Spatiotemporal variability of near-surface air temperature lapse rates in the Qinghai–Tibet plateau using high-density meteorological observations
The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Platea...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 20702 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau. |
---|---|
AbstractList | The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau. Abstract The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau. The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai-Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai-Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai-Tibet Plateau.The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai-Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai-Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai-Tibet Plateau. |
ArticleNumber | 20702 |
Author | Bai, Lei Tseten, Yudron Yang, Quanlin Jiao, Yue |
Author_xml | – sequence: 1 givenname: Yue surname: Jiao fullname: Jiao, Yue organization: School of Ecology, Hainan University, Hainan Intelligent Low-Altitude Meteorological Big Data Research Centre – sequence: 2 givenname: Yudron surname: Tseten fullname: Tseten, Yudron organization: Tibet Institute of Plateau Atmospheric and Environmental Sciences, Tibet Meteorological Bureau – sequence: 3 givenname: Quanlin surname: Yang fullname: Yang, Quanlin organization: Yunnan Weather Modification Center, Yunnan Meteorological Bureau – sequence: 4 givenname: Lei surname: Bai fullname: Bai, Lei email: caecar@hainanu.edu.cn organization: School of Ecology, Hainan University, Hainan Intelligent Low-Altitude Meteorological Big Data Research Centre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40593090$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxiNUREvpC3BAPnIJOI6dxCeEKv5UqoQQ5WyNnUnWq6wdbGel3ngH-oR9ErxNqdoLvozt-eY3lud7WRw577AoXlf0XUXr7n3klZBdSZkoacMoL8Wz4iRHUbKasaNH--PiLMYtzUswySv5ojjmVMiaSnpS3PyYIVmfcDf7ABPZQ7Cg7WTTNfEDcQihjEsYwCABG8hBiAHSEpBMMEck-YCRWEfSBsl368YN2Nvff66sxkTmKWdhIUvMCbKx46bs0cUDfYcJffCTH63Jjb2OGPaHt7j4qng-wBTx7D6eFj8_f7o6_1pefvtycf7xsjS8aVLZNayWumr7waBuWdsNmvaMaiEbCoNmiAKgp1JyrruWadNR0SPWgvMWDYP6tLhYub2HrZqD3UG4Vh6survwYVQQkjUTKoEckTatNLXJv9dpVgkh-6btO9M1ususDytrXvQOe4Mu5f98An2acXajRr9XFWMVl4xnwtt7QvC_FoxJ7Ww0OE3g0C9R5VE2tagEp1n65nGzhy7_5poFbBWY4GMMODxIKqoO_lGrf1T2j7rzjxK5qF6LYha7EYPa-iW4PIH_Vf0FjZjNMw |
Cites_doi | 10.1007/s00704-017-2229-z 10.1002/joc.6686 10.1016/j.scib.2020.04.001 10.1038/nclimate2563 10.1016/j.ecolind.2021.108483 10.1080/10106049.2022.2093993 10.1007/s00704-012-0816-6 10.3189/2016AoG71A066 10.1007/BF02837505 10.1002/joc.5497 10.1016/j.gloplacha.2013.12.001 10.1002/joc.5471 10.1002/joc.6668 10.1002/2013WR014506 10.1016/j.ecoser.2020.101146 10.18306/dlkxjz.2016.12.010 10.1007/s11430-010-4160-3 10.1029/2018jd029798 10.1002/jgrd.50553 10.1657/aaar0015-077 10.1002/2017jd028243 10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2 10.2307/1552603 10.1111/gcb.14884 10.1175/2009jcli2845.1 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2 10.1002/2014jd022978 10.3390/rs10101617 10.1175/2007JAMC1565.1 10.1007/s11629-019-5481-0 10.1038/nature14338 10.1016/j.scib.2019.06.023 10.1007/s00376-024-3277-9 10.3406/rga.1976.2061 10.1007/s11629-011-1090-2 10.1007/s00704-017-2153-2 10.1007/s11629-017-4566-x 10.21203/rs.3.rs-912856/v1 10.1002/qj.3803 10.1038/srep44574 10.1002/joc.4468 10.1002/joc.5418 10.1002/2016jd025711 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1038/s41598-025-06204-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_5e4ee0679c3c4058b21559d67d8c86b8 PMC12214924 40593090 10_1038_s41598_025_06204_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Key Research and Development Program of Tibet Autonomous Region grantid: No. XZ202301ZY0053G |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AARCD AAYXX CITATION PJZUB PPXIY PQGLB NPM 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c466t-86239b17dfceb7278fb0d20b5960afb2ee5aad09944b872bc805dee35447ec2a3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 18:33:35 EDT 2025 Fri Jul 11 17:04:45 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Thu Aug 07 15:32:53 EDT 2025 Wed Jul 02 02:43:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-86239b17dfceb7278fb0d20b5960afb2ee5aad09944b872bc805dee35447ec2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/5e4ee0679c3c4058b21559d67d8c86b8 |
PMID | 40593090 |
PQID | 3226351540 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e4ee0679c3c4058b21559d67d8c86b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12214924 proquest_miscellaneous_3226351540 pubmed_primary_40593090 crossref_primary_10_1038_s41598_025_06204_5 springer_journals_10_1038_s41598_025_06204_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | K Gao (6204_CR2) 2019; 64 G Shi (6204_CR20) 2017; 133 DB Kattel (6204_CR19) 2018; 38 Y-J Shen (6204_CR30) 2016; 121 CD Whiteman (6204_CR49) 1999; 38 W Jiang (6204_CR34) 2020; 44 N Pepin (6204_CR13) 2019; 124 TR Blandford (6204_CR14) 2008; 47 C Rolland (6204_CR41) 2003; 16 DB Kattel (6204_CR31) 2017; 132 SA Romshoo (6204_CR45) 2018; 15 Y Wang (6204_CR32) 2018; 38 X Guo (6204_CR42) 2016; 36 C Shi (6204_CR10) 2011; 54 6204_CR38 6204_CR36 X Liu (6204_CR3) 2000; 20 6204_CR39 Q Zhang (6204_CR8) 2022 P Negi (6204_CR26) 2022; 37 G Gheyret (6204_CR29) 2020; 17 Y Ma (6204_CR1) 2017; 7 K Wang (6204_CR43) 2011; 8 F Navarro-Serrano (6204_CR28) 2018; 38 M Córdova (6204_CR18) 2018; 48 N Pepin (6204_CR46) 1999; 31 W Shaohong (6204_CR35) 2003; 13 EAG Schuur (6204_CR4) 2015; 520 H Hersbach (6204_CR12) 2020; 146 Y He (6204_CR24) 2020; 65 M-F De Saintignon (6204_CR37) 1976; 64 WW Immerzeel (6204_CR44) 2014; 50 6204_CR9 H Zhang (6204_CR23) 2018; 123 X Li (6204_CR17) 2013; 118 X Wang (6204_CR11) 2020; 41 DB Kattel (6204_CR21) 2012; 113 Y Qin (6204_CR27) 2018 AC Lute (6204_CR16) 2020 K Yang (6204_CR7) 2014; 112 D Lewis (6204_CR15) 2009; 22 S Piao (6204_CR5) 2019; 26 6204_CR40 N Pepin (6204_CR22) 2015; 5 JF Steiner (6204_CR33) 2016; 57 J Jiang (6204_CR48) 2016; 35 L Zou (6204_CR6) 2024 Y Li (6204_CR25) 2015; 120 6204_CR47 |
References_xml | – volume: 133 start-page: 1009 year: 2017 ident: 6204_CR20 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2229-z – volume: 41 start-page: 743 year: 2020 ident: 6204_CR11 publication-title: Int. J. Climatol. doi: 10.1002/joc.6686 – volume: 65 start-page: 1217 year: 2020 ident: 6204_CR24 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.04.001 – volume: 5 start-page: 424 year: 2015 ident: 6204_CR22 publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2563 – year: 2022 ident: 6204_CR8 publication-title: China. Ecol. Indic. doi: 10.1016/j.ecolind.2021.108483 – volume: 37 start-page: 15094 year: 2022 ident: 6204_CR26 publication-title: Geocarto Int. doi: 10.1080/10106049.2022.2093993 – volume: 113 start-page: 671 year: 2012 ident: 6204_CR21 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-012-0816-6 – volume: 57 start-page: 295 year: 2016 ident: 6204_CR33 publication-title: Ann. Glaciol. doi: 10.3189/2016AoG71A066 – volume: 13 start-page: 309 year: 2003 ident: 6204_CR35 publication-title: J. Geog. Sci. doi: 10.1007/BF02837505 – volume: 38 start-page: 3233 year: 2018 ident: 6204_CR28 publication-title: Int. J. Climatol. doi: 10.1002/joc.5497 – ident: 6204_CR38 – volume: 112 start-page: 79 year: 2014 ident: 6204_CR7 publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2013.12.001 – volume: 38 start-page: 2907 year: 2018 ident: 6204_CR32 publication-title: Int. J. Climatol. doi: 10.1002/joc.5471 – year: 2020 ident: 6204_CR16 publication-title: Int. J. Climatol. doi: 10.1002/joc.6668 – volume: 50 start-page: 2212 year: 2014 ident: 6204_CR44 publication-title: Water Resour. Res. doi: 10.1002/2013WR014506 – volume: 44 start-page: 101146 year: 2020 ident: 6204_CR34 publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2020.101146 – volume: 35 start-page: 1538 year: 2016 ident: 6204_CR48 publication-title: Prog. Geogr. doi: 10.18306/dlkxjz.2016.12.010 – volume: 54 start-page: 1430 year: 2011 ident: 6204_CR10 publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4160-3 – volume: 124 start-page: 5738 year: 2019 ident: 6204_CR13 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018jd029798 – volume: 118 start-page: 7505 year: 2013 ident: 6204_CR17 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50553 – volume: 48 start-page: 673 year: 2018 ident: 6204_CR18 publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/aaar0015-077 – volume: 123 start-page: 3943 year: 2018 ident: 6204_CR23 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2017jd028243 – ident: 6204_CR39 – volume: 38 start-page: 1103 year: 1999 ident: 6204_CR49 publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2 – volume: 31 start-page: 151 year: 1999 ident: 6204_CR46 publication-title: Arct. Antarct. Alp. Res. doi: 10.2307/1552603 – volume: 26 start-page: 300 year: 2019 ident: 6204_CR5 publication-title: Glob. Change Biol. doi: 10.1111/gcb.14884 – volume: 22 start-page: 4281 year: 2009 ident: 6204_CR15 publication-title: J. Clim. doi: 10.1175/2009jcli2845.1 – volume: 20 start-page: 1729 year: 2000 ident: 6204_CR3 publication-title: Int. J. Climatol. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y – volume: 16 start-page: 1032 year: 2003 ident: 6204_CR41 publication-title: J. Clim. doi: 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2 – volume: 120 start-page: 2661 year: 2015 ident: 6204_CR25 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014jd022978 – year: 2018 ident: 6204_CR27 publication-title: Remote Sens. doi: 10.3390/rs10101617 – volume: 47 start-page: 249 year: 2008 ident: 6204_CR14 publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2007JAMC1565.1 – volume: 17 start-page: 397 year: 2020 ident: 6204_CR29 publication-title: J. Mt. Sci. doi: 10.1007/s11629-019-5481-0 – volume: 520 start-page: 171 year: 2015 ident: 6204_CR4 publication-title: Nature doi: 10.1038/nature14338 – volume: 64 start-page: 1140 year: 2019 ident: 6204_CR2 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.06.023 – ident: 6204_CR36 – year: 2024 ident: 6204_CR6 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-024-3277-9 – volume: 64 start-page: 483 year: 1976 ident: 6204_CR37 publication-title: Revue de geographie alpine doi: 10.3406/rga.1976.2061 – volume: 8 start-page: 808 year: 2011 ident: 6204_CR43 publication-title: J. Mt. Sci. doi: 10.1007/s11629-011-1090-2 – volume: 132 start-page: 1129 year: 2017 ident: 6204_CR31 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2153-2 – ident: 6204_CR40 – volume: 15 start-page: 563 year: 2018 ident: 6204_CR45 publication-title: J. Mt. Sci. doi: 10.1007/s11629-017-4566-x – ident: 6204_CR9 – ident: 6204_CR47 doi: 10.21203/rs.3.rs-912856/v1 – volume: 146 start-page: 1999 year: 2020 ident: 6204_CR12 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 7 start-page: 44574 year: 2017 ident: 6204_CR1 publication-title: Sci. Rep. doi: 10.1038/srep44574 – volume: 36 start-page: 1901 year: 2016 ident: 6204_CR42 publication-title: Int. J. Climatol. doi: 10.1002/joc.4468 – volume: 38 start-page: e901 year: 2018 ident: 6204_CR19 publication-title: Int. J. Climatol. doi: 10.1002/joc.5418 – volume: 121 start-page: 14006 year: 2016 ident: 6204_CR30 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016jd025711 |
SSID | ssj0000529419 |
Score | 2.4511995 |
Snippet | The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional... Abstract The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 20702 |
SubjectTerms | 704/106 704/106/35 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVpQqGbkr6dtEWF7lpTWQ-PZjkpDWGghZIEshN6JoaJPdgzhez6D-kX9ktyJdsD04ZCt5Zsy5xr6dyHjhB6HwqgEcHaPFBDwEGxRa7lFIgcE5oJwoJ1MTTw9Vt5cs7nF-JiB9FxL0wq2k-SlmmaHqvDPnWw0MTNYFTkJEqo5-IB2otS7WDbe7PZ_HS-iazE3BUvpsMOGcLkPTdvrUJJrP8-hvl3oeQf2dK0CB3vo8cDe8SzfrxP0I6vn6KH_XmSN8_Qr9NUHz3ITS3wD3CEex3uG9wEXINV5926Ddp6rKsWx46DqDJe6GXncRSO6HBVY-CF-DuM4UpXv3_enlXGr_ByAa16jWOt_CWOQse5i_Xv8PRr4N5NO06kuDGbYG_3HJ0ffzn7fJIPxy7klpflKgcfh01NMXHBegP0RgZDHCVGgLOjg6HeC60dMEvOjZxQYyURznsmOJ94SzV7gXbrpvavEBZMa8OFcMB6uDVaS-qDBUi45dwxk6EPIwxq2atrqJQVZ1L1oCkATSXQlMjQUURq0zMqY6cLTXupBktRwnPvY3TMMgtkVBoaE6-unDhpZWlkht6NOCv4k2J6RNe-WXcKpjZgX0ApSYZe9rhvXsXjyYdkCi1yyyK2xrLdUldXSa27oBS8UMoz9HE0HjXME90_Pvbg_7ofokc02XcsJH6Ndlft2r8BurQyb4f_4w4Z7xV5 priority: 102 providerName: Springer Nature |
Title | Spatiotemporal variability of near-surface air temperature lapse rates in the Qinghai–Tibet plateau using high-density meteorological observations |
URI | https://link.springer.com/article/10.1038/s41598-025-06204-5 https://www.ncbi.nlm.nih.gov/pubmed/40593090 https://www.proquest.com/docview/3226351540 https://pubmed.ncbi.nlm.nih.gov/PMC12214924 https://doaj.org/article/5e4ee0679c3c4058b21559d67d8c86b8 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4k0KrIzEDaImfiTOcbtqVa1EBbSV9mb5SSMtyWqzi9Rb_wP8Qn4JYye76gKCC6dItpXYmbH9jWf8DUJvfA4wwhuTeqIzMFBMnipRAZCjXFGeUW9sOBp4f1qcXLDpjM9upPoKMWE9PXD_4w64Y86F0w5DDYALoUlwpNmitMKIQsdrvrDn3TCmelZvUrG8Gm7JZFQcdLBThdtkhKdZ4GBP-c5OFAn7_4Qyfw-W_MVjGjei4wfo_oAg8bjv-UN0yzWP0N0-p-TVY_T9LMZID5RTc_wVjOGei_sKtx43oNlpt156ZRxW9RKHhgOxMp6rRedwII_ocN1gwIb4I_ThUtU_rr-d19qt8GIOtWqNQ7z8ZxzIjlMbYuDh7V8Af7fLzWKKW7098O2eoIvjo_PJSTqkXkgNK4pVCnYOrXReWm-cBogjvM4syTQHg0d5TZzjSllAl4xpURJtRMatc5QzVjpDFH2K9pq2cc8R5lQpzTi3gHyY0UoJ4rwBkTDDmKU6QW83YpCLnmFDRs84FbIXmgShySg0yRN0GCS1bRnYsWMB6IwcdEb-S2cS9HojZwmzKbhIVOPadSdheQMEBrAyS9CzXu7bT7GQ_TCroEbsaMROX3ZrmvoyMnbnhIAlSliC3m2URw5rRfeXwe7_j8G-QPdI1PoQYvwS7a2Wa_cKgNRKj9DtclaO0J3xeHo2hefh0emHT1A6KSajOJ9-AvCpI0I |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bitQwGA7riuiNeLYeI3inxTSHTuZSB5dRdxfEWdi7kONuYWyHdkbYO99Bn9An8U_aDowugrdN2qZ8f5PvP-QLQi9DATQiWJsHagg4KLbItZwCkWNCM0FYsC6GBo6Oy_kJ_3gqTvcQHffCpKL9JGmZpumxOuxNBwtN3AxGRU6ihHourqCrwLXLaMmzcraNq8TMFS-mw_4YwuQlt-6sQUmq_zJ--XeZ5B-50rQEHdxCNwfuiN_2o72N9nx9B13rT5O8uIt-fknV0YPY1BJ_Aze4V-G-wE3ANdh03m3aoK3Humpx7DhIKuOlXnUeR9mIDlc1BlaIP8MYznX16_uPRWX8Gq-W0Ko3OFbKn-Eoc5y7WP0OT_8KzLtpx2kUN2Yb6u3uoZOD94vZPB8OXcgtL8t1Dh4Om5pi4oL1BsiNDIY4SowAV0cHQ70XWjvglZwbOaHGSiKc90xwPvGWanYf7ddN7R8iLJjWhgvhgPNwa7SW1AcLkHDLuWMmQ69GGNSq19ZQKSfOpOpBUwCaSqApkaF3Ealtz6iLnS407Zka7EQJz72PsTHLLFBRaWhMu7py4qSVpZEZejHirOA_iskRXftm0ymY2IB7AaEkGXrQ4759FY_nHpIptMgdi9gZy25LXZ0nre6CUvBBKc_Q69F41DBLdP_42Ef_1_05uj5fHB2qww_Hnx6jGzTZeiwpfoL21-3GPwXitDbP0p_yG7zcFw0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKVCA2iDcpLyOxg0DiR8azHB6jMkAFait1Z_nZRpomo2QGqTv-Ab6QL-HaSUYaqJDYxpbj6Nxcn-t7fYzQc58DjfDGpJ7oDAIUk6dKTIDIUa4oz6g3NmwNfD4o9o_Z_ISf7KBiOAsTi_ajpGV000N12OsWFppwGIzwNAsS6il_tbT-CtoFvp2zEdqdTueH883uSshfsXzSn5LJqLhkgK2VKAr2X8Yy_y6W_CNjGhei2U10o2eQeNrN-RbacdVtdLW7U_LiDvp5GGuke8mpBf4GwXCnxX2Ba48rsOy0XTdeGYdV2eDQsRdWxgu1bB0O4hEtLisM3BB_hTmcqfLX9x9HpXYrvFxAq1rjUC9_ioPYcWpDDTyMfg78u24GZ4prvdnwbe-i49n7o7f7aX_1QmpYUaxSiHPoROdj643TQHGE15klmeYQ8CiviXNcKQvskjEtxkQbkXHrHOWMjZ0hit5Do6qu3AOEOVVKM84tMB9mtFKCOG8AEmYYs1Qn6MUAg1x2ChsyZsapkB1oEkCTETTJE_QmILXpGdSx44O6OZW9tUjumHNhh8xQA4RUaBKSr7YYW2FEoUWCng04S_ibQopEVa5etxLcGzAwoJVZgu53uG9excLth9kEWsSWRWzNZbulKs-iYndOCESihCXo5WA8svcV7T8-du__uj9F1768m8lPHw4-PkTXSTT1UFf8CI1Wzdo9Bva00k_6X-U3JSUZcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+variability+of+near-surface+air+temperature+lapse+rates+in+the+Qinghai%E2%80%93Tibet+plateau+using+high-density+meteorological+observations&rft.jtitle=Scientific+reports&rft.au=Jiao%2C+Yue&rft.au=Tseten%2C+Yudron&rft.au=Yang%2C+Quanlin&rft.au=Bai%2C+Lei&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-06204-5&rft_id=info%3Apmid%2F40593090&rft.externalDocID=PMC12214924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |