A computational Framework for generating rotation invariant features and its application in diffusion MRI
•A new computational framework for the analytical generation of a complete set of algebraically independent Rotation Invariant Features (RIF) for spherical functions.•These new invariants can be linked to statistical and geometrical measures of spherical functions e.g.: the mean, the variance and th...
Saved in:
Published in | Medical image analysis Vol. 60; p. 101597 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new computational framework for the analytical generation of a complete set of algebraically independent Rotation Invariant Features (RIF) for spherical functions.•These new invariants can be linked to statistical and geometrical measures of spherical functions e.g.: the mean, the variance and the volume.•We apply our new RIF to diffusion MRI in particular to the Apparent Diffusion Coefficient, the fiber Orientation Distribution Function, and the diffusion signal itself.•Using both synthetic and real data, we assess the sensitivity of our invariants to brain tissue microstructure related changes in the diffusion signal.
[Display omitted]
In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI. |
---|---|
AbstractList | In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI. In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI.In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI. •A new computational framework for the analytical generation of a complete set of algebraically independent Rotation Invariant Features (RIF) for spherical functions.•These new invariants can be linked to statistical and geometrical measures of spherical functions e.g.: the mean, the variance and the volume.•We apply our new RIF to diffusion MRI in particular to the Apparent Diffusion Coefficient, the fiber Orientation Distribution Function, and the diffusion signal itself.•Using both synthetic and real data, we assess the sensitivity of our invariants to brain tissue microstructure related changes in the diffusion signal. [Display omitted] In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI. |
ArticleNumber | 101597 |
Author | Deriche, Rachid Zucchelli, Mauro Deslauriers-Gauthier, Samuel |
Author_xml | – sequence: 1 givenname: Mauro orcidid: 0000-0002-7109-2884 surname: Zucchelli fullname: Zucchelli, Mauro email: mauro.zucchelli@inria.fr – sequence: 2 givenname: Samuel surname: Deslauriers-Gauthier fullname: Deslauriers-Gauthier, Samuel – sequence: 3 givenname: Rachid orcidid: 0000-0002-4643-8417 surname: Deriche fullname: Deriche, Rachid |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31810004$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-02370077$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS1URB_wC5CQJTZ0MYNfiZMFi1FFaaVBSAjW1o0fxUNiD3YyiH9fh3S66KKr63v9nWv5nHN0EmKwCL2lZE0JrT_u1oM1HtaM0HaeVK18gc4or-mqEYyfPJ5pdYrOc94RQqQQ5BU65bShpRNnyG-wjsN-GmH0MUCPrxMM9m9Mv7GLCd_ZYFO5Cnc4xYXBPhwgeQgjdhbGKdmMIRjsx1L3-97rI4aNd27Kc_P1--1r9NJBn-2bh3qBfl5__nF1s9p--3J7tdmutKjrcSUb0RhomGGaC1F3lpgOiBEtASNbQ11bda6ToC1pgZV_aOdEIzonrSGcC36BLpe9v6BX--QHSP9UBK9uNls1zwjjsjghD7SwHxZ2n-KfyeZRDT5r2_cQbJyyYpwxyaqK8oK-f4Lu4pSKYzMlK9FUVLJCvXugpq6k8_j-0fACtAugU8w5Wae0X3wdE_heUaLmcNVO_Q9XzeGqJdyi5U-0x_XPqz4tKltMP3ibVNbeBl3AZPWoTPTP6u8BggO-Aw |
CitedBy_id | crossref_primary_10_1016_j_media_2023_102979 crossref_primary_10_1016_j_neuroimage_2022_119452 crossref_primary_10_1088_1741_2552_ac0f4b crossref_primary_10_1016_j_media_2023_102767 crossref_primary_10_3389_frai_2025_1369717 crossref_primary_10_30970_ms_58_2_115_132 crossref_primary_10_1117_1_JMI_9_6_064002 crossref_primary_10_1016_j_mri_2021_11_012 crossref_primary_10_3389_fnimg_2022_917806 crossref_primary_10_1016_j_media_2022_102356 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1109_MSP_2021_3126573 |
Cites_doi | 10.1002/mrm.20411 10.1002/nbm.3450 10.1016/j.patcog.2006.06.001 10.1016/j.neuroimage.2018.03.006 10.1016/0006-8993(92)90178-C 10.1002/cmr.a.10065 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2016.06.002 10.1016/j.mri.2016.10.026 10.1002/mrm.10596 10.1016/j.neuroimage.2013.04.016 10.1016/j.neuroimage.2010.05.043 10.1016/j.media.2014.10.009 10.1016/j.neuroimage.2006.10.037 10.1016/S0006-3495(94)80775-1 10.1016/j.mri.2011.04.006 10.1002/mrm.21577 10.1002/mrm.21277 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2009.08.053 10.1016/j.neuroimage.2013.05.057 10.1006/eujc.1993.1022 10.1002/mrm.25734 10.1016/j.neuroimage.2004.07.037 10.1002/mrm.20667 10.1016/S0166-1280(96)90531-X 10.1214/aoms/1177729694 10.1145/322217.322225 10.1002/mrm.24736 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2016.11.053 10.1002/mrm.10156 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. Copyright Elsevier BV Feb 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Copyright Elsevier BV Feb 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1016/j.media.2019.101597 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1361-8423 |
ExternalDocumentID | oai_HAL_hal_02370077v1 31810004 10_1016_j_media_2019_101597 S1361841519301379 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c466t-7848da82d2c3446be0dba0d490ad79d1f95bfb7ace09a2181cff484bf7ed03343 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Wed Aug 27 06:56:27 EDT 2025 Thu Jul 10 17:21:21 EDT 2025 Sat Jul 26 03:25:30 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Tue Jul 01 02:49:28 EDT 2025 Fri Feb 23 02:48:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rotation invariants Biomarkers Gaunt coefficients Diffusion MRI Spherical harmonics Gaunt Coefficients Rotation Invariants Spherical Harmonics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-7848da82d2c3446be0dba0d490ad79d1f95bfb7ace09a2181cff484bf7ed03343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4643-8417 0000-0002-7109-2884 0000-0003-2781-121X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1361841519301379 |
PMID | 31810004 |
PQID | 2375485172 |
PQPubID | 2045428 |
ParticipantIDs | hal_primary_oai_HAL_hal_02370077v1 proquest_miscellaneous_2322725513 proquest_journals_2375485172 pubmed_primary_31810004 crossref_citationtrail_10_1016_j_media_2019_101597 crossref_primary_10_1016_j_media_2019_101597 elsevier_sciencedirect_doi_10_1016_j_media_2019_101597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Descoteaux, Angelino, Fitzgibbons, Deriche (bib0010) 2007; 58 Reisert, Kellner, Dhital, Hennig, Kiselev (bib0036) 2016 Tournier, Calamante, Gadian, Connelly (bib0043) 2004; 23 Kayal (bib0024) 2009 Ehrenborg, Rota (bib0012) 1993; 14 Novikov, Veraart, Jelescu, Fieremans (bib0030) 2018; 174 Tournier, Calamante, Connelly (bib0042) 2007; 35 Kakarala, Mao (bib0023) 2010 Zucchelli, Descoteaux, Menegaz (bib0046) 2017 Coelho, Pozo, Jespersen, Jones, Frangi (bib0009) 2018 Baxansky, Kiryati (bib0006) 2007; 40 Basser, Mattiello, LeBihan (bib0005) 1994; 66 Novikov, Veraart, Jelescu, Fieremans (bib0031) 2018; 174 Özarslan, Koay, Shepherd, Komlosh, İrfanoğlu, Pierpaoli, Basser (bib0032) 2013; 78 Anderson (bib0003) 2005; 54 Özarslan, Mareci (bib0033) 2003; 50 Caruyer, Verma (bib0008) 2015; 20 Jespersen, Kroenke, stergaard, Ackerman, Yablonskiy (bib0020) 2007; 34 McKinnon, Jensen, Glenn, Helpern (bib0028) 2017; 36 Schultz, Fuster, Ghosh, Deriche, Florack, Lim (bib0038) 2014 Zippel (bib0045) 1979 Kondor (bib0025) 2007 Caruyer, Lenglet, Sapiro, Deriche (bib0007) 2013; 69 Frank (bib0014) 2002; 47 Santis, Gabrielli, Palombo, Maraviglia, Capuani (bib0037) 2011; 29 Kullback, Leibler (bib0026) 1951; 22 Ghosh, Papadopoulo, Deriche (bib0015) 2012 Homeier, Steinborn (bib0017) 1996; 368 Zhang, T., Wheeler-Kingshott, Alexander (bib0044) 2012; 61 Schwab, Çetingül, Afsari, Yassa, Vidal (bib0039) 2013 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson (bib0041) 2013; 80 Zucchelli, Deslauriers-Gauthier, Deriche (bib0048) 2018 Lampinen, Szczepankiewicz, Mrtensson, van Westen, Sundgren, Nilsson (bib0027) 2017; 147 Zucchelli, Descoteaux, Menegaz (bib0047) 2018 Jespersen, Bjarkam, Nyengaard, Chakravarty, Hansen, Vosegaard, stergaard, Yablonskiy, Nielsen, Vestergaard-Poulsen (bib0019) 2010; 49 Kaden, Kelm, Carson, Does, Alexander (bib0021) 2016; 139 Jelescu, Veraart, Fieremans, Novikov (bib0018) 2016; 29 Aboitiz, Scheibel, Fisher, Zaidel (bib0001) 1992; 598 Papadopoulo, Ghosh, Deriche (bib0035) 2014 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib0013) 2002; 33 Özarslan, Vemuri, Mareci (bib0034) 2005; 53 Ghosh, Papadopoulo, Deriche (bib0016) 2012 Novikov, Jespersen, Kiselev, Fieremans (bib0029) 2016 Edén (bib0011) 2003; 18 Assaf, Blumenfeld-Katzir, Yovel, Basser (bib0004) 2008; 59 Schwartz (bib0040) 1980; 27 Alexander, Hubbard, Hall, Moore, Ptito, Parker, Dyrby (bib0002) 2010; 52 Kaden, Kruggel, Alexander (bib0022) 2016; 75 Frank (10.1016/j.media.2019.101597_bib0014) 2002; 47 McKinnon (10.1016/j.media.2019.101597_bib0028) 2017; 36 Novikov (10.1016/j.media.2019.101597_bib0029) 2016 Zhang (10.1016/j.media.2019.101597_bib0044) 2012; 61 Kakarala (10.1016/j.media.2019.101597_bib0023) 2010 Kullback (10.1016/j.media.2019.101597_bib0026) 1951; 22 Kaden (10.1016/j.media.2019.101597_bib0022) 2016; 75 Zucchelli (10.1016/j.media.2019.101597_sbref0048) 2018 Ghosh (10.1016/j.media.2019.101597_bib0016) 2012 Assaf (10.1016/j.media.2019.101597_bib0004) 2008; 59 Özarslan (10.1016/j.media.2019.101597_bib0033) 2003; 50 Anderson (10.1016/j.media.2019.101597_bib0003) 2005; 54 Homeier (10.1016/j.media.2019.101597_sbref0017) 1996; 368 Ehrenborg (10.1016/j.media.2019.101597_bib0012) 1993; 14 Fischl (10.1016/j.media.2019.101597_bib0013) 2002; 33 Jelescu (10.1016/j.media.2019.101597_sbref0018) 2016; 29 Lampinen (10.1016/j.media.2019.101597_bib0027) 2017; 147 Özarslan (10.1016/j.media.2019.101597_bib0034) 2005; 53 Zucchelli (10.1016/j.media.2019.101597_bib0046) 2017 Sotiropoulos (10.1016/j.media.2019.101597_bib0041) 2013; 80 Zucchelli (10.1016/j.media.2019.101597_bib0047) 2018 Schwartz (10.1016/j.media.2019.101597_bib0040) 1980; 27 Tournier (10.1016/j.media.2019.101597_bib0042) 2007; 35 Özarslan (10.1016/j.media.2019.101597_bib0032) 2013; 78 Zippel (10.1016/j.media.2019.101597_bib0045) 1979 Schwab (10.1016/j.media.2019.101597_bib0039) 2013 Edén (10.1016/j.media.2019.101597_bib0011) 2003; 18 Basser (10.1016/j.media.2019.101597_bib0005) 1994; 66 Kayal (10.1016/j.media.2019.101597_bib0024) 2009 Kondor (10.1016/j.media.2019.101597_bib0025) 2007 Reisert (10.1016/j.media.2019.101597_bib0036) 2016 Schultz (10.1016/j.media.2019.101597_bib0038) 2014 Baxansky (10.1016/j.media.2019.101597_bib0006) 2007; 40 Jespersen (10.1016/j.media.2019.101597_bib0020) 2007; 34 Jespersen (10.1016/j.media.2019.101597_bib0019) 2010; 49 Novikov (10.1016/j.media.2019.101597_bib0031) 2018; 174 Kaden (10.1016/j.media.2019.101597_bib0021) 2016; 139 Ghosh (10.1016/j.media.2019.101597_bib0015) 2012 Papadopoulo (10.1016/j.media.2019.101597_bib0035) 2014 Alexander (10.1016/j.media.2019.101597_bib0002) 2010; 52 Santis (10.1016/j.media.2019.101597_sbref0037) 2011; 29 Descoteaux (10.1016/j.media.2019.101597_bib0010) 2007; 58 Novikov (10.1016/j.media.2019.101597_bib0030) 2018; 174 Tournier (10.1016/j.media.2019.101597_bib0043) 2004; 23 Aboitiz (10.1016/j.media.2019.101597_bib0001) 1992; 598 Coelho (10.1016/j.media.2019.101597_bib0009) 2018 Caruyer (10.1016/j.media.2019.101597_bib0008) 2015; 20 Caruyer (10.1016/j.media.2019.101597_bib0007) 2013; 69 |
References_xml | – start-page: 51 year: 2018 end-page: 63 ident: bib0047 article-title: A Generalized Smt-based Framework for Diffusion Mri Microstructural Model Estimation publication-title: Computational Diffusion MRI – volume: 78 start-page: 16 year: 2013 end-page: 32 ident: bib0032 article-title: Mean apparent propagator (map) mri: a novel diffusion imaging method for mapping tissue microstructure publication-title: Neuroimage – volume: 20 start-page: 87 year: 2015 end-page: 96 ident: bib0008 article-title: On facilitating the use of hardi in population studies by creating rotation-invariant markers publication-title: Med. Image Anal. – volume: 49 start-page: 205 year: 2010 end-page: 216 ident: bib0019 article-title: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy publication-title: Neuroimage – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: bib0026 article-title: On information and sufficiency publication-title: Ann. Math. Statist. – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bib0041 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib0042 article-title: Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – year: 2017 ident: bib0046 publication-title: Noddi-sh: a computational efficient noddi extension for fodf estimation in diffusion mri – volume: 14 start-page: 157 year: 1993 end-page: 181 ident: bib0012 article-title: Apolarity and canonical forms for homogeneous polynomials publication-title: Eur. J. Combinatorics – volume: 75 start-page: 1752 year: 2016 end-page: 1763 ident: bib0022 article-title: Quantitative mapping of the per-axon diffusion coefficients in brain white matter publication-title: Magn. Reson. Med. – year: 2012 ident: bib0016 article-title: Generalized invariants of a 4th order tensor: Building blocks for new biomarkers in dmri publication-title: Proceedings of the Computation Diffusion MRI Workshop at the MICCAI Conference – year: 2016 ident: bib0029 publication-title: Quantifying brain microstructure with diffusion mri: theory and parameter estimation – volume: 598 start-page: 143 year: 1992 end-page: 153 ident: bib0001 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. – volume: 40 start-page: 756 year: 2007 end-page: 770 ident: bib0006 article-title: Calculating geometric properties of three-dimensional objects from the spherical harmonic representation publication-title: Pattern Recognit. – start-page: 129 year: 2014 end-page: 161 ident: bib0038 article-title: Higher-order tensors in diffusion imaging publication-title: Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data – volume: 52 start-page: 1374 year: 2010 end-page: 1389 ident: bib0002 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage – volume: 53 start-page: 866 year: 2005 end-page: 876 ident: bib0034 article-title: Generalized scalar measures for diffusion mri using trace, variance, and entropy publication-title: Magn. Reson. Med – start-page: 26 year: 2012 end-page: 29 ident: bib0015 article-title: Biomarkers for hardi: 2nd amp; 4th order tensor invariants publication-title: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) – volume: 18 start-page: 24 year: 2003 end-page: 55 ident: bib0011 article-title: Computer simulations in solid-state nmr. iii. powder averaging publication-title: Concepts Magn. Reson. Part A: Educ. J. – year: 2016 ident: bib0036 article-title: Disentangling micro from mesostructure by diffusion mri: a bayesian approach publication-title: Neuroimage – volume: 66 start-page: 259 year: 1994 ident: bib0005 article-title: MR Diffusion tensor spectroscopy and imaging. publication-title: Biophys. J. – volume: 36 start-page: 121 year: 2017 end-page: 127 ident: bib0028 article-title: Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain publication-title: Magn. Reson. Imaging – volume: 69 start-page: 1534 year: 2013 end-page: 1540 ident: bib0007 article-title: Design of multishell sampling schemes with uniform coverage in diffusion mri publication-title: Magn. Reson. Med. – start-page: 705 year: 2013 end-page: 717 ident: bib0039 article-title: Rotation invariant features for hardi publication-title: Information Processing in Medical Imaging – volume: 139 start-page: 346 year: 2016 end-page: 359 ident: bib0021 article-title: Multi-compartment microscopic diffusion imaging publication-title: Neuroimage – start-page: 216 year: 1979 end-page: 226 ident: bib0045 article-title: Probabilistic algorithms for sparse polynomials publication-title: Symbolic and Algebraic Computation – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bib0044 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 147 start-page: 517 year: 2017 end-page: 531 ident: bib0027 article-title: Neurite density imaging versus imaging of microscopic anisotropy in diffusion mri: a model comparison using spherical tensor encoding publication-title: Neuroimage – year: 2018 ident: bib0009 publication-title: Double diffusion encoding prevents degeneracy in parameter estimation of biophysical models in diffusion mri – volume: 29 start-page: 33 year: 2016 end-page: 47 ident: bib0018 article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue publication-title: NMR in Biomedicine – year: 2018 ident: bib0048 article-title: A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI publication-title: MICCAI - Computational Diffusion MRI Workshop 2018 – volume: 47 start-page: 1083 year: 2002 end-page: 1099 ident: bib0014 article-title: Characterization of anisotropy in high angular resolution diffusion-weighted mri publication-title: Magn. Reson. Med. – start-page: 105 year: 2010 end-page: 112 ident: bib0023 article-title: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 1194 year: 2005 end-page: 1206 ident: bib0003 article-title: Measurement of fiber orientation distributions using high angular resolution diffusion imaging publication-title: Magn. Reson. Med. – volume: 59 start-page: 1347 year: 2008 end-page: 1354 ident: bib0004 article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion mri publication-title: Magn. Reson. Med. – volume: 50 start-page: 955 year: 2003 end-page: 965 ident: bib0033 article-title: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging publication-title: Magn. Reson. Med. – volume: 34 start-page: 1473 year: 2007 end-page: 1486 ident: bib0020 article-title: Modeling dendrite density from magnetic resonance diffusion measurements publication-title: Neuroimage – volume: 58 start-page: 497 year: 2007 end-page: 510 ident: bib0010 article-title: Regularized, fast, and robust analytical q-ball imaging publication-title: Magn. Reson. Med. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib0013 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 174 start-page: 518 year: 2018 end-page: 538 ident: bib0031 article-title: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri publication-title: Neuroimage – volume: 29 start-page: 1410 year: 2011 end-page: 1416 ident: bib0037 article-title: Non-gaussian diffusion imaging: a brief practical review publication-title: Magnetic Resonance Imaging – volume: 368 start-page: 31 year: 1996 end-page: 37 ident: bib0017 article-title: Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients publication-title: Journal of Molecular Structure: THEOCHEM – year: 2007 ident: bib0025 publication-title: A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bib0043 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution publication-title: Neuroimage – volume: 174 start-page: 518 year: 2018 end-page: 538 ident: bib0030 article-title: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri publication-title: Neuroimage – start-page: 184 year: 2009 end-page: 193 ident: bib0024 article-title: The complexity of the annihilating polynomial publication-title: 2009 24th Annual IEEE Conference on Computational Complexity – start-page: 233 year: 2014 end-page: 240 ident: bib0035 article-title: Complete set of invariants of a 4th order tensor: the 12 tasks of hardi from ternary quartics publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 – volume: 27 start-page: 701 year: 1980 end-page: 717 ident: bib0040 article-title: Fast probabilistic algorithms for verification of polynomial identities publication-title: J. ACM – year: 2018 ident: 10.1016/j.media.2019.101597_bib0009 publication-title: Double diffusion encoding prevents degeneracy in parameter estimation of biophysical models in diffusion mri – volume: 53 start-page: 866 issue: 4 year: 2005 ident: 10.1016/j.media.2019.101597_bib0034 article-title: Generalized scalar measures for diffusion mri using trace, variance, and entropy publication-title: Magn. Reson. Med doi: 10.1002/mrm.20411 – volume: 29 start-page: 33 issue: 1 year: 2016 ident: 10.1016/j.media.2019.101597_sbref0018 article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue publication-title: NMR in Biomedicine doi: 10.1002/nbm.3450 – volume: 40 start-page: 756 issue: 2 year: 2007 ident: 10.1016/j.media.2019.101597_bib0006 article-title: Calculating geometric properties of three-dimensional objects from the spherical harmonic representation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.06.001 – volume: 174 start-page: 518 year: 2018 ident: 10.1016/j.media.2019.101597_bib0030 article-title: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.006 – start-page: 233 year: 2014 ident: 10.1016/j.media.2019.101597_bib0035 article-title: Complete set of invariants of a 4th order tensor: the 12 tasks of hardi from ternary quartics – volume: 598 start-page: 143 issue: 1 year: 1992 ident: 10.1016/j.media.2019.101597_bib0001 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. doi: 10.1016/0006-8993(92)90178-C – volume: 18 start-page: 24 issue: 1 year: 2003 ident: 10.1016/j.media.2019.101597_bib0011 article-title: Computer simulations in solid-state nmr. iii. powder averaging publication-title: Concepts Magn. Reson. Part A: Educ. J. doi: 10.1002/cmr.a.10065 – year: 2016 ident: 10.1016/j.media.2019.101597_bib0029 publication-title: Quantifying brain microstructure with diffusion mri: theory and parameter estimation – volume: 61 start-page: 1000 issue: 4 year: 2012 ident: 10.1016/j.media.2019.101597_bib0044 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 139 start-page: 346 year: 2016 ident: 10.1016/j.media.2019.101597_bib0021 article-title: Multi-compartment microscopic diffusion imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.002 – start-page: 184 year: 2009 ident: 10.1016/j.media.2019.101597_bib0024 article-title: The complexity of the annihilating polynomial – volume: 36 start-page: 121 year: 2017 ident: 10.1016/j.media.2019.101597_bib0028 article-title: Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.10.026 – volume: 50 start-page: 955 issue: 5 year: 2003 ident: 10.1016/j.media.2019.101597_bib0033 article-title: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10596 – start-page: 51 year: 2018 ident: 10.1016/j.media.2019.101597_bib0047 article-title: A Generalized Smt-based Framework for Diffusion Mri Microstructural Model Estimation – volume: 78 start-page: 16 year: 2013 ident: 10.1016/j.media.2019.101597_bib0032 article-title: Mean apparent propagator (map) mri: a novel diffusion imaging method for mapping tissue microstructure publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.016 – volume: 52 start-page: 1374 issue: 4 year: 2010 ident: 10.1016/j.media.2019.101597_bib0002 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.043 – volume: 20 start-page: 87 issue: 1 year: 2015 ident: 10.1016/j.media.2019.101597_bib0008 article-title: On facilitating the use of hardi in population studies by creating rotation-invariant markers publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.10.009 – year: 2017 ident: 10.1016/j.media.2019.101597_bib0046 publication-title: Noddi-sh: a computational efficient noddi extension for fodf estimation in diffusion mri – start-page: 129 year: 2014 ident: 10.1016/j.media.2019.101597_bib0038 article-title: Higher-order tensors in diffusion imaging – volume: 34 start-page: 1473 issue: 4 year: 2007 ident: 10.1016/j.media.2019.101597_bib0020 article-title: Modeling dendrite density from magnetic resonance diffusion measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.037 – volume: 66 start-page: 259 issue: 1 year: 1994 ident: 10.1016/j.media.2019.101597_bib0005 article-title: MR Diffusion tensor spectroscopy and imaging. publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 29 start-page: 1410 issue: 10 year: 2011 ident: 10.1016/j.media.2019.101597_sbref0037 article-title: Non-gaussian diffusion imaging: a brief practical review publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2011.04.006 – volume: 59 start-page: 1347 issue: 6 year: 2008 ident: 10.1016/j.media.2019.101597_bib0004 article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21577 – start-page: 26 year: 2012 ident: 10.1016/j.media.2019.101597_bib0015 article-title: Biomarkers for hardi: 2nd amp; 4th order tensor invariants – volume: 174 start-page: 518 year: 2018 ident: 10.1016/j.media.2019.101597_bib0031 article-title: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.006 – volume: 58 start-page: 497 issue: 3 year: 2007 ident: 10.1016/j.media.2019.101597_bib0010 article-title: Regularized, fast, and robust analytical q-ball imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21277 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.media.2019.101597_bib0013 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 49 start-page: 205 issue: 1 year: 2010 ident: 10.1016/j.media.2019.101597_bib0019 article-title: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.053 – start-page: 705 year: 2013 ident: 10.1016/j.media.2019.101597_bib0039 article-title: Rotation invariant features for hardi – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.media.2019.101597_bib0041 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 14 start-page: 157 issue: 3 year: 1993 ident: 10.1016/j.media.2019.101597_bib0012 article-title: Apolarity and canonical forms for homogeneous polynomials publication-title: Eur. J. Combinatorics doi: 10.1006/eujc.1993.1022 – volume: 75 start-page: 1752 issue: 4 year: 2016 ident: 10.1016/j.media.2019.101597_bib0022 article-title: Quantitative mapping of the per-axon diffusion coefficients in brain white matter publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25734 – year: 2018 ident: 10.1016/j.media.2019.101597_sbref0048 article-title: A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI – year: 2012 ident: 10.1016/j.media.2019.101597_bib0016 article-title: Generalized invariants of a 4th order tensor: Building blocks for new biomarkers in dmri – volume: 23 start-page: 1176 issue: 3 year: 2004 ident: 10.1016/j.media.2019.101597_bib0043 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – start-page: 216 year: 1979 ident: 10.1016/j.media.2019.101597_bib0045 article-title: Probabilistic algorithms for sparse polynomials – year: 2016 ident: 10.1016/j.media.2019.101597_bib0036 article-title: Disentangling micro from mesostructure by diffusion mri: a bayesian approach publication-title: Neuroimage – volume: 54 start-page: 1194 issue: 5 year: 2005 ident: 10.1016/j.media.2019.101597_bib0003 article-title: Measurement of fiber orientation distributions using high angular resolution diffusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20667 – volume: 368 start-page: 31 year: 1996 ident: 10.1016/j.media.2019.101597_sbref0017 article-title: Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients publication-title: Journal of Molecular Structure: THEOCHEM doi: 10.1016/S0166-1280(96)90531-X – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10.1016/j.media.2019.101597_bib0026 article-title: On information and sufficiency publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729694 – volume: 27 start-page: 701 issue: 4 year: 1980 ident: 10.1016/j.media.2019.101597_bib0040 article-title: Fast probabilistic algorithms for verification of polynomial identities publication-title: J. ACM doi: 10.1145/322217.322225 – start-page: 105 year: 2010 ident: 10.1016/j.media.2019.101597_bib0023 article-title: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations – volume: 69 start-page: 1534 issue: 6 year: 2013 ident: 10.1016/j.media.2019.101597_bib0007 article-title: Design of multishell sampling schemes with uniform coverage in diffusion mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24736 – year: 2007 ident: 10.1016/j.media.2019.101597_bib0025 publication-title: A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum – volume: 35 start-page: 1459 issue: 4 year: 2007 ident: 10.1016/j.media.2019.101597_bib0042 article-title: Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 147 start-page: 517 year: 2017 ident: 10.1016/j.media.2019.101597_bib0027 article-title: Neurite density imaging versus imaging of microscopic anisotropy in diffusion mri: a model comparison using spherical tensor encoding publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.053 – volume: 47 start-page: 1083 issue: 6 year: 2002 ident: 10.1016/j.media.2019.101597_bib0014 article-title: Characterization of anisotropy in high angular resolution diffusion-weighted mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10156 |
SSID | ssj0007440 |
Score | 2.3810003 |
Snippet | •A new computational framework for the analytical generation of a complete set of algebraically independent Rotation Invariant Features (RIF) for spherical... In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101597 |
SubjectTerms | Algorithms Bioengineering Biomarkers Computational neuroscience Computer Science Connectome - methods Diffusion Diffusion coefficient Diffusion Magnetic Resonance Imaging - methods Diffusion MRI Distribution functions Fiber orientation Gaunt coefficients Humans Image Processing, Computer-Assisted - methods Imaging Invariants Life Sciences Magnetic resonance imaging Mathematical analysis Medical Imaging Microstructure Nerve Fibers, Myelinated - ultrastructure Rotation Rotation invariants Series expansion Spherical harmonics |
Title | A computational Framework for generating rotation invariant features and its application in diffusion MRI |
URI | https://dx.doi.org/10.1016/j.media.2019.101597 https://www.ncbi.nlm.nih.gov/pubmed/31810004 https://www.proquest.com/docview/2375485172 https://www.proquest.com/docview/2322725513 https://inria.hal.science/hal-02370077 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RkKpyqAptIS0gF_XYdB3HsZPjCrFaoHCgReJmObYDqaosgl2O_e31OM7SSoUDp0jOWLY8_ni2n98AfBaC6SozNC1qYVJeWJ5qD5RTVmZNlZfS2p5tcSamF_z4srhcgYPhLQzSKuPc38_pYbaOKaPYmqObth19z3IMVpIhBEHdPHzEx7nEXv719wPNAwXw-rdXWYrWg_JQ4HiF1xnI76owpUDlp_-vTi-ukSb5GAYNa9HkDbyOIJKM-3puwIrrNmH9L2nBTXh5Gi_N30I7JibEbojnfmQyELKIR6zkKghPI_uZ3M56G9J2934P7RudNC4of94R3VnSzv334cbbmxEMsLLAEzdyen70Di4mhz8OpmmMsJAaLsQ8lSUvrS6ZZSb3-8LaUVtranlFtZWV9e4q6qaW2jhaaQQDpml4yetGOkvznOfvYbWbdW4bCJNNXXBhjWSWNyLXjroMtW1KTaURNAE2tKwyUX4co2D8UgPP7KcK7lDoDtW7I4Evy0w3vfrG0-ZicJn6pxMpvz48nXHfO3hZBEpuT8ffFKZ5TCNR8-g-S2Bn8L-KA_1OMQwh7FGrZAl8Wv72QxTvXXTnZgu0YUwyjKSTwFbfb5ZF-SkVb1j4h-dW_SO8YngEEIjkO7A6v124XY-T5vVeGAh7sDY-Opme_QG0CA-5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7aOgnGAcH4scAAgzgS1XEcOzlWE1XK2h5gk3azHNuBIJROW7u_H7_ECSDBDpwiObZs-dnPn-3P3wN4LwTTRWJonFXCxDyzPNYeKMcsT-oizaW1PdtiLcoL_ukyu9yD0-EtDNIqg-_vfXrnrUPKNPTm9Kpppl-SFIOVJAhBUDev2IcDVKfKJnAwW5yV69EhowZe__wqibHAID7U0by6BxpI8SowJUPxp78vUPvfkCn5LxjaLUfzR_Aw4Egy65v6GPZcewQPflMXPIJ7q3Bv_gSaGTFd-IZw9EfmAyeLeNBKvnba00iAJtebPg9p2lu_jfb9TmrXiX_eEN1a0mz999elt89GMMbKDg_dyOrz4ilczD-en5ZxCLIQGy7ENpY5z63OmWUm9VvDylFbaWp5QbWVhfUWy6q6kto4WmjEA6auec6rWjpL05Snz2DSblp3DITJusq4sEYyy2uRakddgvI2uabSCBoBG3pWmaBAjoEwfqiBavZddeZQaA7VmyOCD2Ohq16A4-7sYjCZ-mMcKb9E3F3wnTfwWAWqbpezpcI0D2skyh7dJhGcDPZXYa7fKIZRhD1wlSyCt-NvP0vx6kW3brPDPIxJhsF0Injej5uxKu9V8ZKFv_jfpr-B--X5aqmWi_XZSzhkeCLQ8cpPYLK93rlXHjZtq9dhWvwE-1kSag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+Framework+for+generating+rotation+invariant+features+and+its+application+in+diffusion+MRI&rft.jtitle=Medical+image+analysis&rft.au=Zucchelli%2C+Mauro&rft.au=Deslauriers-Gauthier%2C+Samuel&rft.au=Deriche%2C+Rachid&rft.date=2020-02-01&rft.issn=1361-8415&rft.volume=60&rft.spage=101597&rft_id=info:doi/10.1016%2Fj.media.2019.101597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2019_101597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |