2016 ident: C8GC00502H-(cit27)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201600237 contributor: fullname: Galkin – volume: 55 start-page: 161 year: 1995 ident: C8GC00502H-(cit70)/*[position()=1] publication-title: React. Kinet. Catal. Lett. doi: 10.1007/BF02075847 contributor: fullname: Tarabanko – volume: 3 start-page: 330 year: 1999 ident: C8GC00502H-(cit68)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op9900028 contributor: fullname: Bjørsvik – volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2000 ident: C8GC00502H-(cit16)/*[position()=1] doi: 10.1002/14356007.a18_545.pub4 contributor: fullname: Ragnar – volume: 14 start-page: 2747 year: 2009 ident: C8GC00502H-(cit80)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules14082747 contributor: fullname: Zhang – volume-title: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals year: 2013 ident: C8GC00502H-(cit17)/*[position()=1] doi: 10.1002/9780470975831.ch10 contributor: fullname: Sannigrahi – volume: 487 start-page: 130 year: 2014 ident: C8GC00502H-(cit82)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2014.08.023 contributor: fullname: Mate – volume: 23 start-page: 19 year: 2009 ident: C8GC00502H-(cit78)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef8005349 contributor: fullname: Deng – volume: 35 start-page: 245 year: 2001 ident: C8GC00502H-(cit71)/*[position()=1] publication-title: Wood Sci. Technol. doi: 10.1007/s002260100089 contributor: fullname: Villar – volume: 17 start-page: 4941 year: 2015 ident: C8GC00502H-(cit39)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC01120E contributor: fullname: Huang – volume: 50 start-page: 291 year: 2011 ident: C8GC00502H-(cit59)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101402t contributor: fullname: Santos – volume: 344 start-page: 709 year: 2014 ident: C8GC00502H-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.1246843 contributor: fullname: Ragauskas – volume: 91 start-page: 71 year: 2001 ident: C8GC00502H-(cit58)/*[position()=1] publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:91-93:1-9:71 contributor: fullname: Xiang – volume: 2 volume-title: Agrobacterium Protocols year: 2007 ident: C8GC00502H-(cit92)/*[position()=1] doi: 10.1385/1-59745-131-2:143 contributor: fullname: Meilan – volume: 69 start-page: 361 year: 2000 ident: C8GC00502H-(cit55)/*[position()=1] publication-title: React. Kinet. Catal. Lett. doi: 10.1023/A:1005620521240 contributor: fullname: Tarabanko – volume: 48 start-page: 3713 year: 2009 ident: C8GC00502H-(cit19)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801542g contributor: fullname: Kumar – volume: 19 start-page: 2774 year: 2017 ident: C8GC00502H-(cit41)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC00195A contributor: fullname: Deuss – volume: 47 start-page: 852 year: 2018 ident: C8GC00502H-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00566K contributor: fullname: Schutyser – volume: 17 start-page: 259 year: 1997 ident: C8GC00502H-(cit83)/*[position()=1] publication-title: J. Wood Chem. Technol. doi: 10.1080/02773819708003131 contributor: fullname: Villar – volume: 45 start-page: 3009 year: 1967 ident: C8GC00502H-(cit84)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v67-487 contributor: fullname: Pepper – volume: 4 start-page: 2917 year: 2014 ident: C8GC00502H-(cit85)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500606g contributor: fullname: Zhu |
SSID | ssj0011764 |
Score | 2.600283 |
Snippet | Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of... Alkaline aerobic oxidation is an effective way to produce valuable aromatic chemicals from lignin. |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 3828 |
SubjectTerms | Acetosyringone Aromatic compounds Benchmarks Biorefineries Carboxylic acids Catalysis Catalysts Depolymerization Fractionation Green chemistry Lignin Lignocellulose Lignosulfonates Monomers Nitrobenzene Organic chemistry Oxidation Oxygen Partial pressure Phenolic compounds Phenols Poplar Reaction time Refining Sodium hydroxide Substrates Sulfonation Syringaldehyde Vanillin Viability Yield |
Title | Revisiting alkaline aerobic lignin oxidation |
URI | https://www.proquest.com/docview/2087553269 https://www.osti.gov/biblio/1461588 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAcEAQq0hZkCW7FYHvX9voYRWlDGxUJOSI3ax92EhElKLGlwt_gDzP78AOKEHCxko12Zc9MZr4dz3yL0OsgTyCuJ9hlns9dwovQpUUcuFHAvKKQEkCsrvK9iaZzcrUIF73e907VUlXyt-Lbb_tK_kerMAZ6VV2y_6DZZlEYgM-gX7iChuH6Vzr-qFvDdeEy23xmGjGyXDErifPNeql4U3e3a9kK36JQXWxzLuqz3nRagG01dUSbHaw5JVRmffnLhL1N-uuZl22iVayq8uvBWMGnXdUp_b3eV0szfgU-mLcZ124D2miz0SciNtmga1ay1XpvAG617qYorD81VU0qBVLXn-r6EnujHZdLIuwq1kITkbpj5kiR2k8HXtceu14XU9tgntuvhlLyTnTwsCJXFXQpFO1NsGpjYP3e_-ZDdjGfzbJ0skjvoaMAvFfYR0ejSfp-1ryc8mPNStbceM16i5N37do_4Zz-Dvz1nWivIUz6GD2yew9nZAzpCerl2wG63whrgB522CkH6HjSNkHCNBsFDk_Rm9bunNruHGt3jrE7p7G7Z2h-MUnHU9eeuuEKEkUlhEfsS18KzjzAT1wILkG-AfdyT0gaBzIuAPdxTjnJ4UHBCTDOYkLCOGcJxgIfo_52t82fIycSiU8TRnEkCiJgpSiSMc6JpKQgWHhD9KqWUfbFkKtkuigCJ9mYXo61JKdDdKrElwEkVLzGQhWAiVLtWf2Q0iE6q6Wa2T_GIQvUOQ0h7EySkz__fIoeKIM1ObUz1C_3Vf4CUGbJX1qt_wDH-4NK |
link.rule.ids | 230,315,783,787,888,4031,27935,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+alkaline+aerobic+lignin+oxidation&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Schutyser%2C+Wouter&rft.au=Kruger%2C+Jacob+S&rft.au=Robinson%2C+Allison+M&rft.au=Katahira%2C+Rui&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=20&rft.issue=16&rft.spage=3828&rft.epage=3844&rft_id=info:doi/10.1039%2Fc8gc00502h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |