Spatiotemporal variability of near-surface air temperature lapse rates in the Qinghai–Tibet plateau using high-density meteorological observations

The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Platea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 20702 - 11
Main Authors Jiao, Yue, Tseten, Yudron, Yang, Quanlin, Bai, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau.
AbstractList The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau.
Abstract The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai–Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai–Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai–Tibet Plateau.
The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai-Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai-Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai-Tibet Plateau.The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional surface temperatures. However, due to the scarcity of temperature monitoring stations and the complex topography of the Qinghai-Tibet Plateau, the true distribution of near-surface air temperatures in the region remains unclear. In this study, we analyzed the spatiotemporal patterns of near-surface air temperature lapse rates on the Qinghai-Tibet Plateau using high-density meteorological stations and gridded data. The results showed that the average temperature lapse rate for the plateau in 2015 was 5.89 ± 2.42 °C/km, with significant seasonal heterogeneity. The lapse rate was highest in spring (6.38 ± 2.65 °C/km), followed by summer (5.95 ± 2.24 °C/km) and winter (5.80 ± 3.41 °C/km), with the lowest value observed in autumn (5.44 ± 2.82 °C/km). These rates exhibited a spatial pattern of being higher in the southeast and lower in the northwest, decreasing with increasing altitude. In autumn, the temperature lapse rate was primarily influenced by elevation. Additionally, the near-surface temperature lapse rate was lower during the day and higher at night, reaching its peak at 6.15 ± 2.88 °C/km at midnight and its lowest point at 5.42 ± 2.13 °C/km at noon. The results of this study were independently validated at the Qomolangma and Nam Co stations, showing good agreement with observations, which supports the applicability of the findings across the entire Qinghai-Tibet Plateau.
ArticleNumber 20702
Author Bai, Lei
Tseten, Yudron
Yang, Quanlin
Jiao, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Jiao
  fullname: Jiao, Yue
  organization: School of Ecology, Hainan University, Hainan Intelligent Low-Altitude Meteorological Big Data Research Centre
– sequence: 2
  givenname: Yudron
  surname: Tseten
  fullname: Tseten, Yudron
  organization: Tibet Institute of Plateau Atmospheric and Environmental Sciences, Tibet Meteorological Bureau
– sequence: 3
  givenname: Quanlin
  surname: Yang
  fullname: Yang, Quanlin
  organization: Yunnan Weather Modification Center, Yunnan Meteorological Bureau
– sequence: 4
  givenname: Lei
  surname: Bai
  fullname: Bai, Lei
  email: caecar@hainanu.edu.cn
  organization: School of Ecology, Hainan University, Hainan Intelligent Low-Altitude Meteorological Big Data Research Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40593090$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNUREvpC3BAPnIJOI6dxCeEKv5UqoQQ5WyNnUnWq6wdbGel3ngH-oR9ErxNqdoLvozt-eY3lud7WRw577AoXlf0XUXr7n3klZBdSZkoacMoL8Wz4iRHUbKasaNH--PiLMYtzUswySv5ojjmVMiaSnpS3PyYIVmfcDf7ABPZQ7Cg7WTTNfEDcQihjEsYwCABG8hBiAHSEpBMMEck-YCRWEfSBsl368YN2Nvff66sxkTmKWdhIUvMCbKx46bs0cUDfYcJffCTH63Jjb2OGPaHt7j4qng-wBTx7D6eFj8_f7o6_1pefvtycf7xsjS8aVLZNayWumr7waBuWdsNmvaMaiEbCoNmiAKgp1JyrruWadNR0SPWgvMWDYP6tLhYub2HrZqD3UG4Vh6survwYVQQkjUTKoEckTatNLXJv9dpVgkh-6btO9M1ususDytrXvQOe4Mu5f98An2acXajRr9XFWMVl4xnwtt7QvC_FoxJ7Ww0OE3g0C9R5VE2tagEp1n65nGzhy7_5poFbBWY4GMMODxIKqoO_lGrf1T2j7rzjxK5qF6LYha7EYPa-iW4PIH_Vf0FjZjNMw
Cites_doi 10.1007/s00704-017-2229-z
10.1002/joc.6686
10.1016/j.scib.2020.04.001
10.1038/nclimate2563
10.1016/j.ecolind.2021.108483
10.1080/10106049.2022.2093993
10.1007/s00704-012-0816-6
10.3189/2016AoG71A066
10.1007/BF02837505
10.1002/joc.5497
10.1016/j.gloplacha.2013.12.001
10.1002/joc.5471
10.1002/joc.6668
10.1002/2013WR014506
10.1016/j.ecoser.2020.101146
10.18306/dlkxjz.2016.12.010
10.1007/s11430-010-4160-3
10.1029/2018jd029798
10.1002/jgrd.50553
10.1657/aaar0015-077
10.1002/2017jd028243
10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2
10.2307/1552603
10.1111/gcb.14884
10.1175/2009jcli2845.1
10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y
10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2
10.1002/2014jd022978
10.3390/rs10101617
10.1175/2007JAMC1565.1
10.1007/s11629-019-5481-0
10.1038/nature14338
10.1016/j.scib.2019.06.023
10.1007/s00376-024-3277-9
10.3406/rga.1976.2061
10.1007/s11629-011-1090-2
10.1007/s00704-017-2153-2
10.1007/s11629-017-4566-x
10.21203/rs.3.rs-912856/v1
10.1002/qj.3803
10.1038/srep44574
10.1002/joc.4468
10.1002/joc.5418
10.1002/2016jd025711
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-025-06204-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_5e4ee0679c3c4058b21559d67d8c86b8
PMC12214924
40593090
10_1038_s41598_025_06204_5
Genre Journal Article
GrantInformation_xml – fundername: the Key Research and Development Program of Tibet Autonomous Region
  grantid: No. XZ202301ZY0053G
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
NPM
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c466t-86239b17dfceb7278fb0d20b5960afb2ee5aad09944b872bc805dee35447ec2a3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 18:33:35 EDT 2025
Fri Jul 11 17:04:45 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Thu Aug 07 15:32:53 EDT 2025
Wed Jul 02 02:43:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-86239b17dfceb7278fb0d20b5960afb2ee5aad09944b872bc805dee35447ec2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/5e4ee0679c3c4058b21559d67d8c86b8
PMID 40593090
PQID 3226351540
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5e4ee0679c3c4058b21559d67d8c86b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12214924
proquest_miscellaneous_3226351540
pubmed_primary_40593090
crossref_primary_10_1038_s41598_025_06204_5
springer_journals_10_1038_s41598_025_06204_5
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References K Gao (6204_CR2) 2019; 64
G Shi (6204_CR20) 2017; 133
DB Kattel (6204_CR19) 2018; 38
Y-J Shen (6204_CR30) 2016; 121
CD Whiteman (6204_CR49) 1999; 38
W Jiang (6204_CR34) 2020; 44
N Pepin (6204_CR13) 2019; 124
TR Blandford (6204_CR14) 2008; 47
C Rolland (6204_CR41) 2003; 16
DB Kattel (6204_CR31) 2017; 132
SA Romshoo (6204_CR45) 2018; 15
Y Wang (6204_CR32) 2018; 38
X Guo (6204_CR42) 2016; 36
C Shi (6204_CR10) 2011; 54
6204_CR38
6204_CR36
X Liu (6204_CR3) 2000; 20
6204_CR39
Q Zhang (6204_CR8) 2022
P Negi (6204_CR26) 2022; 37
G Gheyret (6204_CR29) 2020; 17
Y Ma (6204_CR1) 2017; 7
K Wang (6204_CR43) 2011; 8
F Navarro-Serrano (6204_CR28) 2018; 38
M Córdova (6204_CR18) 2018; 48
N Pepin (6204_CR46) 1999; 31
W Shaohong (6204_CR35) 2003; 13
EAG Schuur (6204_CR4) 2015; 520
H Hersbach (6204_CR12) 2020; 146
Y He (6204_CR24) 2020; 65
M-F De Saintignon (6204_CR37) 1976; 64
WW Immerzeel (6204_CR44) 2014; 50
6204_CR9
H Zhang (6204_CR23) 2018; 123
X Li (6204_CR17) 2013; 118
X Wang (6204_CR11) 2020; 41
DB Kattel (6204_CR21) 2012; 113
Y Qin (6204_CR27) 2018
AC Lute (6204_CR16) 2020
K Yang (6204_CR7) 2014; 112
D Lewis (6204_CR15) 2009; 22
S Piao (6204_CR5) 2019; 26
6204_CR40
N Pepin (6204_CR22) 2015; 5
JF Steiner (6204_CR33) 2016; 57
J Jiang (6204_CR48) 2016; 35
L Zou (6204_CR6) 2024
Y Li (6204_CR25) 2015; 120
6204_CR47
References_xml – volume: 133
  start-page: 1009
  year: 2017
  ident: 6204_CR20
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2229-z
– volume: 41
  start-page: 743
  year: 2020
  ident: 6204_CR11
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6686
– volume: 65
  start-page: 1217
  year: 2020
  ident: 6204_CR24
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.04.001
– volume: 5
  start-page: 424
  year: 2015
  ident: 6204_CR22
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2563
– year: 2022
  ident: 6204_CR8
  publication-title: China. Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108483
– volume: 37
  start-page: 15094
  year: 2022
  ident: 6204_CR26
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2093993
– volume: 113
  start-page: 671
  year: 2012
  ident: 6204_CR21
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-012-0816-6
– volume: 57
  start-page: 295
  year: 2016
  ident: 6204_CR33
  publication-title: Ann. Glaciol.
  doi: 10.3189/2016AoG71A066
– volume: 13
  start-page: 309
  year: 2003
  ident: 6204_CR35
  publication-title: J. Geog. Sci.
  doi: 10.1007/BF02837505
– volume: 38
  start-page: 3233
  year: 2018
  ident: 6204_CR28
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5497
– ident: 6204_CR38
– volume: 112
  start-page: 79
  year: 2014
  ident: 6204_CR7
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2013.12.001
– volume: 38
  start-page: 2907
  year: 2018
  ident: 6204_CR32
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5471
– year: 2020
  ident: 6204_CR16
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6668
– volume: 50
  start-page: 2212
  year: 2014
  ident: 6204_CR44
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014506
– volume: 44
  start-page: 101146
  year: 2020
  ident: 6204_CR34
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2020.101146
– volume: 35
  start-page: 1538
  year: 2016
  ident: 6204_CR48
  publication-title: Prog. Geogr.
  doi: 10.18306/dlkxjz.2016.12.010
– volume: 54
  start-page: 1430
  year: 2011
  ident: 6204_CR10
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-010-4160-3
– volume: 124
  start-page: 5738
  year: 2019
  ident: 6204_CR13
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018jd029798
– volume: 118
  start-page: 7505
  year: 2013
  ident: 6204_CR17
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50553
– volume: 48
  start-page: 673
  year: 2018
  ident: 6204_CR18
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/aaar0015-077
– volume: 123
  start-page: 3943
  year: 2018
  ident: 6204_CR23
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2017jd028243
– ident: 6204_CR39
– volume: 38
  start-page: 1103
  year: 1999
  ident: 6204_CR49
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2
– volume: 31
  start-page: 151
  year: 1999
  ident: 6204_CR46
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.2307/1552603
– volume: 26
  start-page: 300
  year: 2019
  ident: 6204_CR5
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14884
– volume: 22
  start-page: 4281
  year: 2009
  ident: 6204_CR15
  publication-title: J. Clim.
  doi: 10.1175/2009jcli2845.1
– volume: 20
  start-page: 1729
  year: 2000
  ident: 6204_CR3
  publication-title: Int. J. Climatol.
  doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y
– volume: 16
  start-page: 1032
  year: 2003
  ident: 6204_CR41
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2
– volume: 120
  start-page: 2661
  year: 2015
  ident: 6204_CR25
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014jd022978
– year: 2018
  ident: 6204_CR27
  publication-title: Remote Sens.
  doi: 10.3390/rs10101617
– volume: 47
  start-page: 249
  year: 2008
  ident: 6204_CR14
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2007JAMC1565.1
– volume: 17
  start-page: 397
  year: 2020
  ident: 6204_CR29
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-019-5481-0
– volume: 520
  start-page: 171
  year: 2015
  ident: 6204_CR4
  publication-title: Nature
  doi: 10.1038/nature14338
– volume: 64
  start-page: 1140
  year: 2019
  ident: 6204_CR2
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.06.023
– ident: 6204_CR36
– year: 2024
  ident: 6204_CR6
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-024-3277-9
– volume: 64
  start-page: 483
  year: 1976
  ident: 6204_CR37
  publication-title: Revue de geographie alpine
  doi: 10.3406/rga.1976.2061
– volume: 8
  start-page: 808
  year: 2011
  ident: 6204_CR43
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-011-1090-2
– volume: 132
  start-page: 1129
  year: 2017
  ident: 6204_CR31
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2153-2
– ident: 6204_CR40
– volume: 15
  start-page: 563
  year: 2018
  ident: 6204_CR45
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-017-4566-x
– ident: 6204_CR9
– ident: 6204_CR47
  doi: 10.21203/rs.3.rs-912856/v1
– volume: 146
  start-page: 1999
  year: 2020
  ident: 6204_CR12
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 7
  start-page: 44574
  year: 2017
  ident: 6204_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/srep44574
– volume: 36
  start-page: 1901
  year: 2016
  ident: 6204_CR42
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4468
– volume: 38
  start-page: e901
  year: 2018
  ident: 6204_CR19
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5418
– volume: 121
  start-page: 14006
  year: 2016
  ident: 6204_CR30
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016jd025711
SSID ssj0000529419
Score 2.4511995
Snippet The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating regional...
Abstract The near-surface air temperature lapse rate is a crucial indicator that reflects atmospheric stability and is an important parameter for extrapolating...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20702
SubjectTerms 704/106
704/106/35
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVpQqGbkr6dtEWF7lpTWQ-PZjkpDWGghZIEshN6JoaJPdgzhez6D-kX9ktyJdsD04ZCt5Zsy5xr6dyHjhB6HwqgEcHaPFBDwEGxRa7lFIgcE5oJwoJ1MTTw9Vt5cs7nF-JiB9FxL0wq2k-SlmmaHqvDPnWw0MTNYFTkJEqo5-IB2otS7WDbe7PZ_HS-iazE3BUvpsMOGcLkPTdvrUJJrP8-hvl3oeQf2dK0CB3vo8cDe8SzfrxP0I6vn6KH_XmSN8_Qr9NUHz3ITS3wD3CEex3uG9wEXINV5926Ddp6rKsWx46DqDJe6GXncRSO6HBVY-CF-DuM4UpXv3_enlXGr_ByAa16jWOt_CWOQse5i_Xv8PRr4N5NO06kuDGbYG_3HJ0ffzn7fJIPxy7klpflKgcfh01NMXHBegP0RgZDHCVGgLOjg6HeC60dMEvOjZxQYyURznsmOJ94SzV7gXbrpvavEBZMa8OFcMB6uDVaS-qDBUi45dwxk6EPIwxq2atrqJQVZ1L1oCkATSXQlMjQUURq0zMqY6cLTXupBktRwnPvY3TMMgtkVBoaE6-unDhpZWlkht6NOCv4k2J6RNe-WXcKpjZgX0ApSYZe9rhvXsXjyYdkCi1yyyK2xrLdUldXSa27oBS8UMoz9HE0HjXME90_Pvbg_7ofokc02XcsJH6Ndlft2r8BurQyb4f_4w4Z7xV5
  priority: 102
  providerName: Springer Nature
Title Spatiotemporal variability of near-surface air temperature lapse rates in the Qinghai–Tibet plateau using high-density meteorological observations
URI https://link.springer.com/article/10.1038/s41598-025-06204-5
https://www.ncbi.nlm.nih.gov/pubmed/40593090
https://www.proquest.com/docview/3226351540
https://pubmed.ncbi.nlm.nih.gov/PMC12214924
https://doaj.org/article/5e4ee0679c3c4058b21559d67d8c86b8
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4k0KrIzEDaImfiTOcbtqVa1EBbSV9mb5SSMtyWqzi9Rb_wP8Qn4JYye76gKCC6dItpXYmbH9jWf8DUJvfA4wwhuTeqIzMFBMnipRAZCjXFGeUW9sOBp4f1qcXLDpjM9upPoKMWE9PXD_4w64Y86F0w5DDYALoUlwpNmitMKIQsdrvrDn3TCmelZvUrG8Gm7JZFQcdLBThdtkhKdZ4GBP-c5OFAn7_4Qyfw-W_MVjGjei4wfo_oAg8bjv-UN0yzWP0N0-p-TVY_T9LMZID5RTc_wVjOGei_sKtx43oNlpt156ZRxW9RKHhgOxMp6rRedwII_ocN1gwIb4I_ThUtU_rr-d19qt8GIOtWqNQ7z8ZxzIjlMbYuDh7V8Af7fLzWKKW7098O2eoIvjo_PJSTqkXkgNK4pVCnYOrXReWm-cBogjvM4syTQHg0d5TZzjSllAl4xpURJtRMatc5QzVjpDFH2K9pq2cc8R5lQpzTi3gHyY0UoJ4rwBkTDDmKU6QW83YpCLnmFDRs84FbIXmgShySg0yRN0GCS1bRnYsWMB6IwcdEb-S2cS9HojZwmzKbhIVOPadSdheQMEBrAyS9CzXu7bT7GQ_TCroEbsaMROX3ZrmvoyMnbnhIAlSliC3m2URw5rRfeXwe7_j8G-QPdI1PoQYvwS7a2Wa_cKgNRKj9DtclaO0J3xeHo2hefh0emHT1A6KSajOJ9-AvCpI0I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bitQwGA7riuiNeLYeI3inxTSHTuZSB5dRdxfEWdi7kONuYWyHdkbYO99Bn9An8U_aDowugrdN2qZ8f5PvP-QLQi9DATQiWJsHagg4KLbItZwCkWNCM0FYsC6GBo6Oy_kJ_3gqTvcQHffCpKL9JGmZpumxOuxNBwtN3AxGRU6ihHourqCrwLXLaMmzcraNq8TMFS-mw_4YwuQlt-6sQUmq_zJ--XeZ5B-50rQEHdxCNwfuiN_2o72N9nx9B13rT5O8uIt-fknV0YPY1BJ_Aze4V-G-wE3ANdh03m3aoK3Humpx7DhIKuOlXnUeR9mIDlc1BlaIP8MYznX16_uPRWX8Gq-W0Ko3OFbKn-Eoc5y7WP0OT_8KzLtpx2kUN2Yb6u3uoZOD94vZPB8OXcgtL8t1Dh4Om5pi4oL1BsiNDIY4SowAV0cHQ70XWjvglZwbOaHGSiKc90xwPvGWanYf7ddN7R8iLJjWhgvhgPNwa7SW1AcLkHDLuWMmQ69GGNSq19ZQKSfOpOpBUwCaSqApkaF3Ealtz6iLnS407Zka7EQJz72PsTHLLFBRaWhMu7py4qSVpZEZejHirOA_iskRXftm0ymY2IB7AaEkGXrQ4759FY_nHpIptMgdi9gZy25LXZ0nre6CUvBBKc_Q69F41DBLdP_42Ef_1_05uj5fHB2qww_Hnx6jGzTZeiwpfoL21-3GPwXitDbP0p_yG7zcFw0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKVCA2iDcpLyOxg0DiR8azHB6jMkAFait1Z_nZRpomo2QGqTv-Ab6QL-HaSUYaqJDYxpbj6Nxcn-t7fYzQc58DjfDGpJ7oDAIUk6dKTIDIUa4oz6g3NmwNfD4o9o_Z_ISf7KBiOAsTi_ajpGV000N12OsWFppwGIzwNAsS6il_tbT-CtoFvp2zEdqdTueH883uSshfsXzSn5LJqLhkgK2VKAr2X8Yy_y6W_CNjGhei2U10o2eQeNrN-RbacdVtdLW7U_LiDvp5GGuke8mpBf4GwXCnxX2Ba48rsOy0XTdeGYdV2eDQsRdWxgu1bB0O4hEtLisM3BB_hTmcqfLX9x9HpXYrvFxAq1rjUC9_ioPYcWpDDTyMfg78u24GZ4prvdnwbe-i49n7o7f7aX_1QmpYUaxSiHPoROdj643TQHGE15klmeYQ8CiviXNcKQvskjEtxkQbkXHrHOWMjZ0hit5Do6qu3AOEOVVKM84tMB9mtFKCOG8AEmYYs1Qn6MUAg1x2ChsyZsapkB1oEkCTETTJE_QmILXpGdSx44O6OZW9tUjumHNhh8xQA4RUaBKSr7YYW2FEoUWCng04S_ibQopEVa5etxLcGzAwoJVZgu53uG9excLth9kEWsSWRWzNZbulKs-iYndOCESihCXo5WA8svcV7T8-du__uj9F1768m8lPHw4-PkTXSTT1UFf8CI1Wzdo9Bva00k_6X-U3JSUZcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+variability+of+near-surface+air+temperature+lapse+rates+in+the+Qinghai%E2%80%93Tibet+plateau+using+high-density+meteorological+observations&rft.jtitle=Scientific+reports&rft.au=Jiao%2C+Yue&rft.au=Tseten%2C+Yudron&rft.au=Yang%2C+Quanlin&rft.au=Bai%2C+Lei&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-06204-5&rft_id=info%3Apmid%2F40593090&rft.externalDocID=PMC12214924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon