Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- vers...
Saved in:
Published in | Cell metabolism Vol. 33; no. 12; pp. 2398 - 2414.e9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
[Display omitted]
•Early-stage, inflammatory versus late-stage, pro-resolving wound macrophages are profiled•Pro-inflammatory wound macrophages are marked by mtROS production and HIF1α stabilization•This molecular process is required for proper vascularization during wound repair•Pro-resolving macrophages are marked by mitochondrial respiration and mitohormesis
How mitochondrial metabolism contributes to the early-stage, pro-inflammatory versus late-stage, pro-resolution functions of macrophages during wound healing requires further investigation. Here, Willenborg et al. show that effective wound healing requires the production of mtROS in early-stage wound macrophages to promote proper vascularization, while late-stage wound macrophages are dependent on OXPHOS and mitohormesis. |
---|---|
AbstractList | Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing. Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing. [Display omitted] •Early-stage, inflammatory versus late-stage, pro-resolving wound macrophages are profiled•Pro-inflammatory wound macrophages are marked by mtROS production and HIF1α stabilization•This molecular process is required for proper vascularization during wound repair•Pro-resolving macrophages are marked by mitochondrial respiration and mitohormesis How mitochondrial metabolism contributes to the early-stage, pro-inflammatory versus late-stage, pro-resolution functions of macrophages during wound healing requires further investigation. Here, Willenborg et al. show that effective wound healing requires the production of mtROS in early-stage wound macrophages to promote proper vascularization, while late-stage wound macrophages are dependent on OXPHOS and mitohormesis. Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing. |
Author | Pearce, Edward J. Trifunovic, Aleksandra Nüchel, Julian Popović, Milica Brüning, Jens C. Sanin, David E. Ulas, Thomas MacVicar, Thomas Schultze, Joachim L. Gerbaulet, Alexander Jais, Alexander Eming, Sabine A. Roers, Axel Langer, Thomas Willenborg, Sebastian Ding, Xiaolei |
Author_xml | – sequence: 1 givenname: Sebastian surname: Willenborg fullname: Willenborg, Sebastian organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany – sequence: 2 givenname: David E. surname: Sanin fullname: Sanin, David E. organization: Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, 79108 Freiburg im Breisgau, Germany – sequence: 3 givenname: Alexander surname: Jais fullname: Jais, Alexander organization: Max Planck Institute for Metabolism Research, 50931 Cologne, Germany – sequence: 4 givenname: Xiaolei surname: Ding fullname: Ding, Xiaolei organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany – sequence: 5 givenname: Thomas surname: Ulas fullname: Ulas, Thomas organization: Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany – sequence: 6 givenname: Julian surname: Nüchel fullname: Nüchel, Julian organization: Institute for Biochemistry II, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany – sequence: 7 givenname: Milica surname: Popović fullname: Popović, Milica organization: Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, 50931 Cologne, Germany – sequence: 8 givenname: Thomas surname: MacVicar fullname: MacVicar, Thomas organization: Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany – sequence: 9 givenname: Thomas surname: Langer fullname: Langer, Thomas organization: Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany – sequence: 10 givenname: Joachim L. surname: Schultze fullname: Schultze, Joachim L. organization: Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany – sequence: 11 givenname: Alexander surname: Gerbaulet fullname: Gerbaulet, Alexander organization: Institute for Immunology, Medical Faculty, TU Dresden, 01307 Dresden, Germany – sequence: 12 givenname: Axel surname: Roers fullname: Roers, Axel organization: Institute for Immunology, Medical Faculty, TU Dresden, 01307 Dresden, Germany – sequence: 13 givenname: Edward J. surname: Pearce fullname: Pearce, Edward J. organization: Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, 79108 Freiburg im Breisgau, Germany – sequence: 14 givenname: Jens C. surname: Brüning fullname: Brüning, Jens C. organization: Max Planck Institute for Metabolism Research, 50931 Cologne, Germany – sequence: 15 givenname: Aleksandra surname: Trifunovic fullname: Trifunovic, Aleksandra organization: Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, 50931 Cologne, Germany – sequence: 16 givenname: Sabine A. surname: Eming fullname: Eming, Sabine A. email: sabine.eming@uni-koeln.de organization: Department of Dermatology, University of Cologne, 50937 Cologne, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34715039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT2PFDEMhiN0iPuAP0CBUtLM4iQzyY5Eg058SYdooI7y4bnNaiYZkgyIf09We1BQXOXYfl7L8XtNLmKKSMhLBjsGTL457tyCdceBs1bYAfRPyBUbBe9Uz-GivYcBup4JdkmuSzkCCClG8Yxcil6xAcR4RQ5fQk3ukKLPwcy0zTM2zaEs1KWUfYimYqGlmnvsyoouTMHRjKsJma45OSyl9UOki3E5rYfGFeq3HOI9_ZW26OkBzdyy5-TpZOaCLx7iDfn-4f2320_d3dePn2_f3XWul7J2yoGc1OSYs-BB7ZUbUA1S2WlQfrR26A14L4xi0Eu7RwfgObfYulyit-KGvD7Pbdv92LBUvYTicJ5NxLQVzYcRmJBSQUNfPaCbXdDrNYfF5N_673UawM9A-1opGad_CAN9skAf9ckCfbLgVGsWNNH-P5EL1dSQYs0mzI9L356l2A70M2DWxQWMDn3I6Kr2KTwm_wO6oKQT |
CitedBy_id | crossref_primary_10_1016_j_bbadis_2022_166481 crossref_primary_10_1038_s41580_024_00715_1 crossref_primary_10_1126_science_adp2974 crossref_primary_10_1002_adfm_202213066 crossref_primary_10_62347_AAPM9027 crossref_primary_10_1002_advs_202204871 crossref_primary_10_1016_j_bioactmat_2023_02_023 crossref_primary_10_1016_j_cmet_2022_02_002 crossref_primary_10_1111_eci_14128 crossref_primary_10_1002_adhm_202405151 crossref_primary_10_1016_j_xpro_2022_101337 crossref_primary_10_1002_advs_202305856 crossref_primary_10_1016_j_gendis_2023_101194 crossref_primary_10_1111_cpr_13613 crossref_primary_10_1016_j_jcmgh_2024_101406 crossref_primary_10_1093_jleuko_qiad107 crossref_primary_10_2139_ssrn_4174294 crossref_primary_10_1371_journal_pone_0303692 crossref_primary_10_1038_s41423_023_00984_4 crossref_primary_10_1097_SCS_0000000000010706 crossref_primary_10_1016_j_bioactmat_2025_03_008 crossref_primary_10_1371_journal_ppat_1011658 crossref_primary_10_3389_fmed_2023_1144182 crossref_primary_10_1016_j_bioactmat_2024_07_009 crossref_primary_10_3390_ijms25063303 crossref_primary_10_3390_pharmaceutics16080990 crossref_primary_10_1002_jbm_a_37712 crossref_primary_10_1007_s42114_024_00846_1 crossref_primary_10_1016_j_intimp_2025_114407 crossref_primary_10_1016_j_jmst_2024_08_036 crossref_primary_10_1002_adfm_202315590 crossref_primary_10_1007_s12035_024_03920_3 crossref_primary_10_1016_j_biopha_2024_116545 crossref_primary_10_1016_j_compositesb_2025_112305 crossref_primary_10_1038_s41385_022_00557_0 crossref_primary_10_1016_j_jid_2023_05_017 crossref_primary_10_3389_fcell_2023_1252318 crossref_primary_10_1002_adfm_202409319 crossref_primary_10_1016_j_stem_2024_11_013 crossref_primary_10_1166_jbt_2023_3343 crossref_primary_10_3390_antiox12122022 crossref_primary_10_1038_s41467_022_34191_y crossref_primary_10_1021_acsami_3c09353 crossref_primary_10_1002_JLB_3MR0422_665R crossref_primary_10_1038_s42003_024_07219_w crossref_primary_10_52711_0974_360X_2024_00814 crossref_primary_10_3389_fimmu_2023_1166214 crossref_primary_10_3389_fvets_2023_1149333 crossref_primary_10_1016_j_tem_2023_11_002 crossref_primary_10_2147_IJN_S418534 crossref_primary_10_1002_advs_202205292 crossref_primary_10_1016_j_cmet_2023_10_011 crossref_primary_10_1016_j_ebiom_2023_104744 crossref_primary_10_1038_s41467_024_53579_6 crossref_primary_10_3390_bioengineering10070750 crossref_primary_10_1126_sciadv_abn4564 crossref_primary_10_1016_j_bioactmat_2024_02_011 crossref_primary_10_1186_s12951_022_01685_2 crossref_primary_10_1016_j_bioactmat_2024_11_028 crossref_primary_10_1016_j_molmed_2024_04_012 crossref_primary_10_1080_15376516_2024_2400323 crossref_primary_10_1038_s41698_024_00752_1 crossref_primary_10_1177_20417314241265202 crossref_primary_10_1093_rb_rbae082 crossref_primary_10_1007_s13167_025_00400_z crossref_primary_10_1007_s00011_023_01815_y crossref_primary_10_1016_j_biomaterials_2024_122891 crossref_primary_10_1111_jcmm_70292 crossref_primary_10_1016_j_ebiom_2024_105502 crossref_primary_10_1021_acsami_5c00667 crossref_primary_10_1016_j_nantod_2024_102324 crossref_primary_10_1002_smll_202408791 crossref_primary_10_1002_adhm_202303044 crossref_primary_10_1038_s41392_022_01202_9 crossref_primary_10_1038_s41419_023_06066_7 crossref_primary_10_1093_burnst_tkad029 crossref_primary_10_1021_acsanm_3c02443 crossref_primary_10_1016_j_mucimm_2023_06_006 crossref_primary_10_1021_acsnano_3c09814 crossref_primary_10_1039_D4BM00394B crossref_primary_10_1002_adhm_202304125 crossref_primary_10_1038_s41467_024_50031_7 crossref_primary_10_1002_cpz1_485 crossref_primary_10_12677_ACM_2024_141049 crossref_primary_10_18632_aging_206033 crossref_primary_10_1016_j_carbon_2023_03_039 crossref_primary_10_1016_j_freeradbiomed_2024_06_001 crossref_primary_10_1039_D4MA00333K crossref_primary_10_1089_ten_teb_2023_0157 crossref_primary_10_1126_science_adq2509 crossref_primary_10_1016_j_phymed_2023_154773 crossref_primary_10_1021_acscentsci_4c02156 crossref_primary_10_1186_s40779_024_00573_0 crossref_primary_10_1038_s41536_024_00379_7 crossref_primary_10_3389_fendo_2022_868893 crossref_primary_10_1016_j_bioactmat_2024_08_003 crossref_primary_10_1021_acsnano_4c07610 crossref_primary_10_1007_s11030_023_10609_7 crossref_primary_10_1111_srt_13638 crossref_primary_10_4049_jimmunol_2200365 crossref_primary_10_1016_j_jconrel_2025_02_073 crossref_primary_10_1021_acsnano_4c06921 crossref_primary_10_1007_s00432_023_04592_7 crossref_primary_10_1038_s41467_023_39129_6 crossref_primary_10_15252_emmm_202216671 crossref_primary_10_1002_mco2_658 crossref_primary_10_1172_jci_insight_169213 crossref_primary_10_1016_j_jid_2023_06_203 crossref_primary_10_1016_j_celrep_2023_113264 crossref_primary_10_1038_s41565_024_01660_y crossref_primary_10_1007_s11596_024_2946_3 crossref_primary_10_1126_sciadv_adg2829 crossref_primary_10_1016_j_toxicon_2025_108293 crossref_primary_10_1146_annurev_immunol_101921_041206 crossref_primary_10_1016_j_actbio_2023_06_025 crossref_primary_10_1016_j_celrep_2023_113658 crossref_primary_10_1126_sciimmunol_abl7482 crossref_primary_10_1038_s41419_022_05433_0 crossref_primary_10_1039_D3TB00835E crossref_primary_10_1016_j_mtbio_2025_101539 crossref_primary_10_1038_s41420_023_01653_1 crossref_primary_10_1016_j_biopha_2022_114004 crossref_primary_10_1016_j_mtbio_2023_100929 crossref_primary_10_1089_dna_2024_0064 crossref_primary_10_1186_s12951_025_03216_1 crossref_primary_10_1007_s11010_024_05049_2 crossref_primary_10_1016_j_ijbiomac_2024_134570 crossref_primary_10_1016_j_mtbio_2024_101130 crossref_primary_10_3390_biomedicines10123113 crossref_primary_10_1186_s13619_022_00141_8 crossref_primary_10_3389_fimmu_2024_1432402 crossref_primary_10_3390_diabetology3010013 crossref_primary_10_1111_iwj_14223 crossref_primary_10_1016_j_matbio_2024_07_002 crossref_primary_10_1186_s13619_023_00158_7 crossref_primary_10_3390_cancers15164058 crossref_primary_10_1038_s42255_025_01224_x crossref_primary_10_1016_j_cej_2024_157300 crossref_primary_10_1016_j_jid_2024_05_007 crossref_primary_10_1016_j_cej_2024_155884 crossref_primary_10_1038_s41575_024_00931_2 crossref_primary_10_1097_IN9_0000000000000044 crossref_primary_10_1002_advs_202302910 crossref_primary_10_1002_jbt_23407 crossref_primary_10_3390_ijms23169346 crossref_primary_10_1016_j_matdes_2022_111540 |
Cites_doi | 10.1046/j.1524-475X.2003.11621.x 10.1182/blood-2012-01-403386 10.1038/nature07039 10.1083/jcb.201702058 10.4049/jimmunol.0901698 10.2353/ajpath.2009.090248 10.1093/gigascience/giy083 10.1093/bioinformatics/btq057 10.1186/s13059-014-0550-8 10.1016/j.immuni.2015.09.005 10.1111/micc.12259 10.7554/eLife.10575 10.1016/j.cmet.2014.02.004 10.1038/s41467-020-15467-7 10.1084/jem.20151570 10.1126/science.aar3932 10.1152/ajpendo.00362.2014 10.1038/s41467-019-11115-x 10.1038/nature11986 10.1038/ni.2956 10.1038/nprot.2014.006 10.4049/jimmunol.0903356 10.1126/science.aat5314 10.1016/j.it.2017.08.006 10.1093/nar/gkw257 10.1016/j.cell.2019.05.031 10.1186/s13059-019-1874-1 10.1016/j.cmet.2014.01.011 10.1016/j.cmet.2021.07.017 10.4049/jimmunol.1003613 10.1101/gad.1250704 10.1016/j.immuni.2018.10.011 10.1126/sciimmunol.abd6279 10.1023/A:1008942828960 10.1038/s41590-019-0336-y 10.1038/s42255-021-00392-w 10.1093/bioinformatics/btt656 10.1016/j.cmet.2006.05.011 10.1016/j.cmet.2019.08.019 10.1038/nmeth.2089 10.1126/sciadv.abf0971 10.1126/science.aai8132 10.1126/science.aam7928 10.1038/nmeth.1923 10.1038/nri3476 10.15252/embj.201797786 10.1016/j.immuni.2016.09.016 10.1038/s41586-019-1678-1 10.1038/nri3073 10.1016/j.cell.2016.08.064 10.1023/A:1008868325009 10.1089/ars.2007.1674 10.1007/s10456-012-9282-0 10.1002/eji.200636745 10.1042/BJ20081386 10.1016/j.immuni.2015.02.005 10.1016/S1074-7613(04)00107-4 10.21105/joss.00861 10.1016/j.immuni.2020.11.001 10.1126/science.1204351 10.1016/j.febslet.2007.12.024 10.1016/j.cell.2021.04.048 10.1074/jbc.M001914200 10.7554/eLife.30952 10.1093/bioinformatics/bts635 10.14806/ej.17.1.200 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2021.10.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 2414.e9 |
ExternalDocumentID | 34715039 10_1016_j_cmet_2021_10_004 S1550413121004824 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-7c06f7fc1cb0d0787c5e7567bf57d9bb54a0dd3a71046b8ec00d22be57d26edb3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Jul 10 22:28:52 EDT 2025 Mon Jul 21 05:59:07 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Fri Feb 23 02:41:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | wound healing mitochondria mitochondrial repurposing metabolism mitohormesis monocyte/macrophage type 2 immunity tissue repair |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-7c06f7fc1cb0d0787c5e7567bf57d9bb54a0dd3a71046b8ec00d22be57d26edb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413121004824 |
PMID | 34715039 |
PQID | 2590136670 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2590136670 pubmed_primary_34715039 crossref_primary_10_1016_j_cmet_2021_10_004 crossref_citationtrail_10_1016_j_cmet_2021_10_004 elsevier_sciencedirect_doi_10_1016_j_cmet_2021_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-07 |
PublicationDateYYYYMMDD | 2021-12-07 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Luan, Medzhitov (bib64) 2019; 363 Askenase, Goods, Beatty, Steinschneider, Velazquez, Osherov, Landreneau, Carroll, Tran, Avram (bib2) 2021; 6 Jenkins, Ruckerl, Cook, Jones, Finkelman, van Rooijen, MacDonald, Allen (bib26) 2011; 332 Timblin, Tharp, Ford, Winchester, Wang, Zhu, Khan, Louie, Iavarone, Ten Hoeve (bib61) 2021; 3 (bib73) 2013 Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib42) 2016; 167 Love, Huber, Anders (bib34) 2014; 15 Clausen, Burkhardt, Reith, Renkawitz, Förster (bib8) 1999; 8 Murray, Wynn (bib45) 2011; 11 Schneider, Rasband, Eliceiri (bib55) 2012; 9 Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib63) 2006; 4 Dogan, Pujol, Maiti, Kukat, Wang, Hermans, Senft, Wibom, Rugarli, Trifunovic (bib12) 2014; 19 Pedersen (bib47) 2020 Almeida, Dhillon-Labrooy, Castro, Adossa, Carriche, Guderian, Lippens, Dennerlein, Hesse, Lambrecht (bib1) 2021; 54 Yun, Finkel (bib68) 2014; 19 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib11) 2013; 29 Corliss, Azimi, Munson, Peirce, Murfee (bib9) 2016; 23 Herbert, Hölscher, Mohrs, Arendse, Schwegmann, Radwanska, Leeto, Kirsch, Hall, Mossmann (bib22) 2004; 20 McInnes, Healy, Saul, Großberge (bib40) 2018; 3 Sumbayev (bib57) 2008; 582 Eming, Murray, Pearce (bib13) 2021; 33 Malandrino, Fucho, Weber, Calderon-Dominguez, Mir, Valcarcel, Escoté, Gómez-Serrano, Peral, Salvadó (bib37) 2015; 308 Murphy (bib44) 2009; 417 Bao, Ong, Goldberger, Peng, Sharma, Thompson, Vafai, Cox, Marutani, Ichinose (bib3) 2016; 5 Liao, Smyth, Shi (bib33) 2014; 30 Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib59) 2013; 496 Bhardwaj, Semplicio, Erdogdu, Manke, Akhtar (bib4) 2019; 10 Wickham (bib65) 2016 Jha, Huang, Sergushichev, Lampropoulou, Ivanova, Loginicheva, Chmielewski, Stewart, Ashall, Everts (bib27) 2015; 42 Hunt, Aslam, Beckert, Wagner, Ghani, Hussain, Roy, Sen (bib25) 2007; 9 Gurevich, Severn, Twomey, Greenhough, Cash, Toye, Mellor, Martin (bib17) 2018; 37 Willenborg, Lucas, van Loo, Knipper, Krieg, Haase, Brachvogel, Hammerschmidt, Nagy, Ferrara (bib66) 2012; 120 Sanin, Matsushita, Klein Geltink, Grzes, van Teijlingen Bakker, Corrado, Kabat, Buck, Qiu, Lawless (bib54) 2018; 49 Hafemeister, Satija (bib19) 2019; 20 Kühl, Miranda, Atanassov, Kuznetsova, Hinze, Mourier, Filipovska, Larsson (bib30) 2017; 6 Chandel, McClintock, Feliciano, Wood, Melendez, Rodriguez, Schumacker (bib7) 2000; 275 Kaspar, Oertlin, Szczepanowska, Kukat, Senft, Lucas, Brodesser, Hatzoglou, Larsson, Topisirovic, Trifunovic (bib28) 2021; 7 Tenenbaum (bib60) 2020 Cameron, Castoldi, Sanin, Flachsmann, Field, Puleston, Kyle, Patterson, Hässler, Buescher (bib6) 2019; 20 Quirós, Prado, Zamboni, D'Amico, Williams, Finley, Gygi, Auwerx (bib50) 2017; 216 Rodríguez-Prados, Través, Cuenca, Rico, Aragonés, Martín-Sanz, Cascante, Boscá (bib53) 2010; 185 Martin (bib39) 2011; 17 Trabold, Wagner, Wicke, Scheuenstuhl, Hussain, Rosen, Seremetiev, Becker, Hunt (bib62) 2003; 11 Gurtner, Werner, Barrandon, Longaker (bib18) 2008; 453 O'Neill, Pearce (bib46) 2016; 213 Rambold, Pearce (bib51) 2018; 39 Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib56) 2019; 177 Michalek, Gerriets, Jacobs, Macintyre, MacIver, Mason, Sullivan, Nichols, Rathmell (bib41) 2011; 186 Bosurgi, Cao, Cabeza-Cabrerizo, Tucci, Hughes, Kong, Weinstein, Licona-Limon, Schmid, Pelorosso (bib5) 2017; 356 Huang, Everts, Ivanova, O'Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neill (bib23) 2014; 15 Lallemand, Luria, Haffner-Krausz, Lonai (bib31) 1998; 7 Lucas, Waisman, Ranjan, Roes, Krieg, Müller, Roers, Eming (bib35) 2010; 184 Huang, Smith, Everts, Colonna, Pearce, Schilling, Pearce (bib24) 2016; 45 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib48) 2014; 9 Zhang, Tang, Huang, Zhou, Cui, Weng, Liu, Kim, Lee, Perez-Neut (bib70) 2019; 574 Luche, Weber, Nageswara Rao, Blum, Fehling (bib36) 2007; 37 Costa-Mattioli, Walter (bib10) 2020; 368 Marciniak, Yun, Oyadomari, Novoa, Zhang, Jungreis, Nagata, Harding, Ron (bib38) 2004; 18 Gause, Wynn, Allen (bib16) 2013; 13 Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib20) 2021; 184 Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib52) 2016; 44 Mirza, DiPietro, Koh (bib43) 2009; 175 Langmead, Salzberg (bib32) 2012; 9 Wu, Nacu (bib67) 2010; 26 Knipper, Willenborg, Brinckmann, Bloch, Maaß, Wagener, Krieg, Sutherland, Munitz, Rothenberg (bib29) 2015; 43 Szczepanowska, Senft, Heidler, Herholz, Kukat, Höhne, Hofsetz, Becker, Kaspar, Giese (bib58) 2020; 11 Harris, Loke (bib21) 2017; 47 Porporato, Payen, De Saedeleer, Préat, Thissen, Feron, Sonveaux (bib49) 2012; 15 Eming, Wynn, Martin (bib14) 2017; 356 Forsström, Jackson, Carroll, Kuronen, Pirinen, Pradhan, Marmyleva, Auranen, Kleine, Khan (bib15) 2019; 30 Zappia, Oshlack (bib69) 2018; 7 Gause (10.1016/j.cmet.2021.10.004_bib16) 2013; 13 Schneider (10.1016/j.cmet.2021.10.004_bib55) 2012; 9 Bhardwaj (10.1016/j.cmet.2021.10.004_bib4) 2019; 10 Mills (10.1016/j.cmet.2021.10.004_bib42) 2016; 167 Gurevich (10.1016/j.cmet.2021.10.004_bib17) 2018; 37 Almeida (10.1016/j.cmet.2021.10.004_bib1) 2021; 54 Dogan (10.1016/j.cmet.2021.10.004_bib12) 2014; 19 Herbert (10.1016/j.cmet.2021.10.004_bib22) 2004; 20 Kühl (10.1016/j.cmet.2021.10.004_bib30) 2017; 6 Huang (10.1016/j.cmet.2021.10.004_bib23) 2014; 15 Askenase (10.1016/j.cmet.2021.10.004_bib2) 2021; 6 Rodríguez-Prados (10.1016/j.cmet.2021.10.004_bib53) 2010; 185 Harris (10.1016/j.cmet.2021.10.004_bib21) 2017; 47 Bao (10.1016/j.cmet.2021.10.004_bib3) 2016; 5 Quirós (10.1016/j.cmet.2021.10.004_bib50) 2017; 216 Costa-Mattioli (10.1016/j.cmet.2021.10.004_bib10) 2020; 368 McInnes (10.1016/j.cmet.2021.10.004_bib40) 2018; 3 Tenenbaum (10.1016/j.cmet.2021.10.004_bib60) Pedersen (10.1016/j.cmet.2021.10.004_bib47) Dobin (10.1016/j.cmet.2021.10.004_bib11) 2013; 29 Jha (10.1016/j.cmet.2021.10.004_bib27) 2015; 42 Eming (10.1016/j.cmet.2021.10.004_bib14) 2017; 356 Knipper (10.1016/j.cmet.2021.10.004_bib29) 2015; 43 Hao (10.1016/j.cmet.2021.10.004_bib20) 2021; 184 Marciniak (10.1016/j.cmet.2021.10.004_bib38) 2004; 18 Tannahill (10.1016/j.cmet.2021.10.004_bib59) 2013; 496 Zappia (10.1016/j.cmet.2021.10.004_bib69) 2018; 7 Corliss (10.1016/j.cmet.2021.10.004_bib9) 2016; 23 Lallemand (10.1016/j.cmet.2021.10.004_bib31) 1998; 7 Kaspar (10.1016/j.cmet.2021.10.004_bib28) 2021; 7 Rambold (10.1016/j.cmet.2021.10.004_bib51) 2018; 39 Cameron (10.1016/j.cmet.2021.10.004_bib6) 2019; 20 Wickham (10.1016/j.cmet.2021.10.004_bib65) 2016 Liao (10.1016/j.cmet.2021.10.004_bib33) 2014; 30 Luche (10.1016/j.cmet.2021.10.004_bib36) 2007; 37 Wang (10.1016/j.cmet.2021.10.004_bib64) 2019; 363 Bosurgi (10.1016/j.cmet.2021.10.004_bib5) 2017; 356 Jenkins (10.1016/j.cmet.2021.10.004_bib26) 2011; 332 Mirza (10.1016/j.cmet.2021.10.004_bib43) 2009; 175 Gurtner (10.1016/j.cmet.2021.10.004_bib18) 2008; 453 Sumbayev (10.1016/j.cmet.2021.10.004_bib57) 2008; 582 Picelli (10.1016/j.cmet.2021.10.004_bib48) 2014; 9 Lucas (10.1016/j.cmet.2021.10.004_bib35) 2010; 184 Timblin (10.1016/j.cmet.2021.10.004_bib61) 2021; 3 Murphy (10.1016/j.cmet.2021.10.004_bib44) 2009; 417 O'Neill (10.1016/j.cmet.2021.10.004_bib46) 2016; 213 Langmead (10.1016/j.cmet.2021.10.004_bib32) 2012; 9 Chandel (10.1016/j.cmet.2021.10.004_bib7) 2000; 275 Hafemeister (10.1016/j.cmet.2021.10.004_bib19) 2019; 20 Forsström (10.1016/j.cmet.2021.10.004_bib15) 2019; 30 Vats (10.1016/j.cmet.2021.10.004_bib63) 2006; 4 Eming (10.1016/j.cmet.2021.10.004_bib13) 2021; 33 Porporato (10.1016/j.cmet.2021.10.004_bib49) 2012; 15 Hunt (10.1016/j.cmet.2021.10.004_bib25) 2007; 9 Love (10.1016/j.cmet.2021.10.004_bib34) 2014; 15 Martin (10.1016/j.cmet.2021.10.004_bib39) 2011; 17 Michalek (10.1016/j.cmet.2021.10.004_bib41) 2011; 186 Zhang (10.1016/j.cmet.2021.10.004_bib70) 2019; 574 Szczepanowska (10.1016/j.cmet.2021.10.004_bib58) 2020; 11 Huang (10.1016/j.cmet.2021.10.004_bib24) 2016; 45 Willenborg (10.1016/j.cmet.2021.10.004_bib66) 2012; 120 Yun (10.1016/j.cmet.2021.10.004_bib68) 2014; 19 Murray (10.1016/j.cmet.2021.10.004_bib45) 2011; 11 Ramírez (10.1016/j.cmet.2021.10.004_bib52) 2016; 44 Clausen (10.1016/j.cmet.2021.10.004_bib8) 1999; 8 Stuart (10.1016/j.cmet.2021.10.004_bib56) 2019; 177 Wu (10.1016/j.cmet.2021.10.004_bib67) 2010; 26 Malandrino (10.1016/j.cmet.2021.10.004_bib37) 2015; 308 Sanin (10.1016/j.cmet.2021.10.004_bib54) 2018; 49 Trabold (10.1016/j.cmet.2021.10.004_bib62) 2003; 11 |
References_xml | – volume: 20 start-page: 296 year: 2019 ident: bib19 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol. – volume: 7 start-page: eabf0971 year: 2021 ident: bib28 article-title: Adaptation to mitochondrial stress requires CHOP-directed tuning of publication-title: ISR. Sci. Adv. – volume: 18 start-page: 3066 year: 2004 end-page: 3077 ident: bib38 article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum publication-title: Genes Dev. – year: 2013 ident: bib73 – volume: 8 start-page: 265 year: 1999 end-page: 277 ident: bib8 article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice publication-title: Transgenic. Res. – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: bib33 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 44 start-page: W160 year: 2016 end-page: W165 ident: bib52 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. – volume: 15 start-page: 550 year: 2014 ident: bib34 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 167 start-page: 457 year: 2016 end-page: 470.e13 ident: bib42 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell – volume: 184 start-page: 3964 year: 2010 end-page: 3977 ident: bib35 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. – volume: 496 start-page: 238 year: 2013 end-page: 242 ident: bib59 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature – volume: 186 start-page: 3299 year: 2011 end-page: 3303 ident: bib41 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. – volume: 20 start-page: 420 year: 2019 end-page: 432 ident: bib6 article-title: Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage publication-title: Nat. Immunol. – volume: 11 start-page: 504 year: 2003 end-page: 509 ident: bib62 article-title: Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing publication-title: Wound Repair Regen. – volume: 177 start-page: 1888 year: 2019 end-page: 1902.e21 ident: bib56 article-title: Comprehensive integration of single-cell data publication-title: Cell – volume: 26 start-page: 873 year: 2010 end-page: 881 ident: bib67 article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads publication-title: Bioinformatics – volume: 363 start-page: 6423 year: 2019 ident: bib64 article-title: An evolutionary perspective on immunometabolism publication-title: Science – year: 2016 ident: bib65 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 7 start-page: 105 year: 1998 end-page: 112 ident: bib31 article-title: Maternally expressed PGK-CreTransgene as a tool for early and uniform activation of the Cre site-specific recombinase publication-title: Transgenic. Res. – volume: 453 start-page: 314 year: 2008 end-page: 321 ident: bib18 article-title: Wound repair and regeneration publication-title: Nature – volume: 213 start-page: 15 year: 2016 end-page: 23 ident: bib46 article-title: Immunometabolism governs dendritic cell and macrophage function publication-title: J. Exp. Med. – volume: 11 start-page: 1643 year: 2020 ident: bib58 article-title: A salvage pathway maintains highly functional respiratory complex I publication-title: Nat. Commun. – volume: 47 start-page: 1024 year: 2017 end-page: 1036 ident: bib21 article-title: Recent advances in type-2-cell-mediated immunity: insights from helminth infection publication-title: Infect. Immun. – volume: 39 start-page: 6 year: 2018 end-page: 18 ident: bib51 article-title: Mitochondrial dynamics at the interface of immune cell metabolism and function publication-title: Trends Immunol. – volume: 582 start-page: 319 year: 2008 end-page: 326 ident: bib57 article-title: LPS-induced toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein publication-title: FEBS Lett. – volume: 19 start-page: 757 year: 2014 end-page: 766 ident: bib68 publication-title: Mitohormesis. Cell Metab. – volume: 23 start-page: 95 year: 2016 end-page: 121 ident: bib9 article-title: Macrophages: an inflammatory link Between angiogenesis and lymphangiogenesis publication-title: Microcirculation – volume: 33 start-page: 1726 year: 2021 end-page: 1743 ident: bib13 article-title: Metabolic orchestration of the wound healing response publication-title: Cell Metab. – year: 2020 ident: bib47 article-title: patchwork: the composer of plots. R package version 1.1.1 – volume: 43 start-page: 803 year: 2015 end-page: 816 ident: bib29 article-title: Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair publication-title: Immunity – volume: 3 start-page: 618 year: 2021 end-page: 635 ident: bib61 article-title: Mitohormesis reprogrammes macrophage metabolism to enforce tolerance publication-title: Nat. Metab. – volume: 37 start-page: 43 year: 2007 end-page: 53 ident: bib36 article-title: Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies publication-title: Eur. J. Immunol. – volume: 10 start-page: 3219 year: 2019 ident: bib4 article-title: MAPCap allows high-resolution detection and differential expression analysis of transcription start sites publication-title: Nat. Commun. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: bib48 article-title: Full-length RNA-Seq from single cells using Smart-seq2 publication-title: Nat. Protoc. – volume: 19 start-page: 458 year: 2014 end-page: 469 ident: bib12 article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart publication-title: Cell Metab. – volume: 54 start-page: 68 year: 2021 end-page: 83.e6 ident: bib1 article-title: Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis publication-title: Immunity – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib11 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 175 start-page: 2454 year: 2009 end-page: 2462 ident: bib43 article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice publication-title: Am. J. Pathol. – volume: 574 start-page: 575 year: 2019 end-page: 580 ident: bib70 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature – volume: 6 start-page: e30952 year: 2017 ident: bib30 article-title: Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals publication-title: Elife – volume: 6 start-page: eabd6279 year: 2021 ident: bib2 article-title: Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage publication-title: Sci. Immunol. – volume: 275 start-page: 25130 year: 2000 end-page: 25138 ident: bib7 article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing publication-title: J. Biol. Chem. – volume: 184 start-page: 3573 year: 2021 end-page: 3587.e29 ident: bib20 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell – volume: 3 start-page: 861 year: 2018 ident: bib40 article-title: UMAP: uniform manifold approximation and projection publication-title: J. Open Source Softw. – volume: 216 start-page: 2027 year: 2017 end-page: 2045 ident: bib50 article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals publication-title: J. Cell Biol. – volume: 356 start-page: 1072 year: 2017 end-page: 1076 ident: bib5 article-title: Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells publication-title: Science – volume: 49 start-page: 1021 year: 2018 end-page: 1033.e6 ident: bib54 article-title: Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2 publication-title: Immunity – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib55 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 7 start-page: giy083 year: 2018 ident: bib69 article-title: Clustering trees: a visualization for evaluating clusterings at multiple resolutions publication-title: GigaScience – volume: 4 start-page: 13 year: 2006 end-page: 24 ident: bib63 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. – volume: 30 start-page: 1040 year: 2019 end-page: 1054.e7 ident: bib15 article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions publication-title: Cell Metab. – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib39 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. – volume: 37 start-page: e97786 year: 2018 ident: bib17 article-title: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression publication-title: EMBO J. – volume: 120 start-page: 613 year: 2012 end-page: 625 ident: bib66 article-title: CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair publication-title: Blood – volume: 356 start-page: 1026 year: 2017 end-page: 1030 ident: bib14 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science – volume: 13 start-page: 607 year: 2013 end-page: 614 ident: bib16 article-title: Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths publication-title: Nat. Rev. Immunol. – volume: 15 start-page: 581 year: 2012 end-page: 592 ident: bib49 article-title: Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice publication-title: Angiogenesis – volume: 20 start-page: 623 year: 2004 end-page: 635 ident: bib22 article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology publication-title: Immunity – volume: 45 start-page: 817 year: 2016 end-page: 830 ident: bib24 article-title: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation publication-title: Immunity – volume: 308 start-page: E756 year: 2015 end-page: E769 ident: bib37 article-title: Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 185 start-page: 605 year: 2010 end-page: 614 ident: bib53 article-title: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation publication-title: J. Immunol. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib32 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 368 start-page: eaat5314 year: 2020 ident: bib10 article-title: The integrated stress response: From mechanism to disease publication-title: Science – volume: 9 start-page: 1115 year: 2007 end-page: 1124 ident: bib25 article-title: Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms publication-title: Antioxid. Redox Signal. – volume: 42 start-page: 419 year: 2015 end-page: 430 ident: bib27 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity – volume: 332 start-page: 1284 year: 2011 end-page: 1288 ident: bib26 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science – volume: 5 start-page: e10575 year: 2016 ident: bib3 article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells publication-title: Elife – volume: 15 start-page: 846 year: 2014 end-page: 855 ident: bib23 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. – volume: 11 start-page: 723 year: 2011 end-page: 737 ident: bib45 article-title: Protective and pathogenic functions of macrophage subsets publication-title: Nat. Rev. Immunol. – volume: 417 start-page: 1 year: 2009 end-page: 13 ident: bib44 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. – year: 2020 ident: bib60 article-title: KEGGREST: client-side REST access to KEGG. R package version 1.28.0 – volume: 47 start-page: 1024 year: 2017 ident: 10.1016/j.cmet.2021.10.004_bib21 article-title: Recent advances in type-2-cell-mediated immunity: insights from helminth infection publication-title: Infect. Immun. – volume: 11 start-page: 504 year: 2003 ident: 10.1016/j.cmet.2021.10.004_bib62 article-title: Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.2003.11621.x – volume: 120 start-page: 613 year: 2012 ident: 10.1016/j.cmet.2021.10.004_bib66 article-title: CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair publication-title: Blood doi: 10.1182/blood-2012-01-403386 – volume: 453 start-page: 314 year: 2008 ident: 10.1016/j.cmet.2021.10.004_bib18 article-title: Wound repair and regeneration publication-title: Nature doi: 10.1038/nature07039 – volume: 216 start-page: 2027 year: 2017 ident: 10.1016/j.cmet.2021.10.004_bib50 article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals publication-title: J. Cell Biol. doi: 10.1083/jcb.201702058 – volume: 185 start-page: 605 year: 2010 ident: 10.1016/j.cmet.2021.10.004_bib53 article-title: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation publication-title: J. Immunol. doi: 10.4049/jimmunol.0901698 – volume: 175 start-page: 2454 year: 2009 ident: 10.1016/j.cmet.2021.10.004_bib43 article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.090248 – volume: 7 start-page: giy083 year: 2018 ident: 10.1016/j.cmet.2021.10.004_bib69 article-title: Clustering trees: a visualization for evaluating clusterings at multiple resolutions publication-title: GigaScience doi: 10.1093/gigascience/giy083 – volume: 26 start-page: 873 year: 2010 ident: 10.1016/j.cmet.2021.10.004_bib67 article-title: Fast and SNP-tolerant detection of complex variants and splicing in short reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq057 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib34 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 43 start-page: 803 year: 2015 ident: 10.1016/j.cmet.2021.10.004_bib29 article-title: Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair publication-title: Immunity doi: 10.1016/j.immuni.2015.09.005 – volume: 23 start-page: 95 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib9 article-title: Macrophages: an inflammatory link Between angiogenesis and lymphangiogenesis publication-title: Microcirculation doi: 10.1111/micc.12259 – volume: 5 start-page: e10575 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib3 article-title: Mitochondrial dysfunction remodels one-carbon metabolism in human cells publication-title: Elife doi: 10.7554/eLife.10575 – volume: 19 start-page: 458 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib12 article-title: Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.02.004 – volume: 11 start-page: 1643 year: 2020 ident: 10.1016/j.cmet.2021.10.004_bib58 article-title: A salvage pathway maintains highly functional respiratory complex I publication-title: Nat. Commun. doi: 10.1038/s41467-020-15467-7 – volume: 213 start-page: 15 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib46 article-title: Immunometabolism governs dendritic cell and macrophage function publication-title: J. Exp. Med. doi: 10.1084/jem.20151570 – volume: 363 start-page: 6423 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib64 article-title: An evolutionary perspective on immunometabolism publication-title: Science doi: 10.1126/science.aar3932 – volume: 308 start-page: E756 year: 2015 ident: 10.1016/j.cmet.2021.10.004_bib37 article-title: Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00362.2014 – volume: 10 start-page: 3219 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib4 article-title: MAPCap allows high-resolution detection and differential expression analysis of transcription start sites publication-title: Nat. Commun. doi: 10.1038/s41467-019-11115-x – ident: 10.1016/j.cmet.2021.10.004_bib60 – volume: 496 start-page: 238 year: 2013 ident: 10.1016/j.cmet.2021.10.004_bib59 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature doi: 10.1038/nature11986 – volume: 15 start-page: 846 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib23 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2956 – volume: 9 start-page: 171 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib48 article-title: Full-length RNA-Seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 184 start-page: 3964 year: 2010 ident: 10.1016/j.cmet.2021.10.004_bib35 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J. Immunol. doi: 10.4049/jimmunol.0903356 – volume: 368 start-page: eaat5314 year: 2020 ident: 10.1016/j.cmet.2021.10.004_bib10 article-title: The integrated stress response: From mechanism to disease publication-title: Science doi: 10.1126/science.aat5314 – volume: 39 start-page: 6 year: 2018 ident: 10.1016/j.cmet.2021.10.004_bib51 article-title: Mitochondrial dynamics at the interface of immune cell metabolism and function publication-title: Trends Immunol. doi: 10.1016/j.it.2017.08.006 – volume: 44 start-page: W160 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib52 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw257 – volume: 177 start-page: 1888 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib56 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 20 start-page: 296 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib19 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol. doi: 10.1186/s13059-019-1874-1 – volume: 19 start-page: 757 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib68 publication-title: Mitohormesis. Cell Metab. doi: 10.1016/j.cmet.2014.01.011 – volume: 33 start-page: 1726 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib13 article-title: Metabolic orchestration of the wound healing response publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.07.017 – volume: 186 start-page: 3299 year: 2011 ident: 10.1016/j.cmet.2021.10.004_bib41 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. doi: 10.4049/jimmunol.1003613 – volume: 18 start-page: 3066 year: 2004 ident: 10.1016/j.cmet.2021.10.004_bib38 article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum publication-title: Genes Dev. doi: 10.1101/gad.1250704 – volume: 49 start-page: 1021 year: 2018 ident: 10.1016/j.cmet.2021.10.004_bib54 article-title: Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2 publication-title: Immunity doi: 10.1016/j.immuni.2018.10.011 – volume: 6 start-page: eabd6279 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib2 article-title: Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abd6279 – volume: 8 start-page: 265 year: 1999 ident: 10.1016/j.cmet.2021.10.004_bib8 article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice publication-title: Transgenic. Res. doi: 10.1023/A:1008942828960 – volume: 20 start-page: 420 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib6 article-title: Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0336-y – volume: 3 start-page: 618 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib61 article-title: Mitohormesis reprogrammes macrophage metabolism to enforce tolerance publication-title: Nat. Metab. doi: 10.1038/s42255-021-00392-w – volume: 30 start-page: 923 year: 2014 ident: 10.1016/j.cmet.2021.10.004_bib33 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 4 start-page: 13 year: 2006 ident: 10.1016/j.cmet.2021.10.004_bib63 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.011 – volume: 30 start-page: 1040 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib15 article-title: Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.019 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.cmet.2021.10.004_bib55 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 7 start-page: eabf0971 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib28 article-title: Adaptation to mitochondrial stress requires CHOP-directed tuning of publication-title: ISR. Sci. Adv. doi: 10.1126/sciadv.abf0971 – volume: 356 start-page: 1072 year: 2017 ident: 10.1016/j.cmet.2021.10.004_bib5 article-title: Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells publication-title: Science doi: 10.1126/science.aai8132 – volume: 356 start-page: 1026 year: 2017 ident: 10.1016/j.cmet.2021.10.004_bib14 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science doi: 10.1126/science.aam7928 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.cmet.2021.10.004_bib32 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – ident: 10.1016/j.cmet.2021.10.004_bib47 – volume: 13 start-page: 607 year: 2013 ident: 10.1016/j.cmet.2021.10.004_bib16 article-title: Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3476 – volume: 37 start-page: e97786 year: 2018 ident: 10.1016/j.cmet.2021.10.004_bib17 article-title: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression publication-title: EMBO J. doi: 10.15252/embj.201797786 – volume: 45 start-page: 817 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib24 article-title: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation publication-title: Immunity doi: 10.1016/j.immuni.2016.09.016 – volume: 574 start-page: 575 year: 2019 ident: 10.1016/j.cmet.2021.10.004_bib70 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 11 start-page: 723 year: 2011 ident: 10.1016/j.cmet.2021.10.004_bib45 article-title: Protective and pathogenic functions of macrophage subsets publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3073 – volume: 167 start-page: 457 year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib42 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell doi: 10.1016/j.cell.2016.08.064 – volume: 7 start-page: 105 year: 1998 ident: 10.1016/j.cmet.2021.10.004_bib31 article-title: Maternally expressed PGK-CreTransgene as a tool for early and uniform activation of the Cre site-specific recombinase publication-title: Transgenic. Res. doi: 10.1023/A:1008868325009 – volume: 9 start-page: 1115 year: 2007 ident: 10.1016/j.cmet.2021.10.004_bib25 article-title: Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1674 – volume: 15 start-page: 581 year: 2012 ident: 10.1016/j.cmet.2021.10.004_bib49 article-title: Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice publication-title: Angiogenesis doi: 10.1007/s10456-012-9282-0 – volume: 37 start-page: 43 year: 2007 ident: 10.1016/j.cmet.2021.10.004_bib36 article-title: Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636745 – volume: 417 start-page: 1 year: 2009 ident: 10.1016/j.cmet.2021.10.004_bib44 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. doi: 10.1042/BJ20081386 – volume: 42 start-page: 419 year: 2015 ident: 10.1016/j.cmet.2021.10.004_bib27 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity doi: 10.1016/j.immuni.2015.02.005 – volume: 20 start-page: 623 year: 2004 ident: 10.1016/j.cmet.2021.10.004_bib22 article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology publication-title: Immunity doi: 10.1016/S1074-7613(04)00107-4 – volume: 3 start-page: 861 year: 2018 ident: 10.1016/j.cmet.2021.10.004_bib40 article-title: UMAP: uniform manifold approximation and projection publication-title: J. Open Source Softw. doi: 10.21105/joss.00861 – year: 2016 ident: 10.1016/j.cmet.2021.10.004_bib65 – volume: 54 start-page: 68 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib1 article-title: Ribosome-targeting antibiotics impair T cell effector function and ameliorate autoimmunity by blocking mitochondrial protein synthesis publication-title: Immunity doi: 10.1016/j.immuni.2020.11.001 – volume: 332 start-page: 1284 year: 2011 ident: 10.1016/j.cmet.2021.10.004_bib26 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science doi: 10.1126/science.1204351 – volume: 582 start-page: 319 year: 2008 ident: 10.1016/j.cmet.2021.10.004_bib57 article-title: LPS-induced toll-like receptor 4 signalling triggers cross-talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.12.024 – volume: 184 start-page: 3573 year: 2021 ident: 10.1016/j.cmet.2021.10.004_bib20 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 275 start-page: 25130 year: 2000 ident: 10.1016/j.cmet.2021.10.004_bib7 article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001914200 – volume: 6 start-page: e30952 year: 2017 ident: 10.1016/j.cmet.2021.10.004_bib30 article-title: Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals publication-title: Elife doi: 10.7554/eLife.30952 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.cmet.2021.10.004_bib11 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.cmet.2021.10.004_bib39 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 |
SSID | ssj0036393 |
Score | 2.6664138 |
Snippet | Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2398 |
SubjectTerms | Animals Macrophages - metabolism metabolism Mice mitochondria Mitochondria - metabolism mitochondrial repurposing mitohormesis monocyte/macrophage tissue repair type 2 immunity Wound Healing |
Title | Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing |
URI | https://dx.doi.org/10.1016/j.cmet.2021.10.004 https://www.ncbi.nlm.nih.gov/pubmed/34715039 https://www.proquest.com/docview/2590136670 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FELyIb-uLCN5kbZrdJN2jFksR6kULvS2bl11pt6UPxH_vzD4ED-3BY5IJCTPJzLebeRByZ0XMU-6xehkPgwgsbhBrA9fdy7TI9yQs_occvMr-MHoZiVGDdOtYGHSrrHR_qdMLbV31tCputuZZ1npDcA0qGDNgwTHkmBM0jDpFEN_oqdbGsFqReBeJA6SuAmdKHy8zdehPydsPhYdXtMk4bQKfhRHqHZD9Cj3Sx3KDh6Th8iOyW9aT_D4m4wHcT9BnucVjRWFZEPEkW06pmcFHZpYjsKSABz9cgCGW6CZEF2CQsgWdlxEDMJ7ldJpiZa8x0C1pGchIv7D-EkVcCa0TMuw9v3f7QVVKITCRlKtAGSa98qZtNLOACpQRTgmptBfKxlqLKGXWhqnCJ1_dcYYxy7l2MMqlszo8JTv5LHfnhHrvYg24Q5qYRUCorXdOYmo4K20njZukXfMwMVWecSx3MUlqh7LPBPmeIN-xD_jeJPe_c-Zllo2t1KIWTfLnrCRgBrbOu63lmMAlwpeRNHez9TLhGIEbSqlYk5yVAv7dRwjmW7AwvvjnqpdkD1uFC4y6IjurxdpdA5BZ6ZvipP4AFfDx3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgCMEF8WY8g8QNlXVpm65HmEDjMS6AtFvUPMqKtm7aQ4h_j93HJA5w4NjEUSrbsb82fgBcmCDiMU-oexn3HB89rhMpjcc9EXFe7ykw9B-y-yw6b_5DL-gtQbvKhaGwytL2FzY9t9blSKPkZmOcpo0XAtdogqkCFqoh95dhBdFASP0b7ns3lTnG7fLKu0TtEHmZOVMEeemhpYBK3rzKQ7z837zTb-gz90J3m7BRwkd2XbzhFizZbBtWi4aSXzvQ7-IBRYOWGdIrhtuijAfpdMj0CL8y04yQJUNA-G4dyrGkOCE2QY-UTti4SBnA-TRjw5hae_WRbsqKTEb2SQ2YGAFLfNqFt7vb13bHKXspONoXYuaE2hVJmOimVq5BWBDqwIbILZUEoYmUCvzYNcaLQ7rzVS2rXddwrizOcmGN8vaglo0yewAsSWykEHgIHbk-EiqTWCuoNpwRphVHdWhWPJS6LDRO_S4Gsooo-5DEd0l8pzHkex0uF2vGRZmNP6mDSjTyh7JI9AN_rjuv5CjxFNHVSJzZ0XwqOaXgegK1pw77hYAX7-Gh_w5cLzr8565nsNZ57T7Jp_vnxyNYp5k8HiY8htpsMrcniGpm6jTX2m9B6vT8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+metabolism+coordinates+stage-specific+repair+processes+in+macrophages+during+wound+healing&rft.jtitle=Cell+metabolism&rft.au=Willenborg%2C+Sebastian&rft.au=Sanin%2C+David+E&rft.au=Jais%2C+Alexander&rft.au=Ding%2C+Xiaolei&rft.date=2021-12-07&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=33&rft.issue=12&rft.spage=2398&rft_id=info:doi/10.1016%2Fj.cmet.2021.10.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |