Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria

Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resol...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 25; no. 2; pp. 219 - 232
Main Authors Kortright, Kaitlyn E., Chan, Benjamin K., Koff, Jonathan L., Turner, Paul E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.02.2019
Online AccessGet full text

Cover

Loading…
Abstract Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria. In this Review, Kortright et al. present a historical overview of phage therapy and its usefulness in combatting antibiotic-resistant bacteria. The authors also highlight the advantages and limits of phage therapy through specific animal, clinical, and case studies and offer directions for future studies.
AbstractList Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.
Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.
Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria. In this Review, Kortright et al. present a historical overview of phage therapy and its usefulness in combatting antibiotic-resistant bacteria. The authors also highlight the advantages and limits of phage therapy through specific animal, clinical, and case studies and offer directions for future studies.
Author Koff, Jonathan L.
Kortright, Kaitlyn E.
Chan, Benjamin K.
Turner, Paul E.
Author_xml – sequence: 1
  givenname: Kaitlyn E.
  surname: Kortright
  fullname: Kortright, Kaitlyn E.
  organization: Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 2
  givenname: Benjamin K.
  surname: Chan
  fullname: Chan, Benjamin K.
  organization: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
– sequence: 3
  givenname: Jonathan L.
  surname: Koff
  fullname: Koff, Jonathan L.
  organization: Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
– sequence: 4
  givenname: Paul E.
  surname: Turner
  fullname: Turner, Paul E.
  email: paul.turner@yale.edu
  organization: Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30763536$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAQhC1URB_wBzigHLmk2ElsJ4hLqXhUqgSqytlynA1xlcTFdkH996S0vXCotNLuYb7R7AxRrzUtIHRN8Jhgwu5WY1WZZhxhko0x6SY5QwOSxUnIMMt6fzcJYxKlfTR0boUxpZiTC9SPMWcxjdkAzd4r-QnBsgIr19v7YBIsoIUfKILJem2NVFXgTTA1TS59MGm9zrXxWoULcNp52frgUSoPVstLdF7K2sHVYY_Qx_PTcvoazt9eZtPJPFQJYz7kaVlQDpCUrCCMS5UkIIuUqYhRQrMs5WmqumhlzHOgPFc55QXhuFR5RrMkjkfodu_bxfvagPOi0U5BXcsWzMaJKIoygllEd9Kbg3STN1CItdWNtFtxfL8TpHuBssY5C6VQ2kuvTeut1LUgWOyaFiuxa1rsmhaYdJN0aPQPPbqfhB72EHQFfWuwwikNrYJCW1BeFEafwn8BjVyVsg
CitedBy_id crossref_primary_10_3390_ph15121498
crossref_primary_10_1097_JTCCM_D_24_00022
crossref_primary_10_1016_j_micpath_2023_106218
crossref_primary_10_13005_bbra_2911
crossref_primary_10_1007_s12275_024_00184_3
crossref_primary_10_1038_s41564_019_0660_x
crossref_primary_10_1093_femsre_fuaa041
crossref_primary_10_1016_j_csbj_2021_06_001
crossref_primary_10_3390_v11040366
crossref_primary_10_1016_j_copbio_2020_08_015
crossref_primary_10_1155_2024_6252415
crossref_primary_10_3389_fcimb_2021_681731
crossref_primary_10_3390_targets2030010
crossref_primary_10_3389_fmicb_2022_947640
crossref_primary_10_3389_fcimb_2022_941867
crossref_primary_10_1093_ve_veaa030
crossref_primary_10_1126_science_adg9091
crossref_primary_10_1186_s12864_024_10461_5
crossref_primary_10_3389_fcell_2020_606751
crossref_primary_10_1093_femsre_fuab019
crossref_primary_10_3390_antibiotics10111306
crossref_primary_10_3389_fmicb_2023_1287964
crossref_primary_10_1099_mic_0_001063
crossref_primary_10_3390_microorganisms8040480
crossref_primary_10_1093_cid_ciaa705
crossref_primary_10_1016_j_isci_2024_109790
crossref_primary_10_1128_spectrum_03797_23
crossref_primary_10_1128_msystems_00801_24
crossref_primary_10_3389_fmicb_2022_1067803
crossref_primary_10_1186_s40560_024_00759_7
crossref_primary_10_1371_journal_pbio_3001406
crossref_primary_10_1371_journal_ppat_1011424
crossref_primary_10_1128_ecosalplus_esp_0003_2020
crossref_primary_10_1016_j_micpath_2023_106467
crossref_primary_10_1146_annurev_virology_111821_111145
crossref_primary_10_22207_JPAM_16_4_01
crossref_primary_10_1093_bib_bbac574
crossref_primary_10_1007_s11274_024_04106_8
crossref_primary_10_1016_j_micres_2022_127104
crossref_primary_10_1128_msystems_01177_23
crossref_primary_10_1128_spectrum_00679_24
crossref_primary_10_3390_microorganisms8111750
crossref_primary_10_3390_life15010049
crossref_primary_10_1016_j_ijfoodmicro_2023_110525
crossref_primary_10_1093_molbev_msab190
crossref_primary_10_1016_j_virusres_2022_198856
crossref_primary_10_1089_nat_2018_0758
crossref_primary_10_15406_jmen_2021_09_00327
crossref_primary_10_1007_s00203_024_04106_0
crossref_primary_10_1039_D3CB00135K
crossref_primary_10_3390_molecules25061340
crossref_primary_10_1134_S0026261723604906
crossref_primary_10_1038_s42003_024_06754_w
crossref_primary_10_1128_JVI_02173_20
crossref_primary_10_1128_AAC_01281_19
crossref_primary_10_1021_acsinfecdis_0c00036
crossref_primary_10_1038_s41385_019_0250_5
crossref_primary_10_3389_fmicb_2019_01556
crossref_primary_10_1128_msystems_00607_24
crossref_primary_10_1128_mbio_03016_23
crossref_primary_10_3390_microorganisms7120615
crossref_primary_10_1146_annurev_med_080219_122208
crossref_primary_10_1073_pnas_2104592118
crossref_primary_10_1080_02648725_2023_2178870
crossref_primary_10_1080_02648725_2023_2199572
crossref_primary_10_1111_1462_2920_16366
crossref_primary_10_1186_s40168_024_01935_5
crossref_primary_10_1016_j_lwt_2024_116153
crossref_primary_10_1016_j_virusres_2019_197734
crossref_primary_10_1016_j_fpsl_2024_101398
crossref_primary_10_3390_ijms242115628
crossref_primary_10_1371_journal_pbio_3001424
crossref_primary_10_1128_MRA_00349_19
crossref_primary_10_31857_S0026365624040126
crossref_primary_10_1093_bib_bbab385
crossref_primary_10_3390_v16030422
crossref_primary_10_3390_microorganisms12101986
crossref_primary_10_1128_spectrum_02838_23
crossref_primary_10_1002_jobm_202400271
crossref_primary_10_3389_fmicb_2021_763136
crossref_primary_10_3390_antibiotics12061012
crossref_primary_10_1016_j_vetmic_2023_109923
crossref_primary_10_1080_17460441_2023_2239704
crossref_primary_10_1146_annurev_virology_111821_115754
crossref_primary_10_3389_fmicb_2024_1401234
crossref_primary_10_1016_j_ijfoodmicro_2023_110304
crossref_primary_10_1016_j_mehy_2024_111484
crossref_primary_10_1128_aac_00448_24
crossref_primary_10_1093_nar_gkac505
crossref_primary_10_1186_s43014_023_00193_6
crossref_primary_10_1016_j_micres_2025_128083
crossref_primary_10_3389_fvets_2022_888561
crossref_primary_10_1098_rsif_2020_0486
crossref_primary_10_1136_bmjresp_2022_001360
crossref_primary_10_3390_microorganisms11061524
crossref_primary_10_1016_j_tpb_2024_12_002
crossref_primary_10_1099_mgen_0_001065
crossref_primary_10_1016_j_micres_2022_127155
crossref_primary_10_1007_s11538_020_00751_w
crossref_primary_10_3390_ijms22020735
crossref_primary_10_1134_S0006297920110061
crossref_primary_10_1093_jalm_jfac051
crossref_primary_10_1186_s40168_019_0777_4
crossref_primary_10_3390_pathogens11121445
crossref_primary_10_1073_pnas_2216084120
crossref_primary_10_1111_evo_13873
crossref_primary_10_2147_IDR_S380883
crossref_primary_10_37489_0235_2990_2022_67_11_12_56_63
crossref_primary_10_1111_jeb_13904
crossref_primary_10_3390_v15102095
crossref_primary_10_1007_s11538_022_01006_6
crossref_primary_10_1038_s41467_022_33294_w
crossref_primary_10_3389_fimmu_2022_987231
crossref_primary_10_3390_v13010089
crossref_primary_10_1093_bioinformatics_btac509
crossref_primary_10_1016_j_micpath_2020_104588
crossref_primary_10_3389_fmicb_2020_573260
crossref_primary_10_3389_fmicb_2024_1416628
crossref_primary_10_1021_jacs_3c10034
crossref_primary_10_3390_v14112381
crossref_primary_10_2217_fmb_2021_0027
crossref_primary_10_1016_j_bbrep_2023_101553
crossref_primary_10_12998_wjcc_v11_i3_534
crossref_primary_10_1016_j_tim_2019_10_007
crossref_primary_10_3168_jds_2022_22892
crossref_primary_10_3390_antibiotics12040751
crossref_primary_10_2147_IJN_S453566
crossref_primary_10_1016_j_healun_2022_01_018
crossref_primary_10_3389_fcimb_2023_1138998
crossref_primary_10_1007_s00408_024_00700_7
crossref_primary_10_1016_S1473_3099_20_30060_8
crossref_primary_10_3390_v14081802
crossref_primary_10_3390_antibiotics10111337
crossref_primary_10_1371_journal_pbio_3002566
crossref_primary_10_1016_j_micres_2023_127412
crossref_primary_10_1016_j_jenvman_2025_124079
crossref_primary_10_3389_fmicb_2022_866382
crossref_primary_10_3390_v14102106
crossref_primary_10_3390_v14061199
crossref_primary_10_1016_j_fm_2021_103853
crossref_primary_10_1371_journal_ppat_1012936
crossref_primary_10_3389_fmicb_2021_698962
crossref_primary_10_1371_journal_ppat_1011602
crossref_primary_10_1128_msphere_00553_23
crossref_primary_10_1007_s10068_023_01444_5
crossref_primary_10_1038_s41467_023_39863_x
crossref_primary_10_3389_fcimb_2021_631585
crossref_primary_10_1093_burnst_tkae083
crossref_primary_10_3390_v14030485
crossref_primary_10_1016_j_isci_2024_109595
crossref_primary_10_3389_fmicb_2022_943279
crossref_primary_10_3390_ph14040325
crossref_primary_10_3389_fcimb_2021_643214
crossref_primary_10_3390_v14112483
crossref_primary_10_1038_s41564_024_01832_5
crossref_primary_10_1016_j_psj_2023_102960
crossref_primary_10_1021_acs_analchem_3c01066
crossref_primary_10_1016_j_micres_2022_127249
crossref_primary_10_2217_fmb_2021_0293
crossref_primary_10_1038_s42003_022_03001_y
crossref_primary_10_3390_v12020235
crossref_primary_10_1186_s12985_025_02679_w
crossref_primary_10_1038_s41591_021_01403_9
crossref_primary_10_1093_jambio_lxae235
crossref_primary_10_46989_001c_125735
crossref_primary_10_17352_ijvsr_000126
crossref_primary_10_3390_v14020190
crossref_primary_10_1038_s41467_021_27656_z
crossref_primary_10_3390_v15112267
crossref_primary_10_1016_j_ijfoodmicro_2022_109886
crossref_primary_10_1016_j_biopha_2022_112758
crossref_primary_10_3390_antibiotics9070412
crossref_primary_10_3390_ijms242115594
crossref_primary_10_1038_s41579_019_0288_0
crossref_primary_10_1016_j_jtbi_2024_111741
crossref_primary_10_1186_s43088_021_00141_8
crossref_primary_10_1016_j_meegid_2024_105606
crossref_primary_10_3389_fimmu_2022_1057892
crossref_primary_10_1371_journal_pcbi_1012793
crossref_primary_10_3390_v14091956
crossref_primary_10_1093_jambio_lxad250
crossref_primary_10_1016_j_trsl_2020_07_004
crossref_primary_10_3389_fmicb_2023_1227147
crossref_primary_10_1080_10408398_2020_1843396
crossref_primary_10_3389_fmicb_2023_1148579
crossref_primary_10_1007_s10096_021_04296_1
crossref_primary_10_1038_s41598_020_71588_5
crossref_primary_10_1016_j_ijfoodmicro_2022_109872
crossref_primary_10_1126_sciadv_adp5057
crossref_primary_10_1128_AAC_01879_21
crossref_primary_10_1128_spectrum_02914_22
crossref_primary_10_1093_ve_veae100
crossref_primary_10_3390_ph14010034
crossref_primary_10_2174_1381612826666200224105153
crossref_primary_10_1002_ppul_24919
crossref_primary_10_1093_infdis_jiac369
crossref_primary_10_3389_fmicb_2021_616712
crossref_primary_10_3389_fmicb_2019_02840
crossref_primary_10_3390_antibiotics9070408
crossref_primary_10_1111_1541_4337_13215
crossref_primary_10_1016_j_jddst_2022_103991
crossref_primary_10_2147_IDR_S402962
crossref_primary_10_3390_v14010033
crossref_primary_10_1016_j_heliyon_2024_e30496
crossref_primary_10_1016_j_idc_2023_12_002
crossref_primary_10_3390_jcm12030767
crossref_primary_10_1007_s00253_021_11695_z
crossref_primary_10_1016_j_isci_2023_108675
crossref_primary_10_1080_22221751_2021_2002671
crossref_primary_10_3390_antibiotics13020195
crossref_primary_10_3390_microorganisms12112232
crossref_primary_10_3389_fmicb_2020_00327
crossref_primary_10_1073_pnas_1913234117
crossref_primary_10_3390_antibiotics10091116
crossref_primary_10_1080_22221751_2020_1747950
crossref_primary_10_1080_21505594_2021_1926411
crossref_primary_10_3389_fimmu_2019_01341
crossref_primary_10_3389_fsci_2023_997136
crossref_primary_10_5812_jjm_118910
crossref_primary_10_1007_s00203_022_02839_4
crossref_primary_10_1016_j_cell_2019_12_034
crossref_primary_10_14356_kona_2025016
crossref_primary_10_3390_antibiotics11050653
crossref_primary_10_3390_ruminants2010009
crossref_primary_10_1128_mra_00944_22
crossref_primary_10_3389_fimmu_2021_751337
crossref_primary_10_1002_mbo3_1273
crossref_primary_10_1016_j_biopha_2023_115040
crossref_primary_10_1073_pnas_2109434118
crossref_primary_10_3390_antibiotics13070581
crossref_primary_10_1016_j_vetmic_2024_110133
crossref_primary_10_1038_s41467_024_46147_5
crossref_primary_10_1371_journal_pbio_3002119
crossref_primary_10_1007_s00253_024_13208_0
crossref_primary_10_1007_s00284_024_03713_w
crossref_primary_10_3390_v15081665
crossref_primary_10_1128_Spectrum_00497_21
crossref_primary_10_3389_fmicb_2023_1260196
crossref_primary_10_3390_ijms21093160
crossref_primary_10_3390_antibiotics14010002
crossref_primary_10_3390_v17030369
crossref_primary_10_1007_s00253_022_12175_8
crossref_primary_10_1080_14787210_2024_2441891
crossref_primary_10_1093_femspd_ftac039
crossref_primary_10_3389_fmicb_2024_1346251
crossref_primary_10_3389_fmicb_2021_658374
crossref_primary_10_3390_antibiotics12040735
crossref_primary_10_1016_j_jmb_2020_06_013
crossref_primary_10_3390_molecules25122888
crossref_primary_10_1007_s44337_024_00181_w
crossref_primary_10_1007_s11538_022_01013_7
crossref_primary_10_1038_s41396_021_01012_x
crossref_primary_10_1016_j_micpath_2022_105442
crossref_primary_10_1093_femsre_fuaa001
crossref_primary_10_1016_j_fbio_2022_102282
crossref_primary_10_1016_j_psj_2024_103845
crossref_primary_10_1128_MMBR_00012_19
crossref_primary_10_1007_s00705_022_05426_6
crossref_primary_10_1016_j_ijantimicag_2024_107413
crossref_primary_10_1088_2752_5724_ada62b
crossref_primary_10_1093_gigascience_giae074
crossref_primary_10_1128_spectrum_01602_22
crossref_primary_10_1002_aah_10130
crossref_primary_10_1016_j_plantsci_2024_112164
crossref_primary_10_3389_fbioe_2024_1319830
crossref_primary_10_1080_10408363_2019_1648377
crossref_primary_10_3390_app10217654
crossref_primary_10_3390_pathogens12121396
crossref_primary_10_1111_odi_14782
crossref_primary_10_1007_s13762_023_04867_z
crossref_primary_10_3389_fmicb_2020_00110
crossref_primary_10_1371_journal_pone_0266683
crossref_primary_10_12688_f1000research_18799_1
crossref_primary_10_24931_2413_9432_2023_13_2_26_33
crossref_primary_10_1016_j_celrep_2024_113728
crossref_primary_10_1016_j_molcel_2020_03_001
crossref_primary_10_3389_fcimb_2024_1433313
crossref_primary_10_3390_antibiotics13070680
crossref_primary_10_1002_bies_202000272
crossref_primary_10_1016_j_micpath_2022_105556
crossref_primary_10_1093_ve_veaa060
crossref_primary_10_3390_antibiotics12050868
crossref_primary_10_1016_j_jhepr_2023_100909
crossref_primary_10_1007_s00705_023_05873_9
crossref_primary_10_1016_j_ijbiomac_2024_134582
crossref_primary_10_1002_smll_202404351
crossref_primary_10_3389_fmicb_2022_825828
crossref_primary_10_1016_j_aquaculture_2024_741499
crossref_primary_10_3839_jabc_2019_039
crossref_primary_10_1016_j_mib_2022_102225
crossref_primary_10_1177_25160435221120300
crossref_primary_10_1016_j_biotechadv_2023_108152
crossref_primary_10_2174_0113862073267755240126111628
crossref_primary_10_1038_s41579_021_00536_5
crossref_primary_10_1016_j_micpath_2024_107052
crossref_primary_10_1089_phage_2024_0014
crossref_primary_10_1146_annurev_virology_091919_074551
crossref_primary_10_3389_fmicb_2023_1134254
crossref_primary_10_3390_v15081736
crossref_primary_10_7554_eLife_60608
crossref_primary_10_1111_1462_2920_15476
crossref_primary_10_12677_ACM_2022_124362
crossref_primary_10_3390_ijms24044191
crossref_primary_10_4142_jvs_24251
crossref_primary_10_3390_v14020171
crossref_primary_10_1111_1462_2920_15593
crossref_primary_10_1007_s00203_025_04252_z
crossref_primary_10_1016_j_jcf_2022_10_005
crossref_primary_10_3390_antibiotics12121715
crossref_primary_10_1093_jpids_piac061
crossref_primary_10_1111_exd_14940
crossref_primary_10_1016_j_tplants_2020_01_013
crossref_primary_10_1039_D0EN00962H
crossref_primary_10_1099_mgen_0_001251
crossref_primary_10_3389_fmicb_2022_906961
crossref_primary_10_3390_antibiotics9060304
crossref_primary_10_1016_j_micres_2024_127699
crossref_primary_10_1186_s12951_024_02576_4
crossref_primary_10_3389_frmbi_2024_1408203
crossref_primary_10_1080_10408398_2023_2214818
crossref_primary_10_1016_j_micpath_2024_107088
crossref_primary_10_3390_nano15010067
crossref_primary_10_1016_j_coviro_2022_101209
crossref_primary_10_1016_j_lwt_2022_114251
crossref_primary_10_3390_antibiotics12081329
crossref_primary_10_3389_fmicb_2023_1251211
crossref_primary_10_1093_ismeco_ycae039
crossref_primary_10_1186_s12866_024_03387_1
crossref_primary_10_1016_j_jhep_2019_10_003
crossref_primary_10_1186_s12866_023_02963_1
crossref_primary_10_3389_fcimb_2024_1410115
crossref_primary_10_1186_s43556_022_00084_1
crossref_primary_10_1128_mbio_02924_23
crossref_primary_10_1080_10408398_2020_1724075
crossref_primary_10_1186_s12863_024_01244_8
crossref_primary_10_1080_13543784_2020_1805733
crossref_primary_10_3390_antibiotics9100714
crossref_primary_10_1016_j_micpath_2025_107490
crossref_primary_10_1016_j_prrv_2022_02_001
crossref_primary_10_1126_sciadv_adq5038
crossref_primary_10_1039_D0RA10156G
crossref_primary_10_1038_s41586_023_06869_w
crossref_primary_10_12793_tcp_2023_31_e17
crossref_primary_10_1038_s44222_023_00119_4
crossref_primary_10_33073_pjm_2022_005
crossref_primary_10_20411_pai_v7i2_516
crossref_primary_10_1007_s00203_024_04168_0
crossref_primary_10_3390_biology12050681
crossref_primary_10_1007_s11262_023_02033_8
crossref_primary_10_1038_s41598_023_37176_z
crossref_primary_10_3390_cells13070585
crossref_primary_10_3390_v13112120
crossref_primary_10_1016_j_hlife_2025_03_004
crossref_primary_10_1016_j_aquaculture_2024_740804
crossref_primary_10_1016_j_aquaculture_2024_740925
crossref_primary_10_1080_19490976_2024_2337312
crossref_primary_10_3390_antibiotics12020286
crossref_primary_10_3390_antibiotics8040192
crossref_primary_10_1016_j_foodcont_2022_108976
crossref_primary_10_1093_emph_eoac006
crossref_primary_10_1111_1541_4337_12757
crossref_primary_10_1136_bjo_2022_322433
crossref_primary_10_1007_s10499_023_01220_6
crossref_primary_10_1111_jgh_15716
crossref_primary_10_1016_j_jgar_2020_12_025
crossref_primary_10_1038_s41598_021_94054_2
crossref_primary_10_1080_10408398_2022_2081127
crossref_primary_10_1128_aac_00728_23
crossref_primary_10_1128_msphere_01015_21
crossref_primary_10_1089_phage_2020_0038
crossref_primary_10_3389_fmolb_2021_654038
crossref_primary_10_1016_j_foodres_2020_110004
crossref_primary_10_1016_j_foohum_2023_09_004
crossref_primary_10_1186_s12985_024_02553_1
crossref_primary_10_3389_fvets_2024_1346313
crossref_primary_10_1016_j_sjbs_2021_05_033
crossref_primary_10_1016_j_micpath_2022_105876
crossref_primary_10_1016_j_jaad_2021_09_024
crossref_primary_10_1094_PBIOMES_07_23_0061_R
crossref_primary_10_34133_bdr_0028
crossref_primary_10_1038_s41564_020_00822_7
crossref_primary_10_2147_IDR_S509016
crossref_primary_10_3390_ijms23137084
crossref_primary_10_1016_j_bsheal_2019_09_001
crossref_primary_10_3390_v12090944
crossref_primary_10_1016_j_psj_2024_104227
crossref_primary_10_3389_fcimb_2023_1119037
crossref_primary_10_1007_s15010_024_02178_0
crossref_primary_10_1371_journal_pgen_1009204
crossref_primary_10_1038_s42003_025_07687_8
crossref_primary_10_1038_s41467_024_51346_1
crossref_primary_10_1021_acs_est_3c07664
crossref_primary_10_1186_s40168_023_01585_z
crossref_primary_10_1016_j_psj_2023_103073
crossref_primary_10_29296_25877305_2023_01_14
crossref_primary_10_3390_ijms24054333
crossref_primary_10_1128_JB_00362_20
crossref_primary_10_1093_ve_veae091
crossref_primary_10_1128_AAC_00924_19
crossref_primary_10_1360_SSV_2022_0309
crossref_primary_10_1021_acssynbio_1c00319
crossref_primary_10_1093_ismejo_wrae218
crossref_primary_10_1080_19490976_2024_2327409
crossref_primary_10_1016_j_chom_2021_11_014
crossref_primary_10_3390_microorganisms9040794
crossref_primary_10_1016_j_jgg_2024_04_013
crossref_primary_10_1016_j_mib_2022_102190
crossref_primary_10_36740_WLek202401122
crossref_primary_10_1016_j_cub_2020_07_036
crossref_primary_10_1038_s41598_024_68747_3
crossref_primary_10_3390_antibiotics10091085
crossref_primary_10_1016_j_jiph_2022_10_022
crossref_primary_10_3390_v17030414
crossref_primary_10_1128_mbio_01393_24
crossref_primary_10_1016_j_celrep_2022_110825
crossref_primary_10_33073_pjm_2022_037
crossref_primary_10_37349_emed_2024_00217
crossref_primary_10_46989_001c_124059
crossref_primary_10_1038_s41579_020_0367_2
crossref_primary_10_1007_s00249_021_01511_x
crossref_primary_10_1146_annurev_genet_033123_095833
crossref_primary_10_1177_23247096231188243
crossref_primary_10_1093_femsmc_xtac009
crossref_primary_10_1093_cid_ciad514
crossref_primary_10_1128_jb_00196_23
crossref_primary_10_1016_j_micpath_2022_105732
crossref_primary_10_1016_j_eti_2021_102012
crossref_primary_10_3390_biology13040271
crossref_primary_10_3390_microbiolres15030098
crossref_primary_10_1002_cti2_1114
crossref_primary_10_1016_j_cpt_2025_03_003
crossref_primary_10_3390_v14061329
crossref_primary_10_3389_fcimb_2024_1336821
crossref_primary_10_1016_j_aqrep_2023_101628
crossref_primary_10_1038_s41598_022_25352_6
crossref_primary_10_3389_fmicb_2023_1267786
crossref_primary_10_1016_j_virol_2024_110209
crossref_primary_10_3390_jcm9051369
crossref_primary_10_1016_j_chom_2020_01_004
crossref_primary_10_1128_spectrum_04636_22
crossref_primary_10_3390_ph16070920
crossref_primary_10_1128_aem_00695_24
crossref_primary_10_3390_antibiotics12091444
crossref_primary_10_1016_j_ejpb_2020_11_019
crossref_primary_10_3390_ijms25105465
crossref_primary_10_1128_MRA_00503_20
crossref_primary_10_3390_antibiotics12020364
crossref_primary_10_3390_biology12020180
crossref_primary_10_3389_fmed_2020_00420
crossref_primary_10_1016_j_csbj_2021_12_039
crossref_primary_10_1021_acs_nanolett_4c02318
crossref_primary_10_2147_BTT_S381237
crossref_primary_10_1007_s11262_020_01735_7
crossref_primary_10_1111_1753_0407_70024
crossref_primary_10_3389_fpubh_2022_1002015
crossref_primary_10_1002_ppul_25190
crossref_primary_10_1007_s12268_023_1923_x
crossref_primary_10_3389_fvets_2023_1160350
crossref_primary_10_1016_j_jddst_2023_104874
crossref_primary_10_3390_biomedicines11051379
crossref_primary_10_3389_fvets_2022_1101872
crossref_primary_10_1093_jac_dkaa121
crossref_primary_10_3389_fcimb_2021_698807
crossref_primary_10_3390_v16081338
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_1186_s12929_023_00919_1
crossref_primary_10_1016_j_gde_2022_101943
crossref_primary_10_1080_1040841X_2024_2429599
crossref_primary_10_3390_v11121083
crossref_primary_10_1093_jas_skab187
crossref_primary_10_1016_j_ijbiomac_2024_134977
crossref_primary_10_1016_j_isci_2023_106004
crossref_primary_10_3390_antibiotics11101406
crossref_primary_10_1093_ofid_ofad221
crossref_primary_10_1128_aem_02210_23
crossref_primary_10_2147_OPTH_S359304
crossref_primary_10_14712_fb2022068030087
crossref_primary_10_17495_easdl_2024_10_34_5_319
crossref_primary_10_1038_s41467_020_19735_4
crossref_primary_10_3390_ph14030184
crossref_primary_10_1016_j_mib_2020_06_003
crossref_primary_10_1128_spectrum_00958_23
crossref_primary_10_3389_fcimb_2022_897171
crossref_primary_10_3390_ijms23148040
crossref_primary_10_1038_s41467_021_25666_5
crossref_primary_10_3390_v13102005
crossref_primary_10_1128_mbio_03174_21
crossref_primary_10_15407_biotech16_05_022
crossref_primary_10_1016_j_coviro_2021_10_005
crossref_primary_10_3389_fmicb_2023_1083007
crossref_primary_10_1016_j_chom_2019_06_004
crossref_primary_10_1016_j_micpath_2019_103770
crossref_primary_10_1016_j_ebiom_2022_104113
crossref_primary_10_1893_BIOS_D_22_00005
crossref_primary_10_32604_biocell_2023_029564
crossref_primary_10_3390_biomedicines9040342
crossref_primary_10_1016_j_chom_2019_06_011
crossref_primary_10_1089_phage_2020_0007
crossref_primary_10_3390_v16111800
crossref_primary_10_1038_s41564_022_01243_4
crossref_primary_10_3390_microorganisms11051181
crossref_primary_10_1080_19490976_2021_1984122
crossref_primary_10_1016_j_psj_2024_103548
crossref_primary_10_1126_science_abb1083
crossref_primary_10_3389_fmicb_2023_1268820
crossref_primary_10_1016_j_cell_2024_09_009
crossref_primary_10_1038_s41467_023_44157_3
crossref_primary_10_3390_antibiotics11050575
crossref_primary_10_1016_j_copbio_2020_11_012
crossref_primary_10_1016_j_micpath_2023_106199
crossref_primary_10_1128_aac_00764_23
crossref_primary_10_3390_v11030295
crossref_primary_10_1016_j_jconrel_2024_07_013
crossref_primary_10_1111_nyas_14533
crossref_primary_10_1128_aem_00079_23
crossref_primary_10_3389_fmicb_2020_01982
crossref_primary_10_1128_mSystems_00420_21
crossref_primary_10_1089_sur_2020_129
crossref_primary_10_1097_IM9_0000000000000009
crossref_primary_10_1002_mbo3_968
crossref_primary_10_1159_000538493
crossref_primary_10_3389_fmicb_2019_00954
crossref_primary_10_1007_s00705_023_05817_3
crossref_primary_10_1016_j_eng_2021_07_030
crossref_primary_10_3390_antibiotics10020174
crossref_primary_10_1016_j_foodres_2023_112665
crossref_primary_10_1128_msphere_00080_22
crossref_primary_10_12938_bmfh_2022_061
crossref_primary_10_3390_pharmaceutics14112344
crossref_primary_10_3390_microorganisms12010222
crossref_primary_10_1099_jmm_0_001646
crossref_primary_10_1002_adhm_202102539
crossref_primary_10_3390_ph14040359
crossref_primary_10_3390_toxins16060270
crossref_primary_10_1016_j_addr_2021_113856
crossref_primary_10_3389_fcimb_2024_1473668
crossref_primary_10_1111_mmi_15074
crossref_primary_10_1172_JCI187996
crossref_primary_10_3390_agriculture10060232
crossref_primary_10_3389_fcimb_2024_1296777
crossref_primary_10_3390_antibiotics11101324
crossref_primary_10_1016_j_isci_2022_104121
crossref_primary_10_1093_bib_bbae117
crossref_primary_10_1128_Spectrum_00599_21
crossref_primary_10_3389_fimmu_2023_1133358
crossref_primary_10_1039_D0CS01571G
crossref_primary_10_3389_fmicb_2020_583661
crossref_primary_10_3390_biomedicines11102860
crossref_primary_10_1099_jmm_0_001895
crossref_primary_10_3389_fphar_2022_883216
crossref_primary_10_3390_v12121398
crossref_primary_10_1080_14728222_2020_1761958
crossref_primary_10_3389_fmicb_2024_1448958
crossref_primary_10_1089_phage_2023_0034
crossref_primary_10_1016_j_addr_2021_113864
crossref_primary_10_1038_s41598_022_19922_x
crossref_primary_10_1177_00220345251317494
crossref_primary_10_1007_s00253_023_12881_x
crossref_primary_10_3389_frym_2021_574664
crossref_primary_10_1016_j_ijbiomac_2024_132990
crossref_primary_10_1073_pnas_2008007118
crossref_primary_10_1128_mra_01530_19
crossref_primary_10_3389_fcimb_2022_907314
crossref_primary_10_1016_j_bioorg_2021_105550
crossref_primary_10_5005_jp_journals_11002_0078
crossref_primary_10_3390_antibiotics11070839
crossref_primary_10_1039_D3TB00694H
crossref_primary_10_1089_phage_2021_0016
crossref_primary_10_1371_journal_pone_0263887
crossref_primary_10_1016_j_foodres_2022_111971
crossref_primary_10_1111_1462_2920_15901
crossref_primary_10_1007_s10904_020_01768_3
crossref_primary_10_1099_mic_0_001126
crossref_primary_10_1128_msphere_00345_22
crossref_primary_10_1016_j_virusres_2023_199165
crossref_primary_10_3389_fmicb_2022_877074
crossref_primary_10_1016_j_jconrel_2020_06_016
crossref_primary_10_3390_ijms21020425
crossref_primary_10_3390_ijms24054635
crossref_primary_10_1007_s00203_023_03803_6
crossref_primary_10_1186_s13062_022_00339_5
crossref_primary_10_1186_s13567_021_00991_1
crossref_primary_10_1016_j_ccm_2022_06_008
crossref_primary_10_3389_fmicb_2023_1277178
crossref_primary_10_1007_s10699_021_09796_z
crossref_primary_10_3390_microorganisms8060837
crossref_primary_10_1128_AEM_01468_21
crossref_primary_10_2147_IDR_S330560
crossref_primary_10_1038_s41564_019_0526_2
crossref_primary_10_1021_acsami_3c19443
crossref_primary_10_3389_fmicb_2021_638094
crossref_primary_10_1016_j_cell_2022_11_017
crossref_primary_10_1111_nph_17847
crossref_primary_10_1128_AEM_01514_21
crossref_primary_10_15421_022173
crossref_primary_10_3390_v13101964
crossref_primary_10_1093_bib_bbae010
crossref_primary_10_3390_nano11020312
crossref_primary_10_1016_j_heliyon_2023_e14020
crossref_primary_10_1080_17460794_2024_2381954
crossref_primary_10_3390_microorganisms10071324
crossref_primary_10_1128_msphere_00707_23
crossref_primary_10_1126_science_adi7571
crossref_primary_10_3389_fmicb_2021_724767
crossref_primary_10_1128_spectrum_02897_23
crossref_primary_10_1128_AEM_00468_21
crossref_primary_10_1007_s00203_020_02167_5
crossref_primary_10_1186_s13567_024_01311_z
crossref_primary_10_3390_antibiotics11101310
crossref_primary_10_1007_s13346_023_01513_6
crossref_primary_10_1016_j_onano_2023_100171
crossref_primary_10_1515_ci_2023_0403
crossref_primary_10_1038_s41598_024_59444_2
crossref_primary_10_1007_s13205_024_04101_8
crossref_primary_10_3390_ebj3010014
crossref_primary_10_3390_v15030673
crossref_primary_10_1016_j_foodcont_2024_110304
crossref_primary_10_1080_14712598_2021_1865304
crossref_primary_10_1128_AAC_01609_19
crossref_primary_10_1128_spectrum_01527_24
crossref_primary_10_3389_fmicb_2022_1004733
crossref_primary_10_1089_phage_2023_0007
crossref_primary_10_1002_iub_2931
crossref_primary_10_1186_s12866_025_03772_4
crossref_primary_10_1080_1040841X_2021_1902266
crossref_primary_10_1016_S2666_5247_21_00127_0
crossref_primary_10_1093_emph_eoaa026
crossref_primary_10_1016_j_psj_2021_101668
crossref_primary_10_1038_s41396_021_00946_6
crossref_primary_10_1128_AAC_00143_21
crossref_primary_10_1128_msystems_01510_21
crossref_primary_10_1080_1040841X_2024_2313024
crossref_primary_10_1360_TB_2022_0974
crossref_primary_10_3390_microorganisms12091795
crossref_primary_10_1371_journal_pone_0243947
crossref_primary_10_1007_s00281_022_00936_6
crossref_primary_10_1016_j_mtnano_2022_100229
crossref_primary_10_3389_fimmu_2023_1343788
crossref_primary_10_1016_j_virusres_2023_199054
crossref_primary_10_1371_journal_pbio_3000877
crossref_primary_10_3389_fmicb_2024_1384164
crossref_primary_10_1128_AEM_00980_21
crossref_primary_10_1149_1945_7111_ac1dcf
crossref_primary_10_21518_2079_701X_2022_16_13_66_72
crossref_primary_10_1186_s12866_025_03785_z
crossref_primary_10_3389_fmicb_2022_1065386
crossref_primary_10_3389_fmicb_2024_1513081
crossref_primary_10_3390_v13071268
crossref_primary_10_3390_v13071267
crossref_primary_10_3390_antibiotics10101143
crossref_primary_10_1128_aac_02247_21
crossref_primary_10_3390_antibiotics11070915
crossref_primary_10_1016_j_medj_2023_07_002
crossref_primary_10_1016_j_virol_2023_06_007
crossref_primary_10_1099_mic_0_001491
crossref_primary_10_3390_v11040343
crossref_primary_10_1089_phage_2023_0027
crossref_primary_10_1080_14728222_2023_2230363
crossref_primary_10_1016_j_jgar_2019_09_018
crossref_primary_10_15252_emmm_202012435
crossref_primary_10_1111_1751_7915_13650
crossref_primary_10_3390_antibiotics9030135
crossref_primary_10_3390_microorganisms8091374
crossref_primary_10_3390_v15030628
crossref_primary_10_1038_s41598_025_94040_y
crossref_primary_10_1128_IAI_00433_20
crossref_primary_10_1016_j_foodres_2025_116318
crossref_primary_10_1038_s41551_025_01354_3
crossref_primary_10_1038_s41598_024_52192_3
crossref_primary_10_3390_antibiotics10020202
crossref_primary_10_3390_ijms24043897
crossref_primary_10_3390_v13122343
crossref_primary_10_1128_JCM_00229_19
crossref_primary_10_1016_j_ijfoodmicro_2024_110778
crossref_primary_10_1111_bph_15526
crossref_primary_10_1126_sciadv_abq2005
crossref_primary_10_1086_733414
crossref_primary_10_1007_s12223_022_00965_6
crossref_primary_10_1016_j_lfs_2022_121362
crossref_primary_10_1016_j_ggedit_2024_100031
crossref_primary_10_1093_ofid_ofac194
crossref_primary_10_1016_j_cmi_2023_10_018
crossref_primary_10_1128_msystems_00218_21
crossref_primary_10_1073_pnas_2014283117
crossref_primary_10_1016_j_micpath_2020_104405
crossref_primary_10_3390_jof9070750
crossref_primary_10_1038_s41564_023_01333_x
crossref_primary_10_1371_journal_pone_0280070
crossref_primary_10_3390_v14040688
crossref_primary_10_1097_CCM_0000000000004352
crossref_primary_10_1360_SSV_2022_0330
crossref_primary_10_15252_embr_202256033
crossref_primary_10_1155_2022_4913146
crossref_primary_10_1172_jci_insight_181309
crossref_primary_10_59653_jhsmt_v2i01_318
crossref_primary_10_1038_s41598_019_50461_0
crossref_primary_10_1542_peds_2024_068838
crossref_primary_10_1016_j_ijfoodmicro_2023_110223
Cites_doi 10.1093/emph/eoy005
10.1016/S0092-8674(01)00637-7
10.1128/MMBR.00069-15
10.1016/j.chom.2017.06.018
10.1038/ncomms14187
10.1093/ps/83.12.1944
10.1093/jhmas/48.3.275
10.1016/j.resmic.2012.08.008
10.1016/j.tim.2015.12.011
10.1128/JB.187.19.6742-6749.2005
10.1371/journal.pgen.1003102
10.4161/bact.1.2.14590
10.1038/srep26717
10.1016/j.tibtech.2010.08.001
10.1016/0042-6822(76)90021-0
10.1038/nrmicro1289
10.1111/j.1365-2958.2012.08202.x
10.1038/nature14098
10.1186/s13054-017-1709-y
10.1128/AAC.02173-16
10.1186/1743-422X-9-246
10.1128/AAC.01513-06
10.1128/AAC.02388-13
10.1073/pnas.93.8.3188
10.1085/jgp.36.1.39
10.1371/journal.ppat.1004691
10.1086/524891
10.1006/jmbi.2001.4578
10.1128/JVI.02033-13
10.1016/S1473-3099(18)30482-1
10.1017/S0022172400010512
10.1353/pbm.2001.0006
10.1111/j.1558-5646.2007.00226.x
10.1128/IAI.70.1.204-210.2002
10.1128/IAI.70.11.6251-6262.2002
10.1007/s11274-009-9991-8
10.1111/j.1365-2958.2011.07931.x
10.1038/srep04738
10.1038/nrmicro2315
10.1093/jac/dkw253
10.1371/journal.pone.0025486
10.3389/fmicb.2014.00618
10.1016/S0140-6736(01)20383-3
10.1146/annurev-micro-091014-104115
10.1128/AEM.02504-10
10.4137/PMC.S14459
10.1099/jmm.0.029744-0
10.1038/s41564-018-0110-1
10.1128/JB.150.2.916-924.1982
10.3389/fmicb.2015.00343
10.1111/1462-2920.13574
10.1128/AAC.00635-06
10.1016/j.ebiom.2015.12.023
10.1136/bmj.2.3315.47
10.1093/infdis/42.4.263
10.1186/1471-2180-2-35
10.1371/journal.pone.0016963
10.1111/j.1749-4486.2009.01973.x
10.1016/j.tvjl.2004.05.009
10.1136/bmj.2.4582.769
10.1146/annurev-micro-090110-102833
10.1128/mBio.00240-17
10.2307/2389364
10.1093/jpids/pix056
10.1093/ofid/ofy064
10.1038/nrmicro818
10.1098/rspb.1999.0651
10.1128/AEM.00706-13
10.1038/1921227a0
10.1136/thx.2005.la0156
10.1128/AAC.01028-06
10.1136/thoraxjnl-2016-209265
10.1016/j.coviro.2014.07.005
10.1093/genetics/150.2.523
10.1016/j.resmic.2018.05.001
10.1016/j.jtbi.2017.06.037
10.3389/fmicb.2016.01383
10.1093/genetics/28.6.491
10.1128/AAC.00954-17
10.1371/journal.ppat.1002917
10.1099/00222615-37-4-258
10.1146/annurev-ecolsys-110316-023003
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.chom.2019.01.014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 232
ExternalDocumentID 30763536
10_1016_j_chom_2019_01_014
S1931312819300526
Genre Journal Article
Review
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
0SF
NPM
7X8
ID FETCH-LOGICAL-c466t-78fd57ee4f6d167ac44ead86c26515998788c536f37be57bcb57d170fcb959433
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Fri Jul 11 01:30:06 EDT 2025
Wed Feb 19 02:35:08 EST 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 02:44:21 EDT 2025
Fri Feb 23 02:31:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-78fd57ee4f6d167ac44ead86c26515998788c536f37be57bcb57d170fcb959433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.cell.com/article/S1931312819300526/pdf
PMID 30763536
PQID 2229106253
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2229106253
pubmed_primary_30763536
crossref_citationtrail_10_1016_j_chom_2019_01_014
crossref_primary_10_1016_j_chom_2019_01_014
elsevier_sciencedirect_doi_10_1016_j_chom_2019_01_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-13
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Torres-Barceló, Hochberg (bib99) 2016; 24
Watanabe, Matsumoto, Sano, Ishii, Tateda, Sumiyama, Uchiyama, Sakurai, Matsuzaki, Imai, Yamaguchi (bib104) 2007; 51
Smith, Huggins, Shaw (bib92) 1987; 133
Twort (bib101) 1915; 186
d’Hérelle (bib18) 1917; 165
Dessau, Goldhill, McBride, Turner, Modis (bib23) 2012; 8
Sarker, Sultana, Reuteler, Moine, Descombes, Charton, Bourdin, McCallin, Ngom-Bru, Neville (bib83) 2016; 4
Wright, Hawkins, Anggård, Harper (bib107) 2009; 34
Semler, Goudie, Finlay, Dennis (bib87) 2014; 58
Soothill (bib93) 1992; 37
Smith, Huggins (bib91) 1983; 129
Spellberg, Guidos, Gilbert, Bradley, Boucher, Scheld, Bartlett, Edwards (bib94) 2008; 46
Sarker, Berger, Deng, Kieser, Foata, Moine, Descombes, Sultana, Huq, Bardhan (bib84) 2017; 19
Waters, Neill, Kaman, Sahota, Clokie, Winstanley, Kadioglu (bib105) 2017; 72
Eaton, Bayne-Jones (bib27) 1934; 103
.
Duplessis, Biswas, Hanisch, Perkins, Henry, Quinones, Wolfe, Estrella, Hamilton (bib26) 2017; 7
Marshall, Blacklock, Cameron, Capon, Cruickshank, Gaddum (bib67) 1948; 2
Stearns (bib95) 1989; 3
Kim, Ryu (bib51) 2011; 77
Goldhill, Turner (bib37) 2014; 8
Bull, Gill (bib8) 2014; 5
Mindich, Sinclair, Cohen (bib72) 1976; 75
Jault, Leclerc, Jennes, Pirnay, Que, Resch, Rousseau, Ravat, Carsin, Le, Floch (bib47) 2018; 19
Theriot, Young (bib98) 2015; 69
Smith (bib89) 1924; 2
Krueger, Scribner (bib55) 1941; 116
Pires, Cleto, Sillankorva, Azeredo, Lu (bib78) 2016; 80
Crick, Barnett, Brenner, Watts-Tobin (bib16) 1961; 192
Dufour, Clermont, La Combe, Messika, Dion, Khanna, Denamur, Ricard, Debarbieux (bib25) 2016; 71
Leung, Weitz (bib63) 2017; 429
Summers (bib96) 1993; 48
Messenger, Molineux, Bull (bib71) 1999; 266
d’Hérelle, F., Malone, R.H., and Lahiri, M.N. (1930). Studies on Asiatic cholera. Indian Medical Research Memoirs, No. 14.
Kim, Ryu (bib52) 2012; 86
Choi, Shin, Lee, Ryu (bib14) 2013; 79
Bedi, Verma, Chhibber (bib4) 2009; 25
Kutateladze, Adamia (bib57) 2010; 28
Riding (bib79) 1930; 30
Roach, Leung, Henry, Morello, Singh, Di Santo, Weitz, Debarbieux (bib80) 2017; 22
Hover, Kim, Katz, Charlop-Powers, Owen, Ternei, Maniko, Estrela, Molina, Park (bib44) 2018; 3
Rohwer, Youle, Maughan, Hisakawa (bib81) 2014
Biswas, Adhya, Washart, Paul, Trostel, Powell, Carlton, Merril (bib6) 2002; 70
Nair (bib74) 2005; 170
Cerveny, DePaola, Duckworth, Gulig (bib11) 2002; 70
Filippov, Sergueev, He, Huang, Gnade, Mueller, Fernandez-Prada, Nikolich (bib29) 2011; 6
Ling, Schneider, Peoples, Spoering, Engels, Conlon, Mueller, Schäberle, Hughes, Epstein (bib64) 2015; 517
Yen, Cairns, Camilli (bib108) 2017; 8
Smith, Huggins (bib90) 1982; 128
Hoyle, Zhvaniya, Balarjishvili, Bolkvadze, Nadareishvili, Nizharadze, Wittmann, Rohde, Kutateladze (bib45) 2018; 169
Bull, Levin, DeRouin, Walker, Bloch (bib9) 2002; 2
Fair, Tor (bib28) 2014; 6
Merril, Biswas, Carlton, Jensen, Creed, Zullo, Adhya (bib70) 1996; 93
Nale, Chutia, Carr, Hickenbotham, Clokie (bib75) 2016; 7
Wasik, Turner (bib103) 2013; 67
Chan, Sistrom, Wertz, Kortright, Narayan, Turner (bib12) 2016; 6
Khawaldeh, Morales, Dillon, Alavidze, Ginn, Thomas, Chapman, Dublanchet, Smithyman, Iredell (bib50) 2011; 60
Capparelli, Parlato, Borriello, Salvatore, Iannelli (bib10) 2007; 51
Hershey, Chase (bib42) 1952; 36
Brüssow, Hendrix (bib7) 2002; 108
LaVergne, Hamilton, Biswas, Kumaraswamy, Schooley, Wooten (bib60) 2018; 5
(bib106) 2017
Fleming, A. (1945). Penicillin’s finder assays its future. The New York Times, June 26, 1945. A21.
Bishop-Lilly, Plaut, Chen, Akmal, Willner, Butani, Dorsey, Mokashi, Mateczun, Chapman (bib5) 2012; 9
Cowie, Hicks (bib15) 1932; 17
d’Hérelle, Smith (bib19) 1926
Sexton, Montiel, Shay, Stephens, Slatyer (bib88) 2017; 48
Labrie, Samson, Moineau (bib58) 2010; 8
Schooley, Biswas, Gill, Hernandez-Morales, Lancaster, Lessor, Barr, Reed, Rohwer, Benler (bib85) 2017; 61
Galtier, De Sordi, Sivignon, de Vallée, Maura, Neut, Rahmouni, Wannerberger, Darfeuille-Michaud, Desreumaux (bib33) 2017; 11
Loc-Carrillo, Abedon (bib65) 2011; 1
Knezevic, Curcin, Aleksic, Petrusic, Vlaski (bib53) 2013; 164
Kudrin, Varik, Oliveira, Beljantseva, Del Peso Santos, Dzhygyr, Rejman, Cava, Tenson, Hauryliuk (bib56) 2017; 61
Morello, Saussereau, Maura, Huerre, Touqui, Debarbieux (bib73) 2011; 6
Foster (bib31) 2005; 3
Le, Yao, Lu, Tan, Rao, Li, Jin, Wang, Zhao, Wu (bib61) 2014; 4
Samson (bib82) 2005; 60
Duffy, Burch, Turner (bib24) 2007; 61
Furukawa, Mizushima (bib32) 1982; 150
Luria, Delbrück (bib66) 1943; 28
Geisinger, Isberg (bib35) 2015; 11
Turner, Chao (bib100) 1998; 150
Heinz, Ejaz, Bartholdson-Scott, Wang, Guanjaran, Pickard, Wilksch, Cao, ul-Haq, Dougan, Strugnell (bib41) 2018
Chan, Turner, Kim, Mojibian, Elefteriades, Narayan (bib13) 2018; 2018
Seed, Faruque, Mekalanos, Calderwood, Qadri, Camilli (bib86) 2012; 8
Oechslin, Piccardi, Mancini, Gabard, Moreillon, Entenza, Resch, Que (bib77) 2017; 215
McVay, Velásquez, Fralick (bib69) 2007; 51
Ho (bib43) 2001; 44
Jennes, Merabishvili, Soentjens, Pang, Rose, Keersebilck, Soete, François, Teodorescu, Verween (bib48) 2017; 21
Kaper, Nataro, Mobley (bib49) 2004; 2
Darch, Kragh, Abbott, Bjarnsholt, Bull, Whiteley (bib21) 2017; 8
Hadley (bib38) 1928; 42
Huff, Huff, Rath, Balog, Donoghue (bib46) 2004; 83
Krestownikowa, W., & Gubin, W. (1925). Die Verteilung and die Ausscheidung von Bak-teriophagen im Meerschweinchen-organismus bei subkutaner Applicationsart. J. Microbiol., Patolog. i. Infekzionnich bolesney, 1, 3.
Vinga, Baptista, Auzat, Petipas, Lurz, Tavares, Santos, São-José (bib102) 2012; 83
Bebeacua, Tremblay, Farenc, Chapot-Chartier, Sadovskaya, van Heel, Veesler, Moineau, Cambillau (bib3) 2013; 87
León, Bastías (bib62) 2015; 6
Davison, Couture-Tosi, Candela, Mock, Fouet (bib22) 2005; 187
German, Misra (bib36) 2001; 308
Torres-Barceló (10.1016/j.chom.2019.01.014_bib99) 2016; 24
Sarker (10.1016/j.chom.2019.01.014_bib83) 2016; 4
Huff (10.1016/j.chom.2019.01.014_bib46) 2004; 83
Rohwer (10.1016/j.chom.2019.01.014_bib81) 2014
d’Hérelle (10.1016/j.chom.2019.01.014_bib19) 1926
Filippov (10.1016/j.chom.2019.01.014_bib29) 2011; 6
Yen (10.1016/j.chom.2019.01.014_bib108) 2017; 8
Soothill (10.1016/j.chom.2019.01.014_bib93) 1992; 37
Spellberg (10.1016/j.chom.2019.01.014_bib94) 2008; 46
Cowie (10.1016/j.chom.2019.01.014_bib15) 1932; 17
León (10.1016/j.chom.2019.01.014_bib62) 2015; 6
Hoyle (10.1016/j.chom.2019.01.014_bib45) 2018; 169
Geisinger (10.1016/j.chom.2019.01.014_bib35) 2015; 11
Jennes (10.1016/j.chom.2019.01.014_bib48) 2017; 21
Darch (10.1016/j.chom.2019.01.014_bib21) 2017; 8
Knezevic (10.1016/j.chom.2019.01.014_bib53) 2013; 164
Twort (10.1016/j.chom.2019.01.014_bib101) 1915; 186
Riding (10.1016/j.chom.2019.01.014_bib79) 1930; 30
Wright (10.1016/j.chom.2019.01.014_bib107) 2009; 34
Nale (10.1016/j.chom.2019.01.014_bib75) 2016; 7
10.1016/j.chom.2019.01.014_bib20
Waters (10.1016/j.chom.2019.01.014_bib105) 2017; 72
Hover (10.1016/j.chom.2019.01.014_bib44) 2018; 3
Bishop-Lilly (10.1016/j.chom.2019.01.014_bib5) 2012; 9
Bull (10.1016/j.chom.2019.01.014_bib9) 2002; 2
Dufour (10.1016/j.chom.2019.01.014_bib25) 2016; 71
German (10.1016/j.chom.2019.01.014_bib36) 2001; 308
Smith (10.1016/j.chom.2019.01.014_bib90) 1982; 128
Choi (10.1016/j.chom.2019.01.014_bib14) 2013; 79
Nair (10.1016/j.chom.2019.01.014_bib74) 2005; 170
Morello (10.1016/j.chom.2019.01.014_bib73) 2011; 6
Sexton (10.1016/j.chom.2019.01.014_bib88) 2017; 48
Smith (10.1016/j.chom.2019.01.014_bib92) 1987; 133
Fair (10.1016/j.chom.2019.01.014_bib28) 2014; 6
10.1016/j.chom.2019.01.014_bib30
Hadley (10.1016/j.chom.2019.01.014_bib38) 1928; 42
Bebeacua (10.1016/j.chom.2019.01.014_bib3) 2013; 87
Sarker (10.1016/j.chom.2019.01.014_bib84) 2017; 19
Hershey (10.1016/j.chom.2019.01.014_bib42) 1952; 36
Kudrin (10.1016/j.chom.2019.01.014_bib56) 2017; 61
Loc-Carrillo (10.1016/j.chom.2019.01.014_bib65) 2011; 1
Foster (10.1016/j.chom.2019.01.014_bib31) 2005; 3
Merril (10.1016/j.chom.2019.01.014_bib70) 1996; 93
Kaper (10.1016/j.chom.2019.01.014_bib49) 2004; 2
Galtier (10.1016/j.chom.2019.01.014_bib33) 2017; 11
Vinga (10.1016/j.chom.2019.01.014_bib102) 2012; 83
Jault (10.1016/j.chom.2019.01.014_bib47) 2018; 19
Khawaldeh (10.1016/j.chom.2019.01.014_bib50) 2011; 60
Furukawa (10.1016/j.chom.2019.01.014_bib32) 1982; 150
Labrie (10.1016/j.chom.2019.01.014_bib58) 2010; 8
Pires (10.1016/j.chom.2019.01.014_bib78) 2016; 80
Biswas (10.1016/j.chom.2019.01.014_bib6) 2002; 70
Bedi (10.1016/j.chom.2019.01.014_bib4) 2009; 25
Turner (10.1016/j.chom.2019.01.014_bib100) 1998; 150
(10.1016/j.chom.2019.01.014_bib106) 2017
Brüssow (10.1016/j.chom.2019.01.014_bib7) 2002; 108
10.1016/j.chom.2019.01.014_bib54
Goldhill (10.1016/j.chom.2019.01.014_bib37) 2014; 8
Dessau (10.1016/j.chom.2019.01.014_bib23) 2012; 8
Summers (10.1016/j.chom.2019.01.014_bib96) 1993; 48
Heinz (10.1016/j.chom.2019.01.014_bib41) 2018
Bull (10.1016/j.chom.2019.01.014_bib8) 2014; 5
Kim (10.1016/j.chom.2019.01.014_bib52) 2012; 86
Samson (10.1016/j.chom.2019.01.014_bib82) 2005; 60
Chan (10.1016/j.chom.2019.01.014_bib13) 2018; 2018
Duplessis (10.1016/j.chom.2019.01.014_bib26) 2017; 7
Eaton (10.1016/j.chom.2019.01.014_bib27) 1934; 103
Le (10.1016/j.chom.2019.01.014_bib61) 2014; 4
Ling (10.1016/j.chom.2019.01.014_bib64) 2015; 517
Leung (10.1016/j.chom.2019.01.014_bib63) 2017; 429
Chan (10.1016/j.chom.2019.01.014_bib12) 2016; 6
Stearns (10.1016/j.chom.2019.01.014_bib95) 1989; 3
Krueger (10.1016/j.chom.2019.01.014_bib55) 1941; 116
Smith (10.1016/j.chom.2019.01.014_bib89) 1924; 2
Capparelli (10.1016/j.chom.2019.01.014_bib10) 2007; 51
Roach (10.1016/j.chom.2019.01.014_bib80) 2017; 22
Oechslin (10.1016/j.chom.2019.01.014_bib77) 2017; 215
Wasik (10.1016/j.chom.2019.01.014_bib103) 2013; 67
McVay (10.1016/j.chom.2019.01.014_bib69) 2007; 51
Kutateladze (10.1016/j.chom.2019.01.014_bib57) 2010; 28
d’Hérelle (10.1016/j.chom.2019.01.014_bib18) 1917; 165
Messenger (10.1016/j.chom.2019.01.014_bib71) 1999; 266
Semler (10.1016/j.chom.2019.01.014_bib87) 2014; 58
LaVergne (10.1016/j.chom.2019.01.014_bib60) 2018; 5
Mindich (10.1016/j.chom.2019.01.014_bib72) 1976; 75
Marshall (10.1016/j.chom.2019.01.014_bib67) 1948; 2
Kim (10.1016/j.chom.2019.01.014_bib51) 2011; 77
Cerveny (10.1016/j.chom.2019.01.014_bib11) 2002; 70
Crick (10.1016/j.chom.2019.01.014_bib16) 1961; 192
Seed (10.1016/j.chom.2019.01.014_bib86) 2012; 8
Schooley (10.1016/j.chom.2019.01.014_bib85) 2017; 61
Smith (10.1016/j.chom.2019.01.014_bib91) 1983; 129
Theriot (10.1016/j.chom.2019.01.014_bib98) 2015; 69
Ho (10.1016/j.chom.2019.01.014_bib43) 2001; 44
Watanabe (10.1016/j.chom.2019.01.014_bib104) 2007; 51
Davison (10.1016/j.chom.2019.01.014_bib22) 2005; 187
Luria (10.1016/j.chom.2019.01.014_bib66) 1943; 28
Duffy (10.1016/j.chom.2019.01.014_bib24) 2007; 61
References_xml – volume: 79
  start-page: 4829
  year: 2013
  end-page: 4837
  ident: bib14
  article-title: Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5
  publication-title: Appl. Environ. Microbiol.
– volume: 2
  start-page: 47
  year: 1924
  end-page: 49
  ident: bib89
  article-title: The bacteriophage in the treatment of typhoid fever
  publication-title: BMJ
– volume: 77
  start-page: 2042
  year: 2011
  end-page: 2050
  ident: bib51
  article-title: Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli
  publication-title: Appl. Environ. Microbiol.
– volume: 108
  start-page: 13
  year: 2002
  end-page: 16
  ident: bib7
  article-title: Phage genomics: small is beautiful
  publication-title: Cell
– volume: 3
  start-page: 415
  year: 2018
  end-page: 422
  ident: bib44
  article-title: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens
  publication-title: Nat. Microbiol.
– volume: 42
  start-page: 263
  year: 1928
  end-page: 434
  ident: bib38
  article-title: The Twort-D’Hérelle Phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action
  publication-title: J. Infect. Dis.
– volume: 28
  start-page: 591
  year: 2010
  end-page: 595
  ident: bib57
  article-title: Bacteriophages as potential new therapeutics to replace or supplement antibiotics
  publication-title: Trends Biotechnol.
– volume: 61
  start-page: e00954-17
  year: 2017
  ident: bib85
  article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection
  publication-title: Antimicrob. Agents Chemother.
– volume: 70
  start-page: 6251
  year: 2002
  end-page: 6262
  ident: bib11
  article-title: Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice
  publication-title: Infect. Immun.
– volume: 8
  start-page: 317
  year: 2010
  end-page: 327
  ident: bib58
  article-title: Bacteriophage resistance mechanisms
  publication-title: Nat. Rev. Microbiol.
– volume: 28
  start-page: 491
  year: 1943
  end-page: 511
  ident: bib66
  article-title: Mutations of bacteria from virus sensitivity to virus resistance
  publication-title: Genetics
– volume: 8
  start-page: e1003102
  year: 2012
  ident: bib23
  article-title: Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme
  publication-title: PLoS Genet.
– volume: 3
  start-page: 948
  year: 2005
  end-page: 958
  ident: bib31
  article-title: Immune evasion by staphylococci
  publication-title: Nat. Rev. Microbiol.
– volume: 116
  start-page: 2269
  year: 1941
  end-page: 2277
  ident: bib55
  article-title: The bacteriophage: Its nature and its therapeutic use
  publication-title: J. Am. Med. Assoc.
– volume: 51
  start-page: 1934
  year: 2007
  end-page: 1938
  ident: bib69
  article-title: Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model
  publication-title: Antimicrob. Agents Chemother.
– volume: 25
  start-page: 1145
  year: 2009
  ident: bib4
  article-title: Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055
  publication-title: World J. Microbiol. Biotechnol.
– volume: 4
  start-page: 4738
  year: 2014
  ident: bib61
  article-title: Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa
  publication-title: Sci. Rep.
– volume: 266
  start-page: 397
  year: 1999
  end-page: 404
  ident: bib71
  article-title: Virulence evolution in a virus obeys a trade-off
  publication-title: Proc. Biol. Sci.
– volume: 11
  start-page: 840
  year: 2017
  end-page: 847
  ident: bib33
  article-title: Bacteriophages targeting Adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease
  publication-title: J. Crohn’s Colitis
– volume: 83
  start-page: 289
  year: 2012
  end-page: 303
  ident: bib102
  article-title: Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection
  publication-title: Mol. Microbiol.
– start-page: 490
  year: 1926
  end-page: 497
  ident: bib19
  article-title: The bacteriophage and its behavior
– volume: 30
  start-page: 387
  year: 1930
  end-page: 401
  ident: bib79
  article-title: Acute Bacillary Dysentery in Khartoum Province, Sudan, with Special Reference to Bacteriophage Treatment: Bacteriological Investigation
  publication-title: J. Hyg. (Lond.)
– volume: 429
  start-page: 241
  year: 2017
  end-page: 252
  ident: bib63
  article-title: Modeling the synergistic elimination of bacteria by phage and the innate immune system
  publication-title: J. Theor. Biol.
– volume: 60
  start-page: 495
  year: 2005
  ident: bib82
  article-title: A new class of antimycobacterial drugs: the diarylquinolines
  publication-title: Thorax
– volume: 2
  start-page: 35
  year: 2002
  ident: bib9
  article-title: Dynamics of success and failure in phage and antibiotic therapy in experimental infections
  publication-title: BMC Microbiol.
– volume: 36
  start-page: 39
  year: 1952
  end-page: 56
  ident: bib42
  article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage
  publication-title: J. Gen. Physiol.
– volume: 6
  start-page: e25486
  year: 2011
  ident: bib29
  article-title: Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice
  publication-title: PLoS ONE
– volume: 6
  start-page: 25
  year: 2014
  end-page: 64
  ident: bib28
  article-title: Antibiotics and bacterial resistance in the 21st century
  publication-title: Perspect. Medicin Chem.
– start-page: 283291
  year: 2018
  ident: bib41
  article-title: Emergence of carbapenem, beta-lactamase inhibitor and cefoxitin resistant lineages from a background of ESBL-producing Klebsiella pneumoniae and K. quasipneumoniae highlights different evolutionary mechanisms
  publication-title: bioRxiv
– volume: 6
  start-page: 343
  year: 2015
  ident: bib62
  article-title: Virulence reduction in bacteriophage resistant bacteria
  publication-title: Front. Microbiol.
– year: 2014
  ident: bib81
  article-title: Life in Our Phage World: A Centennial Field Guide to the Earth’s Most Diverse Inhabitants
– volume: 170
  start-page: 175
  year: 2005
  end-page: 183
  ident: bib74
  article-title: Evolution of Marek’s disease -- a paradigm for incessant race between the pathogen and the host
  publication-title: Vet. J.
– volume: 8
  start-page: 79
  year: 2014
  end-page: 84
  ident: bib37
  article-title: The evolution of life history trade-offs in viruses
  publication-title: Curr. Opin. Virol.
– volume: 7
  start-page: 253
  year: 2017
  end-page: 256
  ident: bib26
  article-title: Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy
  publication-title: J. Pediatric Infect. Dis. Soc.
– volume: 34
  start-page: 349
  year: 2009
  end-page: 357
  ident: bib107
  article-title: A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy
  publication-title: Clin. Otolaryngol.
– volume: 86
  start-page: 411
  year: 2012
  end-page: 425
  ident: bib52
  article-title: Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium
  publication-title: Mol. Microbiol.
– volume: 67
  start-page: 519
  year: 2013
  end-page: 541
  ident: bib103
  article-title: On the biological success of viruses
  publication-title: Annu. Rev. Microbiol.
– volume: 72
  start-page: 666
  year: 2017
  end-page: 667
  ident: bib105
  article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa
  publication-title: Thorax
– volume: 17
  start-page: 685
  year: 1932
  ident: bib15
  article-title: Observations on the bacteriophage III
  publication-title: J. Lab. Clin. Med.
– reference: d’Hérelle, F., Malone, R.H., and Lahiri, M.N. (1930). Studies on Asiatic cholera. Indian Medical Research Memoirs, No. 14.
– volume: 3
  start-page: 259
  year: 1989
  end-page: 268
  ident: bib95
  article-title: Trade-offs in life-history evolution
  publication-title: Funct. Ecol.
– volume: 5
  start-page: ofy064
  year: 2018
  ident: bib60
  article-title: Phage therapy for a multidrug-resistant
  publication-title: Open Forum Infect. Dis.
– volume: 93
  start-page: 3188
  year: 1996
  end-page: 3192
  ident: bib70
  article-title: Long-circulating bacteriophage as antibacterial agents
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 83
  start-page: 1944
  year: 2004
  end-page: 1947
  ident: bib46
  article-title: Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers
  publication-title: Poult. Sci.
– volume: 19
  start-page: 35
  year: 2018
  end-page: 45
  ident: bib47
  article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial
  publication-title: Lancet Infect. Dis.
– volume: 165
  start-page: 373
  year: 1917
  end-page: 375
  ident: bib18
  article-title: Sur un microbe invisible antagoniste des bacilles dysentériques
  publication-title: CR Acad. Sci. Paris
– volume: 187
  start-page: 6742
  year: 2005
  end-page: 6749
  ident: bib22
  article-title: Identification of the Bacillus anthracis (γ) phage receptor
  publication-title: J. Bacteriol.
– volume: 60
  start-page: 1697
  year: 2011
  end-page: 1700
  ident: bib50
  article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection
  publication-title: J. Med. Microbiol.
– volume: 192
  start-page: 1227
  year: 1961
  end-page: 1232
  ident: bib16
  article-title: General nature of the genetic code for proteins
  publication-title: Nature
– reference: Krestownikowa, W., & Gubin, W. (1925). Die Verteilung and die Ausscheidung von Bak-teriophagen im Meerschweinchen-organismus bei subkutaner Applicationsart. J. Microbiol., Patolog. i. Infekzionnich bolesney, 1, 3.
– volume: 46
  start-page: 155
  year: 2008
  end-page: 164
  ident: bib94
  article-title: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America
  publication-title: Clin. Infect. Dis.
– volume: 5
  start-page: 618
  year: 2014
  ident: bib8
  article-title: The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages
  publication-title: Front. Microbiol.
– volume: 44
  start-page: 1
  year: 2001
  end-page: 16
  ident: bib43
  article-title: Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era
  publication-title: Perspect. Biol. Med.
– volume: 150
  start-page: 523
  year: 1998
  end-page: 532
  ident: bib100
  article-title: Sex and the evolution of intrahost competition in RNA virus φ6
  publication-title: Genetics
– volume: 24
  start-page: 249
  year: 2016
  end-page: 256
  ident: bib99
  article-title: Evolutionary rationale for phages as complements of antibiotics
  publication-title: Trends Microbiol.
– volume: 71
  start-page: 3072
  year: 2016
  end-page: 3080
  ident: bib25
  article-title: Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex
  publication-title: J. Antimicrob. Chemother.
– volume: 11
  start-page: e1004691
  year: 2015
  ident: bib35
  article-title: Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii
  publication-title: PLoS Pathog.
– volume: 75
  start-page: 224
  year: 1976
  end-page: 231
  ident: bib72
  article-title: The morphogenesis of bacteriophage φ6: particles formed by nonsense mutants
  publication-title: Virology
– volume: 150
  start-page: 916
  year: 1982
  end-page: 924
  ident: bib32
  article-title: Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids
  publication-title: J. Bacteriol.
– volume: 61
  start-page: e02173-16
  year: 2017
  ident: bib56
  article-title: Sub-inhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams
  publication-title: Antimicrob. Agents Chemother.
– volume: 22
  start-page: 38
  year: 2017
  end-page: 47.e4
  ident: bib80
  article-title: Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen
  publication-title: Cell Host Microbe
– volume: 517
  start-page: 455
  year: 2015
  end-page: 459
  ident: bib64
  article-title: A new antibiotic kills pathogens without detectable resistance
  publication-title: Nature
– volume: 1
  start-page: 111
  year: 2011
  end-page: 114
  ident: bib65
  article-title: Pros and cons of phage therapy
  publication-title: Bacteriophage
– volume: 6
  start-page: 26717
  year: 2016
  ident: bib12
  article-title: Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa
  publication-title: Sci. Rep.
– volume: 19
  start-page: 237
  year: 2017
  end-page: 250
  ident: bib84
  article-title: Oral application of
  publication-title: Environ. Microbiol.
– year: 2017
  ident: bib106
  article-title: WHO Publishes List of Bacteria for which New Antibiotics Are Urgently Needed
– volume: 70
  start-page: 204
  year: 2002
  end-page: 210
  ident: bib6
  article-title: Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium
  publication-title: Infect. Immun.
– volume: 48
  start-page: 183
  year: 2017
  end-page: 206
  ident: bib88
  article-title: Evolution of ecological niche breath
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 51
  start-page: 2765
  year: 2007
  end-page: 2773
  ident: bib10
  article-title: Experimental phage therapy against
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  start-page: 246
  year: 2012
  ident: bib5
  article-title: Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption
  publication-title: Virol. J.
– volume: 169
  start-page: 540
  year: 2018
  end-page: 542
  ident: bib45
  article-title: Phage therapy against
  publication-title: Res. Microbiol.
– volume: 8
  start-page: e00240-17
  year: 2017
  ident: bib21
  article-title: Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model
  publication-title: MBio
– reference: Fleming, A. (1945). Penicillin’s finder assays its future. The New York Times, June 26, 1945. A21.
– volume: 21
  start-page: 129
  year: 2017
  ident: bib48
  article-title: Use of bacteriophages in the treatment of colistin-only-sensitive
  publication-title: Crit. Care
– volume: 2
  start-page: 769
  year: 1948
  end-page: 782
  ident: bib67
  article-title: STREPTOMYCIN treatment of pulmonary tuberculosis
  publication-title: BMJ
– volume: 133
  start-page: 1127
  year: 1987
  end-page: 1135
  ident: bib92
  article-title: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment
  publication-title: J. Gen. Microbiol.
– volume: 103
  start-page: 1769
  year: 1934
  end-page: 1776
  ident: bib27
  article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections
  publication-title: J. Am. Med. Assoc.
– volume: 2
  start-page: 123
  year: 2004
  end-page: 140
  ident: bib49
  article-title: Pathogenic Escherichia coli
  publication-title: Nat. Rev. Microbiol.
– volume: 8
  start-page: 14187
  year: 2017
  ident: bib108
  article-title: A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models
  publication-title: Nat. Commun.
– volume: 8
  start-page: e1002917
  year: 2012
  ident: bib86
  article-title: Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1
  publication-title: PLoS Pathog.
– volume: 129
  start-page: 2659
  year: 1983
  end-page: 2675
  ident: bib91
  article-title: Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs
  publication-title: J. Gen. Microbiol.
– volume: 308
  start-page: 579
  year: 2001
  end-page: 585
  ident: bib36
  article-title: The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage
  publication-title: J. Mol. Biol.
– volume: 215
  start-page: 703
  year: 2017
  end-page: 712
  ident: bib77
  article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence
  publication-title: J. Infect. Dis.
– volume: 2018
  start-page: 60
  year: 2018
  end-page: 66
  ident: bib13
  article-title: Phage treatment of an aortic graft infected with
  publication-title: Evol. Med. Public Health
– volume: 7
  start-page: 1383
  year: 2016
  ident: bib75
  article-title: ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages
  publication-title: Front. Microbiol.
– volume: 4
  start-page: 124
  year: 2016
  end-page: 137
  ident: bib83
  article-title: Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh
  publication-title: EBioMedicine
– volume: 164
  start-page: 55
  year: 2013
  end-page: 60
  ident: bib53
  article-title: Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa
  publication-title: Res. Microbiol.
– volume: 6
  start-page: e16963
  year: 2011
  ident: bib73
  article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention
  publication-title: PLoS ONE
– volume: 128
  start-page: 307
  year: 1982
  end-page: 318
  ident: bib90
  article-title: Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics
  publication-title: J. Gen. Microbiol.
– reference: .
– volume: 58
  start-page: 4005
  year: 2014
  end-page: 4013
  ident: bib87
  article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections
  publication-title: Antimicrob. Agents Chemother.
– volume: 37
  start-page: 258
  year: 1992
  end-page: 261
  ident: bib93
  article-title: Treatment of experimental infections of mice with bacteriophages
  publication-title: J. Med. Microbiol.
– volume: 61
  start-page: 2614
  year: 2007
  end-page: 2622
  ident: bib24
  article-title: Evolution of host specificity drives reproductive isolation among RNA viruses
  publication-title: Evolution
– volume: 186
  start-page: 1241
  year: 1915
  end-page: 1243
  ident: bib101
  article-title: An investigation on the nature of ultra-microscopic viruses
  publication-title: Lancet
– volume: 51
  start-page: 446
  year: 2007
  end-page: 452
  ident: bib104
  article-title: Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice
  publication-title: Antimicrob. Agents Chemother.
– volume: 48
  start-page: 275
  year: 1993
  end-page: 301
  ident: bib96
  article-title: Cholera and plague in India: the bacteriophage inquiry of 1927-1936
  publication-title: J. Hist. Med. Allied Sci.
– volume: 80
  start-page: 523
  year: 2016
  end-page: 543
  ident: bib78
  article-title: Genetically engineered phages: a review of advances over the last decade
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 87
  start-page: 12302
  year: 2013
  end-page: 12312
  ident: bib3
  article-title: Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2
  publication-title: J. Virol.
– volume: 69
  start-page: 445
  year: 2015
  end-page: 461
  ident: bib98
  article-title: Interactions between the gastrointestinal microbiome and Clostridium difficile
  publication-title: Annu. Rev. Microbiol.
– start-page: 283291
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib41
  article-title: Emergence of carbapenem, beta-lactamase inhibitor and cefoxitin resistant lineages from a background of ESBL-producing Klebsiella pneumoniae and K. quasipneumoniae highlights different evolutionary mechanisms
  publication-title: bioRxiv
– ident: 10.1016/j.chom.2019.01.014_bib54
– volume: 2018
  start-page: 60
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib13
  article-title: Phage treatment of an aortic graft infected with Pseudomonas aeruginosa
  publication-title: Evol. Med. Public Health
  doi: 10.1093/emph/eoy005
– volume: 215
  start-page: 703
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib77
  article-title: Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence
  publication-title: J. Infect. Dis.
– volume: 108
  start-page: 13
  year: 2002
  ident: 10.1016/j.chom.2019.01.014_bib7
  article-title: Phage genomics: small is beautiful
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00637-7
– volume: 80
  start-page: 523
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib78
  article-title: Genetically engineered phages: a review of advances over the last decade
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00069-15
– volume: 22
  start-page: 38
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib80
  article-title: Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.06.018
– volume: 116
  start-page: 2269
  year: 1941
  ident: 10.1016/j.chom.2019.01.014_bib55
  article-title: The bacteriophage: Its nature and its therapeutic use
  publication-title: J. Am. Med. Assoc.
– volume: 8
  start-page: 14187
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib108
  article-title: A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14187
– volume: 83
  start-page: 1944
  year: 2004
  ident: 10.1016/j.chom.2019.01.014_bib46
  article-title: Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers
  publication-title: Poult. Sci.
  doi: 10.1093/ps/83.12.1944
– volume: 48
  start-page: 275
  year: 1993
  ident: 10.1016/j.chom.2019.01.014_bib96
  article-title: Cholera and plague in India: the bacteriophage inquiry of 1927-1936
  publication-title: J. Hist. Med. Allied Sci.
  doi: 10.1093/jhmas/48.3.275
– volume: 164
  start-page: 55
  year: 2013
  ident: 10.1016/j.chom.2019.01.014_bib53
  article-title: Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2012.08.008
– volume: 24
  start-page: 249
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib99
  article-title: Evolutionary rationale for phages as complements of antibiotics
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.12.011
– volume: 187
  start-page: 6742
  year: 2005
  ident: 10.1016/j.chom.2019.01.014_bib22
  article-title: Identification of the Bacillus anthracis (γ) phage receptor
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.19.6742-6749.2005
– volume: 8
  start-page: e1003102
  year: 2012
  ident: 10.1016/j.chom.2019.01.014_bib23
  article-title: Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003102
– volume: 1
  start-page: 111
  year: 2011
  ident: 10.1016/j.chom.2019.01.014_bib65
  article-title: Pros and cons of phage therapy
  publication-title: Bacteriophage
  doi: 10.4161/bact.1.2.14590
– volume: 6
  start-page: 26717
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib12
  article-title: Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa
  publication-title: Sci. Rep.
  doi: 10.1038/srep26717
– volume: 28
  start-page: 591
  year: 2010
  ident: 10.1016/j.chom.2019.01.014_bib57
  article-title: Bacteriophages as potential new therapeutics to replace or supplement antibiotics
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.08.001
– volume: 75
  start-page: 224
  year: 1976
  ident: 10.1016/j.chom.2019.01.014_bib72
  article-title: The morphogenesis of bacteriophage φ6: particles formed by nonsense mutants
  publication-title: Virology
  doi: 10.1016/0042-6822(76)90021-0
– volume: 3
  start-page: 948
  year: 2005
  ident: 10.1016/j.chom.2019.01.014_bib31
  article-title: Immune evasion by staphylococci
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1289
– volume: 86
  start-page: 411
  year: 2012
  ident: 10.1016/j.chom.2019.01.014_bib52
  article-title: Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08202.x
– volume: 517
  start-page: 455
  year: 2015
  ident: 10.1016/j.chom.2019.01.014_bib64
  article-title: A new antibiotic kills pathogens without detectable resistance
  publication-title: Nature
  doi: 10.1038/nature14098
– volume: 21
  start-page: 129
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib48
  article-title: Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report
  publication-title: Crit. Care
  doi: 10.1186/s13054-017-1709-y
– volume: 61
  start-page: e02173-16
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib56
  article-title: Sub-inhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02173-16
– volume: 9
  start-page: 246
  year: 2012
  ident: 10.1016/j.chom.2019.01.014_bib5
  article-title: Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-9-246
– volume: 51
  start-page: 2765
  year: 2007
  ident: 10.1016/j.chom.2019.01.014_bib10
  article-title: Experimental phage therapy against Staphylococcus aureus in mice
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01513-06
– volume: 58
  start-page: 4005
  year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib87
  article-title: Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02388-13
– volume: 93
  start-page: 3188
  year: 1996
  ident: 10.1016/j.chom.2019.01.014_bib70
  article-title: Long-circulating bacteriophage as antibacterial agents
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.8.3188
– volume: 36
  start-page: 39
  year: 1952
  ident: 10.1016/j.chom.2019.01.014_bib42
  article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.36.1.39
– year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib81
– volume: 11
  start-page: e1004691
  year: 2015
  ident: 10.1016/j.chom.2019.01.014_bib35
  article-title: Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004691
– volume: 46
  start-page: 155
  year: 2008
  ident: 10.1016/j.chom.2019.01.014_bib94
  article-title: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/524891
– volume: 308
  start-page: 579
  year: 2001
  ident: 10.1016/j.chom.2019.01.014_bib36
  article-title: The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4578
– volume: 87
  start-page: 12302
  year: 2013
  ident: 10.1016/j.chom.2019.01.014_bib3
  article-title: Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2
  publication-title: J. Virol.
  doi: 10.1128/JVI.02033-13
– volume: 19
  start-page: 35
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib47
  article-title: Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(18)30482-1
– volume: 30
  start-page: 387
  year: 1930
  ident: 10.1016/j.chom.2019.01.014_bib79
  article-title: Acute Bacillary Dysentery in Khartoum Province, Sudan, with Special Reference to Bacteriophage Treatment: Bacteriological Investigation
  publication-title: J. Hyg. (Lond.)
  doi: 10.1017/S0022172400010512
– volume: 44
  start-page: 1
  year: 2001
  ident: 10.1016/j.chom.2019.01.014_bib43
  article-title: Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era
  publication-title: Perspect. Biol. Med.
  doi: 10.1353/pbm.2001.0006
– volume: 61
  start-page: 2614
  year: 2007
  ident: 10.1016/j.chom.2019.01.014_bib24
  article-title: Evolution of host specificity drives reproductive isolation among RNA viruses
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2007.00226.x
– volume: 70
  start-page: 204
  year: 2002
  ident: 10.1016/j.chom.2019.01.014_bib6
  article-title: Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.70.1.204-210.2002
– volume: 128
  start-page: 307
  year: 1982
  ident: 10.1016/j.chom.2019.01.014_bib90
  article-title: Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics
  publication-title: J. Gen. Microbiol.
– year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib106
– volume: 70
  start-page: 6251
  year: 2002
  ident: 10.1016/j.chom.2019.01.014_bib11
  article-title: Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.70.11.6251-6262.2002
– volume: 25
  start-page: 1145
  year: 2009
  ident: 10.1016/j.chom.2019.01.014_bib4
  article-title: Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-009-9991-8
– volume: 83
  start-page: 289
  year: 2012
  ident: 10.1016/j.chom.2019.01.014_bib102
  article-title: Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07931.x
– volume: 4
  start-page: 4738
  year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib61
  article-title: Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa
  publication-title: Sci. Rep.
  doi: 10.1038/srep04738
– volume: 8
  start-page: 317
  year: 2010
  ident: 10.1016/j.chom.2019.01.014_bib58
  article-title: Bacteriophage resistance mechanisms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2315
– volume: 165
  start-page: 373
  year: 1917
  ident: 10.1016/j.chom.2019.01.014_bib18
  article-title: Sur un microbe invisible antagoniste des bacilles dysentériques
  publication-title: CR Acad. Sci. Paris
– volume: 71
  start-page: 3072
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib25
  article-title: Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkw253
– volume: 6
  start-page: e25486
  year: 2011
  ident: 10.1016/j.chom.2019.01.014_bib29
  article-title: Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025486
– volume: 5
  start-page: 618
  year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib8
  article-title: The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00618
– volume: 186
  start-page: 1241
  year: 1915
  ident: 10.1016/j.chom.2019.01.014_bib101
  article-title: An investigation on the nature of ultra-microscopic viruses
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)20383-3
– volume: 69
  start-page: 445
  year: 2015
  ident: 10.1016/j.chom.2019.01.014_bib98
  article-title: Interactions between the gastrointestinal microbiome and Clostridium difficile
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091014-104115
– volume: 77
  start-page: 2042
  year: 2011
  ident: 10.1016/j.chom.2019.01.014_bib51
  article-title: Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02504-10
– volume: 6
  start-page: 25
  year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib28
  article-title: Antibiotics and bacterial resistance in the 21st century
  publication-title: Perspect. Medicin Chem.
  doi: 10.4137/PMC.S14459
– volume: 60
  start-page: 1697
  year: 2011
  ident: 10.1016/j.chom.2019.01.014_bib50
  article-title: Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.029744-0
– volume: 3
  start-page: 415
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib44
  article-title: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0110-1
– volume: 150
  start-page: 916
  year: 1982
  ident: 10.1016/j.chom.2019.01.014_bib32
  article-title: Roles of cell surface components of Escherichia coli K-12 in bacteriophage T4 infection: interaction of tail core with phospholipids
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.150.2.916-924.1982
– volume: 6
  start-page: 343
  year: 2015
  ident: 10.1016/j.chom.2019.01.014_bib62
  article-title: Virulence reduction in bacteriophage resistant bacteria
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00343
– volume: 19
  start-page: 237
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib84
  article-title: Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13574
– volume: 51
  start-page: 446
  year: 2007
  ident: 10.1016/j.chom.2019.01.014_bib104
  article-title: Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00635-06
– start-page: 490
  year: 1926
  ident: 10.1016/j.chom.2019.01.014_bib19
– volume: 4
  start-page: 124
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib83
  article-title: Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2015.12.023
– volume: 11
  start-page: 840
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib33
  article-title: Bacteriophages targeting Adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease
  publication-title: J. Crohn’s Colitis
– volume: 2
  start-page: 47
  year: 1924
  ident: 10.1016/j.chom.2019.01.014_bib89
  article-title: The bacteriophage in the treatment of typhoid fever
  publication-title: BMJ
  doi: 10.1136/bmj.2.3315.47
– volume: 42
  start-page: 263
  year: 1928
  ident: 10.1016/j.chom.2019.01.014_bib38
  article-title: The Twort-D’Hérelle Phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/42.4.263
– volume: 2
  start-page: 35
  year: 2002
  ident: 10.1016/j.chom.2019.01.014_bib9
  article-title: Dynamics of success and failure in phage and antibiotic therapy in experimental infections
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-2-35
– volume: 6
  start-page: e16963
  year: 2011
  ident: 10.1016/j.chom.2019.01.014_bib73
  article-title: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016963
– volume: 34
  start-page: 349
  year: 2009
  ident: 10.1016/j.chom.2019.01.014_bib107
  article-title: A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy
  publication-title: Clin. Otolaryngol.
  doi: 10.1111/j.1749-4486.2009.01973.x
– volume: 170
  start-page: 175
  year: 2005
  ident: 10.1016/j.chom.2019.01.014_bib74
  article-title: Evolution of Marek’s disease -- a paradigm for incessant race between the pathogen and the host
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2004.05.009
– volume: 2
  start-page: 769
  year: 1948
  ident: 10.1016/j.chom.2019.01.014_bib67
  article-title: STREPTOMYCIN treatment of pulmonary tuberculosis
  publication-title: BMJ
  doi: 10.1136/bmj.2.4582.769
– volume: 67
  start-page: 519
  year: 2013
  ident: 10.1016/j.chom.2019.01.014_bib103
  article-title: On the biological success of viruses
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090110-102833
– volume: 8
  start-page: e00240-17
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib21
  article-title: Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model
  publication-title: MBio
  doi: 10.1128/mBio.00240-17
– volume: 3
  start-page: 259
  year: 1989
  ident: 10.1016/j.chom.2019.01.014_bib95
  article-title: Trade-offs in life-history evolution
  publication-title: Funct. Ecol.
  doi: 10.2307/2389364
– volume: 7
  start-page: 253
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib26
  article-title: Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy
  publication-title: J. Pediatric Infect. Dis. Soc.
  doi: 10.1093/jpids/pix056
– volume: 5
  start-page: ofy064
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib60
  article-title: Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection
  publication-title: Open Forum Infect. Dis.
  doi: 10.1093/ofid/ofy064
– volume: 129
  start-page: 2659
  year: 1983
  ident: 10.1016/j.chom.2019.01.014_bib91
  article-title: Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs
  publication-title: J. Gen. Microbiol.
– ident: 10.1016/j.chom.2019.01.014_bib30
– volume: 2
  start-page: 123
  year: 2004
  ident: 10.1016/j.chom.2019.01.014_bib49
  article-title: Pathogenic Escherichia coli
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro818
– volume: 266
  start-page: 397
  year: 1999
  ident: 10.1016/j.chom.2019.01.014_bib71
  article-title: Virulence evolution in a virus obeys a trade-off
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.1999.0651
– volume: 79
  start-page: 4829
  year: 2013
  ident: 10.1016/j.chom.2019.01.014_bib14
  article-title: Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00706-13
– volume: 192
  start-page: 1227
  year: 1961
  ident: 10.1016/j.chom.2019.01.014_bib16
  article-title: General nature of the genetic code for proteins
  publication-title: Nature
  doi: 10.1038/1921227a0
– ident: 10.1016/j.chom.2019.01.014_bib20
– volume: 103
  start-page: 1769
  year: 1934
  ident: 10.1016/j.chom.2019.01.014_bib27
  article-title: Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections
  publication-title: J. Am. Med. Assoc.
– volume: 60
  start-page: 495
  year: 2005
  ident: 10.1016/j.chom.2019.01.014_bib82
  article-title: A new class of antimycobacterial drugs: the diarylquinolines
  publication-title: Thorax
  doi: 10.1136/thx.2005.la0156
– volume: 51
  start-page: 1934
  year: 2007
  ident: 10.1016/j.chom.2019.01.014_bib69
  article-title: Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01028-06
– volume: 72
  start-page: 666
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib105
  article-title: Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2016-209265
– volume: 17
  start-page: 685
  year: 1932
  ident: 10.1016/j.chom.2019.01.014_bib15
  article-title: Observations on the bacteriophage III
  publication-title: J. Lab. Clin. Med.
– volume: 8
  start-page: 79
  year: 2014
  ident: 10.1016/j.chom.2019.01.014_bib37
  article-title: The evolution of life history trade-offs in viruses
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2014.07.005
– volume: 150
  start-page: 523
  year: 1998
  ident: 10.1016/j.chom.2019.01.014_bib100
  article-title: Sex and the evolution of intrahost competition in RNA virus φ6
  publication-title: Genetics
  doi: 10.1093/genetics/150.2.523
– volume: 169
  start-page: 540
  year: 2018
  ident: 10.1016/j.chom.2019.01.014_bib45
  article-title: Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2018.05.001
– volume: 429
  start-page: 241
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib63
  article-title: Modeling the synergistic elimination of bacteria by phage and the innate immune system
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2017.06.037
– volume: 7
  start-page: 1383
  year: 2016
  ident: 10.1016/j.chom.2019.01.014_bib75
  article-title: ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01383
– volume: 28
  start-page: 491
  year: 1943
  ident: 10.1016/j.chom.2019.01.014_bib66
  article-title: Mutations of bacteria from virus sensitivity to virus resistance
  publication-title: Genetics
  doi: 10.1093/genetics/28.6.491
– volume: 61
  start-page: e00954-17
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib85
  article-title: Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00954-17
– volume: 8
  start-page: e1002917
  year: 2012
  ident: 10.1016/j.chom.2019.01.014_bib86
  article-title: Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002917
– volume: 37
  start-page: 258
  year: 1992
  ident: 10.1016/j.chom.2019.01.014_bib93
  article-title: Treatment of experimental infections of mice with bacteriophages
  publication-title: J. Med. Microbiol.
  doi: 10.1099/00222615-37-4-258
– volume: 133
  start-page: 1127
  year: 1987
  ident: 10.1016/j.chom.2019.01.014_bib92
  article-title: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment
  publication-title: J. Gen. Microbiol.
– volume: 48
  start-page: 183
  year: 2017
  ident: 10.1016/j.chom.2019.01.014_bib88
  article-title: Evolution of ecological niche breath
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-110316-023003
SSID ssj0055071
Score 2.692376
SecondaryResourceType review_article
Snippet Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 219
Title Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria
URI https://dx.doi.org/10.1016/j.chom.2019.01.014
https://www.ncbi.nlm.nih.gov/pubmed/30763536
https://www.proquest.com/docview/2229106253
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR364vIniTsE3z2npbRVkFRVaFvYUmTVGRrmhF_PfONK3gYT0IPbQlacIk_TLDzHxDyFGSeCmKJGGeO8kknIHMyVwyZbhLi2FaZAGzka9v9PhBXk3VtEfOulwYDKtssT9ieoPW7ZtBK83B69PT4A5UDy4aR5BoWEsAh4UcNkl809MOjZGui0fPMmfYuk2ciTFeWI8Ew7uyhrqTy3mH0zzlszmELlbIcqs90lGc4CrphWqNLMZ6kl_r5PL2EeCB3kemgBM6ohOAss9Q0FFLHU7rGQUIcHlNRxWmi8zgS2wS3lGNrGp6Gsmb8w3ycHF-fzZmba0E5qXWNTPDslAmBFnqgmuTeylhjwy1T7HWOdhUYOp6JXQpjAvKOO-UKbhJSu8ylUkhNslCNavCNqHCZdrlpkTqeKngHmw-47KUy2B0yMs-4Z2QrG-JxLGexYvtIsaeLQrWomBtwuGSfXL80-c10mj82Vp1sre_NoMFnP-z32G3UBb-EnR95FWYfbxbrFoOxm-qRJ9sxRX8mQegHGhdQu_8c9RdsoRPGMrNxR5ZqN8-wj5oKrU7aLbiN_QM4xU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhpbSX0KavTZtEhfZUxFrWa13IYdM07DYPSrqBvamWLNOE4A1dh5Df1T_YGUsO9JAcCgEfjG3ZYiR9M2PNfEPIhyzzUlRZxjx3kknQgczJUjJluMurUV4VAbORj4715FR-m6v5CvnT58JgWGXC_ojpHVqnK8MkzeHl2dnwB5geXHQbQaJjLUmRlQfh5hr8tuXOdA8G-WOe73-dfZmwVFqAeal1y8yorpQJQda64tqUXkoQ6Uj7HEuDgwsCnqFXQtfCuKCM806Zipus9q5QhcS_oID7j8D6MIgG0_luD__ID8bjVjZn2L2UqRODyrAACsaTFR1XKJd3acO7rN1O6-0_I2vJXKXjKJHnZCU06-RxLGB584JMv_8CPKKzSE3wmY7pCWDndajoOHGV03ZBAXNc2dJxg_kpC3gTOwlLtFublu5GtujyJTl9EAm-IqvNoglvCBWu0K40NXLVSwXn4GQaV-RcBqNDWQ8I74VkfWIuxwIaF7YPUTu3KFiLgrUZh0MOyKfbNpeRt-Pep1Uve_vP7LOgWO5t974fKAvLEvdayiYsrpYWy6SDt50rMSCv4wje9gNgFcw8oTf-86vb5MlkdnRoD6fHB2_JU7yDceRcvCOr7e-rsAlmUuu2umlJyc-HXgd_AZrGICo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phage+Therapy%3A+A+Renewed+Approach+to+Combat+Antibiotic-Resistant+Bacteria&rft.jtitle=Cell+host+%26+microbe&rft.au=Kortright%2C+Kaitlyn+E.&rft.au=Chan%2C+Benjamin+K.&rft.au=Koff%2C+Jonathan+L.&rft.au=Turner%2C+Paul+E.&rft.date=2019-02-13&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=25&rft.issue=2&rft.spage=219&rft.epage=232&rft_id=info:doi/10.1016%2Fj.chom.2019.01.014&rft.externalDocID=S1931312819300526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon