Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing

Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- vers...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 12; pp. 2398 - 2414.e9
Main Authors Willenborg, Sebastian, Sanin, David E., Jais, Alexander, Ding, Xiaolei, Ulas, Thomas, Nüchel, Julian, Popović, Milica, MacVicar, Thomas, Langer, Thomas, Schultze, Joachim L., Gerbaulet, Alexander, Roers, Axel, Pearce, Edward J., Brüning, Jens C., Trifunovic, Aleksandra, Eming, Sabine A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing. [Display omitted] •Early-stage, inflammatory versus late-stage, pro-resolving wound macrophages are profiled•Pro-inflammatory wound macrophages are marked by mtROS production and HIF1α stabilization•This molecular process is required for proper vascularization during wound repair•Pro-resolving macrophages are marked by mitochondrial respiration and mitohormesis How mitochondrial metabolism contributes to the early-stage, pro-inflammatory versus late-stage, pro-resolution functions of macrophages during wound healing requires further investigation. Here, Willenborg et al. show that effective wound healing requires the production of mtROS in early-stage wound macrophages to promote proper vascularization, while late-stage wound macrophages are dependent on OXPHOS and mitohormesis.
AbstractList Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing. [Display omitted] •Early-stage, inflammatory versus late-stage, pro-resolving wound macrophages are profiled•Pro-inflammatory wound macrophages are marked by mtROS production and HIF1α stabilization•This molecular process is required for proper vascularization during wound repair•Pro-resolving macrophages are marked by mitochondrial respiration and mitohormesis How mitochondrial metabolism contributes to the early-stage, pro-inflammatory versus late-stage, pro-resolution functions of macrophages during wound healing requires further investigation. Here, Willenborg et al. show that effective wound healing requires the production of mtROS in early-stage wound macrophages to promote proper vascularization, while late-stage wound macrophages are dependent on OXPHOS and mitohormesis.
Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
Author Pearce, Edward J.
Trifunovic, Aleksandra
Nüchel, Julian
Popović, Milica
Brüning, Jens C.
Sanin, David E.
Ulas, Thomas
MacVicar, Thomas
Schultze, Joachim L.
Gerbaulet, Alexander
Jais, Alexander
Eming, Sabine A.
Roers, Axel
Langer, Thomas
Willenborg, Sebastian
Ding, Xiaolei
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Willenborg
  fullname: Willenborg, Sebastian
  organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany
– sequence: 2
  givenname: David E.
  surname: Sanin
  fullname: Sanin, David E.
  organization: Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, 79108 Freiburg im Breisgau, Germany
– sequence: 3
  givenname: Alexander
  surname: Jais
  fullname: Jais, Alexander
  organization: Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
– sequence: 4
  givenname: Xiaolei
  surname: Ding
  fullname: Ding, Xiaolei
  organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany
– sequence: 5
  givenname: Thomas
  surname: Ulas
  fullname: Ulas, Thomas
  organization: Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
– sequence: 6
  givenname: Julian
  surname: Nüchel
  fullname: Nüchel, Julian
  organization: Institute for Biochemistry II, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
– sequence: 7
  givenname: Milica
  surname: Popović
  fullname: Popović, Milica
  organization: Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, 50931 Cologne, Germany
– sequence: 8
  givenname: Thomas
  surname: MacVicar
  fullname: MacVicar, Thomas
  organization: Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
– sequence: 9
  givenname: Thomas
  surname: Langer
  fullname: Langer, Thomas
  organization: Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
– sequence: 10
  givenname: Joachim L.
  surname: Schultze
  fullname: Schultze, Joachim L.
  organization: Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
– sequence: 11
  givenname: Alexander
  surname: Gerbaulet
  fullname: Gerbaulet, Alexander
  organization: Institute for Immunology, Medical Faculty, TU Dresden, 01307 Dresden, Germany
– sequence: 12
  givenname: Axel
  surname: Roers
  fullname: Roers, Axel
  organization: Institute for Immunology, Medical Faculty, TU Dresden, 01307 Dresden, Germany
– sequence: 13
  givenname: Edward J.
  surname: Pearce
  fullname: Pearce, Edward J.
  organization: Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, 79108 Freiburg im Breisgau, Germany
– sequence: 14
  givenname: Jens C.
  surname: Brüning
  fullname: Brüning, Jens C.
  organization: Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
– sequence: 15
  givenname: Aleksandra
  surname: Trifunovic
  fullname: Trifunovic, Aleksandra
  organization: Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, 50931 Cologne, Germany
– sequence: 16
  givenname: Sabine A.
  surname: Eming
  fullname: Eming, Sabine A.
  email: sabine.eming@uni-koeln.de
  organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34715039$$D View this record in MEDLINE/PubMed
BookMark eNp9kT2PFDEMhiN0iPuAP0CBUtLM4iQzyY5Eg058SYdooI7y4bnNaiYZkgyIf09We1BQXOXYfl7L8XtNLmKKSMhLBjsGTL457tyCdceBs1bYAfRPyBUbBe9Uz-GivYcBup4JdkmuSzkCCClG8Yxcil6xAcR4RQ5fQk3ukKLPwcy0zTM2zaEs1KWUfYimYqGlmnvsyoouTMHRjKsJma45OSyl9UOki3E5rYfGFeq3HOI9_ZW26OkBzdyy5-TpZOaCLx7iDfn-4f2320_d3dePn2_f3XWul7J2yoGc1OSYs-BB7ZUbUA1S2WlQfrR26A14L4xi0Eu7RwfgObfYulyit-KGvD7Pbdv92LBUvYTicJ5NxLQVzYcRmJBSQUNfPaCbXdDrNYfF5N_673UawM9A-1opGad_CAN9skAf9ckCfbLgVGsWNNH-P5EL1dSQYs0mzI9L356l2A70M2DWxQWMDn3I6Kr2KTwm_wO6oKQT
CitedBy_id crossref_primary_10_1016_j_bbadis_2022_166481
crossref_primary_10_1038_s41580_024_00715_1
crossref_primary_10_1126_science_adp2974
crossref_primary_10_1002_adfm_202213066
crossref_primary_10_62347_AAPM9027
crossref_primary_10_1002_advs_202204871
crossref_primary_10_1016_j_bioactmat_2023_02_023
crossref_primary_10_1016_j_cmet_2022_02_002
crossref_primary_10_1111_eci_14128
crossref_primary_10_1002_adhm_202405151
crossref_primary_10_1016_j_xpro_2022_101337
crossref_primary_10_1002_advs_202305856
crossref_primary_10_1016_j_gendis_2023_101194
crossref_primary_10_1111_cpr_13613
crossref_primary_10_1016_j_jcmgh_2024_101406
crossref_primary_10_1093_jleuko_qiad107
crossref_primary_10_2139_ssrn_4174294
crossref_primary_10_1371_journal_pone_0303692
crossref_primary_10_1038_s41423_023_00984_4
crossref_primary_10_1097_SCS_0000000000010706
crossref_primary_10_1016_j_bioactmat_2025_03_008
crossref_primary_10_1371_journal_ppat_1011658
crossref_primary_10_3389_fmed_2023_1144182
crossref_primary_10_1016_j_bioactmat_2024_07_009
crossref_primary_10_3390_ijms25063303
crossref_primary_10_3390_pharmaceutics16080990
crossref_primary_10_1002_jbm_a_37712
crossref_primary_10_1007_s42114_024_00846_1
crossref_primary_10_1016_j_intimp_2025_114407
crossref_primary_10_1016_j_jmst_2024_08_036
crossref_primary_10_1002_adfm_202315590
crossref_primary_10_1007_s12035_024_03920_3
crossref_primary_10_1016_j_biopha_2024_116545
crossref_primary_10_1016_j_compositesb_2025_112305
crossref_primary_10_1038_s41385_022_00557_0
crossref_primary_10_1016_j_jid_2023_05_017
crossref_primary_10_3389_fcell_2023_1252318
crossref_primary_10_1002_adfm_202409319
crossref_primary_10_1016_j_stem_2024_11_013
crossref_primary_10_1166_jbt_2023_3343
crossref_primary_10_3390_antiox12122022
crossref_primary_10_1038_s41467_022_34191_y
crossref_primary_10_1021_acsami_3c09353
crossref_primary_10_1002_JLB_3MR0422_665R
crossref_primary_10_1038_s42003_024_07219_w
crossref_primary_10_52711_0974_360X_2024_00814
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_3389_fvets_2023_1149333
crossref_primary_10_1016_j_tem_2023_11_002
crossref_primary_10_2147_IJN_S418534
crossref_primary_10_1002_advs_202205292
crossref_primary_10_1016_j_cmet_2023_10_011
crossref_primary_10_1016_j_ebiom_2023_104744
crossref_primary_10_1038_s41467_024_53579_6
crossref_primary_10_3390_bioengineering10070750
crossref_primary_10_1126_sciadv_abn4564
crossref_primary_10_1016_j_bioactmat_2024_02_011
crossref_primary_10_1186_s12951_022_01685_2
crossref_primary_10_1016_j_bioactmat_2024_11_028
crossref_primary_10_1016_j_molmed_2024_04_012
crossref_primary_10_1080_15376516_2024_2400323
crossref_primary_10_1038_s41698_024_00752_1
crossref_primary_10_1177_20417314241265202
crossref_primary_10_1093_rb_rbae082
crossref_primary_10_1007_s13167_025_00400_z
crossref_primary_10_1007_s00011_023_01815_y
crossref_primary_10_1016_j_biomaterials_2024_122891
crossref_primary_10_1111_jcmm_70292
crossref_primary_10_1016_j_ebiom_2024_105502
crossref_primary_10_1021_acsami_5c00667
crossref_primary_10_1016_j_nantod_2024_102324
crossref_primary_10_1002_smll_202408791
crossref_primary_10_1002_adhm_202303044
crossref_primary_10_1038_s41392_022_01202_9
crossref_primary_10_1038_s41419_023_06066_7
crossref_primary_10_1093_burnst_tkad029
crossref_primary_10_1021_acsanm_3c02443
crossref_primary_10_1016_j_mucimm_2023_06_006
crossref_primary_10_1021_acsnano_3c09814
crossref_primary_10_1039_D4BM00394B
crossref_primary_10_1002_adhm_202304125
crossref_primary_10_1038_s41467_024_50031_7
crossref_primary_10_1002_cpz1_485
crossref_primary_10_12677_ACM_2024_141049
crossref_primary_10_18632_aging_206033
crossref_primary_10_1016_j_carbon_2023_03_039
crossref_primary_10_1016_j_freeradbiomed_2024_06_001
crossref_primary_10_1039_D4MA00333K
crossref_primary_10_1089_ten_teb_2023_0157
crossref_primary_10_1126_science_adq2509
crossref_primary_10_1016_j_phymed_2023_154773
crossref_primary_10_1021_acscentsci_4c02156
crossref_primary_10_1186_s40779_024_00573_0
crossref_primary_10_1038_s41536_024_00379_7
crossref_primary_10_3389_fendo_2022_868893
crossref_primary_10_1016_j_bioactmat_2024_08_003
crossref_primary_10_1021_acsnano_4c07610
crossref_primary_10_1007_s11030_023_10609_7
crossref_primary_10_1111_srt_13638
crossref_primary_10_4049_jimmunol_2200365
crossref_primary_10_1016_j_jconrel_2025_02_073
crossref_primary_10_1021_acsnano_4c06921
crossref_primary_10_1007_s00432_023_04592_7
crossref_primary_10_1038_s41467_023_39129_6
crossref_primary_10_15252_emmm_202216671
crossref_primary_10_1002_mco2_658
crossref_primary_10_1172_jci_insight_169213
crossref_primary_10_1016_j_jid_2023_06_203
crossref_primary_10_1016_j_celrep_2023_113264
crossref_primary_10_1038_s41565_024_01660_y
crossref_primary_10_1007_s11596_024_2946_3
crossref_primary_10_1126_sciadv_adg2829
crossref_primary_10_1016_j_toxicon_2025_108293
crossref_primary_10_1146_annurev_immunol_101921_041206
crossref_primary_10_1016_j_actbio_2023_06_025
crossref_primary_10_1016_j_celrep_2023_113658
crossref_primary_10_1126_sciimmunol_abl7482
crossref_primary_10_1038_s41419_022_05433_0
crossref_primary_10_1039_D3TB00835E
crossref_primary_10_1016_j_mtbio_2025_101539
crossref_primary_10_1038_s41420_023_01653_1
crossref_primary_10_1016_j_biopha_2022_114004
crossref_primary_10_1016_j_mtbio_2023_100929
crossref_primary_10_1089_dna_2024_0064
crossref_primary_10_1186_s12951_025_03216_1
crossref_primary_10_1007_s11010_024_05049_2
crossref_primary_10_1016_j_ijbiomac_2024_134570
crossref_primary_10_1016_j_mtbio_2024_101130
crossref_primary_10_3390_biomedicines10123113
crossref_primary_10_1186_s13619_022_00141_8
crossref_primary_10_3389_fimmu_2024_1432402
crossref_primary_10_3390_diabetology3010013
crossref_primary_10_1111_iwj_14223
crossref_primary_10_1016_j_matbio_2024_07_002
crossref_primary_10_1186_s13619_023_00158_7
crossref_primary_10_3390_cancers15164058
crossref_primary_10_1038_s42255_025_01224_x
crossref_primary_10_1016_j_cej_2024_157300
crossref_primary_10_1016_j_jid_2024_05_007
crossref_primary_10_1016_j_cej_2024_155884
crossref_primary_10_1038_s41575_024_00931_2
crossref_primary_10_1097_IN9_0000000000000044
crossref_primary_10_1002_advs_202302910
crossref_primary_10_1002_jbt_23407
crossref_primary_10_3390_ijms23169346
crossref_primary_10_1016_j_matdes_2022_111540
Cites_doi 10.1046/j.1524-475X.2003.11621.x
10.1182/blood-2012-01-403386
10.1038/nature07039
10.1083/jcb.201702058
10.4049/jimmunol.0901698
10.2353/ajpath.2009.090248
10.1093/gigascience/giy083
10.1093/bioinformatics/btq057
10.1186/s13059-014-0550-8
10.1016/j.immuni.2015.09.005
10.1111/micc.12259
10.7554/eLife.10575
10.1016/j.cmet.2014.02.004
10.1038/s41467-020-15467-7
10.1084/jem.20151570
10.1126/science.aar3932
10.1152/ajpendo.00362.2014
10.1038/s41467-019-11115-x
10.1038/nature11986
10.1038/ni.2956
10.1038/nprot.2014.006
10.4049/jimmunol.0903356
10.1126/science.aat5314
10.1016/j.it.2017.08.006
10.1093/nar/gkw257
10.1016/j.cell.2019.05.031
10.1186/s13059-019-1874-1
10.1016/j.cmet.2014.01.011
10.1016/j.cmet.2021.07.017
10.4049/jimmunol.1003613
10.1101/gad.1250704
10.1016/j.immuni.2018.10.011
10.1126/sciimmunol.abd6279
10.1023/A:1008942828960
10.1038/s41590-019-0336-y
10.1038/s42255-021-00392-w
10.1093/bioinformatics/btt656
10.1016/j.cmet.2006.05.011
10.1016/j.cmet.2019.08.019
10.1038/nmeth.2089
10.1126/sciadv.abf0971
10.1126/science.aai8132
10.1126/science.aam7928
10.1038/nmeth.1923
10.1038/nri3476
10.15252/embj.201797786
10.1016/j.immuni.2016.09.016
10.1038/s41586-019-1678-1
10.1038/nri3073
10.1016/j.cell.2016.08.064
10.1023/A:1008868325009
10.1089/ars.2007.1674
10.1007/s10456-012-9282-0
10.1002/eji.200636745
10.1042/BJ20081386
10.1016/j.immuni.2015.02.005
10.1016/S1074-7613(04)00107-4
10.21105/joss.00861
10.1016/j.immuni.2020.11.001
10.1126/science.1204351
10.1016/j.febslet.2007.12.024
10.1016/j.cell.2021.04.048
10.1074/jbc.M001914200
10.7554/eLife.30952
10.1093/bioinformatics/bts635
10.14806/ej.17.1.200
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2021.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 2414.e9
ExternalDocumentID 34715039
10_1016_j_cmet_2021_10_004
S1550413121004824
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-7c06f7fc1cb0d0787c5e7567bf57d9bb54a0dd3a71046b8ec00d22be57d26edb3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Jul 10 22:28:52 EDT 2025
Mon Jul 21 05:59:07 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Fri Feb 23 02:41:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords wound healing
mitochondria
mitochondrial repurposing
metabolism
mitohormesis
monocyte/macrophage
type 2 immunity
tissue repair
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-7c06f7fc1cb0d0787c5e7567bf57d9bb54a0dd3a71046b8ec00d22be57d26edb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413121004824
PMID 34715039
PQID 2590136670
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2590136670
pubmed_primary_34715039
crossref_primary_10_1016_j_cmet_2021_10_004
crossref_citationtrail_10_1016_j_cmet_2021_10_004
elsevier_sciencedirect_doi_10_1016_j_cmet_2021_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-07
PublicationDateYYYYMMDD 2021-12-07
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Luan, Medzhitov (bib64) 2019; 363
Askenase, Goods, Beatty, Steinschneider, Velazquez, Osherov, Landreneau, Carroll, Tran, Avram (bib2) 2021; 6
Jenkins, Ruckerl, Cook, Jones, Finkelman, van Rooijen, MacDonald, Allen (bib26) 2011; 332
Timblin, Tharp, Ford, Winchester, Wang, Zhu, Khan, Louie, Iavarone, Ten Hoeve (bib61) 2021; 3
(bib73) 2013
Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib42) 2016; 167
Love, Huber, Anders (bib34) 2014; 15
Clausen, Burkhardt, Reith, Renkawitz, Förster (bib8) 1999; 8
Murray, Wynn (bib45) 2011; 11
Schneider, Rasband, Eliceiri (bib55) 2012; 9
Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib63) 2006; 4
Dogan, Pujol, Maiti, Kukat, Wang, Hermans, Senft, Wibom, Rugarli, Trifunovic (bib12) 2014; 19
Pedersen (bib47) 2020
Almeida, Dhillon-Labrooy, Castro, Adossa, Carriche, Guderian, Lippens, Dennerlein, Hesse, Lambrecht (bib1) 2021; 54
Yun, Finkel (bib68) 2014; 19
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib11) 2013; 29
Corliss, Azimi, Munson, Peirce, Murfee (bib9) 2016; 23
Herbert, Hölscher, Mohrs, Arendse, Schwegmann, Radwanska, Leeto, Kirsch, Hall, Mossmann (bib22) 2004; 20
McInnes, Healy, Saul, Großberge (bib40) 2018; 3
Sumbayev (bib57) 2008; 582
Eming, Murray, Pearce (bib13) 2021; 33
Malandrino, Fucho, Weber, Calderon-Dominguez, Mir, Valcarcel, Escoté, Gómez-Serrano, Peral, Salvadó (bib37) 2015; 308
Murphy (bib44) 2009; 417
Bao, Ong, Goldberger, Peng, Sharma, Thompson, Vafai, Cox, Marutani, Ichinose (bib3) 2016; 5
Liao, Smyth, Shi (bib33) 2014; 30
Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib59) 2013; 496
Bhardwaj, Semplicio, Erdogdu, Manke, Akhtar (bib4) 2019; 10
Wickham (bib65) 2016
Jha, Huang, Sergushichev, Lampropoulou, Ivanova, Loginicheva, Chmielewski, Stewart, Ashall, Everts (bib27) 2015; 42
Hunt, Aslam, Beckert, Wagner, Ghani, Hussain, Roy, Sen (bib25) 2007; 9
Gurevich, Severn, Twomey, Greenhough, Cash, Toye, Mellor, Martin (bib17) 2018; 37
Willenborg, Lucas, van Loo, Knipper, Krieg, Haase, Brachvogel, Hammerschmidt, Nagy, Ferrara (bib66) 2012; 120
Sanin, Matsushita, Klein Geltink, Grzes, van Teijlingen Bakker, Corrado, Kabat, Buck, Qiu, Lawless (bib54) 2018; 49
Hafemeister, Satija (bib19) 2019; 20
Kühl, Miranda, Atanassov, Kuznetsova, Hinze, Mourier, Filipovska, Larsson (bib30) 2017; 6
Chandel, McClintock, Feliciano, Wood, Melendez, Rodriguez, Schumacker (bib7) 2000; 275
Kaspar, Oertlin, Szczepanowska, Kukat, Senft, Lucas, Brodesser, Hatzoglou, Larsson, Topisirovic, Trifunovic (bib28) 2021; 7
Tenenbaum (bib60) 2020
Cameron, Castoldi, Sanin, Flachsmann, Field, Puleston, Kyle, Patterson, Hässler, Buescher (bib6) 2019; 20
Quirós, Prado, Zamboni, D'Amico, Williams, Finley, Gygi, Auwerx (bib50) 2017; 216
Rodríguez-Prados, Través, Cuenca, Rico, Aragonés, Martín-Sanz, Cascante, Boscá (bib53) 2010; 185
Martin (bib39) 2011; 17
Trabold, Wagner, Wicke, Scheuenstuhl, Hussain, Rosen, Seremetiev, Becker, Hunt (bib62) 2003; 11
Gurtner, Werner, Barrandon, Longaker (bib18) 2008; 453
O'Neill, Pearce (bib46) 2016; 213
Rambold, Pearce (bib51) 2018; 39
Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib56) 2019; 177
Michalek, Gerriets, Jacobs, Macintyre, MacIver, Mason, Sullivan, Nichols, Rathmell (bib41) 2011; 186
Bosurgi, Cao, Cabeza-Cabrerizo, Tucci, Hughes, Kong, Weinstein, Licona-Limon, Schmid, Pelorosso (bib5) 2017; 356
Huang, Everts, Ivanova, O'Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neill (bib23) 2014; 15
Lallemand, Luria, Haffner-Krausz, Lonai (bib31) 1998; 7
Lucas, Waisman, Ranjan, Roes, Krieg, Müller, Roers, Eming (bib35) 2010; 184
Huang, Smith, Everts, Colonna, Pearce, Schilling, Pearce (bib24) 2016; 45
Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib48) 2014; 9
Zhang, Tang, Huang, Zhou, Cui, Weng, Liu, Kim, Lee, Perez-Neut (bib70) 2019; 574
Luche, Weber, Nageswara Rao, Blum, Fehling (bib36) 2007; 37
Costa-Mattioli, Walter (bib10) 2020; 368
Marciniak, Yun, Oyadomari, Novoa, Zhang, Jungreis, Nagata, Harding, Ron (bib38) 2004; 18
Gause, Wynn, Allen (bib16) 2013; 13
Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib20) 2021; 184
Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib52) 2016; 44
Mirza, DiPietro, Koh (bib43) 2009; 175
Langmead, Salzberg (bib32) 2012; 9
Wu, Nacu (bib67) 2010; 26
Knipper, Willenborg, Brinckmann, Bloch, Maaß, Wagener, Krieg, Sutherland, Munitz, Rothenberg (bib29) 2015; 43
Szczepanowska, Senft, Heidler, Herholz, Kukat, Höhne, Hofsetz, Becker, Kaspar, Giese (bib58) 2020; 11
Harris, Loke (bib21) 2017; 47
Porporato, Payen, De Saedeleer, Préat, Thissen, Feron, Sonveaux (bib49) 2012; 15
Eming, Wynn, Martin (bib14) 2017; 356
Forsström, Jackson, Carroll, Kuronen, Pirinen, Pradhan, Marmyleva, Auranen, Kleine, Khan (bib15) 2019; 30
Zappia, Oshlack (bib69) 2018; 7
Gause (10.1016/j.cmet.2021.10.004_bib16) 2013; 13
Schneider (10.1016/j.cmet.2021.10.004_bib55) 2012; 9
Bhardwaj (10.1016/j.cmet.2021.10.004_bib4) 2019; 10
Mills (10.1016/j.cmet.2021.10.004_bib42) 2016; 167
Gurevich (10.1016/j.cmet.2021.10.004_bib17) 2018; 37
Almeida (10.1016/j.cmet.2021.10.004_bib1) 2021; 54
Dogan (10.1016/j.cmet.2021.10.004_bib12) 2014; 19
Herbert (10.1016/j.cmet.2021.10.004_bib22) 2004; 20
Kühl (10.1016/j.cmet.2021.10.004_bib30) 2017; 6
Huang (10.1016/j.cmet.2021.10.004_bib23) 2014; 15
Askenase (10.1016/j.cmet.2021.10.004_bib2) 2021; 6
Rodríguez-Prados (10.1016/j.cmet.2021.10.004_bib53) 2010; 185
Harris (10.1016/j.cmet.2021.10.004_bib21) 2017; 47
Bao (10.1016/j.cmet.2021.10.004_bib3) 2016; 5
Quirós (10.1016/j.cmet.2021.10.004_bib50) 2017; 216
Costa-Mattioli (10.1016/j.cmet.2021.10.004_bib10) 2020; 368
McInnes (10.1016/j.cmet.2021.10.004_bib40) 2018; 3
Tenenbaum (10.1016/j.cmet.2021.10.004_bib60)
Pedersen (10.1016/j.cmet.2021.10.004_bib47)
Dobin (10.1016/j.cmet.2021.10.004_bib11) 2013; 29
Jha (10.1016/j.cmet.2021.10.004_bib27) 2015; 42
Eming (10.1016/j.cmet.2021.10.004_bib14) 2017; 356
Knipper (10.1016/j.cmet.2021.10.004_bib29) 2015; 43
Hao (10.1016/j.cmet.2021.10.004_bib20) 2021; 184
Marciniak (10.1016/j.cmet.2021.10.004_bib38) 2004; 18
Tannahill (10.1016/j.cmet.2021.10.004_bib59) 2013; 496
Zappia (10.1016/j.cmet.2021.10.004_bib69) 2018; 7
Corliss (10.1016/j.cmet.2021.10.004_bib9) 2016; 23
Lallemand (10.1016/j.cmet.2021.10.004_bib31) 1998; 7
Kaspar (10.1016/j.cmet.2021.10.004_bib28) 2021; 7
Rambold (10.1016/j.cmet.2021.10.004_bib51) 2018; 39
Cameron (10.1016/j.cmet.2021.10.004_bib6) 2019; 20
Wickham (10.1016/j.cmet.2021.10.004_bib65) 2016
Liao (10.1016/j.cmet.2021.10.004_bib33) 2014; 30
Luche (10.1016/j.cmet.2021.10.004_bib36) 2007; 37
Wang (10.1016/j.cmet.2021.10.004_bib64) 2019; 363
Bosurgi (10.1016/j.cmet.2021.10.004_bib5) 2017; 356
Jenkins (10.1016/j.cmet.2021.10.004_bib26) 2011; 332
Mirza (10.1016/j.cmet.2021.10.004_bib43) 2009; 175
Gurtner (10.1016/j.cmet.2021.10.004_bib18) 2008; 453
Sumbayev (10.1016/j.cmet.2021.10.004_bib57) 2008; 582
Picelli (10.1016/j.cmet.2021.10.004_bib48) 2014; 9
Lucas (10.1016/j.cmet.2021.10.004_bib35) 2010; 184
Timblin (10.1016/j.cmet.2021.10.004_bib61) 2021; 3
Murphy (10.1016/j.cmet.2021.10.004_bib44) 2009; 417
O'Neill (10.1016/j.cmet.2021.10.004_bib46) 2016; 213
Langmead (10.1016/j.cmet.2021.10.004_bib32) 2012; 9
Chandel (10.1016/j.cmet.2021.10.004_bib7) 2000; 275
Hafemeister (10.1016/j.cmet.2021.10.004_bib19) 2019; 20
Forsström (10.1016/j.cmet.2021.10.004_bib15) 2019; 30
Vats (10.1016/j.cmet.2021.10.004_bib63) 2006; 4
Eming (10.1016/j.cmet.2021.10.004_bib13) 2021; 33
Porporato (10.1016/j.cmet.2021.10.004_bib49) 2012; 15
Hunt (10.1016/j.cmet.2021.10.004_bib25) 2007; 9
Love (10.1016/j.cmet.2021.10.004_bib34) 2014; 15
Martin (10.1016/j.cmet.2021.10.004_bib39) 2011; 17
Michalek (10.1016/j.cmet.2021.10.004_bib41) 2011; 186
Zhang (10.1016/j.cmet.2021.10.004_bib70) 2019; 574
Szczepanowska (10.1016/j.cmet.2021.10.004_bib58) 2020; 11
Huang (10.1016/j.cmet.2021.10.004_bib24) 2016; 45
Willenborg (10.1016/j.cmet.2021.10.004_bib66) 2012; 120
Yun (10.1016/j.cmet.2021.10.004_bib68) 2014; 19
Murray (10.1016/j.cmet.2021.10.004_bib45) 2011; 11
Ramírez (10.1016/j.cmet.2021.10.004_bib52) 2016; 44
Clausen (10.1016/j.cmet.2021.10.004_bib8) 1999; 8
Stuart (10.1016/j.cmet.2021.10.004_bib56) 2019; 177
Wu (10.1016/j.cmet.2021.10.004_bib67) 2010; 26
Malandrino (10.1016/j.cmet.2021.10.004_bib37) 2015; 308
Sanin (10.1016/j.cmet.2021.10.004_bib54) 2018; 49
Trabold (10.1016/j.cmet.2021.10.004_bib62) 2003; 11
References_xml – volume: 20
  start-page: 296
  year: 2019
  ident: bib19
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol.
– volume: 7
  start-page: eabf0971
  year: 2021
  ident: bib28
  article-title: Adaptation to mitochondrial stress requires CHOP-directed tuning of
  publication-title: ISR. Sci. Adv.
– volume: 18
  start-page: 3066
  year: 2004
  end-page: 3077
  ident: bib38
  article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum
  publication-title: Genes Dev.
– year: 2013
  ident: bib73
– volume: 8
  start-page: 265
  year: 1999
  end-page: 277
  ident: bib8
  article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice
  publication-title: Transgenic. Res.
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: bib33
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 44
  start-page: W160
  year: 2016
  end-page: W165
  ident: bib52
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib34
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 167
  start-page: 457
  year: 2016
  end-page: 470.e13
  ident: bib42
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
– volume: 184
  start-page: 3964
  year: 2010
  end-page: 3977
  ident: bib35
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
– volume: 496
  start-page: 238
  year: 2013
  end-page: 242
  ident: bib59
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
– volume: 186
  start-page: 3299
  year: 2011
  end-page: 3303
  ident: bib41
  article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
  publication-title: J. Immunol.
– volume: 20
  start-page: 420
  year: 2019
  end-page: 432
  ident: bib6
  article-title: Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 504
  year: 2003
  end-page: 509
  ident: bib62
  article-title: Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing
  publication-title: Wound Repair Regen.
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902.e21
  ident: bib56
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
– volume: 26
  start-page: 873
  year: 2010
  end-page: 881
  ident: bib67
  article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads
  publication-title: Bioinformatics
– volume: 363
  start-page: 6423
  year: 2019
  ident: bib64
  article-title: An evolutionary perspective on immunometabolism
  publication-title: Science
– year: 2016
  ident: bib65
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 7
  start-page: 105
  year: 1998
  end-page: 112
  ident: bib31
  article-title: Maternally expressed PGK-CreTransgene as a tool for early and uniform activation of the Cre site-specific recombinase
  publication-title: Transgenic. Res.
– volume: 453
  start-page: 314
  year: 2008
  end-page: 321
  ident: bib18
  article-title: Wound repair and regeneration
  publication-title: Nature
– volume: 213
  start-page: 15
  year: 2016
  end-page: 23
  ident: bib46
  article-title: Immunometabolism governs dendritic cell and macrophage function
  publication-title: J. Exp. Med.
– volume: 11
  start-page: 1643
  year: 2020
  ident: bib58
  article-title: A salvage pathway maintains highly functional respiratory complex I
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1024
  year: 2017
  end-page: 1036
  ident: bib21
  article-title: Recent advances in type-2-cell-mediated immunity: insights from helminth infection
  publication-title: Infect. Immun.
– volume: 39
  start-page: 6
  year: 2018
  end-page: 18
  ident: bib51
  article-title: Mitochondrial dynamics at the interface of immune cell metabolism and function
  publication-title: Trends Immunol.
– volume: 582
  start-page: 319
  year: 2008
  end-page: 326
  ident: bib57
  article-title: LPS-induced toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein
  publication-title: FEBS Lett.
– volume: 19
  start-page: 757
  year: 2014
  end-page: 766
  ident: bib68
  publication-title: Mitohormesis. Cell Metab.
– volume: 23
  start-page: 95
  year: 2016
  end-page: 121
  ident: bib9
  article-title: Macrophages: an inflammatory link Between angiogenesis and lymphangiogenesis
  publication-title: Microcirculation
– volume: 33
  start-page: 1726
  year: 2021
  end-page: 1743
  ident: bib13
  article-title: Metabolic orchestration of the wound healing response
  publication-title: Cell Metab.
– year: 2020
  ident: bib47
  article-title: patchwork: the composer of plots. R package version 1.1.1
– volume: 43
  start-page: 803
  year: 2015
  end-page: 816
  ident: bib29
  article-title: Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair
  publication-title: Immunity
– volume: 3
  start-page: 618
  year: 2021
  end-page: 635
  ident: bib61
  article-title: Mitohormesis reprogrammes macrophage metabolism to enforce tolerance
  publication-title: Nat. Metab.
– volume: 37
  start-page: 43
  year: 2007
  end-page: 53
  ident: bib36
  article-title: Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies
  publication-title: Eur. J. Immunol.
– volume: 10
  start-page: 3219
  year: 2019
  ident: bib4
  article-title: MAPCap allows high-resolution detection and differential expression analysis of transcription start sites
  publication-title: Nat. Commun.
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  ident: bib48
  article-title: Full-length RNA-Seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
– volume: 19
  start-page: 458
  year: 2014
  end-page: 469
  ident: bib12
  article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart
  publication-title: Cell Metab.
– volume: 54
  start-page: 68
  year: 2021
  end-page: 83.e6
  ident: bib1
  article-title: Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis
  publication-title: Immunity
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib11
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 175
  start-page: 2454
  year: 2009
  end-page: 2462
  ident: bib43
  article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice
  publication-title: Am. J. Pathol.
– volume: 574
  start-page: 575
  year: 2019
  end-page: 580
  ident: bib70
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
– volume: 6
  start-page: e30952
  year: 2017
  ident: bib30
  article-title: Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals
  publication-title: Elife
– volume: 6
  start-page: eabd6279
  year: 2021
  ident: bib2
  article-title: Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage
  publication-title: Sci. Immunol.
– volume: 275
  start-page: 25130
  year: 2000
  end-page: 25138
  ident: bib7
  article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing
  publication-title: J. Biol. Chem.
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  ident: bib20
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– volume: 3
  start-page: 861
  year: 2018
  ident: bib40
  article-title: UMAP: uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
– volume: 216
  start-page: 2027
  year: 2017
  end-page: 2045
  ident: bib50
  article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals
  publication-title: J. Cell Biol.
– volume: 356
  start-page: 1072
  year: 2017
  end-page: 1076
  ident: bib5
  article-title: Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells
  publication-title: Science
– volume: 49
  start-page: 1021
  year: 2018
  end-page: 1033.e6
  ident: bib54
  article-title: Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2
  publication-title: Immunity
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib55
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 7
  start-page: giy083
  year: 2018
  ident: bib69
  article-title: Clustering trees: a visualization for evaluating clusterings at multiple resolutions
  publication-title: GigaScience
– volume: 4
  start-page: 13
  year: 2006
  end-page: 24
  ident: bib63
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
– volume: 30
  start-page: 1040
  year: 2019
  end-page: 1054.e7
  ident: bib15
  article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions
  publication-title: Cell Metab.
– volume: 17
  start-page: 10
  year: 2011
  end-page: 12
  ident: bib39
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
– volume: 37
  start-page: e97786
  year: 2018
  ident: bib17
  article-title: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression
  publication-title: EMBO J.
– volume: 120
  start-page: 613
  year: 2012
  end-page: 625
  ident: bib66
  article-title: CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair
  publication-title: Blood
– volume: 356
  start-page: 1026
  year: 2017
  end-page: 1030
  ident: bib14
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
– volume: 13
  start-page: 607
  year: 2013
  end-page: 614
  ident: bib16
  article-title: Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths
  publication-title: Nat. Rev. Immunol.
– volume: 15
  start-page: 581
  year: 2012
  end-page: 592
  ident: bib49
  article-title: Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
  publication-title: Angiogenesis
– volume: 20
  start-page: 623
  year: 2004
  end-page: 635
  ident: bib22
  article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology
  publication-title: Immunity
– volume: 45
  start-page: 817
  year: 2016
  end-page: 830
  ident: bib24
  article-title: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation
  publication-title: Immunity
– volume: 308
  start-page: E756
  year: 2015
  end-page: E769
  ident: bib37
  article-title: Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 185
  start-page: 605
  year: 2010
  end-page: 614
  ident: bib53
  article-title: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
  publication-title: J. Immunol.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib32
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 368
  start-page: eaat5314
  year: 2020
  ident: bib10
  article-title: The integrated stress response: From mechanism to disease
  publication-title: Science
– volume: 9
  start-page: 1115
  year: 2007
  end-page: 1124
  ident: bib25
  article-title: Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms
  publication-title: Antioxid. Redox Signal.
– volume: 42
  start-page: 419
  year: 2015
  end-page: 430
  ident: bib27
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
– volume: 332
  start-page: 1284
  year: 2011
  end-page: 1288
  ident: bib26
  article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
  publication-title: Science
– volume: 5
  start-page: e10575
  year: 2016
  ident: bib3
  article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells
  publication-title: Elife
– volume: 15
  start-page: 846
  year: 2014
  end-page: 855
  ident: bib23
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 723
  year: 2011
  end-page: 737
  ident: bib45
  article-title: Protective and pathogenic functions of macrophage subsets
  publication-title: Nat. Rev. Immunol.
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib44
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem. J.
– year: 2020
  ident: bib60
  article-title: KEGGREST: client-side REST access to KEGG. R package version 1.28.0
– volume: 47
  start-page: 1024
  year: 2017
  ident: 10.1016/j.cmet.2021.10.004_bib21
  article-title: Recent advances in type-2-cell-mediated immunity: insights from helminth infection
  publication-title: Infect. Immun.
– volume: 11
  start-page: 504
  year: 2003
  ident: 10.1016/j.cmet.2021.10.004_bib62
  article-title: Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.2003.11621.x
– volume: 120
  start-page: 613
  year: 2012
  ident: 10.1016/j.cmet.2021.10.004_bib66
  article-title: CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair
  publication-title: Blood
  doi: 10.1182/blood-2012-01-403386
– volume: 453
  start-page: 314
  year: 2008
  ident: 10.1016/j.cmet.2021.10.004_bib18
  article-title: Wound repair and regeneration
  publication-title: Nature
  doi: 10.1038/nature07039
– volume: 216
  start-page: 2027
  year: 2017
  ident: 10.1016/j.cmet.2021.10.004_bib50
  article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201702058
– volume: 185
  start-page: 605
  year: 2010
  ident: 10.1016/j.cmet.2021.10.004_bib53
  article-title: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0901698
– volume: 175
  start-page: 2454
  year: 2009
  ident: 10.1016/j.cmet.2021.10.004_bib43
  article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.090248
– volume: 7
  start-page: giy083
  year: 2018
  ident: 10.1016/j.cmet.2021.10.004_bib69
  article-title: Clustering trees: a visualization for evaluating clusterings at multiple resolutions
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy083
– volume: 26
  start-page: 873
  year: 2010
  ident: 10.1016/j.cmet.2021.10.004_bib67
  article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq057
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib34
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 43
  start-page: 803
  year: 2015
  ident: 10.1016/j.cmet.2021.10.004_bib29
  article-title: Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.09.005
– volume: 23
  start-page: 95
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib9
  article-title: Macrophages: an inflammatory link Between angiogenesis and lymphangiogenesis
  publication-title: Microcirculation
  doi: 10.1111/micc.12259
– volume: 5
  start-page: e10575
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib3
  article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells
  publication-title: Elife
  doi: 10.7554/eLife.10575
– volume: 19
  start-page: 458
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib12
  article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.02.004
– volume: 11
  start-page: 1643
  year: 2020
  ident: 10.1016/j.cmet.2021.10.004_bib58
  article-title: A salvage pathway maintains highly functional respiratory complex I
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15467-7
– volume: 213
  start-page: 15
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib46
  article-title: Immunometabolism governs dendritic cell and macrophage function
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151570
– volume: 363
  start-page: 6423
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib64
  article-title: An evolutionary perspective on immunometabolism
  publication-title: Science
  doi: 10.1126/science.aar3932
– volume: 308
  start-page: E756
  year: 2015
  ident: 10.1016/j.cmet.2021.10.004_bib37
  article-title: Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00362.2014
– volume: 10
  start-page: 3219
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib4
  article-title: MAPCap allows high-resolution detection and differential expression analysis of transcription start sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11115-x
– ident: 10.1016/j.cmet.2021.10.004_bib60
– volume: 496
  start-page: 238
  year: 2013
  ident: 10.1016/j.cmet.2021.10.004_bib59
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 15
  start-page: 846
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib23
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2956
– volume: 9
  start-page: 171
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib48
  article-title: Full-length RNA-Seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 184
  start-page: 3964
  year: 2010
  ident: 10.1016/j.cmet.2021.10.004_bib35
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903356
– volume: 368
  start-page: eaat5314
  year: 2020
  ident: 10.1016/j.cmet.2021.10.004_bib10
  article-title: The integrated stress response: From mechanism to disease
  publication-title: Science
  doi: 10.1126/science.aat5314
– volume: 39
  start-page: 6
  year: 2018
  ident: 10.1016/j.cmet.2021.10.004_bib51
  article-title: Mitochondrial dynamics at the interface of immune cell metabolism and function
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.08.006
– volume: 44
  start-page: W160
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib52
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw257
– volume: 177
  start-page: 1888
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib56
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 20
  start-page: 296
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib19
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1874-1
– volume: 19
  start-page: 757
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib68
  publication-title: Mitohormesis. Cell Metab.
  doi: 10.1016/j.cmet.2014.01.011
– volume: 33
  start-page: 1726
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib13
  article-title: Metabolic orchestration of the wound healing response
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.07.017
– volume: 186
  start-page: 3299
  year: 2011
  ident: 10.1016/j.cmet.2021.10.004_bib41
  article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003613
– volume: 18
  start-page: 3066
  year: 2004
  ident: 10.1016/j.cmet.2021.10.004_bib38
  article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum
  publication-title: Genes Dev.
  doi: 10.1101/gad.1250704
– volume: 49
  start-page: 1021
  year: 2018
  ident: 10.1016/j.cmet.2021.10.004_bib54
  article-title: Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.10.011
– volume: 6
  start-page: eabd6279
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib2
  article-title: Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abd6279
– volume: 8
  start-page: 265
  year: 1999
  ident: 10.1016/j.cmet.2021.10.004_bib8
  article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice
  publication-title: Transgenic. Res.
  doi: 10.1023/A:1008942828960
– volume: 20
  start-page: 420
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib6
  article-title: Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0336-y
– volume: 3
  start-page: 618
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib61
  article-title: Mitohormesis reprogrammes macrophage metabolism to enforce tolerance
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-021-00392-w
– volume: 30
  start-page: 923
  year: 2014
  ident: 10.1016/j.cmet.2021.10.004_bib33
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.cmet.2021.10.004_bib63
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 30
  start-page: 1040
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib15
  article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.019
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.cmet.2021.10.004_bib55
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 7
  start-page: eabf0971
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib28
  article-title: Adaptation to mitochondrial stress requires CHOP-directed tuning of
  publication-title: ISR. Sci. Adv.
  doi: 10.1126/sciadv.abf0971
– volume: 356
  start-page: 1072
  year: 2017
  ident: 10.1016/j.cmet.2021.10.004_bib5
  article-title: Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells
  publication-title: Science
  doi: 10.1126/science.aai8132
– volume: 356
  start-page: 1026
  year: 2017
  ident: 10.1016/j.cmet.2021.10.004_bib14
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
  doi: 10.1126/science.aam7928
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.cmet.2021.10.004_bib32
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– ident: 10.1016/j.cmet.2021.10.004_bib47
– volume: 13
  start-page: 607
  year: 2013
  ident: 10.1016/j.cmet.2021.10.004_bib16
  article-title: Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3476
– volume: 37
  start-page: e97786
  year: 2018
  ident: 10.1016/j.cmet.2021.10.004_bib17
  article-title: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression
  publication-title: EMBO J.
  doi: 10.15252/embj.201797786
– volume: 45
  start-page: 817
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib24
  article-title: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.09.016
– volume: 574
  start-page: 575
  year: 2019
  ident: 10.1016/j.cmet.2021.10.004_bib70
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 11
  start-page: 723
  year: 2011
  ident: 10.1016/j.cmet.2021.10.004_bib45
  article-title: Protective and pathogenic functions of macrophage subsets
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3073
– volume: 167
  start-page: 457
  year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib42
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.064
– volume: 7
  start-page: 105
  year: 1998
  ident: 10.1016/j.cmet.2021.10.004_bib31
  article-title: Maternally expressed PGK-CreTransgene as a tool for early and uniform activation of the Cre site-specific recombinase
  publication-title: Transgenic. Res.
  doi: 10.1023/A:1008868325009
– volume: 9
  start-page: 1115
  year: 2007
  ident: 10.1016/j.cmet.2021.10.004_bib25
  article-title: Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1674
– volume: 15
  start-page: 581
  year: 2012
  ident: 10.1016/j.cmet.2021.10.004_bib49
  article-title: Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
  publication-title: Angiogenesis
  doi: 10.1007/s10456-012-9282-0
– volume: 37
  start-page: 43
  year: 2007
  ident: 10.1016/j.cmet.2021.10.004_bib36
  article-title: Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200636745
– volume: 417
  start-page: 1
  year: 2009
  ident: 10.1016/j.cmet.2021.10.004_bib44
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081386
– volume: 42
  start-page: 419
  year: 2015
  ident: 10.1016/j.cmet.2021.10.004_bib27
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.005
– volume: 20
  start-page: 623
  year: 2004
  ident: 10.1016/j.cmet.2021.10.004_bib22
  article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology
  publication-title: Immunity
  doi: 10.1016/S1074-7613(04)00107-4
– volume: 3
  start-page: 861
  year: 2018
  ident: 10.1016/j.cmet.2021.10.004_bib40
  article-title: UMAP: uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– year: 2016
  ident: 10.1016/j.cmet.2021.10.004_bib65
– volume: 54
  start-page: 68
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib1
  article-title: Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.001
– volume: 332
  start-page: 1284
  year: 2011
  ident: 10.1016/j.cmet.2021.10.004_bib26
  article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
  publication-title: Science
  doi: 10.1126/science.1204351
– volume: 582
  start-page: 319
  year: 2008
  ident: 10.1016/j.cmet.2021.10.004_bib57
  article-title: LPS-induced toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.12.024
– volume: 184
  start-page: 3573
  year: 2021
  ident: 10.1016/j.cmet.2021.10.004_bib20
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 275
  start-page: 25130
  year: 2000
  ident: 10.1016/j.cmet.2021.10.004_bib7
  article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001914200
– volume: 6
  start-page: e30952
  year: 2017
  ident: 10.1016/j.cmet.2021.10.004_bib30
  article-title: Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals
  publication-title: Elife
  doi: 10.7554/eLife.30952
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.cmet.2021.10.004_bib11
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.cmet.2021.10.004_bib39
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
  doi: 10.14806/ej.17.1.200
SSID ssj0036393
Score 2.6664138
Snippet Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2398
SubjectTerms Animals
Macrophages - metabolism
metabolism
Mice
mitochondria
Mitochondria - metabolism
mitochondrial repurposing
mitohormesis
monocyte/macrophage
tissue repair
type 2 immunity
Wound Healing
Title Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
URI https://dx.doi.org/10.1016/j.cmet.2021.10.004
https://www.ncbi.nlm.nih.gov/pubmed/34715039
https://www.proquest.com/docview/2590136670
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FELyIb-uLCN5kbZrdJN2jFksR6kULvS2bl11pt6UPxH_vzD4ED-3BY5IJCTPJzLebeRByZ0XMU-6xehkPgwgsbhBrA9fdy7TI9yQs_occvMr-MHoZiVGDdOtYGHSrrHR_qdMLbV31tCputuZZ1npDcA0qGDNgwTHkmBM0jDpFEN_oqdbGsFqReBeJA6SuAmdKHy8zdehPydsPhYdXtMk4bQKfhRHqHZD9Cj3Sx3KDh6Th8iOyW9aT_D4m4wHcT9BnucVjRWFZEPEkW06pmcFHZpYjsKSABz9cgCGW6CZEF2CQsgWdlxEDMJ7ldJpiZa8x0C1pGchIv7D-EkVcCa0TMuw9v3f7QVVKITCRlKtAGSa98qZtNLOACpQRTgmptBfKxlqLKGXWhqnCJ1_dcYYxy7l2MMqlszo8JTv5LHfnhHrvYg24Q5qYRUCorXdOYmo4K20njZukXfMwMVWecSx3MUlqh7LPBPmeIN-xD_jeJPe_c-Zllo2t1KIWTfLnrCRgBrbOu63lmMAlwpeRNHez9TLhGIEbSqlYk5yVAv7dRwjmW7AwvvjnqpdkD1uFC4y6IjurxdpdA5BZ6ZvipP4AFfDx3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgCMEF8WY8g8QNlXVpm65HmEDjMS6AtFvUPMqKtm7aQ4h_j93HJA5w4NjEUSrbsb82fgBcmCDiMU-oexn3HB89rhMpjcc9EXFe7ykw9B-y-yw6b_5DL-gtQbvKhaGwytL2FzY9t9blSKPkZmOcpo0XAtdogqkCFqoh95dhBdFASP0b7ns3lTnG7fLKu0TtEHmZOVMEeemhpYBK3rzKQ7z837zTb-gz90J3m7BRwkd2XbzhFizZbBtWi4aSXzvQ7-IBRYOWGdIrhtuijAfpdMj0CL8y04yQJUNA-G4dyrGkOCE2QY-UTti4SBnA-TRjw5hae_WRbsqKTEb2SQ2YGAFLfNqFt7vb13bHKXspONoXYuaE2hVJmOimVq5BWBDqwIbILZUEoYmUCvzYNcaLQ7rzVS2rXddwrizOcmGN8vaglo0yewAsSWykEHgIHbk-EiqTWCuoNpwRphVHdWhWPJS6LDRO_S4Gsooo-5DEd0l8pzHkex0uF2vGRZmNP6mDSjTyh7JI9AN_rjuv5CjxFNHVSJzZ0XwqOaXgegK1pw77hYAX7-Gh_w5cLzr8565nsNZ57T7Jp_vnxyNYp5k8HiY8htpsMrcniGpm6jTX2m9B6vT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+metabolism+coordinates+stage-specific+repair+processes+in+macrophages+during+wound+healing&rft.jtitle=Cell+metabolism&rft.au=Willenborg%2C+Sebastian&rft.au=Sanin%2C+David+E&rft.au=Jais%2C+Alexander&rft.au=Ding%2C+Xiaolei&rft.date=2021-12-07&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=33&rft.issue=12&rft.spage=2398&rft_id=info:doi/10.1016%2Fj.cmet.2021.10.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon