Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria
Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resol...
Saved in:
Published in | Cell host & microbe Vol. 25; no. 2; pp. 219 - 232 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.02.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.
In this Review, Kortright et al. present a historical overview of phage therapy and its usefulness in combatting antibiotic-resistant bacteria. The authors also highlight the advantages and limits of phage therapy through specific animal, clinical, and case studies and offer directions for future studies. |
---|---|
AbstractList | Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria. Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria. Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria. In this Review, Kortright et al. present a historical overview of phage therapy and its usefulness in combatting antibiotic-resistant bacteria. The authors also highlight the advantages and limits of phage therapy through specific animal, clinical, and case studies and offer directions for future studies. |
Author | Koff, Jonathan L. Kortright, Kaitlyn E. Chan, Benjamin K. Turner, Paul E. |
Author_xml | – sequence: 1 givenname: Kaitlyn E. surname: Kortright fullname: Kortright, Kaitlyn E. organization: Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 2 givenname: Benjamin K. surname: Chan fullname: Chan, Benjamin K. organization: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA – sequence: 3 givenname: Jonathan L. surname: Koff fullname: Koff, Jonathan L. organization: Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Paul E. surname: Turner fullname: Turner, Paul E. email: paul.turner@yale.edu organization: Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30763536$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPwzAQhC1URB_wBzigHLmk2ElsJ4hLqXhUqgSqytlynA1xlcTFdkH996S0vXCotNLuYb7R7AxRrzUtIHRN8Jhgwu5WY1WZZhxhko0x6SY5QwOSxUnIMMt6fzcJYxKlfTR0boUxpZiTC9SPMWcxjdkAzd4r-QnBsgIr19v7YBIsoIUfKILJem2NVFXgTTA1TS59MGm9zrXxWoULcNp52frgUSoPVstLdF7K2sHVYY_Qx_PTcvoazt9eZtPJPFQJYz7kaVlQDpCUrCCMS5UkIIuUqYhRQrMs5WmqumhlzHOgPFc55QXhuFR5RrMkjkfodu_bxfvagPOi0U5BXcsWzMaJKIoygllEd9Kbg3STN1CItdWNtFtxfL8TpHuBssY5C6VQ2kuvTeut1LUgWOyaFiuxa1rsmhaYdJN0aPQPPbqfhB72EHQFfWuwwikNrYJCW1BeFEafwn8BjVyVsg |
CitedBy_id | crossref_primary_10_3390_ph15121498 crossref_primary_10_1097_JTCCM_D_24_00022 crossref_primary_10_1016_j_micpath_2023_106218 crossref_primary_10_13005_bbra_2911 crossref_primary_10_1007_s12275_024_00184_3 crossref_primary_10_1038_s41564_019_0660_x crossref_primary_10_1093_femsre_fuaa041 crossref_primary_10_1016_j_csbj_2021_06_001 crossref_primary_10_3390_v11040366 crossref_primary_10_1016_j_copbio_2020_08_015 crossref_primary_10_1155_2024_6252415 crossref_primary_10_3389_fcimb_2021_681731 crossref_primary_10_3390_targets2030010 crossref_primary_10_3389_fmicb_2022_947640 crossref_primary_10_3389_fcimb_2022_941867 crossref_primary_10_1093_ve_veaa030 crossref_primary_10_1126_science_adg9091 crossref_primary_10_1186_s12864_024_10461_5 crossref_primary_10_3389_fcell_2020_606751 crossref_primary_10_1093_femsre_fuab019 crossref_primary_10_3390_antibiotics10111306 crossref_primary_10_3389_fmicb_2023_1287964 crossref_primary_10_1099_mic_0_001063 crossref_primary_10_3390_microorganisms8040480 crossref_primary_10_1093_cid_ciaa705 crossref_primary_10_1016_j_isci_2024_109790 crossref_primary_10_1128_spectrum_03797_23 crossref_primary_10_1128_msystems_00801_24 crossref_primary_10_3389_fmicb_2022_1067803 crossref_primary_10_1186_s40560_024_00759_7 crossref_primary_10_1371_journal_pbio_3001406 crossref_primary_10_1371_journal_ppat_1011424 crossref_primary_10_1128_ecosalplus_esp_0003_2020 crossref_primary_10_1016_j_micpath_2023_106467 crossref_primary_10_1146_annurev_virology_111821_111145 crossref_primary_10_22207_JPAM_16_4_01 crossref_primary_10_1093_bib_bbac574 crossref_primary_10_1007_s11274_024_04106_8 crossref_primary_10_1016_j_micres_2022_127104 crossref_primary_10_1128_msystems_01177_23 crossref_primary_10_1128_spectrum_00679_24 crossref_primary_10_3390_microorganisms8111750 crossref_primary_10_3390_life15010049 crossref_primary_10_1016_j_ijfoodmicro_2023_110525 crossref_primary_10_1093_molbev_msab190 crossref_primary_10_1016_j_virusres_2022_198856 crossref_primary_10_1089_nat_2018_0758 crossref_primary_10_15406_jmen_2021_09_00327 crossref_primary_10_1007_s00203_024_04106_0 crossref_primary_10_1039_D3CB00135K crossref_primary_10_3390_molecules25061340 crossref_primary_10_1134_S0026261723604906 crossref_primary_10_1038_s42003_024_06754_w crossref_primary_10_1128_JVI_02173_20 crossref_primary_10_1128_AAC_01281_19 crossref_primary_10_1021_acsinfecdis_0c00036 crossref_primary_10_1038_s41385_019_0250_5 crossref_primary_10_3389_fmicb_2019_01556 crossref_primary_10_1128_msystems_00607_24 crossref_primary_10_1128_mbio_03016_23 crossref_primary_10_3390_microorganisms7120615 crossref_primary_10_1146_annurev_med_080219_122208 crossref_primary_10_1073_pnas_2104592118 crossref_primary_10_1080_02648725_2023_2178870 crossref_primary_10_1080_02648725_2023_2199572 crossref_primary_10_1111_1462_2920_16366 crossref_primary_10_1186_s40168_024_01935_5 crossref_primary_10_1016_j_lwt_2024_116153 crossref_primary_10_1016_j_virusres_2019_197734 crossref_primary_10_1016_j_fpsl_2024_101398 crossref_primary_10_3390_ijms242115628 crossref_primary_10_1371_journal_pbio_3001424 crossref_primary_10_1128_MRA_00349_19 crossref_primary_10_31857_S0026365624040126 crossref_primary_10_1093_bib_bbab385 crossref_primary_10_3390_v16030422 crossref_primary_10_3390_microorganisms12101986 crossref_primary_10_1128_spectrum_02838_23 crossref_primary_10_1002_jobm_202400271 crossref_primary_10_3389_fmicb_2021_763136 crossref_primary_10_3390_antibiotics12061012 crossref_primary_10_1016_j_vetmic_2023_109923 crossref_primary_10_1080_17460441_2023_2239704 crossref_primary_10_1146_annurev_virology_111821_115754 crossref_primary_10_3389_fmicb_2024_1401234 crossref_primary_10_1016_j_ijfoodmicro_2023_110304 crossref_primary_10_1016_j_mehy_2024_111484 crossref_primary_10_1128_aac_00448_24 crossref_primary_10_1093_nar_gkac505 crossref_primary_10_1186_s43014_023_00193_6 crossref_primary_10_1016_j_micres_2025_128083 crossref_primary_10_3389_fvets_2022_888561 crossref_primary_10_1098_rsif_2020_0486 crossref_primary_10_1136_bmjresp_2022_001360 crossref_primary_10_3390_microorganisms11061524 crossref_primary_10_1016_j_tpb_2024_12_002 crossref_primary_10_1099_mgen_0_001065 crossref_primary_10_1016_j_micres_2022_127155 crossref_primary_10_1007_s11538_020_00751_w crossref_primary_10_3390_ijms22020735 crossref_primary_10_1134_S0006297920110061 crossref_primary_10_1093_jalm_jfac051 crossref_primary_10_1186_s40168_019_0777_4 crossref_primary_10_3390_pathogens11121445 crossref_primary_10_1073_pnas_2216084120 crossref_primary_10_1111_evo_13873 crossref_primary_10_2147_IDR_S380883 crossref_primary_10_37489_0235_2990_2022_67_11_12_56_63 crossref_primary_10_1111_jeb_13904 crossref_primary_10_3390_v15102095 crossref_primary_10_1007_s11538_022_01006_6 crossref_primary_10_1038_s41467_022_33294_w crossref_primary_10_3389_fimmu_2022_987231 crossref_primary_10_3390_v13010089 crossref_primary_10_1093_bioinformatics_btac509 crossref_primary_10_1016_j_micpath_2020_104588 crossref_primary_10_3389_fmicb_2020_573260 crossref_primary_10_3389_fmicb_2024_1416628 crossref_primary_10_1021_jacs_3c10034 crossref_primary_10_3390_v14112381 crossref_primary_10_2217_fmb_2021_0027 crossref_primary_10_1016_j_bbrep_2023_101553 crossref_primary_10_12998_wjcc_v11_i3_534 crossref_primary_10_1016_j_tim_2019_10_007 crossref_primary_10_3168_jds_2022_22892 crossref_primary_10_3390_antibiotics12040751 crossref_primary_10_2147_IJN_S453566 crossref_primary_10_1016_j_healun_2022_01_018 crossref_primary_10_3389_fcimb_2023_1138998 crossref_primary_10_1007_s00408_024_00700_7 crossref_primary_10_1016_S1473_3099_20_30060_8 crossref_primary_10_3390_v14081802 crossref_primary_10_3390_antibiotics10111337 crossref_primary_10_1371_journal_pbio_3002566 crossref_primary_10_1016_j_micres_2023_127412 crossref_primary_10_1016_j_jenvman_2025_124079 crossref_primary_10_3389_fmicb_2022_866382 crossref_primary_10_3390_v14102106 crossref_primary_10_3390_v14061199 crossref_primary_10_1016_j_fm_2021_103853 crossref_primary_10_1371_journal_ppat_1012936 crossref_primary_10_3389_fmicb_2021_698962 crossref_primary_10_1371_journal_ppat_1011602 crossref_primary_10_1128_msphere_00553_23 crossref_primary_10_1007_s10068_023_01444_5 crossref_primary_10_1038_s41467_023_39863_x crossref_primary_10_3389_fcimb_2021_631585 crossref_primary_10_1093_burnst_tkae083 crossref_primary_10_3390_v14030485 crossref_primary_10_1016_j_isci_2024_109595 crossref_primary_10_3389_fmicb_2022_943279 crossref_primary_10_3390_ph14040325 crossref_primary_10_3389_fcimb_2021_643214 crossref_primary_10_3390_v14112483 crossref_primary_10_1038_s41564_024_01832_5 crossref_primary_10_1016_j_psj_2023_102960 crossref_primary_10_1021_acs_analchem_3c01066 crossref_primary_10_1016_j_micres_2022_127249 crossref_primary_10_2217_fmb_2021_0293 crossref_primary_10_1038_s42003_022_03001_y crossref_primary_10_3390_v12020235 crossref_primary_10_1186_s12985_025_02679_w crossref_primary_10_1038_s41591_021_01403_9 crossref_primary_10_1093_jambio_lxae235 crossref_primary_10_46989_001c_125735 crossref_primary_10_17352_ijvsr_000126 crossref_primary_10_3390_v14020190 crossref_primary_10_1038_s41467_021_27656_z crossref_primary_10_3390_v15112267 crossref_primary_10_1016_j_ijfoodmicro_2022_109886 crossref_primary_10_1016_j_biopha_2022_112758 crossref_primary_10_3390_antibiotics9070412 crossref_primary_10_3390_ijms242115594 crossref_primary_10_1038_s41579_019_0288_0 crossref_primary_10_1016_j_jtbi_2024_111741 crossref_primary_10_1186_s43088_021_00141_8 crossref_primary_10_1016_j_meegid_2024_105606 crossref_primary_10_3389_fimmu_2022_1057892 crossref_primary_10_1371_journal_pcbi_1012793 crossref_primary_10_3390_v14091956 crossref_primary_10_1093_jambio_lxad250 crossref_primary_10_1016_j_trsl_2020_07_004 crossref_primary_10_3389_fmicb_2023_1227147 crossref_primary_10_1080_10408398_2020_1843396 crossref_primary_10_3389_fmicb_2023_1148579 crossref_primary_10_1007_s10096_021_04296_1 crossref_primary_10_1038_s41598_020_71588_5 crossref_primary_10_1016_j_ijfoodmicro_2022_109872 crossref_primary_10_1126_sciadv_adp5057 crossref_primary_10_1128_AAC_01879_21 crossref_primary_10_1128_spectrum_02914_22 crossref_primary_10_1093_ve_veae100 crossref_primary_10_3390_ph14010034 crossref_primary_10_2174_1381612826666200224105153 crossref_primary_10_1002_ppul_24919 crossref_primary_10_1093_infdis_jiac369 crossref_primary_10_3389_fmicb_2021_616712 crossref_primary_10_3389_fmicb_2019_02840 crossref_primary_10_3390_antibiotics9070408 crossref_primary_10_1111_1541_4337_13215 crossref_primary_10_1016_j_jddst_2022_103991 crossref_primary_10_2147_IDR_S402962 crossref_primary_10_3390_v14010033 crossref_primary_10_1016_j_heliyon_2024_e30496 crossref_primary_10_1016_j_idc_2023_12_002 crossref_primary_10_3390_jcm12030767 crossref_primary_10_1007_s00253_021_11695_z crossref_primary_10_1016_j_isci_2023_108675 crossref_primary_10_1080_22221751_2021_2002671 crossref_primary_10_3390_antibiotics13020195 crossref_primary_10_3390_microorganisms12112232 crossref_primary_10_3389_fmicb_2020_00327 crossref_primary_10_1073_pnas_1913234117 crossref_primary_10_3390_antibiotics10091116 crossref_primary_10_1080_22221751_2020_1747950 crossref_primary_10_1080_21505594_2021_1926411 crossref_primary_10_3389_fimmu_2019_01341 crossref_primary_10_3389_fsci_2023_997136 crossref_primary_10_5812_jjm_118910 crossref_primary_10_1007_s00203_022_02839_4 crossref_primary_10_1016_j_cell_2019_12_034 crossref_primary_10_14356_kona_2025016 crossref_primary_10_3390_antibiotics11050653 crossref_primary_10_3390_ruminants2010009 crossref_primary_10_1128_mra_00944_22 crossref_primary_10_3389_fimmu_2021_751337 crossref_primary_10_1002_mbo3_1273 crossref_primary_10_1016_j_biopha_2023_115040 crossref_primary_10_1073_pnas_2109434118 crossref_primary_10_3390_antibiotics13070581 crossref_primary_10_1016_j_vetmic_2024_110133 crossref_primary_10_1038_s41467_024_46147_5 crossref_primary_10_1371_journal_pbio_3002119 crossref_primary_10_1007_s00253_024_13208_0 crossref_primary_10_1007_s00284_024_03713_w crossref_primary_10_3390_v15081665 crossref_primary_10_1128_Spectrum_00497_21 crossref_primary_10_3389_fmicb_2023_1260196 crossref_primary_10_3390_ijms21093160 crossref_primary_10_3390_antibiotics14010002 crossref_primary_10_3390_v17030369 crossref_primary_10_1007_s00253_022_12175_8 crossref_primary_10_1080_14787210_2024_2441891 crossref_primary_10_1093_femspd_ftac039 crossref_primary_10_3389_fmicb_2024_1346251 crossref_primary_10_3389_fmicb_2021_658374 crossref_primary_10_3390_antibiotics12040735 crossref_primary_10_1016_j_jmb_2020_06_013 crossref_primary_10_3390_molecules25122888 crossref_primary_10_1007_s44337_024_00181_w crossref_primary_10_1007_s11538_022_01013_7 crossref_primary_10_1038_s41396_021_01012_x crossref_primary_10_1016_j_micpath_2022_105442 crossref_primary_10_1093_femsre_fuaa001 crossref_primary_10_1016_j_fbio_2022_102282 crossref_primary_10_1016_j_psj_2024_103845 crossref_primary_10_1128_MMBR_00012_19 crossref_primary_10_1007_s00705_022_05426_6 crossref_primary_10_1016_j_ijantimicag_2024_107413 crossref_primary_10_1088_2752_5724_ada62b crossref_primary_10_1093_gigascience_giae074 crossref_primary_10_1128_spectrum_01602_22 crossref_primary_10_1002_aah_10130 crossref_primary_10_1016_j_plantsci_2024_112164 crossref_primary_10_3389_fbioe_2024_1319830 crossref_primary_10_1080_10408363_2019_1648377 crossref_primary_10_3390_app10217654 crossref_primary_10_3390_pathogens12121396 crossref_primary_10_1111_odi_14782 crossref_primary_10_1007_s13762_023_04867_z crossref_primary_10_3389_fmicb_2020_00110 crossref_primary_10_1371_journal_pone_0266683 crossref_primary_10_12688_f1000research_18799_1 crossref_primary_10_24931_2413_9432_2023_13_2_26_33 crossref_primary_10_1016_j_celrep_2024_113728 crossref_primary_10_1016_j_molcel_2020_03_001 crossref_primary_10_3389_fcimb_2024_1433313 crossref_primary_10_3390_antibiotics13070680 crossref_primary_10_1002_bies_202000272 crossref_primary_10_1016_j_micpath_2022_105556 crossref_primary_10_1093_ve_veaa060 crossref_primary_10_3390_antibiotics12050868 crossref_primary_10_1016_j_jhepr_2023_100909 crossref_primary_10_1007_s00705_023_05873_9 crossref_primary_10_1016_j_ijbiomac_2024_134582 crossref_primary_10_1002_smll_202404351 crossref_primary_10_3389_fmicb_2022_825828 crossref_primary_10_1016_j_aquaculture_2024_741499 crossref_primary_10_3839_jabc_2019_039 crossref_primary_10_1016_j_mib_2022_102225 crossref_primary_10_1177_25160435221120300 crossref_primary_10_1016_j_biotechadv_2023_108152 crossref_primary_10_2174_0113862073267755240126111628 crossref_primary_10_1038_s41579_021_00536_5 crossref_primary_10_1016_j_micpath_2024_107052 crossref_primary_10_1089_phage_2024_0014 crossref_primary_10_1146_annurev_virology_091919_074551 crossref_primary_10_3389_fmicb_2023_1134254 crossref_primary_10_3390_v15081736 crossref_primary_10_7554_eLife_60608 crossref_primary_10_1111_1462_2920_15476 crossref_primary_10_12677_ACM_2022_124362 crossref_primary_10_3390_ijms24044191 crossref_primary_10_4142_jvs_24251 crossref_primary_10_3390_v14020171 crossref_primary_10_1111_1462_2920_15593 crossref_primary_10_1007_s00203_025_04252_z crossref_primary_10_1016_j_jcf_2022_10_005 crossref_primary_10_3390_antibiotics12121715 crossref_primary_10_1093_jpids_piac061 crossref_primary_10_1111_exd_14940 crossref_primary_10_1016_j_tplants_2020_01_013 crossref_primary_10_1039_D0EN00962H crossref_primary_10_1099_mgen_0_001251 crossref_primary_10_3389_fmicb_2022_906961 crossref_primary_10_3390_antibiotics9060304 crossref_primary_10_1016_j_micres_2024_127699 crossref_primary_10_1186_s12951_024_02576_4 crossref_primary_10_3389_frmbi_2024_1408203 crossref_primary_10_1080_10408398_2023_2214818 crossref_primary_10_1016_j_micpath_2024_107088 crossref_primary_10_3390_nano15010067 crossref_primary_10_1016_j_coviro_2022_101209 crossref_primary_10_1016_j_lwt_2022_114251 crossref_primary_10_3390_antibiotics12081329 crossref_primary_10_3389_fmicb_2023_1251211 crossref_primary_10_1093_ismeco_ycae039 crossref_primary_10_1186_s12866_024_03387_1 crossref_primary_10_1016_j_jhep_2019_10_003 crossref_primary_10_1186_s12866_023_02963_1 crossref_primary_10_3389_fcimb_2024_1410115 crossref_primary_10_1186_s43556_022_00084_1 crossref_primary_10_1128_mbio_02924_23 crossref_primary_10_1080_10408398_2020_1724075 crossref_primary_10_1186_s12863_024_01244_8 crossref_primary_10_1080_13543784_2020_1805733 crossref_primary_10_3390_antibiotics9100714 crossref_primary_10_1016_j_micpath_2025_107490 crossref_primary_10_1016_j_prrv_2022_02_001 crossref_primary_10_1126_sciadv_adq5038 crossref_primary_10_1039_D0RA10156G crossref_primary_10_1038_s41586_023_06869_w crossref_primary_10_12793_tcp_2023_31_e17 crossref_primary_10_1038_s44222_023_00119_4 crossref_primary_10_33073_pjm_2022_005 crossref_primary_10_20411_pai_v7i2_516 crossref_primary_10_1007_s00203_024_04168_0 crossref_primary_10_3390_biology12050681 crossref_primary_10_1007_s11262_023_02033_8 crossref_primary_10_1038_s41598_023_37176_z crossref_primary_10_3390_cells13070585 crossref_primary_10_3390_v13112120 crossref_primary_10_1016_j_hlife_2025_03_004 crossref_primary_10_1016_j_aquaculture_2024_740804 crossref_primary_10_1016_j_aquaculture_2024_740925 crossref_primary_10_1080_19490976_2024_2337312 crossref_primary_10_3390_antibiotics12020286 crossref_primary_10_3390_antibiotics8040192 crossref_primary_10_1016_j_foodcont_2022_108976 crossref_primary_10_1093_emph_eoac006 crossref_primary_10_1111_1541_4337_12757 crossref_primary_10_1136_bjo_2022_322433 crossref_primary_10_1007_s10499_023_01220_6 crossref_primary_10_1111_jgh_15716 crossref_primary_10_1016_j_jgar_2020_12_025 crossref_primary_10_1038_s41598_021_94054_2 crossref_primary_10_1080_10408398_2022_2081127 crossref_primary_10_1128_aac_00728_23 crossref_primary_10_1128_msphere_01015_21 crossref_primary_10_1089_phage_2020_0038 crossref_primary_10_3389_fmolb_2021_654038 crossref_primary_10_1016_j_foodres_2020_110004 crossref_primary_10_1016_j_foohum_2023_09_004 crossref_primary_10_1186_s12985_024_02553_1 crossref_primary_10_3389_fvets_2024_1346313 crossref_primary_10_1016_j_sjbs_2021_05_033 crossref_primary_10_1016_j_micpath_2022_105876 crossref_primary_10_1016_j_jaad_2021_09_024 crossref_primary_10_1094_PBIOMES_07_23_0061_R crossref_primary_10_34133_bdr_0028 crossref_primary_10_1038_s41564_020_00822_7 crossref_primary_10_2147_IDR_S509016 crossref_primary_10_3390_ijms23137084 crossref_primary_10_1016_j_bsheal_2019_09_001 crossref_primary_10_3390_v12090944 crossref_primary_10_1016_j_psj_2024_104227 crossref_primary_10_3389_fcimb_2023_1119037 crossref_primary_10_1007_s15010_024_02178_0 crossref_primary_10_1371_journal_pgen_1009204 crossref_primary_10_1038_s42003_025_07687_8 crossref_primary_10_1038_s41467_024_51346_1 crossref_primary_10_1021_acs_est_3c07664 crossref_primary_10_1186_s40168_023_01585_z crossref_primary_10_1016_j_psj_2023_103073 crossref_primary_10_29296_25877305_2023_01_14 crossref_primary_10_3390_ijms24054333 crossref_primary_10_1128_JB_00362_20 crossref_primary_10_1093_ve_veae091 crossref_primary_10_1128_AAC_00924_19 crossref_primary_10_1360_SSV_2022_0309 crossref_primary_10_1021_acssynbio_1c00319 crossref_primary_10_1093_ismejo_wrae218 crossref_primary_10_1080_19490976_2024_2327409 crossref_primary_10_1016_j_chom_2021_11_014 crossref_primary_10_3390_microorganisms9040794 crossref_primary_10_1016_j_jgg_2024_04_013 crossref_primary_10_1016_j_mib_2022_102190 crossref_primary_10_36740_WLek202401122 crossref_primary_10_1016_j_cub_2020_07_036 crossref_primary_10_1038_s41598_024_68747_3 crossref_primary_10_3390_antibiotics10091085 crossref_primary_10_1016_j_jiph_2022_10_022 crossref_primary_10_3390_v17030414 crossref_primary_10_1128_mbio_01393_24 crossref_primary_10_1016_j_celrep_2022_110825 crossref_primary_10_33073_pjm_2022_037 crossref_primary_10_37349_emed_2024_00217 crossref_primary_10_46989_001c_124059 crossref_primary_10_1038_s41579_020_0367_2 crossref_primary_10_1007_s00249_021_01511_x crossref_primary_10_1146_annurev_genet_033123_095833 crossref_primary_10_1177_23247096231188243 crossref_primary_10_1093_femsmc_xtac009 crossref_primary_10_1093_cid_ciad514 crossref_primary_10_1128_jb_00196_23 crossref_primary_10_1016_j_micpath_2022_105732 crossref_primary_10_1016_j_eti_2021_102012 crossref_primary_10_3390_biology13040271 crossref_primary_10_3390_microbiolres15030098 crossref_primary_10_1002_cti2_1114 crossref_primary_10_1016_j_cpt_2025_03_003 crossref_primary_10_3390_v14061329 crossref_primary_10_3389_fcimb_2024_1336821 crossref_primary_10_1016_j_aqrep_2023_101628 crossref_primary_10_1038_s41598_022_25352_6 crossref_primary_10_3389_fmicb_2023_1267786 crossref_primary_10_1016_j_virol_2024_110209 crossref_primary_10_3390_jcm9051369 crossref_primary_10_1016_j_chom_2020_01_004 crossref_primary_10_1128_spectrum_04636_22 crossref_primary_10_3390_ph16070920 crossref_primary_10_1128_aem_00695_24 crossref_primary_10_3390_antibiotics12091444 crossref_primary_10_1016_j_ejpb_2020_11_019 crossref_primary_10_3390_ijms25105465 crossref_primary_10_1128_MRA_00503_20 crossref_primary_10_3390_antibiotics12020364 crossref_primary_10_3390_biology12020180 crossref_primary_10_3389_fmed_2020_00420 crossref_primary_10_1016_j_csbj_2021_12_039 crossref_primary_10_1021_acs_nanolett_4c02318 crossref_primary_10_2147_BTT_S381237 crossref_primary_10_1007_s11262_020_01735_7 crossref_primary_10_1111_1753_0407_70024 crossref_primary_10_3389_fpubh_2022_1002015 crossref_primary_10_1002_ppul_25190 crossref_primary_10_1007_s12268_023_1923_x crossref_primary_10_3389_fvets_2023_1160350 crossref_primary_10_1016_j_jddst_2023_104874 crossref_primary_10_3390_biomedicines11051379 crossref_primary_10_3389_fvets_2022_1101872 crossref_primary_10_1093_jac_dkaa121 crossref_primary_10_3389_fcimb_2021_698807 crossref_primary_10_3390_v16081338 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_1186_s12929_023_00919_1 crossref_primary_10_1016_j_gde_2022_101943 crossref_primary_10_1080_1040841X_2024_2429599 crossref_primary_10_3390_v11121083 crossref_primary_10_1093_jas_skab187 crossref_primary_10_1016_j_ijbiomac_2024_134977 crossref_primary_10_1016_j_isci_2023_106004 crossref_primary_10_3390_antibiotics11101406 crossref_primary_10_1093_ofid_ofad221 crossref_primary_10_1128_aem_02210_23 crossref_primary_10_2147_OPTH_S359304 crossref_primary_10_14712_fb2022068030087 crossref_primary_10_17495_easdl_2024_10_34_5_319 crossref_primary_10_1038_s41467_020_19735_4 crossref_primary_10_3390_ph14030184 crossref_primary_10_1016_j_mib_2020_06_003 crossref_primary_10_1128_spectrum_00958_23 crossref_primary_10_3389_fcimb_2022_897171 crossref_primary_10_3390_ijms23148040 crossref_primary_10_1038_s41467_021_25666_5 crossref_primary_10_3390_v13102005 crossref_primary_10_1128_mbio_03174_21 crossref_primary_10_15407_biotech16_05_022 crossref_primary_10_1016_j_coviro_2021_10_005 crossref_primary_10_3389_fmicb_2023_1083007 crossref_primary_10_1016_j_chom_2019_06_004 crossref_primary_10_1016_j_micpath_2019_103770 crossref_primary_10_1016_j_ebiom_2022_104113 crossref_primary_10_1893_BIOS_D_22_00005 crossref_primary_10_32604_biocell_2023_029564 crossref_primary_10_3390_biomedicines9040342 crossref_primary_10_1016_j_chom_2019_06_011 crossref_primary_10_1089_phage_2020_0007 crossref_primary_10_3390_v16111800 crossref_primary_10_1038_s41564_022_01243_4 crossref_primary_10_3390_microorganisms11051181 crossref_primary_10_1080_19490976_2021_1984122 crossref_primary_10_1016_j_psj_2024_103548 crossref_primary_10_1126_science_abb1083 crossref_primary_10_3389_fmicb_2023_1268820 crossref_primary_10_1016_j_cell_2024_09_009 crossref_primary_10_1038_s41467_023_44157_3 crossref_primary_10_3390_antibiotics11050575 crossref_primary_10_1016_j_copbio_2020_11_012 crossref_primary_10_1016_j_micpath_2023_106199 crossref_primary_10_1128_aac_00764_23 crossref_primary_10_3390_v11030295 crossref_primary_10_1016_j_jconrel_2024_07_013 crossref_primary_10_1111_nyas_14533 crossref_primary_10_1128_aem_00079_23 crossref_primary_10_3389_fmicb_2020_01982 crossref_primary_10_1128_mSystems_00420_21 crossref_primary_10_1089_sur_2020_129 crossref_primary_10_1097_IM9_0000000000000009 crossref_primary_10_1002_mbo3_968 crossref_primary_10_1159_000538493 crossref_primary_10_3389_fmicb_2019_00954 crossref_primary_10_1007_s00705_023_05817_3 crossref_primary_10_1016_j_eng_2021_07_030 crossref_primary_10_3390_antibiotics10020174 crossref_primary_10_1016_j_foodres_2023_112665 crossref_primary_10_1128_msphere_00080_22 crossref_primary_10_12938_bmfh_2022_061 crossref_primary_10_3390_pharmaceutics14112344 crossref_primary_10_3390_microorganisms12010222 crossref_primary_10_1099_jmm_0_001646 crossref_primary_10_1002_adhm_202102539 crossref_primary_10_3390_ph14040359 crossref_primary_10_3390_toxins16060270 crossref_primary_10_1016_j_addr_2021_113856 crossref_primary_10_3389_fcimb_2024_1473668 crossref_primary_10_1111_mmi_15074 crossref_primary_10_1172_JCI187996 crossref_primary_10_3390_agriculture10060232 crossref_primary_10_3389_fcimb_2024_1296777 crossref_primary_10_3390_antibiotics11101324 crossref_primary_10_1016_j_isci_2022_104121 crossref_primary_10_1093_bib_bbae117 crossref_primary_10_1128_Spectrum_00599_21 crossref_primary_10_3389_fimmu_2023_1133358 crossref_primary_10_1039_D0CS01571G crossref_primary_10_3389_fmicb_2020_583661 crossref_primary_10_3390_biomedicines11102860 crossref_primary_10_1099_jmm_0_001895 crossref_primary_10_3389_fphar_2022_883216 crossref_primary_10_3390_v12121398 crossref_primary_10_1080_14728222_2020_1761958 crossref_primary_10_3389_fmicb_2024_1448958 crossref_primary_10_1089_phage_2023_0034 crossref_primary_10_1016_j_addr_2021_113864 crossref_primary_10_1038_s41598_022_19922_x crossref_primary_10_1177_00220345251317494 crossref_primary_10_1007_s00253_023_12881_x crossref_primary_10_3389_frym_2021_574664 crossref_primary_10_1016_j_ijbiomac_2024_132990 crossref_primary_10_1073_pnas_2008007118 crossref_primary_10_1128_mra_01530_19 crossref_primary_10_3389_fcimb_2022_907314 crossref_primary_10_1016_j_bioorg_2021_105550 crossref_primary_10_5005_jp_journals_11002_0078 crossref_primary_10_3390_antibiotics11070839 crossref_primary_10_1039_D3TB00694H crossref_primary_10_1089_phage_2021_0016 crossref_primary_10_1371_journal_pone_0263887 crossref_primary_10_1016_j_foodres_2022_111971 crossref_primary_10_1111_1462_2920_15901 crossref_primary_10_1007_s10904_020_01768_3 crossref_primary_10_1099_mic_0_001126 crossref_primary_10_1128_msphere_00345_22 crossref_primary_10_1016_j_virusres_2023_199165 crossref_primary_10_3389_fmicb_2022_877074 crossref_primary_10_1016_j_jconrel_2020_06_016 crossref_primary_10_3390_ijms21020425 crossref_primary_10_3390_ijms24054635 crossref_primary_10_1007_s00203_023_03803_6 crossref_primary_10_1186_s13062_022_00339_5 crossref_primary_10_1186_s13567_021_00991_1 crossref_primary_10_1016_j_ccm_2022_06_008 crossref_primary_10_3389_fmicb_2023_1277178 crossref_primary_10_1007_s10699_021_09796_z crossref_primary_10_3390_microorganisms8060837 crossref_primary_10_1128_AEM_01468_21 crossref_primary_10_2147_IDR_S330560 crossref_primary_10_1038_s41564_019_0526_2 crossref_primary_10_1021_acsami_3c19443 crossref_primary_10_3389_fmicb_2021_638094 crossref_primary_10_1016_j_cell_2022_11_017 crossref_primary_10_1111_nph_17847 crossref_primary_10_1128_AEM_01514_21 crossref_primary_10_15421_022173 crossref_primary_10_3390_v13101964 crossref_primary_10_1093_bib_bbae010 crossref_primary_10_3390_nano11020312 crossref_primary_10_1016_j_heliyon_2023_e14020 crossref_primary_10_1080_17460794_2024_2381954 crossref_primary_10_3390_microorganisms10071324 crossref_primary_10_1128_msphere_00707_23 crossref_primary_10_1126_science_adi7571 crossref_primary_10_3389_fmicb_2021_724767 crossref_primary_10_1128_spectrum_02897_23 crossref_primary_10_1128_AEM_00468_21 crossref_primary_10_1007_s00203_020_02167_5 crossref_primary_10_1186_s13567_024_01311_z crossref_primary_10_3390_antibiotics11101310 crossref_primary_10_1007_s13346_023_01513_6 crossref_primary_10_1016_j_onano_2023_100171 crossref_primary_10_1515_ci_2023_0403 crossref_primary_10_1038_s41598_024_59444_2 crossref_primary_10_1007_s13205_024_04101_8 crossref_primary_10_3390_ebj3010014 crossref_primary_10_3390_v15030673 crossref_primary_10_1016_j_foodcont_2024_110304 crossref_primary_10_1080_14712598_2021_1865304 crossref_primary_10_1128_AAC_01609_19 crossref_primary_10_1128_spectrum_01527_24 crossref_primary_10_3389_fmicb_2022_1004733 crossref_primary_10_1089_phage_2023_0007 crossref_primary_10_1002_iub_2931 crossref_primary_10_1186_s12866_025_03772_4 crossref_primary_10_1080_1040841X_2021_1902266 crossref_primary_10_1016_S2666_5247_21_00127_0 crossref_primary_10_1093_emph_eoaa026 crossref_primary_10_1016_j_psj_2021_101668 crossref_primary_10_1038_s41396_021_00946_6 crossref_primary_10_1128_AAC_00143_21 crossref_primary_10_1128_msystems_01510_21 crossref_primary_10_1080_1040841X_2024_2313024 crossref_primary_10_1360_TB_2022_0974 crossref_primary_10_3390_microorganisms12091795 crossref_primary_10_1371_journal_pone_0243947 crossref_primary_10_1007_s00281_022_00936_6 crossref_primary_10_1016_j_mtnano_2022_100229 crossref_primary_10_3389_fimmu_2023_1343788 crossref_primary_10_1016_j_virusres_2023_199054 crossref_primary_10_1371_journal_pbio_3000877 crossref_primary_10_3389_fmicb_2024_1384164 crossref_primary_10_1128_AEM_00980_21 crossref_primary_10_1149_1945_7111_ac1dcf crossref_primary_10_21518_2079_701X_2022_16_13_66_72 crossref_primary_10_1186_s12866_025_03785_z crossref_primary_10_3389_fmicb_2022_1065386 crossref_primary_10_3389_fmicb_2024_1513081 crossref_primary_10_3390_v13071268 crossref_primary_10_3390_v13071267 crossref_primary_10_3390_antibiotics10101143 crossref_primary_10_1128_aac_02247_21 crossref_primary_10_3390_antibiotics11070915 crossref_primary_10_1016_j_medj_2023_07_002 crossref_primary_10_1016_j_virol_2023_06_007 crossref_primary_10_1099_mic_0_001491 crossref_primary_10_3390_v11040343 crossref_primary_10_1089_phage_2023_0027 crossref_primary_10_1080_14728222_2023_2230363 crossref_primary_10_1016_j_jgar_2019_09_018 crossref_primary_10_15252_emmm_202012435 crossref_primary_10_1111_1751_7915_13650 crossref_primary_10_3390_antibiotics9030135 crossref_primary_10_3390_microorganisms8091374 crossref_primary_10_3390_v15030628 crossref_primary_10_1038_s41598_025_94040_y crossref_primary_10_1128_IAI_00433_20 crossref_primary_10_1016_j_foodres_2025_116318 crossref_primary_10_1038_s41551_025_01354_3 crossref_primary_10_1038_s41598_024_52192_3 crossref_primary_10_3390_antibiotics10020202 crossref_primary_10_3390_ijms24043897 crossref_primary_10_3390_v13122343 crossref_primary_10_1128_JCM_00229_19 crossref_primary_10_1016_j_ijfoodmicro_2024_110778 crossref_primary_10_1111_bph_15526 crossref_primary_10_1126_sciadv_abq2005 crossref_primary_10_1086_733414 crossref_primary_10_1007_s12223_022_00965_6 crossref_primary_10_1016_j_lfs_2022_121362 crossref_primary_10_1016_j_ggedit_2024_100031 crossref_primary_10_1093_ofid_ofac194 crossref_primary_10_1016_j_cmi_2023_10_018 crossref_primary_10_1128_msystems_00218_21 crossref_primary_10_1073_pnas_2014283117 crossref_primary_10_1016_j_micpath_2020_104405 crossref_primary_10_3390_jof9070750 crossref_primary_10_1038_s41564_023_01333_x crossref_primary_10_1371_journal_pone_0280070 crossref_primary_10_3390_v14040688 crossref_primary_10_1097_CCM_0000000000004352 crossref_primary_10_1360_SSV_2022_0330 crossref_primary_10_15252_embr_202256033 crossref_primary_10_1155_2022_4913146 crossref_primary_10_1172_jci_insight_181309 crossref_primary_10_59653_jhsmt_v2i01_318 crossref_primary_10_1038_s41598_019_50461_0 crossref_primary_10_1542_peds_2024_068838 crossref_primary_10_1016_j_ijfoodmicro_2023_110223 |
Cites_doi | 10.1093/emph/eoy005 10.1016/S0092-8674(01)00637-7 10.1128/MMBR.00069-15 10.1016/j.chom.2017.06.018 10.1038/ncomms14187 10.1093/ps/83.12.1944 10.1093/jhmas/48.3.275 10.1016/j.resmic.2012.08.008 10.1016/j.tim.2015.12.011 10.1128/JB.187.19.6742-6749.2005 10.1371/journal.pgen.1003102 10.4161/bact.1.2.14590 10.1038/srep26717 10.1016/j.tibtech.2010.08.001 10.1016/0042-6822(76)90021-0 10.1038/nrmicro1289 10.1111/j.1365-2958.2012.08202.x 10.1038/nature14098 10.1186/s13054-017-1709-y 10.1128/AAC.02173-16 10.1186/1743-422X-9-246 10.1128/AAC.01513-06 10.1128/AAC.02388-13 10.1073/pnas.93.8.3188 10.1085/jgp.36.1.39 10.1371/journal.ppat.1004691 10.1086/524891 10.1006/jmbi.2001.4578 10.1128/JVI.02033-13 10.1016/S1473-3099(18)30482-1 10.1017/S0022172400010512 10.1353/pbm.2001.0006 10.1111/j.1558-5646.2007.00226.x 10.1128/IAI.70.1.204-210.2002 10.1128/IAI.70.11.6251-6262.2002 10.1007/s11274-009-9991-8 10.1111/j.1365-2958.2011.07931.x 10.1038/srep04738 10.1038/nrmicro2315 10.1093/jac/dkw253 10.1371/journal.pone.0025486 10.3389/fmicb.2014.00618 10.1016/S0140-6736(01)20383-3 10.1146/annurev-micro-091014-104115 10.1128/AEM.02504-10 10.4137/PMC.S14459 10.1099/jmm.0.029744-0 10.1038/s41564-018-0110-1 10.1128/JB.150.2.916-924.1982 10.3389/fmicb.2015.00343 10.1111/1462-2920.13574 10.1128/AAC.00635-06 10.1016/j.ebiom.2015.12.023 10.1136/bmj.2.3315.47 10.1093/infdis/42.4.263 10.1186/1471-2180-2-35 10.1371/journal.pone.0016963 10.1111/j.1749-4486.2009.01973.x 10.1016/j.tvjl.2004.05.009 10.1136/bmj.2.4582.769 10.1146/annurev-micro-090110-102833 10.1128/mBio.00240-17 10.2307/2389364 10.1093/jpids/pix056 10.1093/ofid/ofy064 10.1038/nrmicro818 10.1098/rspb.1999.0651 10.1128/AEM.00706-13 10.1038/1921227a0 10.1136/thx.2005.la0156 10.1128/AAC.01028-06 10.1136/thoraxjnl-2016-209265 10.1016/j.coviro.2014.07.005 10.1093/genetics/150.2.523 10.1016/j.resmic.2018.05.001 10.1016/j.jtbi.2017.06.037 10.3389/fmicb.2016.01383 10.1093/genetics/28.6.491 10.1128/AAC.00954-17 10.1371/journal.ppat.1002917 10.1099/00222615-37-4-258 10.1146/annurev-ecolsys-110316-023003 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.chom.2019.01.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 232 |
ExternalDocumentID | 30763536 10_1016_j_chom_2019_01_014 S1931312819300526 |
Genre | Journal Article Review |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT ZBA 0SF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-78fd57ee4f6d167ac44ead86c26515998788c536f37be57bcb57d170fcb959433 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Fri Jul 11 01:30:06 EDT 2025 Wed Feb 19 02:35:08 EST 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 02:44:21 EDT 2025 Fri Feb 23 02:31:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-78fd57ee4f6d167ac44ead86c26515998788c536f37be57bcb57d170fcb959433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1931312819300526/pdf |
PMID | 30763536 |
PQID | 2229106253 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2229106253 pubmed_primary_30763536 crossref_citationtrail_10_1016_j_chom_2019_01_014 crossref_primary_10_1016_j_chom_2019_01_014 elsevier_sciencedirect_doi_10_1016_j_chom_2019_01_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-13 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Torres-Barceló, Hochberg (bib99) 2016; 24 Watanabe, Matsumoto, Sano, Ishii, Tateda, Sumiyama, Uchiyama, Sakurai, Matsuzaki, Imai, Yamaguchi (bib104) 2007; 51 Smith, Huggins, Shaw (bib92) 1987; 133 Twort (bib101) 1915; 186 d’Hérelle (bib18) 1917; 165 Dessau, Goldhill, McBride, Turner, Modis (bib23) 2012; 8 Sarker, Sultana, Reuteler, Moine, Descombes, Charton, Bourdin, McCallin, Ngom-Bru, Neville (bib83) 2016; 4 Wright, Hawkins, Anggård, Harper (bib107) 2009; 34 Semler, Goudie, Finlay, Dennis (bib87) 2014; 58 Soothill (bib93) 1992; 37 Smith, Huggins (bib91) 1983; 129 Spellberg, Guidos, Gilbert, Bradley, Boucher, Scheld, Bartlett, Edwards (bib94) 2008; 46 Sarker, Berger, Deng, Kieser, Foata, Moine, Descombes, Sultana, Huq, Bardhan (bib84) 2017; 19 Waters, Neill, Kaman, Sahota, Clokie, Winstanley, Kadioglu (bib105) 2017; 72 Eaton, Bayne-Jones (bib27) 1934; 103 . Duplessis, Biswas, Hanisch, Perkins, Henry, Quinones, Wolfe, Estrella, Hamilton (bib26) 2017; 7 Marshall, Blacklock, Cameron, Capon, Cruickshank, Gaddum (bib67) 1948; 2 Stearns (bib95) 1989; 3 Kim, Ryu (bib51) 2011; 77 Goldhill, Turner (bib37) 2014; 8 Bull, Gill (bib8) 2014; 5 Mindich, Sinclair, Cohen (bib72) 1976; 75 Jault, Leclerc, Jennes, Pirnay, Que, Resch, Rousseau, Ravat, Carsin, Le, Floch (bib47) 2018; 19 Theriot, Young (bib98) 2015; 69 Smith (bib89) 1924; 2 Krueger, Scribner (bib55) 1941; 116 Pires, Cleto, Sillankorva, Azeredo, Lu (bib78) 2016; 80 Crick, Barnett, Brenner, Watts-Tobin (bib16) 1961; 192 Dufour, Clermont, La Combe, Messika, Dion, Khanna, Denamur, Ricard, Debarbieux (bib25) 2016; 71 Leung, Weitz (bib63) 2017; 429 Summers (bib96) 1993; 48 Messenger, Molineux, Bull (bib71) 1999; 266 d’Hérelle, F., Malone, R.H., and Lahiri, M.N. (1930). Studies on Asiatic cholera. Indian Medical Research Memoirs, No. 14. Kim, Ryu (bib52) 2012; 86 Choi, Shin, Lee, Ryu (bib14) 2013; 79 Bedi, Verma, Chhibber (bib4) 2009; 25 Kutateladze, Adamia (bib57) 2010; 28 Riding (bib79) 1930; 30 Roach, Leung, Henry, Morello, Singh, Di Santo, Weitz, Debarbieux (bib80) 2017; 22 Hover, Kim, Katz, Charlop-Powers, Owen, Ternei, Maniko, Estrela, Molina, Park (bib44) 2018; 3 Rohwer, Youle, Maughan, Hisakawa (bib81) 2014 Biswas, Adhya, Washart, Paul, Trostel, Powell, Carlton, Merril (bib6) 2002; 70 Nair (bib74) 2005; 170 Cerveny, DePaola, Duckworth, Gulig (bib11) 2002; 70 Filippov, Sergueev, He, Huang, Gnade, Mueller, Fernandez-Prada, Nikolich (bib29) 2011; 6 Ling, Schneider, Peoples, Spoering, Engels, Conlon, Mueller, Schäberle, Hughes, Epstein (bib64) 2015; 517 Yen, Cairns, Camilli (bib108) 2017; 8 Smith, Huggins (bib90) 1982; 128 Hoyle, Zhvaniya, Balarjishvili, Bolkvadze, Nadareishvili, Nizharadze, Wittmann, Rohde, Kutateladze (bib45) 2018; 169 Bull, Levin, DeRouin, Walker, Bloch (bib9) 2002; 2 Fair, Tor (bib28) 2014; 6 Merril, Biswas, Carlton, Jensen, Creed, Zullo, Adhya (bib70) 1996; 93 Nale, Chutia, Carr, Hickenbotham, Clokie (bib75) 2016; 7 Wasik, Turner (bib103) 2013; 67 Chan, Sistrom, Wertz, Kortright, Narayan, Turner (bib12) 2016; 6 Khawaldeh, Morales, Dillon, Alavidze, Ginn, Thomas, Chapman, Dublanchet, Smithyman, Iredell (bib50) 2011; 60 Capparelli, Parlato, Borriello, Salvatore, Iannelli (bib10) 2007; 51 Hershey, Chase (bib42) 1952; 36 Brüssow, Hendrix (bib7) 2002; 108 LaVergne, Hamilton, Biswas, Kumaraswamy, Schooley, Wooten (bib60) 2018; 5 (bib106) 2017 Fleming, A. (1945). Penicillin’s finder assays its future. The New York Times, June 26, 1945. A21. Bishop-Lilly, Plaut, Chen, Akmal, Willner, Butani, Dorsey, Mokashi, Mateczun, Chapman (bib5) 2012; 9 Cowie, Hicks (bib15) 1932; 17 d’Hérelle, Smith (bib19) 1926 Sexton, Montiel, Shay, Stephens, Slatyer (bib88) 2017; 48 Labrie, Samson, Moineau (bib58) 2010; 8 Schooley, Biswas, Gill, Hernandez-Morales, Lancaster, Lessor, Barr, Reed, Rohwer, Benler (bib85) 2017; 61 Galtier, De Sordi, Sivignon, de Vallée, Maura, Neut, Rahmouni, Wannerberger, Darfeuille-Michaud, Desreumaux (bib33) 2017; 11 Loc-Carrillo, Abedon (bib65) 2011; 1 Knezevic, Curcin, Aleksic, Petrusic, Vlaski (bib53) 2013; 164 Kudrin, Varik, Oliveira, Beljantseva, Del Peso Santos, Dzhygyr, Rejman, Cava, Tenson, Hauryliuk (bib56) 2017; 61 Morello, Saussereau, Maura, Huerre, Touqui, Debarbieux (bib73) 2011; 6 Foster (bib31) 2005; 3 Le, Yao, Lu, Tan, Rao, Li, Jin, Wang, Zhao, Wu (bib61) 2014; 4 Samson (bib82) 2005; 60 Duffy, Burch, Turner (bib24) 2007; 61 Furukawa, Mizushima (bib32) 1982; 150 Luria, Delbrück (bib66) 1943; 28 Geisinger, Isberg (bib35) 2015; 11 Turner, Chao (bib100) 1998; 150 Heinz, Ejaz, Bartholdson-Scott, Wang, Guanjaran, Pickard, Wilksch, Cao, ul-Haq, Dougan, Strugnell (bib41) 2018 Chan, Turner, Kim, Mojibian, Elefteriades, Narayan (bib13) 2018; 2018 Seed, Faruque, Mekalanos, Calderwood, Qadri, Camilli (bib86) 2012; 8 Oechslin, Piccardi, Mancini, Gabard, Moreillon, Entenza, Resch, Que (bib77) 2017; 215 McVay, Velásquez, Fralick (bib69) 2007; 51 Ho (bib43) 2001; 44 Jennes, Merabishvili, Soentjens, Pang, Rose, Keersebilck, Soete, François, Teodorescu, Verween (bib48) 2017; 21 Kaper, Nataro, Mobley (bib49) 2004; 2 Darch, Kragh, Abbott, Bjarnsholt, Bull, Whiteley (bib21) 2017; 8 Hadley (bib38) 1928; 42 Huff, Huff, Rath, Balog, Donoghue (bib46) 2004; 83 Krestownikowa, W., & Gubin, W. (1925). Die Verteilung and die Ausscheidung von Bak-teriophagen im Meerschweinchen-organismus bei subkutaner Applicationsart. J. Microbiol., Patolog. i. Infekzionnich bolesney, 1, 3. Vinga, Baptista, Auzat, Petipas, Lurz, Tavares, Santos, São-José (bib102) 2012; 83 Bebeacua, Tremblay, Farenc, Chapot-Chartier, Sadovskaya, van Heel, Veesler, Moineau, Cambillau (bib3) 2013; 87 León, Bastías (bib62) 2015; 6 Davison, Couture-Tosi, Candela, Mock, Fouet (bib22) 2005; 187 German, Misra (bib36) 2001; 308 Torres-Barceló (10.1016/j.chom.2019.01.014_bib99) 2016; 24 Sarker (10.1016/j.chom.2019.01.014_bib83) 2016; 4 Huff (10.1016/j.chom.2019.01.014_bib46) 2004; 83 Rohwer (10.1016/j.chom.2019.01.014_bib81) 2014 d’Hérelle (10.1016/j.chom.2019.01.014_bib19) 1926 Filippov (10.1016/j.chom.2019.01.014_bib29) 2011; 6 Yen (10.1016/j.chom.2019.01.014_bib108) 2017; 8 Soothill (10.1016/j.chom.2019.01.014_bib93) 1992; 37 Spellberg (10.1016/j.chom.2019.01.014_bib94) 2008; 46 Cowie (10.1016/j.chom.2019.01.014_bib15) 1932; 17 León (10.1016/j.chom.2019.01.014_bib62) 2015; 6 Hoyle (10.1016/j.chom.2019.01.014_bib45) 2018; 169 Geisinger (10.1016/j.chom.2019.01.014_bib35) 2015; 11 Jennes (10.1016/j.chom.2019.01.014_bib48) 2017; 21 Darch (10.1016/j.chom.2019.01.014_bib21) 2017; 8 Knezevic (10.1016/j.chom.2019.01.014_bib53) 2013; 164 Twort (10.1016/j.chom.2019.01.014_bib101) 1915; 186 Riding (10.1016/j.chom.2019.01.014_bib79) 1930; 30 Wright (10.1016/j.chom.2019.01.014_bib107) 2009; 34 Nale (10.1016/j.chom.2019.01.014_bib75) 2016; 7 10.1016/j.chom.2019.01.014_bib20 Waters (10.1016/j.chom.2019.01.014_bib105) 2017; 72 Hover (10.1016/j.chom.2019.01.014_bib44) 2018; 3 Bishop-Lilly (10.1016/j.chom.2019.01.014_bib5) 2012; 9 Bull (10.1016/j.chom.2019.01.014_bib9) 2002; 2 Dufour (10.1016/j.chom.2019.01.014_bib25) 2016; 71 German (10.1016/j.chom.2019.01.014_bib36) 2001; 308 Smith (10.1016/j.chom.2019.01.014_bib90) 1982; 128 Choi (10.1016/j.chom.2019.01.014_bib14) 2013; 79 Nair (10.1016/j.chom.2019.01.014_bib74) 2005; 170 Morello (10.1016/j.chom.2019.01.014_bib73) 2011; 6 Sexton (10.1016/j.chom.2019.01.014_bib88) 2017; 48 Smith (10.1016/j.chom.2019.01.014_bib92) 1987; 133 Fair (10.1016/j.chom.2019.01.014_bib28) 2014; 6 10.1016/j.chom.2019.01.014_bib30 Hadley (10.1016/j.chom.2019.01.014_bib38) 1928; 42 Bebeacua (10.1016/j.chom.2019.01.014_bib3) 2013; 87 Sarker (10.1016/j.chom.2019.01.014_bib84) 2017; 19 Hershey (10.1016/j.chom.2019.01.014_bib42) 1952; 36 Kudrin (10.1016/j.chom.2019.01.014_bib56) 2017; 61 Loc-Carrillo (10.1016/j.chom.2019.01.014_bib65) 2011; 1 Foster (10.1016/j.chom.2019.01.014_bib31) 2005; 3 Merril (10.1016/j.chom.2019.01.014_bib70) 1996; 93 Kaper (10.1016/j.chom.2019.01.014_bib49) 2004; 2 Galtier (10.1016/j.chom.2019.01.014_bib33) 2017; 11 Vinga (10.1016/j.chom.2019.01.014_bib102) 2012; 83 Jault (10.1016/j.chom.2019.01.014_bib47) 2018; 19 Khawaldeh (10.1016/j.chom.2019.01.014_bib50) 2011; 60 Furukawa (10.1016/j.chom.2019.01.014_bib32) 1982; 150 Labrie (10.1016/j.chom.2019.01.014_bib58) 2010; 8 Pires (10.1016/j.chom.2019.01.014_bib78) 2016; 80 Biswas (10.1016/j.chom.2019.01.014_bib6) 2002; 70 Bedi (10.1016/j.chom.2019.01.014_bib4) 2009; 25 Turner (10.1016/j.chom.2019.01.014_bib100) 1998; 150 (10.1016/j.chom.2019.01.014_bib106) 2017 Brüssow (10.1016/j.chom.2019.01.014_bib7) 2002; 108 10.1016/j.chom.2019.01.014_bib54 Goldhill (10.1016/j.chom.2019.01.014_bib37) 2014; 8 Dessau (10.1016/j.chom.2019.01.014_bib23) 2012; 8 Summers (10.1016/j.chom.2019.01.014_bib96) 1993; 48 Heinz (10.1016/j.chom.2019.01.014_bib41) 2018 Bull (10.1016/j.chom.2019.01.014_bib8) 2014; 5 Kim (10.1016/j.chom.2019.01.014_bib52) 2012; 86 Samson (10.1016/j.chom.2019.01.014_bib82) 2005; 60 Chan (10.1016/j.chom.2019.01.014_bib13) 2018; 2018 Duplessis (10.1016/j.chom.2019.01.014_bib26) 2017; 7 Eaton (10.1016/j.chom.2019.01.014_bib27) 1934; 103 Le (10.1016/j.chom.2019.01.014_bib61) 2014; 4 Ling (10.1016/j.chom.2019.01.014_bib64) 2015; 517 Leung (10.1016/j.chom.2019.01.014_bib63) 2017; 429 Chan (10.1016/j.chom.2019.01.014_bib12) 2016; 6 Stearns (10.1016/j.chom.2019.01.014_bib95) 1989; 3 Krueger (10.1016/j.chom.2019.01.014_bib55) 1941; 116 Smith (10.1016/j.chom.2019.01.014_bib89) 1924; 2 Capparelli (10.1016/j.chom.2019.01.014_bib10) 2007; 51 Roach (10.1016/j.chom.2019.01.014_bib80) 2017; 22 Oechslin (10.1016/j.chom.2019.01.014_bib77) 2017; 215 Wasik (10.1016/j.chom.2019.01.014_bib103) 2013; 67 McVay (10.1016/j.chom.2019.01.014_bib69) 2007; 51 Kutateladze (10.1016/j.chom.2019.01.014_bib57) 2010; 28 d’Hérelle (10.1016/j.chom.2019.01.014_bib18) 1917; 165 Messenger (10.1016/j.chom.2019.01.014_bib71) 1999; 266 Semler (10.1016/j.chom.2019.01.014_bib87) 2014; 58 LaVergne (10.1016/j.chom.2019.01.014_bib60) 2018; 5 Mindich (10.1016/j.chom.2019.01.014_bib72) 1976; 75 Marshall (10.1016/j.chom.2019.01.014_bib67) 1948; 2 Kim (10.1016/j.chom.2019.01.014_bib51) 2011; 77 Cerveny (10.1016/j.chom.2019.01.014_bib11) 2002; 70 Crick (10.1016/j.chom.2019.01.014_bib16) 1961; 192 Seed (10.1016/j.chom.2019.01.014_bib86) 2012; 8 Schooley (10.1016/j.chom.2019.01.014_bib85) 2017; 61 Smith (10.1016/j.chom.2019.01.014_bib91) 1983; 129 Theriot (10.1016/j.chom.2019.01.014_bib98) 2015; 69 Ho (10.1016/j.chom.2019.01.014_bib43) 2001; 44 Watanabe (10.1016/j.chom.2019.01.014_bib104) 2007; 51 Davison (10.1016/j.chom.2019.01.014_bib22) 2005; 187 Luria (10.1016/j.chom.2019.01.014_bib66) 1943; 28 Duffy (10.1016/j.chom.2019.01.014_bib24) 2007; 61 |
References_xml | – volume: 79 start-page: 4829 year: 2013 end-page: 4837 ident: bib14 article-title: Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5 publication-title: Appl. Environ. Microbiol. – volume: 2 start-page: 47 year: 1924 end-page: 49 ident: bib89 article-title: The bacteriophage in the treatment of typhoid fever publication-title: BMJ – volume: 77 start-page: 2042 year: 2011 end-page: 2050 ident: bib51 article-title: Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli publication-title: Appl. Environ. Microbiol. – volume: 108 start-page: 13 year: 2002 end-page: 16 ident: bib7 article-title: Phage genomics: small is beautiful publication-title: Cell – volume: 3 start-page: 415 year: 2018 end-page: 422 ident: bib44 article-title: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens publication-title: Nat. Microbiol. – volume: 42 start-page: 263 year: 1928 end-page: 434 ident: bib38 article-title: The Twort-D’Hérelle Phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action publication-title: J. Infect. Dis. – volume: 28 start-page: 591 year: 2010 end-page: 595 ident: bib57 article-title: Bacteriophages as potential new therapeutics to replace or supplement antibiotics publication-title: Trends Biotechnol. – volume: 61 start-page: e00954-17 year: 2017 ident: bib85 article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection publication-title: Antimicrob. Agents Chemother. – volume: 70 start-page: 6251 year: 2002 end-page: 6262 ident: bib11 article-title: Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice publication-title: Infect. Immun. – volume: 8 start-page: 317 year: 2010 end-page: 327 ident: bib58 article-title: Bacteriophage resistance mechanisms publication-title: Nat. Rev. Microbiol. – volume: 28 start-page: 491 year: 1943 end-page: 511 ident: bib66 article-title: Mutations of bacteria from virus sensitivity to virus resistance publication-title: Genetics – volume: 8 start-page: e1003102 year: 2012 ident: bib23 article-title: Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme publication-title: PLoS Genet. – volume: 3 start-page: 948 year: 2005 end-page: 958 ident: bib31 article-title: Immune evasion by staphylococci publication-title: Nat. Rev. Microbiol. – volume: 116 start-page: 2269 year: 1941 end-page: 2277 ident: bib55 article-title: The bacteriophage: Its nature and its therapeutic use publication-title: J. Am. Med. Assoc. – volume: 51 start-page: 1934 year: 2007 end-page: 1938 ident: bib69 article-title: Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model publication-title: Antimicrob. Agents Chemother. – volume: 25 start-page: 1145 year: 2009 ident: bib4 article-title: Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055 publication-title: World J. Microbiol. Biotechnol. – volume: 4 start-page: 4738 year: 2014 ident: bib61 article-title: Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa publication-title: Sci. Rep. – volume: 266 start-page: 397 year: 1999 end-page: 404 ident: bib71 article-title: Virulence evolution in a virus obeys a trade-off publication-title: Proc. Biol. Sci. – volume: 11 start-page: 840 year: 2017 end-page: 847 ident: bib33 article-title: Bacteriophages targeting Adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease publication-title: J. Crohn’s Colitis – volume: 83 start-page: 289 year: 2012 end-page: 303 ident: bib102 article-title: Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection publication-title: Mol. Microbiol. – start-page: 490 year: 1926 end-page: 497 ident: bib19 article-title: The bacteriophage and its behavior – volume: 30 start-page: 387 year: 1930 end-page: 401 ident: bib79 article-title: Acute Bacillary Dysentery in Khartoum Province, Sudan, with Special Reference to Bacteriophage Treatment: Bacteriological Investigation publication-title: J. Hyg. (Lond.) – volume: 429 start-page: 241 year: 2017 end-page: 252 ident: bib63 article-title: Modeling the synergistic elimination of bacteria by phage and the innate immune system publication-title: J. Theor. Biol. – volume: 60 start-page: 495 year: 2005 ident: bib82 article-title: A new class of antimycobacterial drugs: the diarylquinolines publication-title: Thorax – volume: 2 start-page: 35 year: 2002 ident: bib9 article-title: Dynamics of success and failure in phage and antibiotic therapy in experimental infections publication-title: BMC Microbiol. – volume: 36 start-page: 39 year: 1952 end-page: 56 ident: bib42 article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage publication-title: J. Gen. Physiol. – volume: 6 start-page: e25486 year: 2011 ident: bib29 article-title: Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice publication-title: PLoS ONE – volume: 6 start-page: 25 year: 2014 end-page: 64 ident: bib28 article-title: Antibiotics and bacterial resistance in the 21st century publication-title: Perspect. Medicin Chem. – start-page: 283291 year: 2018 ident: bib41 article-title: Emergence of carbapenem, beta-lactamase inhibitor and cefoxitin resistant lineages from a background of ESBL-producing Klebsiella pneumoniae and K. quasipneumoniae highlights different evolutionary mechanisms publication-title: bioRxiv – volume: 6 start-page: 343 year: 2015 ident: bib62 article-title: Virulence reduction in bacteriophage resistant bacteria publication-title: Front. Microbiol. – year: 2014 ident: bib81 article-title: Life in Our Phage World: A Centennial Field Guide to the Earth’s Most Diverse Inhabitants – volume: 170 start-page: 175 year: 2005 end-page: 183 ident: bib74 article-title: Evolution of Marek’s disease -- a paradigm for incessant race between the pathogen and the host publication-title: Vet. J. – volume: 8 start-page: 79 year: 2014 end-page: 84 ident: bib37 article-title: The evolution of life history trade-offs in viruses publication-title: Curr. Opin. Virol. – volume: 7 start-page: 253 year: 2017 end-page: 256 ident: bib26 article-title: Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy publication-title: J. Pediatric Infect. Dis. Soc. – volume: 34 start-page: 349 year: 2009 end-page: 357 ident: bib107 article-title: A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy publication-title: Clin. Otolaryngol. – volume: 86 start-page: 411 year: 2012 end-page: 425 ident: bib52 article-title: Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium publication-title: Mol. Microbiol. – volume: 67 start-page: 519 year: 2013 end-page: 541 ident: bib103 article-title: On the biological success of viruses publication-title: Annu. Rev. Microbiol. – volume: 72 start-page: 666 year: 2017 end-page: 667 ident: bib105 article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa publication-title: Thorax – volume: 17 start-page: 685 year: 1932 ident: bib15 article-title: Observations on the bacteriophage III publication-title: J. Lab. Clin. Med. – reference: d’Hérelle, F., Malone, R.H., and Lahiri, M.N. (1930). Studies on Asiatic cholera. Indian Medical Research Memoirs, No. 14. – volume: 3 start-page: 259 year: 1989 end-page: 268 ident: bib95 article-title: Trade-offs in life-history evolution publication-title: Funct. Ecol. – volume: 5 start-page: ofy064 year: 2018 ident: bib60 article-title: Phage therapy for a multidrug-resistant publication-title: Open Forum Infect. Dis. – volume: 93 start-page: 3188 year: 1996 end-page: 3192 ident: bib70 article-title: Long-circulating bacteriophage as antibacterial agents publication-title: Proc. Natl. Acad. Sci. USA – volume: 83 start-page: 1944 year: 2004 end-page: 1947 ident: bib46 article-title: Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers publication-title: Poult. Sci. – volume: 19 start-page: 35 year: 2018 end-page: 45 ident: bib47 article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial publication-title: Lancet Infect. Dis. – volume: 165 start-page: 373 year: 1917 end-page: 375 ident: bib18 article-title: Sur un microbe invisible antagoniste des bacilles dysentériques publication-title: CR Acad. Sci. Paris – volume: 187 start-page: 6742 year: 2005 end-page: 6749 ident: bib22 article-title: Identification of the Bacillus anthracis (γ) phage receptor publication-title: J. Bacteriol. – volume: 60 start-page: 1697 year: 2011 end-page: 1700 ident: bib50 article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection publication-title: J. Med. Microbiol. – volume: 192 start-page: 1227 year: 1961 end-page: 1232 ident: bib16 article-title: General nature of the genetic code for proteins publication-title: Nature – reference: Krestownikowa, W., & Gubin, W. (1925). Die Verteilung and die Ausscheidung von Bak-teriophagen im Meerschweinchen-organismus bei subkutaner Applicationsart. J. Microbiol., Patolog. i. Infekzionnich bolesney, 1, 3. – volume: 46 start-page: 155 year: 2008 end-page: 164 ident: bib94 article-title: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America publication-title: Clin. Infect. Dis. – volume: 5 start-page: 618 year: 2014 ident: bib8 article-title: The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages publication-title: Front. Microbiol. – volume: 44 start-page: 1 year: 2001 end-page: 16 ident: bib43 article-title: Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era publication-title: Perspect. Biol. Med. – volume: 150 start-page: 523 year: 1998 end-page: 532 ident: bib100 article-title: Sex and the evolution of intrahost competition in RNA virus φ6 publication-title: Genetics – volume: 24 start-page: 249 year: 2016 end-page: 256 ident: bib99 article-title: Evolutionary rationale for phages as complements of antibiotics publication-title: Trends Microbiol. – volume: 71 start-page: 3072 year: 2016 end-page: 3080 ident: bib25 article-title: Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex publication-title: J. Antimicrob. Chemother. – volume: 11 start-page: e1004691 year: 2015 ident: bib35 article-title: Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii publication-title: PLoS Pathog. – volume: 75 start-page: 224 year: 1976 end-page: 231 ident: bib72 article-title: The morphogenesis of bacteriophage φ6: particles formed by nonsense mutants publication-title: Virology – volume: 150 start-page: 916 year: 1982 end-page: 924 ident: bib32 article-title: Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids publication-title: J. Bacteriol. – volume: 61 start-page: e02173-16 year: 2017 ident: bib56 article-title: Sub-inhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams publication-title: Antimicrob. Agents Chemother. – volume: 22 start-page: 38 year: 2017 end-page: 47.e4 ident: bib80 article-title: Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen publication-title: Cell Host Microbe – volume: 517 start-page: 455 year: 2015 end-page: 459 ident: bib64 article-title: A new antibiotic kills pathogens without detectable resistance publication-title: Nature – volume: 1 start-page: 111 year: 2011 end-page: 114 ident: bib65 article-title: Pros and cons of phage therapy publication-title: Bacteriophage – volume: 6 start-page: 26717 year: 2016 ident: bib12 article-title: Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa publication-title: Sci. Rep. – volume: 19 start-page: 237 year: 2017 end-page: 250 ident: bib84 article-title: Oral application of publication-title: Environ. Microbiol. – year: 2017 ident: bib106 article-title: WHO Publishes List of Bacteria for which New Antibiotics Are Urgently Needed – volume: 70 start-page: 204 year: 2002 end-page: 210 ident: bib6 article-title: Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium publication-title: Infect. Immun. – volume: 48 start-page: 183 year: 2017 end-page: 206 ident: bib88 article-title: Evolution of ecological niche breath publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 51 start-page: 2765 year: 2007 end-page: 2773 ident: bib10 article-title: Experimental phage therapy against publication-title: Antimicrob. Agents Chemother. – volume: 9 start-page: 246 year: 2012 ident: bib5 article-title: Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption publication-title: Virol. J. – volume: 169 start-page: 540 year: 2018 end-page: 542 ident: bib45 article-title: Phage therapy against publication-title: Res. Microbiol. – volume: 8 start-page: e00240-17 year: 2017 ident: bib21 article-title: Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model publication-title: MBio – reference: Fleming, A. (1945). Penicillin’s finder assays its future. The New York Times, June 26, 1945. A21. – volume: 21 start-page: 129 year: 2017 ident: bib48 article-title: Use of bacteriophages in the treatment of colistin-only-sensitive publication-title: Crit. Care – volume: 2 start-page: 769 year: 1948 end-page: 782 ident: bib67 article-title: STREPTOMYCIN treatment of pulmonary tuberculosis publication-title: BMJ – volume: 133 start-page: 1127 year: 1987 end-page: 1135 ident: bib92 article-title: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment publication-title: J. Gen. Microbiol. – volume: 103 start-page: 1769 year: 1934 end-page: 1776 ident: bib27 article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections publication-title: J. Am. Med. Assoc. – volume: 2 start-page: 123 year: 2004 end-page: 140 ident: bib49 article-title: Pathogenic Escherichia coli publication-title: Nat. Rev. Microbiol. – volume: 8 start-page: 14187 year: 2017 ident: bib108 article-title: A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models publication-title: Nat. Commun. – volume: 8 start-page: e1002917 year: 2012 ident: bib86 article-title: Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1 publication-title: PLoS Pathog. – volume: 129 start-page: 2659 year: 1983 end-page: 2675 ident: bib91 article-title: Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs publication-title: J. Gen. Microbiol. – volume: 308 start-page: 579 year: 2001 end-page: 585 ident: bib36 article-title: The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage publication-title: J. Mol. Biol. – volume: 215 start-page: 703 year: 2017 end-page: 712 ident: bib77 article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence publication-title: J. Infect. Dis. – volume: 2018 start-page: 60 year: 2018 end-page: 66 ident: bib13 article-title: Phage treatment of an aortic graft infected with publication-title: Evol. Med. Public Health – volume: 7 start-page: 1383 year: 2016 ident: bib75 article-title: ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages publication-title: Front. Microbiol. – volume: 4 start-page: 124 year: 2016 end-page: 137 ident: bib83 article-title: Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh publication-title: EBioMedicine – volume: 164 start-page: 55 year: 2013 end-page: 60 ident: bib53 article-title: Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa publication-title: Res. Microbiol. – volume: 6 start-page: e16963 year: 2011 ident: bib73 article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention publication-title: PLoS ONE – volume: 128 start-page: 307 year: 1982 end-page: 318 ident: bib90 article-title: Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics publication-title: J. Gen. Microbiol. – reference: . – volume: 58 start-page: 4005 year: 2014 end-page: 4013 ident: bib87 article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections publication-title: Antimicrob. Agents Chemother. – volume: 37 start-page: 258 year: 1992 end-page: 261 ident: bib93 article-title: Treatment of experimental infections of mice with bacteriophages publication-title: J. Med. Microbiol. – volume: 61 start-page: 2614 year: 2007 end-page: 2622 ident: bib24 article-title: Evolution of host specificity drives reproductive isolation among RNA viruses publication-title: Evolution – volume: 186 start-page: 1241 year: 1915 end-page: 1243 ident: bib101 article-title: An investigation on the nature of ultra-microscopic viruses publication-title: Lancet – volume: 51 start-page: 446 year: 2007 end-page: 452 ident: bib104 article-title: Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice publication-title: Antimicrob. Agents Chemother. – volume: 48 start-page: 275 year: 1993 end-page: 301 ident: bib96 article-title: Cholera and plague in India: the bacteriophage inquiry of 1927-1936 publication-title: J. Hist. Med. Allied Sci. – volume: 80 start-page: 523 year: 2016 end-page: 543 ident: bib78 article-title: Genetically engineered phages: a review of advances over the last decade publication-title: Microbiol. Mol. Biol. Rev. – volume: 87 start-page: 12302 year: 2013 end-page: 12312 ident: bib3 article-title: Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2 publication-title: J. Virol. – volume: 69 start-page: 445 year: 2015 end-page: 461 ident: bib98 article-title: Interactions between the gastrointestinal microbiome and Clostridium difficile publication-title: Annu. Rev. Microbiol. – start-page: 283291 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib41 article-title: Emergence of carbapenem, beta-lactamase inhibitor and cefoxitin resistant lineages from a background of ESBL-producing Klebsiella pneumoniae and K. quasipneumoniae highlights different evolutionary mechanisms publication-title: bioRxiv – ident: 10.1016/j.chom.2019.01.014_bib54 – volume: 2018 start-page: 60 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib13 article-title: Phage treatment of an aortic graft infected with Pseudomonas aeruginosa publication-title: Evol. Med. Public Health doi: 10.1093/emph/eoy005 – volume: 215 start-page: 703 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib77 article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence publication-title: J. Infect. Dis. – volume: 108 start-page: 13 year: 2002 ident: 10.1016/j.chom.2019.01.014_bib7 article-title: Phage genomics: small is beautiful publication-title: Cell doi: 10.1016/S0092-8674(01)00637-7 – volume: 80 start-page: 523 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib78 article-title: Genetically engineered phages: a review of advances over the last decade publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00069-15 – volume: 22 start-page: 38 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib80 article-title: Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.06.018 – volume: 116 start-page: 2269 year: 1941 ident: 10.1016/j.chom.2019.01.014_bib55 article-title: The bacteriophage: Its nature and its therapeutic use publication-title: J. Am. Med. Assoc. – volume: 8 start-page: 14187 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib108 article-title: A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models publication-title: Nat. Commun. doi: 10.1038/ncomms14187 – volume: 83 start-page: 1944 year: 2004 ident: 10.1016/j.chom.2019.01.014_bib46 article-title: Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers publication-title: Poult. Sci. doi: 10.1093/ps/83.12.1944 – volume: 48 start-page: 275 year: 1993 ident: 10.1016/j.chom.2019.01.014_bib96 article-title: Cholera and plague in India: the bacteriophage inquiry of 1927-1936 publication-title: J. Hist. Med. Allied Sci. doi: 10.1093/jhmas/48.3.275 – volume: 164 start-page: 55 year: 2013 ident: 10.1016/j.chom.2019.01.014_bib53 article-title: Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2012.08.008 – volume: 24 start-page: 249 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib99 article-title: Evolutionary rationale for phages as complements of antibiotics publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.12.011 – volume: 187 start-page: 6742 year: 2005 ident: 10.1016/j.chom.2019.01.014_bib22 article-title: Identification of the Bacillus anthracis (γ) phage receptor publication-title: J. Bacteriol. doi: 10.1128/JB.187.19.6742-6749.2005 – volume: 8 start-page: e1003102 year: 2012 ident: 10.1016/j.chom.2019.01.014_bib23 article-title: Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003102 – volume: 1 start-page: 111 year: 2011 ident: 10.1016/j.chom.2019.01.014_bib65 article-title: Pros and cons of phage therapy publication-title: Bacteriophage doi: 10.4161/bact.1.2.14590 – volume: 6 start-page: 26717 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib12 article-title: Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa publication-title: Sci. Rep. doi: 10.1038/srep26717 – volume: 28 start-page: 591 year: 2010 ident: 10.1016/j.chom.2019.01.014_bib57 article-title: Bacteriophages as potential new therapeutics to replace or supplement antibiotics publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.08.001 – volume: 75 start-page: 224 year: 1976 ident: 10.1016/j.chom.2019.01.014_bib72 article-title: The morphogenesis of bacteriophage φ6: particles formed by nonsense mutants publication-title: Virology doi: 10.1016/0042-6822(76)90021-0 – volume: 3 start-page: 948 year: 2005 ident: 10.1016/j.chom.2019.01.014_bib31 article-title: Immune evasion by staphylococci publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1289 – volume: 86 start-page: 411 year: 2012 ident: 10.1016/j.chom.2019.01.014_bib52 article-title: Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08202.x – volume: 517 start-page: 455 year: 2015 ident: 10.1016/j.chom.2019.01.014_bib64 article-title: A new antibiotic kills pathogens without detectable resistance publication-title: Nature doi: 10.1038/nature14098 – volume: 21 start-page: 129 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib48 article-title: Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report publication-title: Crit. Care doi: 10.1186/s13054-017-1709-y – volume: 61 start-page: e02173-16 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib56 article-title: Sub-inhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02173-16 – volume: 9 start-page: 246 year: 2012 ident: 10.1016/j.chom.2019.01.014_bib5 article-title: Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption publication-title: Virol. J. doi: 10.1186/1743-422X-9-246 – volume: 51 start-page: 2765 year: 2007 ident: 10.1016/j.chom.2019.01.014_bib10 article-title: Experimental phage therapy against Staphylococcus aureus in mice publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01513-06 – volume: 58 start-page: 4005 year: 2014 ident: 10.1016/j.chom.2019.01.014_bib87 article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02388-13 – volume: 93 start-page: 3188 year: 1996 ident: 10.1016/j.chom.2019.01.014_bib70 article-title: Long-circulating bacteriophage as antibacterial agents publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.8.3188 – volume: 36 start-page: 39 year: 1952 ident: 10.1016/j.chom.2019.01.014_bib42 article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage publication-title: J. Gen. Physiol. doi: 10.1085/jgp.36.1.39 – year: 2014 ident: 10.1016/j.chom.2019.01.014_bib81 – volume: 11 start-page: e1004691 year: 2015 ident: 10.1016/j.chom.2019.01.014_bib35 article-title: Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004691 – volume: 46 start-page: 155 year: 2008 ident: 10.1016/j.chom.2019.01.014_bib94 article-title: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America publication-title: Clin. Infect. Dis. doi: 10.1086/524891 – volume: 308 start-page: 579 year: 2001 ident: 10.1016/j.chom.2019.01.014_bib36 article-title: The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4578 – volume: 87 start-page: 12302 year: 2013 ident: 10.1016/j.chom.2019.01.014_bib3 article-title: Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2 publication-title: J. Virol. doi: 10.1128/JVI.02033-13 – volume: 19 start-page: 35 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib47 article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(18)30482-1 – volume: 30 start-page: 387 year: 1930 ident: 10.1016/j.chom.2019.01.014_bib79 article-title: Acute Bacillary Dysentery in Khartoum Province, Sudan, with Special Reference to Bacteriophage Treatment: Bacteriological Investigation publication-title: J. Hyg. (Lond.) doi: 10.1017/S0022172400010512 – volume: 44 start-page: 1 year: 2001 ident: 10.1016/j.chom.2019.01.014_bib43 article-title: Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era publication-title: Perspect. Biol. Med. doi: 10.1353/pbm.2001.0006 – volume: 61 start-page: 2614 year: 2007 ident: 10.1016/j.chom.2019.01.014_bib24 article-title: Evolution of host specificity drives reproductive isolation among RNA viruses publication-title: Evolution doi: 10.1111/j.1558-5646.2007.00226.x – volume: 70 start-page: 204 year: 2002 ident: 10.1016/j.chom.2019.01.014_bib6 article-title: Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium publication-title: Infect. Immun. doi: 10.1128/IAI.70.1.204-210.2002 – volume: 128 start-page: 307 year: 1982 ident: 10.1016/j.chom.2019.01.014_bib90 article-title: Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics publication-title: J. Gen. Microbiol. – year: 2017 ident: 10.1016/j.chom.2019.01.014_bib106 – volume: 70 start-page: 6251 year: 2002 ident: 10.1016/j.chom.2019.01.014_bib11 article-title: Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice publication-title: Infect. Immun. doi: 10.1128/IAI.70.11.6251-6262.2002 – volume: 25 start-page: 1145 year: 2009 ident: 10.1016/j.chom.2019.01.014_bib4 article-title: Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055 publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-009-9991-8 – volume: 83 start-page: 289 year: 2012 ident: 10.1016/j.chom.2019.01.014_bib102 article-title: Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07931.x – volume: 4 start-page: 4738 year: 2014 ident: 10.1016/j.chom.2019.01.014_bib61 article-title: Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa publication-title: Sci. Rep. doi: 10.1038/srep04738 – volume: 8 start-page: 317 year: 2010 ident: 10.1016/j.chom.2019.01.014_bib58 article-title: Bacteriophage resistance mechanisms publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2315 – volume: 165 start-page: 373 year: 1917 ident: 10.1016/j.chom.2019.01.014_bib18 article-title: Sur un microbe invisible antagoniste des bacilles dysentériques publication-title: CR Acad. Sci. Paris – volume: 71 start-page: 3072 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib25 article-title: Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkw253 – volume: 6 start-page: e25486 year: 2011 ident: 10.1016/j.chom.2019.01.014_bib29 article-title: Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0025486 – volume: 5 start-page: 618 year: 2014 ident: 10.1016/j.chom.2019.01.014_bib8 article-title: The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00618 – volume: 186 start-page: 1241 year: 1915 ident: 10.1016/j.chom.2019.01.014_bib101 article-title: An investigation on the nature of ultra-microscopic viruses publication-title: Lancet doi: 10.1016/S0140-6736(01)20383-3 – volume: 69 start-page: 445 year: 2015 ident: 10.1016/j.chom.2019.01.014_bib98 article-title: Interactions between the gastrointestinal microbiome and Clostridium difficile publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-091014-104115 – volume: 77 start-page: 2042 year: 2011 ident: 10.1016/j.chom.2019.01.014_bib51 article-title: Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02504-10 – volume: 6 start-page: 25 year: 2014 ident: 10.1016/j.chom.2019.01.014_bib28 article-title: Antibiotics and bacterial resistance in the 21st century publication-title: Perspect. Medicin Chem. doi: 10.4137/PMC.S14459 – volume: 60 start-page: 1697 year: 2011 ident: 10.1016/j.chom.2019.01.014_bib50 article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.029744-0 – volume: 3 start-page: 415 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib44 article-title: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0110-1 – volume: 150 start-page: 916 year: 1982 ident: 10.1016/j.chom.2019.01.014_bib32 article-title: Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids publication-title: J. Bacteriol. doi: 10.1128/JB.150.2.916-924.1982 – volume: 6 start-page: 343 year: 2015 ident: 10.1016/j.chom.2019.01.014_bib62 article-title: Virulence reduction in bacteriophage resistant bacteria publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00343 – volume: 19 start-page: 237 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib84 article-title: Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13574 – volume: 51 start-page: 446 year: 2007 ident: 10.1016/j.chom.2019.01.014_bib104 article-title: Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00635-06 – start-page: 490 year: 1926 ident: 10.1016/j.chom.2019.01.014_bib19 – volume: 4 start-page: 124 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib83 article-title: Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh publication-title: EBioMedicine doi: 10.1016/j.ebiom.2015.12.023 – volume: 11 start-page: 840 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib33 article-title: Bacteriophages targeting Adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease publication-title: J. Crohn’s Colitis – volume: 2 start-page: 47 year: 1924 ident: 10.1016/j.chom.2019.01.014_bib89 article-title: The bacteriophage in the treatment of typhoid fever publication-title: BMJ doi: 10.1136/bmj.2.3315.47 – volume: 42 start-page: 263 year: 1928 ident: 10.1016/j.chom.2019.01.014_bib38 article-title: The Twort-D’Hérelle Phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action publication-title: J. Infect. Dis. doi: 10.1093/infdis/42.4.263 – volume: 2 start-page: 35 year: 2002 ident: 10.1016/j.chom.2019.01.014_bib9 article-title: Dynamics of success and failure in phage and antibiotic therapy in experimental infections publication-title: BMC Microbiol. doi: 10.1186/1471-2180-2-35 – volume: 6 start-page: e16963 year: 2011 ident: 10.1016/j.chom.2019.01.014_bib73 article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention publication-title: PLoS ONE doi: 10.1371/journal.pone.0016963 – volume: 34 start-page: 349 year: 2009 ident: 10.1016/j.chom.2019.01.014_bib107 article-title: A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy publication-title: Clin. Otolaryngol. doi: 10.1111/j.1749-4486.2009.01973.x – volume: 170 start-page: 175 year: 2005 ident: 10.1016/j.chom.2019.01.014_bib74 article-title: Evolution of Marek’s disease -- a paradigm for incessant race between the pathogen and the host publication-title: Vet. J. doi: 10.1016/j.tvjl.2004.05.009 – volume: 2 start-page: 769 year: 1948 ident: 10.1016/j.chom.2019.01.014_bib67 article-title: STREPTOMYCIN treatment of pulmonary tuberculosis publication-title: BMJ doi: 10.1136/bmj.2.4582.769 – volume: 67 start-page: 519 year: 2013 ident: 10.1016/j.chom.2019.01.014_bib103 article-title: On the biological success of viruses publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090110-102833 – volume: 8 start-page: e00240-17 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib21 article-title: Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model publication-title: MBio doi: 10.1128/mBio.00240-17 – volume: 3 start-page: 259 year: 1989 ident: 10.1016/j.chom.2019.01.014_bib95 article-title: Trade-offs in life-history evolution publication-title: Funct. Ecol. doi: 10.2307/2389364 – volume: 7 start-page: 253 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib26 article-title: Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy publication-title: J. Pediatric Infect. Dis. Soc. doi: 10.1093/jpids/pix056 – volume: 5 start-page: ofy064 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib60 article-title: Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection publication-title: Open Forum Infect. Dis. doi: 10.1093/ofid/ofy064 – volume: 129 start-page: 2659 year: 1983 ident: 10.1016/j.chom.2019.01.014_bib91 article-title: Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs publication-title: J. Gen. Microbiol. – ident: 10.1016/j.chom.2019.01.014_bib30 – volume: 2 start-page: 123 year: 2004 ident: 10.1016/j.chom.2019.01.014_bib49 article-title: Pathogenic Escherichia coli publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro818 – volume: 266 start-page: 397 year: 1999 ident: 10.1016/j.chom.2019.01.014_bib71 article-title: Virulence evolution in a virus obeys a trade-off publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.1999.0651 – volume: 79 start-page: 4829 year: 2013 ident: 10.1016/j.chom.2019.01.014_bib14 article-title: Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00706-13 – volume: 192 start-page: 1227 year: 1961 ident: 10.1016/j.chom.2019.01.014_bib16 article-title: General nature of the genetic code for proteins publication-title: Nature doi: 10.1038/1921227a0 – ident: 10.1016/j.chom.2019.01.014_bib20 – volume: 103 start-page: 1769 year: 1934 ident: 10.1016/j.chom.2019.01.014_bib27 article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections publication-title: J. Am. Med. Assoc. – volume: 60 start-page: 495 year: 2005 ident: 10.1016/j.chom.2019.01.014_bib82 article-title: A new class of antimycobacterial drugs: the diarylquinolines publication-title: Thorax doi: 10.1136/thx.2005.la0156 – volume: 51 start-page: 1934 year: 2007 ident: 10.1016/j.chom.2019.01.014_bib69 article-title: Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01028-06 – volume: 72 start-page: 666 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib105 article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa publication-title: Thorax doi: 10.1136/thoraxjnl-2016-209265 – volume: 17 start-page: 685 year: 1932 ident: 10.1016/j.chom.2019.01.014_bib15 article-title: Observations on the bacteriophage III publication-title: J. Lab. Clin. Med. – volume: 8 start-page: 79 year: 2014 ident: 10.1016/j.chom.2019.01.014_bib37 article-title: The evolution of life history trade-offs in viruses publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2014.07.005 – volume: 150 start-page: 523 year: 1998 ident: 10.1016/j.chom.2019.01.014_bib100 article-title: Sex and the evolution of intrahost competition in RNA virus φ6 publication-title: Genetics doi: 10.1093/genetics/150.2.523 – volume: 169 start-page: 540 year: 2018 ident: 10.1016/j.chom.2019.01.014_bib45 article-title: Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2018.05.001 – volume: 429 start-page: 241 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib63 article-title: Modeling the synergistic elimination of bacteria by phage and the innate immune system publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2017.06.037 – volume: 7 start-page: 1383 year: 2016 ident: 10.1016/j.chom.2019.01.014_bib75 article-title: ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01383 – volume: 28 start-page: 491 year: 1943 ident: 10.1016/j.chom.2019.01.014_bib66 article-title: Mutations of bacteria from virus sensitivity to virus resistance publication-title: Genetics doi: 10.1093/genetics/28.6.491 – volume: 61 start-page: e00954-17 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib85 article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00954-17 – volume: 8 start-page: e1002917 year: 2012 ident: 10.1016/j.chom.2019.01.014_bib86 article-title: Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002917 – volume: 37 start-page: 258 year: 1992 ident: 10.1016/j.chom.2019.01.014_bib93 article-title: Treatment of experimental infections of mice with bacteriophages publication-title: J. Med. Microbiol. doi: 10.1099/00222615-37-4-258 – volume: 133 start-page: 1127 year: 1987 ident: 10.1016/j.chom.2019.01.014_bib92 article-title: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment publication-title: J. Gen. Microbiol. – volume: 48 start-page: 183 year: 2017 ident: 10.1016/j.chom.2019.01.014_bib88 article-title: Evolution of ecological niche breath publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-110316-023003 |
SSID | ssj0055071 |
Score | 2.692376 |
SecondaryResourceType | review_article |
Snippet | Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 219 |
Title | Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria |
URI | https://dx.doi.org/10.1016/j.chom.2019.01.014 https://www.ncbi.nlm.nih.gov/pubmed/30763536 https://www.proquest.com/docview/2229106253 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR364vIniTsE3z2npbRVkFRVaFvYUmTVGRrmhF_PfONK3gYT0IPbQlacIk_TLDzHxDyFGSeCmKJGGeO8kknIHMyVwyZbhLi2FaZAGzka9v9PhBXk3VtEfOulwYDKtssT9ieoPW7ZtBK83B69PT4A5UDy4aR5BoWEsAh4UcNkl809MOjZGui0fPMmfYuk2ciTFeWI8Ew7uyhrqTy3mH0zzlszmELlbIcqs90lGc4CrphWqNLMZ6kl_r5PL2EeCB3kemgBM6ohOAss9Q0FFLHU7rGQUIcHlNRxWmi8zgS2wS3lGNrGp6Gsmb8w3ycHF-fzZmba0E5qXWNTPDslAmBFnqgmuTeylhjwy1T7HWOdhUYOp6JXQpjAvKOO-UKbhJSu8ylUkhNslCNavCNqHCZdrlpkTqeKngHmw-47KUy2B0yMs-4Z2QrG-JxLGexYvtIsaeLQrWomBtwuGSfXL80-c10mj82Vp1sre_NoMFnP-z32G3UBb-EnR95FWYfbxbrFoOxm-qRJ9sxRX8mQegHGhdQu_8c9RdsoRPGMrNxR5ZqN8-wj5oKrU7aLbiN_QM4xU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhpbSX0KavTZtEhfZUxFrWa13IYdM07DYPSrqBvamWLNOE4A1dh5Df1T_YGUsO9JAcCgEfjG3ZYiR9M2PNfEPIhyzzUlRZxjx3kknQgczJUjJluMurUV4VAbORj4715FR-m6v5CvnT58JgWGXC_ojpHVqnK8MkzeHl2dnwB5geXHQbQaJjLUmRlQfh5hr8tuXOdA8G-WOe73-dfZmwVFqAeal1y8yorpQJQda64tqUXkoQ6Uj7HEuDgwsCnqFXQtfCuKCM806Zipus9q5QhcS_oID7j8D6MIgG0_luD__ID8bjVjZn2L2UqRODyrAACsaTFR1XKJd3acO7rN1O6-0_I2vJXKXjKJHnZCU06-RxLGB584JMv_8CPKKzSE3wmY7pCWDndajoOHGV03ZBAXNc2dJxg_kpC3gTOwlLtFublu5GtujyJTl9EAm-IqvNoglvCBWu0K40NXLVSwXn4GQaV-RcBqNDWQ8I74VkfWIuxwIaF7YPUTu3KFiLgrUZh0MOyKfbNpeRt-Pep1Uve_vP7LOgWO5t974fKAvLEvdayiYsrpYWy6SDt50rMSCv4wje9gNgFcw8oTf-86vb5MlkdnRoD6fHB2_JU7yDceRcvCOr7e-rsAlmUuu2umlJyc-HXgd_AZrGICo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phage+Therapy%3A+A+Renewed+Approach+to+Combat+Antibiotic-Resistant+Bacteria&rft.jtitle=Cell+host+%26+microbe&rft.au=Kortright%2C+Kaitlyn+E.&rft.au=Chan%2C+Benjamin+K.&rft.au=Koff%2C+Jonathan+L.&rft.au=Turner%2C+Paul+E.&rft.date=2019-02-13&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=25&rft.issue=2&rft.spage=219&rft.epage=232&rft_id=info:doi/10.1016%2Fj.chom.2019.01.014&rft.externalDocID=S1931312819300526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |