Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration
Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the c...
Saved in:
Published in | Pharmacological research Vol. 203; p. 107175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.05.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.
[Display omitted] |
---|---|
AbstractList | Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy. Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy. Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy. [Display omitted] |
ArticleNumber | 107175 |
Author | Li, Zhongyu Gong, Xiaojie Zuo, Haibin Li, Jiwen Li, Keke Men, Lei |
Author_xml | – sequence: 1 givenname: Keke surname: Li fullname: Li, Keke organization: Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China – sequence: 2 givenname: Jiwen surname: Li fullname: Li, Jiwen organization: School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China – sequence: 3 givenname: Zhongyu surname: Li fullname: Li, Zhongyu organization: Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China – sequence: 4 givenname: Lei surname: Men fullname: Men, Lei organization: Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China – sequence: 5 givenname: Haibin surname: Zuo fullname: Zuo, Haibin organization: School of Pharmacy, Jiamusi University, Jiamusi 154007, China – sequence: 6 givenname: Xiaojie surname: Gong fullname: Gong, Xiaojie email: gxjclr@163.com organization: Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38582357$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7wByjQlDSz2OMZ24to0AqSSJFoQm35cZ29qxl7sWdB-fd4dxIKilS2rr5zfH3OJTmLKQIh7xldMcrEp91qv81l1dGurwPJ5PCKXDC6Fi1jSpwd7z1vhWDqnFyWsqOUrntG35BzrgbV8UFeEL_Bsh_NjLG1poBvXJosxjpIsZm3kM0eoXxu7reAuYEQ0Bn32PzBeduYJiR3KE0lHzAWiKmgh1ItWuMnjFjmfDJ6S14HMxZ493RekZ_fv91vbtq7H9e3m693reuFmFspuPVg17SXTFkm7ADDYIwMRjgPKkgOUgTrYAg0AKtkcN6DtAMXpv6GX5Hbxdcns9P7jJPJjzoZ1KdByg_a5BndCJp76-iwFtTxvmfWWKmUFaoGA1R01lWvj4vXPqdfByiznrA4GEcTIR2K5pT3XV1b0op-eEIPdgL_7-HnlCugFsDlVEqGoB3Op2RqQDhqRvWxUF13roXqY6F6KbRKu_-kz-4vir4sIqhh_0bIujiE6MBjBjfXNPAl-V-9c7tX |
CitedBy_id | crossref_primary_10_1016_j_cbi_2024_111291 crossref_primary_10_1016_j_phrs_2024_107324 crossref_primary_10_1080_03639045_2025_2455428 crossref_primary_10_1007_s10565_024_09947_5 crossref_primary_10_1371_journal_pone_0301875 crossref_primary_10_1002_cam4_70079 crossref_primary_10_1016_j_phymed_2024_156189 crossref_primary_10_1016_j_biopha_2024_117506 crossref_primary_10_1186_s13046_024_03249_8 |
Cites_doi | 10.1016/j.ctrv.2006.09.006 10.1016/j.jgr.2016.03.008 10.1002/smll.201905233 10.1007/s00432-004-0556-9 10.1093/toxres/tfac019 10.1093/carcin/9.7.1283 10.1111/cbdd.13983 10.1021/acs.chemmater.0c00797 10.2174/1871520619666191209091230 10.3390/ijms23137227 10.1016/j.ejphar.2009.12.018 10.1016/j.jgr.2015.06.006 10.1111/cpr.12627 10.1097/00001813-199102000-00009 10.1081/JDI-100100858 10.1142/S0192415X23500210 10.1016/j.bbamcr.2023.119461 10.1016/j.jgr.2017.01.011 10.1159/000046116 10.1097/CAD.0000000000000781 10.1016/j.ctrv.2014.10.003 10.18632/oncotarget.13071 10.1007/s10787-019-00630-4 10.1111/j.1349-7006.1998.tb03278.x 10.3892/mmr.2013.1597 10.1016/j.foodchem.2013.07.075 10.3390/ijms20174136 10.1016/j.biopha.2017.09.129 10.1002/jbt.22896 10.1155/2021/1653750 10.1016/j.jff.2023.105438 10.1097/MD.0000000000033463 10.1002/kjm2.12220 10.1038/sj.ki.5002786 10.1080/10715762.2016.1234710 10.1016/j.bioorg.2019.102925 10.1155/2019/2417418 10.3892/or.2014.3452 10.1016/j.bmcl.2012.07.018 10.3390/molecules24244627 10.3109/13880209.2015.1101142 10.1016/j.phymed.2019.152862 10.1016/S0959-8049(98)00227-5 10.1007/s12272-009-1515-4 10.1159/000492562 10.1016/j.phymed.2023.154776 10.3390/nu8090566 10.1155/2020/3401067 10.1038/srep04986 10.1016/j.tox.2013.05.010 10.1142/S0192415X21500828 10.1007/s11859-015-1103-z 10.1038/onc.2011.384 10.1016/j.canlet.2017.11.037 10.1155/2021/9516726 10.1016/j.fct.2012.01.005 10.1016/j.ejphar.2014.07.025 10.1016/j.phrs.2020.104637 10.1177/15347354211058169 10.1016/j.pharmthera.2012.07.003 10.1039/b907567d 10.1021/acs.jafc.5b00782 10.1016/j.actbio.2022.08.026 10.1016/j.biopha.2022.113774 10.1248/bpb.29.2051 10.1021/acs.chemrev.5b00597 10.1016/j.jgr.2017.07.009 10.1039/C8DT00838H 10.1039/D1NA00697E 10.4103/ijp.ijp_251_23 10.1007/s11805-011-0578-4 10.3390/toxins2112490 10.1007/s00280-004-0956-1 10.1007/s11427-022-2218-x 10.2147/JEP.S267383 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.phrs.2024.107175 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-1186 |
ExternalDocumentID | oai_doaj_org_article_3dbc05960c3441bab788b68385e062bc 38582357 10_1016_j_phrs_2024_107175 S1043661824001191 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .GJ .~1 0R~ 0SF 0ZK 123 1B1 1RT 1~. 1~5 29O 3O- 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMT HVGLF HX~ HZ~ IHE J1W KOM L7B LG5 M33 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSP SSZ T5K TEORI UNMZH WUQ XPP ZA5 ZU3 ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c466t-763bdeb904718b16b5e55aa7fa6cde8f73e76fbce5f0fe1eb9fcdde7b536a3573 |
IEDL.DBID | .~1 |
ISSN | 1043-6618 1096-1186 |
IngestDate | Wed Aug 27 01:05:32 EDT 2025 Tue Aug 05 11:15:58 EDT 2025 Mon Jul 21 06:04:25 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Tue Jul 01 03:33:58 EDT 2025 Sat May 04 15:43:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RAS HIF-1α HR OCT4 SOX2 4-HNE PI3K MPR1 Molecular Mechanism Atg3/5/7 IL-2 MMP2/9 Snail MSH2 CYP2E1 ABCG2 ERK MiR-429 FDA ABCB1 Cx32/Cx26 LPO HER-2 P-p65 ASC P-IKκα/β NRF2 P-EGFR PD-L1 NLRP3 BUN Wnt KI AKI Beclin-1 AST GSH-Px NSCLC PTCH1 P-NF-κB SOD AKT C-myc Cisplatin Cleaved PARP GDNA PAH Keap1 NER Anticancer LPR1 NGAL JNK ALT TGF-α/β MDA Cyclin D1 INF-γ MRP1/2/3/5 NF-κB ATP7B P-AMPK MDR MtDNA P-gp Cyt C IL-1β MAPK EMT P-PI3K MEK Caspase-1/3/7/8/9 MMR ZO-1 3-NT CAT CRE ROS NK Fas-L Bcl-2 NO COX-2 PGES-1 FN HO-1 P-MAPK EGFR DDP LDH MDR1 N-cadherin LC3I/II GSH NQO-1 Bad Combined Therapy BNIP3 VEGF GR INOS MLH1 Slug MTOR Ginsenoside TNFR1 GJs Bcl-xL WEE1 ERCC1 P-JNK Bax |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-763bdeb904718b16b5e55aa7fa6cde8f73e76fbce5f0fe1eb9fcdde7b536a3573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1043661824001191 |
PMID | 38582357 |
PQID | 3034246670 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3dbc05960c3441bab788b68385e062bc proquest_miscellaneous_3034246670 pubmed_primary_38582357 crossref_citationtrail_10_1016_j_phrs_2024_107175 crossref_primary_10_1016_j_phrs_2024_107175 elsevier_sciencedirect_doi_10_1016_j_phrs_2024_107175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-May 20240501 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Pharmacological research |
PublicationTitleAlternate | Pharmacol Res |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Wang, Liu, Xu (bib58) 2013; 35 Meng, Zhang, Wu, Jin, Zhang (bib54) 2022; 44 Meng, Zhou, Li, Zhao, Chen, Ma (bib99) 2003; 19 Ren, Chen, Hong, Zhao, Cui, Li, Liu, Zhou, Sun, Shen, Li, Lou, Zhou, Wang, Xu, Yu, Song, Chen (bib19) 2020; 16 Chaohui, Wenjun, Yanming, Lihuan, Jing, Tao (bib92) 2015; 8 Sancho Martinez, Prieto Garcia, Prieto, Lopez Novoa, Lopez Hernandez (bib32) 2012; 136 Zhang, Zhao, Yuan, Miao, Li, Ji, Huang, Chen, Jiang, Weitz, Song (bib20) 2020; 32 Park, Castro-Aceituno, Ahn, Simu, Siddiqi, Kim, Kim, Yang (bib37) 2017; 79 Chen, Chang (bib6) 2019; 20 Kim, Lee, Cho, Son, Choi, Yun, Yoo, Yoon, Oh, Han, Hong (bib101) 2010; 631 Rabik, Dolan (bib28) 2007; 33 Li, Yan, Liu, Liu, Wang, Chen, Zhang, Sun (bib65) 2016; 8 Liu, Gemba (bib59) 1990; 13 Hashemi, Arani, Orouei, Fallah, Ghorbani, Khaledabadi, Kakavand, Tavakolpournegari, Saebfar, Heidari, Salimimoghadam, Entezari, Taheriazam, Hushmandi (bib36) 2022; 155 He, Li, Zhao (bib47) 2014; 34 Jin, Kou, Miao (bib89) 2011; 28 Lee, Lee, Lee, Jung, Park, Choi, Kim, Ham, Kang (bib78) 2012; 22 Tang, He, Zhai, Wang (bib16) 2021; 20 Huang, Zhang, Xu, Chen, Zhang (bib34) 2022; 11 Koberle, Tomicic, Usanova, Kaina (bib11) 2010; 1806 Todd, Lippard (bib25) 2009; 1 Chen, Zhang, Song, Zhang, Dong, Tan (bib41) 2020; 20 Niu, Shi, Li, Chen, Fan, Yu, Lv, Lu (bib51) 2023; 115 Jia, Pan, Wang, Wang, Wang, Chen (bib2) 2021; 2021 Wang, He, Geng, Yuan, Fan (bib55) 2022; 13 Xiao, Jiang, Wang, Hu, Huang, Chen, Huang, Shan, Tang, Wang, Gong, Feng, Xiao, Li (bib96) 2020; 153 Chresta, Masters, Hickman (bib9) 1996; 56 Miller, Tadagavadi, Ramesh, Reeves (bib33) 2010; 2 Chen, Tu, Lv (bib85) 2014; 32 Minyan, Shubo, Xu, Yuzhen (bib90) 2022; 20 Chian, Zhao, Xu, Yu, Ke, Gao, Yin (bib52) 2019; 30 Hu, Xu, Jiang, Liu, Liu, Wang, Gong, Li, Ren, Li (bib67) 2020; 36 Galluzzi, Senovilla, Vitale, Michels, Martins, Kepp, Castedo, Kroemer (bib8) 2012; 31 Baek, Shin, Kim, Chang, Park (bib106) 2017; 41 Duan, Hu, Huang, Ren, Zhou (bib100) 2009; 36 Pan, Zhang, Sun, Liu (bib15) 2019; 2019 Li, Yin, Wang, Ma, Ni, Thakur, Zhang, Wei (bib40) 2023; 102 Wang, Li, Han, Sun, Zhang, Liu, Liu, Li, Liu (bib64) 2018; 48 Kim, Le, Nguyen, Kim, Kang, Park, Nguyen (bib75) 2019; 24 Domingo, Latif, Bhavsar (bib35) 2022; 23 Zhang, Li (bib39) 2016; 54 Shengde (bib91) 2015; 26 Tong, Dong, Yu, Wang, Tao (bib43) 2013; 310 Oun, Moussa, Wheate (bib7) 2018; 47 Yokozawa, Dong (bib104) 2001; 89 Gao, Fang, Wang, Lu, Wang, Sun, Fang, Chen, Hu (bib94) 2023; 102 Han, Han, Lee, An, Kim, Shin, Yamabe, Hwang, Yoo, Choi, Kang, Jang (bib63) 2016; 40 Yokozawa, Liu (bib103) 2000; 22 Tchounwou, Dasari, Noubissi, Ray, Kumar (bib4) 2021; 13 Nakata, Kikuchi, Tode, Hirata, Kita, Ishii, Kudoh, Nagata, Shinomiya (bib87) 1998; 89 Wang, Tian, Khan, Zhang, Chen, Zhao, Yan, Fu, Liu (bib38) 2018; 415 Perez (bib27) 1998; 34 O’Grady, Finn, Cuffe, Richard, O’Byrne, Barr (bib30) 2014; 40 Kim, Lee, Yuk, Moon, Choi, Kim, Han, Oh, Hong (bib42) 2009; 32 Zhang, Zhou, Liu, Wang, Li, Gong, Lin, Wang, Wang, Li (bib69) 2021; 49 Zhao, Wu, Zhang, Guo, Hong, Chen, Wang, Song (bib21) 2021; 4 Pabla, Dong (bib31) 2008; 73 Wu, Tang, Dong, Zhang (bib72) 2021; 2021 Zhang, Tong, Qi, Yu, Dong, Zhang, Li, Yu (bib44) 2013; 8 Mehendale, Aung, Wang, Yin, Wang, Xie, Yuan (bib81) 2005; 56 Johnstone, Suntharalingam, Lippard (bib26) 2016; 116 Cai, Teng, Chen (bib17) 2021; 2021 Ju, Zheng, Zhang, Zeng, Sun, Wang, Chen, Li, Wei, He (bib1) 2023; 66 Yang, Zheng, Xing, Gao, Wei, Lu, Wang, Zhou, Hu, Ma (bib10) 2004; 130 Yuan, Haiqing (bib18) 2015; 21 Gao, Chu, Shao, Zhang, Xia, Wang, Li, Lou, Huang, Chen (bib80) 2017; 51 Kim, Han, Yamabe, Kim, Lee, Eom, Choi, Cheon, Jang, Kim, Ham, Kang (bib77) 2014; 143 Luo, Xie, Chen, Ji (bib79) 2023; 55 Wang, Dong, Feng, Fan, Yang, Hu, Cai, Zhu, Li, Wang (bib82) 2023; 51 Lee, Kang (bib70) 2017; 41 Wang, Kong, Zhang, Yu, Lv, Zhang, Chen, Tian, Fu (bib74) 2014; 4 Jin, He, Xu, Sun, Feng (bib57) 2012; 27 Liu, Chen, Wu (bib60) 1995; 9 Jiang, Qiu, Ma, Lu, Wang, Zhang, Fu, Wang (bib107) 2015; 20 Wang, Zeng, Zhang, Qi, Wang, Tian, Zhao, Wu, Li, Wang (bib24) 2022; 13 Qiao, He, Li, Liu, Yang, Li (bib84) 2023; 1870 Lee, Park, Chung, Chung (bib61) 2012; 50 Qi, Li, Tan, Wang, Lin, Zhou, Liu, Li (bib66) 2019; 61 Kikuchi, Sasa, Kita, Hirata, Tode, Nagata (bib98) 1991; 2 Liu, Jiang, Wang, Fu (bib46) 2015; 55 Yang, Qian, Zhang (bib73) 2020; 2020 Hu, Yu, Xiong, Hu, Zhang (bib102) 2010; 90 Chen, Zhang (bib49) 2015; 10 Deng, Wong, Lai, Wong (bib50) 2017; 8 Hu, Zhou, Ba, Li, Zhu (bib97) 2011; 8 Li, Zhou, Ma, Song, Zhang, Yu (bib45) 2015; 7 Chen, Zhang, Xu, Zheng, Wu, Lian (bib83) 2019; 43 Liu, Sun, Ban, Zhou (bib88) 2007; 12 Wang, Zheng, Chen, Jiang, Huang, Jiang, Hu, Huang, Liu, Gong, Feng, Xiao, Li, Xiao (bib95) 2021; 12 Nguyen, Nguyen (bib14) 2019; 27 Lee, Lee, Ho, Byun, Hong, Lee, Lee (bib56) 2014; 32 Ghosh (bib5) 2019; 88 Chen, Tu, Zhang (bib86) 2014; 20 Xing, Hou, Ma, Wang, Ren, Wang, Liu, Chen, Li (bib71) 2019; 52 Dasari, Tchounwou (bib3) 2014; 740 Zhou, Li, Li, Liang, Yang (bib13) 2022; 99 Li, Li, Men, Li, Gong (bib23) 2022; 20 Lee, Park, Chung (bib62) 2009; 69 Zhai, Gao, Wang, Zhang, Qu, Zhang, Tao, Sun, Song, Fu (bib68) 2021; 35 Li, Liu, Wang (bib48) 2014; 22 Jiang, Yang, Yang, Zhang, Yue, Pan, Ren (bib53) 2017; 96 Lewis, Hayes, Wolf (bib29) 1988; 9 Bingzhang (bib93) 2018; 31 Zhao, Wu, Guo, Hu, Chen, Hong, Wang, Ma, Jiang, Niu, Miao, Li, Wang, Chen, Song (bib22) 2022; 151 Baek, Piao, Lee, Kim, Park (bib105) 2006; 29 Koczurkiewicz, Klas, Grabowska, Piska, Rogowska, Wojcik Pszczola, Podolak, Galanty, Michalik, Pekala (bib12) 2019; 33 Park, Choi, Kim, Ko, Kim, Kang, Ham (bib76) 2015; 63 Deng (10.1016/j.phrs.2024.107175_bib50) 2017; 8 Li (10.1016/j.phrs.2024.107175_bib40) 2023; 102 Yang (10.1016/j.phrs.2024.107175_bib73) 2020; 2020 Liu (10.1016/j.phrs.2024.107175_bib46) 2015; 55 Nguyen (10.1016/j.phrs.2024.107175_bib14) 2019; 27 Lee (10.1016/j.phrs.2024.107175_bib70) 2017; 41 Tchounwou (10.1016/j.phrs.2024.107175_bib4) 2021; 13 Wang (10.1016/j.phrs.2024.107175_bib82) 2023; 51 Oun (10.1016/j.phrs.2024.107175_bib7) 2018; 47 Qi (10.1016/j.phrs.2024.107175_bib66) 2019; 61 Zhang (10.1016/j.phrs.2024.107175_bib20) 2020; 32 He (10.1016/j.phrs.2024.107175_bib47) 2014; 34 Gao (10.1016/j.phrs.2024.107175_bib80) 2017; 51 Chresta (10.1016/j.phrs.2024.107175_bib9) 1996; 56 Domingo (10.1016/j.phrs.2024.107175_bib35) 2022; 23 Minyan (10.1016/j.phrs.2024.107175_bib90) 2022; 20 Yuan (10.1016/j.phrs.2024.107175_bib18) 2015; 21 Zhai (10.1016/j.phrs.2024.107175_bib68) 2021; 35 O’Grady (10.1016/j.phrs.2024.107175_bib30) 2014; 40 Koberle (10.1016/j.phrs.2024.107175_bib11) 2010; 1806 Hashemi (10.1016/j.phrs.2024.107175_bib36) 2022; 155 Lee (10.1016/j.phrs.2024.107175_bib61) 2012; 50 Wang (10.1016/j.phrs.2024.107175_bib74) 2014; 4 Shengde (10.1016/j.phrs.2024.107175_bib91) 2015; 26 Kim (10.1016/j.phrs.2024.107175_bib75) 2019; 24 Zhang (10.1016/j.phrs.2024.107175_bib69) 2021; 49 Baek (10.1016/j.phrs.2024.107175_bib106) 2017; 41 Pan (10.1016/j.phrs.2024.107175_bib15) 2019; 2019 Li (10.1016/j.phrs.2024.107175_bib48) 2014; 22 Kim (10.1016/j.phrs.2024.107175_bib101) 2010; 631 Tang (10.1016/j.phrs.2024.107175_bib16) 2021; 20 Jiang (10.1016/j.phrs.2024.107175_bib107) 2015; 20 Liu (10.1016/j.phrs.2024.107175_bib60) 1995; 9 Park (10.1016/j.phrs.2024.107175_bib37) 2017; 79 Zhao (10.1016/j.phrs.2024.107175_bib21) 2021; 4 Lee (10.1016/j.phrs.2024.107175_bib56) 2014; 32 Lewis (10.1016/j.phrs.2024.107175_bib29) 1988; 9 Wang (10.1016/j.phrs.2024.107175_bib64) 2018; 48 Chen (10.1016/j.phrs.2024.107175_bib83) 2019; 43 Wu (10.1016/j.phrs.2024.107175_bib72) 2021; 2021 Tong (10.1016/j.phrs.2024.107175_bib43) 2013; 310 Hu (10.1016/j.phrs.2024.107175_bib97) 2011; 8 Wang (10.1016/j.phrs.2024.107175_bib95) 2021; 12 Yang (10.1016/j.phrs.2024.107175_bib10) 2004; 130 Lee (10.1016/j.phrs.2024.107175_bib78) 2012; 22 Liu (10.1016/j.phrs.2024.107175_bib88) 2007; 12 Wang (10.1016/j.phrs.2024.107175_bib38) 2018; 415 Liu (10.1016/j.phrs.2024.107175_bib59) 1990; 13 Ju (10.1016/j.phrs.2024.107175_bib1) 2023; 66 Todd (10.1016/j.phrs.2024.107175_bib25) 2009; 1 Chen (10.1016/j.phrs.2024.107175_bib86) 2014; 20 Ren (10.1016/j.phrs.2024.107175_bib19) 2020; 16 Kim (10.1016/j.phrs.2024.107175_bib77) 2014; 143 Hu (10.1016/j.phrs.2024.107175_bib102) 2010; 90 Chen (10.1016/j.phrs.2024.107175_bib85) 2014; 32 Zhang (10.1016/j.phrs.2024.107175_bib44) 2013; 8 Xiao (10.1016/j.phrs.2024.107175_bib96) 2020; 153 Koczurkiewicz (10.1016/j.phrs.2024.107175_bib12) 2019; 33 Chian (10.1016/j.phrs.2024.107175_bib52) 2019; 30 Sancho Martinez (10.1016/j.phrs.2024.107175_bib32) 2012; 136 Bingzhang (10.1016/j.phrs.2024.107175_bib93) 2018; 31 Cai (10.1016/j.phrs.2024.107175_bib17) 2021; 2021 Hu (10.1016/j.phrs.2024.107175_bib67) 2020; 36 Jin (10.1016/j.phrs.2024.107175_bib89) 2011; 28 Xing (10.1016/j.phrs.2024.107175_bib71) 2019; 52 Zhang (10.1016/j.phrs.2024.107175_bib39) 2016; 54 Gao (10.1016/j.phrs.2024.107175_bib94) 2023; 102 Chen (10.1016/j.phrs.2024.107175_bib49) 2015; 10 Kim (10.1016/j.phrs.2024.107175_bib42) 2009; 32 Han (10.1016/j.phrs.2024.107175_bib63) 2016; 40 Miller (10.1016/j.phrs.2024.107175_bib33) 2010; 2 Kikuchi (10.1016/j.phrs.2024.107175_bib98) 1991; 2 Huang (10.1016/j.phrs.2024.107175_bib34) 2022; 11 Li (10.1016/j.phrs.2024.107175_bib65) 2016; 8 Lee (10.1016/j.phrs.2024.107175_bib62) 2009; 69 Zhou (10.1016/j.phrs.2024.107175_bib13) 2022; 99 Duan (10.1016/j.phrs.2024.107175_bib100) 2009; 36 Rabik (10.1016/j.phrs.2024.107175_bib28) 2007; 33 Meng (10.1016/j.phrs.2024.107175_bib54) 2022; 44 Park (10.1016/j.phrs.2024.107175_bib76) 2015; 63 Niu (10.1016/j.phrs.2024.107175_bib51) 2023; 115 Wang (10.1016/j.phrs.2024.107175_bib55) 2022; 13 Li (10.1016/j.phrs.2024.107175_bib23) 2022; 20 Chen (10.1016/j.phrs.2024.107175_bib6) 2019; 20 Li (10.1016/j.phrs.2024.107175_bib58) 2013; 35 Meng (10.1016/j.phrs.2024.107175_bib99) 2003; 19 Perez (10.1016/j.phrs.2024.107175_bib27) 1998; 34 Pabla (10.1016/j.phrs.2024.107175_bib31) 2008; 73 Wang (10.1016/j.phrs.2024.107175_bib24) 2022; 13 Jia (10.1016/j.phrs.2024.107175_bib2) 2021; 2021 Yokozawa (10.1016/j.phrs.2024.107175_bib103) 2000; 22 Luo (10.1016/j.phrs.2024.107175_bib79) 2023; 55 Ghosh (10.1016/j.phrs.2024.107175_bib5) 2019; 88 Jiang (10.1016/j.phrs.2024.107175_bib53) 2017; 96 Qiao (10.1016/j.phrs.2024.107175_bib84) 2023; 1870 Chen (10.1016/j.phrs.2024.107175_bib41) 2020; 20 Chaohui (10.1016/j.phrs.2024.107175_bib92) 2015; 8 Jin (10.1016/j.phrs.2024.107175_bib57) 2012; 27 Mehendale (10.1016/j.phrs.2024.107175_bib81) 2005; 56 Yokozawa (10.1016/j.phrs.2024.107175_bib104) 2001; 89 Dasari (10.1016/j.phrs.2024.107175_bib3) 2014; 740 Zhao (10.1016/j.phrs.2024.107175_bib22) 2022; 151 Galluzzi (10.1016/j.phrs.2024.107175_bib8) 2012; 31 Nakata (10.1016/j.phrs.2024.107175_bib87) 1998; 89 Li (10.1016/j.phrs.2024.107175_bib45) 2015; 7 Johnstone (10.1016/j.phrs.2024.107175_bib26) 2016; 116 Baek (10.1016/j.phrs.2024.107175_bib105) 2006; 29 |
References_xml | – volume: 13 start-page: 303 year: 2021 end-page: 328 ident: bib4 article-title: Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy publication-title: J. Exp. Pharmacol. – volume: 20 start-page: 914 year: 2014 end-page: 919 ident: bib86 article-title: Effect of ginsenoside Rg3 and cisplatin on immunity and tumor related proteins in nude mice bearing ovarian cancer publication-title: J. Chin. Oncol. – volume: 79 start-page: 468 year: 2017 end-page: 474 ident: bib37 article-title: Ginsenoside from publication-title: Indian J. Pharm. Sci. – volume: 7 start-page: 400 year: 2015 ident: bib45 article-title: Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells publication-title: J. Thorac. Dis. – volume: 102 year: 2023 ident: bib40 article-title: Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway publication-title: J. Funct. Foods – volume: 22 start-page: 516 year: 2014 end-page: 518 ident: bib48 article-title: The suppression effect of ginsenoside Rh2 combined with cisplatin on human esophageal cancer cell line Eca109 publication-title: J. Mod. Oncol. – volume: 8 start-page: 175 year: 2011 end-page: 180 ident: bib97 article-title: A meta-analysis of ginsenoside Rg3 for non-small cell lung cancer publication-title: Clin. Oncol. Cancer Res. – volume: 61 year: 2019 ident: bib66 article-title: Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity publication-title: Phytomedicine – volume: 55 start-page: 24 year: 2015 end-page: 26 ident: bib46 article-title: Inhibitory effects of ginsenoside CK combined with cisplatin on human lung adenocarcinoma A549 cells and its mechanisms publication-title: Shandong Med. J. – volume: 40 start-page: 1161 year: 2014 end-page: 1170 ident: bib30 article-title: The role of DNA repair pathways in cisplatin resistant lung cancer publication-title: Cancer Treat. Rev. – volume: 143 start-page: 114 year: 2014 end-page: 121 ident: bib77 article-title: Renoprotective effects of Maillard reaction products generated during heat treatment of ginsenoside Re with leucine publication-title: Food Chem. – volume: 32 start-page: 5044 year: 2020 end-page: 5056 ident: bib20 article-title: Microfluidic synthesis of multimode Au@CoFeB-Rg3 nanomedicines and their cytotoxicity and anti-tumor effects publication-title: Chem. Mater. – volume: 4 start-page: 4986 year: 2014 ident: bib74 article-title: The pseudoginsenoside F11 ameliorates cisplatin-induced nephrotoxicity without compromising its anti-tumor activity publication-title: Sci. Rep. – volume: 54 start-page: 561 year: 2016 end-page: 568 ident: bib39 article-title: Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer publication-title: Pharm. Biol. – volume: 136 start-page: 35 year: 2012 end-page: 55 ident: bib32 article-title: Subcellular targets of cisplatin cytotoxicity: An integrated view publication-title: Pharmacol. Ther. – volume: 2019 start-page: 2417418 year: 2019 ident: bib15 article-title: Ginsenoside Rg3 (Shenyi Capsule) Combined with Chemotherapy for digestive system cancer in China: a meta-analysis and systematic review publication-title: Evid. Based Complement. Altern. Med. – volume: 1 start-page: 280 year: 2009 end-page: 291 ident: bib25 article-title: Inhibition of transcription by platinum antitumor compounds publication-title: Metallomics – volume: 43 start-page: 499 year: 2019 end-page: 507 ident: bib83 article-title: Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments publication-title: J. Ginseng Res. – volume: 12 year: 2021 ident: bib95 article-title: The optimal adjuvant strategy of Aidi injection with gemcitabine and cisplatin in advanced non-small cell lung cancer: A meta-analysis of 70 randomized controlled trials publication-title: Front. Pharmacol. – volume: 22 start-page: 5475 year: 2012 end-page: 5479 ident: bib78 article-title: Important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against cisplatin-induced nephrotoxicity in LLC-PK1 cells publication-title: Bioorg. Med. Chem. Lett. – volume: 151 start-page: 549 year: 2022 end-page: 560 ident: bib22 article-title: Dynamic ginsenoside-sheltered nanocatalysts for safe ferroptosis-apoptosis combined therapy publication-title: Acta Biomater. – volume: 11 start-page: 385 year: 2022 end-page: 390 ident: bib34 article-title: Mechanism of kidney injury induced by cisplatin publication-title: Toxicol. Res. – volume: 51 start-page: 1 year: 2017 end-page: 13 ident: bib80 article-title: Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice publication-title: Free Radic. Res. – volume: 89 start-page: 733 year: 1998 end-page: 740 ident: bib87 article-title: Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells publication-title: Jpn. J. Cancer Res. – volume: 23 start-page: 7227 year: 2022 ident: bib35 article-title: Pro-inflammatory signalling PRROpels cisplatin-induced toxicity publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 48 year: 2015 end-page: 50 ident: bib92 article-title: Clinical effect of ginsenosides combined with tigio and cisplatin chemotherapy in the treatment of advanced gastric cancer publication-title: Chin. J. Clin. Ration. Drug Use – volume: 44 start-page: 366 year: 2022 end-page: 376 ident: bib54 article-title: Ginsenoside Rg3 regulates cisplatin resistance in gastric cancer by Wnt/β-catenin signaling pathway publication-title: Acta Acad. Med. Sin. – volume: 2021 start-page: 9516726 year: 2021 ident: bib2 article-title: Mechanism prediction of Astragalus membranaceus against cisplatin-induced kidney damage by network pharmacology and molecular docking publication-title: Evid. Based Complement. Altern. Med. – volume: 99 start-page: 286 year: 2022 end-page: 300 ident: bib13 article-title: Anticancer properties and pharmaceutical applications of ginsenoside compound K: a review publication-title: Chem. Biol. Drug Des. – volume: 8 start-page: 566 year: 2016 ident: bib65 article-title: Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis publication-title: Nutrients – volume: 20 start-page: 495 year: 2020 end-page: 503 ident: bib41 article-title: Ginsenoside Rh2 Improves the Cisplatin Anti-tumor Effect in Lung Adenocarcinoma A549 Cells via Superoxide and PD-L1 publication-title: Anti-Cancer Agents Med. Chem. – volume: 66 start-page: 1079 year: 2023 end-page: 1091 ident: bib1 article-title: Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea publication-title: Sci. China Life Sci. – volume: 90 start-page: 264 year: 2010 end-page: 268 ident: bib102 article-title: Research on mechanism of ginsenoside Rh2 reversing resistance of lung adenocarcinoma cells publication-title: Natl. Med. J. China – volume: 2 start-page: 2490 year: 2010 end-page: 2518 ident: bib33 article-title: Mechanisms of cisplatin nephrotoxicity publication-title: Toxins – volume: 10 start-page: 48 year: 2015 end-page: 52 ident: bib49 article-title: Ginsenoside Rg3 sensitizes colon cancer cells to DNA damage reagents by inhibiting WEE1 kinase expression publication-title: Res. J. BioTechnol. – volume: 116 start-page: 3436 year: 2016 end-page: 3486 ident: bib26 article-title: The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs publication-title: Chem. Rev. – volume: 29 start-page: 2051 year: 2006 end-page: 2055 ident: bib105 article-title: Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells publication-title: Biol. Pharm. Bull. – volume: 28 start-page: 229 year: 2011 end-page: 230+232 ident: bib89 article-title: Observation of ginsenoside Rg3 combined with chemotherapy as adjuvant treatment for elder nonsmall-cell lung cancer patients publication-title: J. Xinxiang Med. Univ. – volume: 115 year: 2023 ident: bib51 article-title: Ginsenoside Rb1 for overcoming cisplatin-insensitivity of A549/DDP cells publication-title: Phytomedicine – volume: 102 year: 2023 ident: bib94 article-title: The effect of ginsenoside Rg3 combined with chemotherapy on immune function in non-small cell lung cancer: A systematic review and meta-analysis of randomized controlled trials publication-title: Medicine – volume: 2 start-page: 63 year: 1991 end-page: 67 ident: bib98 article-title: Inhibition of human ovarian cancer cell proliferation publication-title: Anti-Cancer Drugs – volume: 96 start-page: 378 year: 2017 end-page: 383 ident: bib53 article-title: Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune publication-title: Biomed. Pharmacother. – volume: 24 start-page: 4627 year: 2019 ident: bib75 article-title: Increase in protective effect of publication-title: Molecules – volume: 4 start-page: 190 year: 2021 end-page: 199 ident: bib21 article-title: The synthesis of a nanodrug using metal-based nanozymes conjugated with ginsenoside Rg3 for pancreatic cancer therapy publication-title: Nanoscale Adv. – volume: 56 start-page: 1834 year: 1996 end-page: 1841 ident: bib9 article-title: Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax: Bcl-2 ratio publication-title: Cancer Res – volume: 36 start-page: 732 year: 2020 end-page: 740 ident: bib67 article-title: Protective effect of ginsenoside Rk1, a major rare saponin from black ginseng, on cisplatin-induced nephrotoxicity in HEK-293 cells publication-title: Kaohsiung J. Med. Sci. – volume: 31 start-page: 1869 year: 2012 end-page: 1883 ident: bib8 article-title: Molecular mechanisms of cisplatin resistance publication-title: Oncogene – volume: 22 start-page: 115 year: 2000 end-page: 127 ident: bib103 article-title: The role of ginsenoside-Rd in cisplatin-induced acute renal failure publication-title: Ren. Fail. – volume: 32 start-page: 1803 year: 2014 end-page: 1808 ident: bib56 article-title: Synergistic antitumor effect of ginsenoside Rg3 and cisplatin in cisplatin-resistant bladder tumor cell line publication-title: Oncol. Rep. – volume: 41 start-page: 227 year: 2017 end-page: 231 ident: bib70 article-title: Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells publication-title: J. Ginseng Res. – volume: 8 start-page: 25897 year: 2017 end-page: 25914 ident: bib50 article-title: Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/beta-catenin signaling and epithelial-to-mesenchymal transition publication-title: Oncotarget – volume: 49 start-page: 1739 year: 2021 end-page: 1756 ident: bib69 article-title: Protective effect of 20(R)-ginsenoside Rg3 against cisplatin-induced renal toxicity via phosphoinositide 3-kinase/protein kinase B and nuclear factor-kappa B signaling pathways based on the premise of ensuring anticancer effect publication-title: Am. J. Chin. Med. – volume: 2021 start-page: 1653750 year: 2021 ident: bib17 article-title: The effect of Shenyi capsule on non-small-cell lung cancer combined with chemotherapy from the Yin-Yang perspective publication-title: Evid. Based Complement. Altern. Med. – volume: 55 start-page: 243 year: 2023 ident: bib79 article-title: Protective effects of ginsenosides in cisplatin-induced kidney injury: A systematic review, meta-analysis publication-title: Indian J. Pharmacol. – volume: 40 start-page: 135 year: 2016 end-page: 140 ident: bib63 article-title: Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells publication-title: J. Ginseng Res. – volume: 56 start-page: 63 year: 2005 end-page: 69 ident: bib81 article-title: American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats publication-title: Cancer Chemother. Pharmacol. – volume: 9 start-page: 1283 year: 1988 end-page: 1287 ident: bib29 article-title: Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: Intrinsic differences and cell cycle effects publication-title: Carcinogenesis – volume: 47 start-page: 6645 year: 2018 end-page: 6653 ident: bib7 article-title: The side effects of platinum-based chemotherapy drugs: a review for chemists publication-title: Dalton Trans. – volume: 631 start-page: 1 year: 2010 end-page: 9 ident: bib101 article-title: Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-κB publication-title: Eur. J. Pharmacol. – volume: 41 start-page: 233 year: 2017 end-page: 239 ident: bib106 article-title: Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury publication-title: J. Ginseng Res. – volume: 63 start-page: 5964 year: 2015 end-page: 5969 ident: bib76 article-title: Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: publication-title: J. Agric. Food Chem. – volume: 89 start-page: 433 year: 2001 end-page: 438 ident: bib104 article-title: Role of ginsenoside-Rd in cisplatin-induced renal injury: Special reference to DNA fragmentation publication-title: Nephron – volume: 13 start-page: 507 year: 1990 end-page: 511 ident: bib59 article-title: Stimulation of p-aminohippurate transport in renal cortical slices prepared from rats treated with ginsenosides publication-title: J. Pharm. – volume: 50 start-page: 2565 year: 2012 end-page: 2574 ident: bib61 article-title: Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species publication-title: Food Chem. Toxicol. – volume: 27 start-page: 1398 year: 2012 end-page: 1400 ident: bib57 article-title: Effect of ginsenoside Rh2 combined with cisplatin on apoptosis of human ovarian cancer SKOV-3 cells publication-title: Matern. Child Health Care China – volume: 20 start-page: 2553 year: 2022 end-page: 2556 ident: bib90 article-title: Efficacy of ginsenoside Rh2 combined with cisplatin and pemetrexed in the treatment of advanced lung cancer publication-title: Oncol. Prog. – volume: 9 start-page: 27 year: 1995 end-page: 29 ident: bib60 article-title: Protective effects of ginsenosides against renal injuries induced by cisplatin in rats, Chin publication-title: J. Pharmacol. Toxicol. – volume: 35 start-page: 351 year: 2013 end-page: 354 ident: bib58 article-title: Reversing cisplatin-resistant of Eca109/DDP cell line by ginsenoside Rg3 publication-title: Anat. Res. – volume: 52 year: 2019 ident: bib71 article-title: Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis publication-title: Cell Prolif. – volume: 2021 start-page: 6640714 year: 2021 ident: bib72 article-title: Ginsenoside Rb3 alleviates the toxic effect of cisplatin on the kidney during its treatment to oral cancer via TGF-beta-mediated mitochondrial apoptosis publication-title: Evid. Based Complement. Altern. Med. – volume: 20 start-page: 881 year: 2022 end-page: 901 ident: bib23 article-title: Potential of ginsenoside Rh2 and its derivatives as anti-cancer agents publication-title: Chin. J. Nat. Med. – volume: 31 start-page: 19 year: 2018 end-page: 22 ident: bib93 article-title: Influence of ginsenoside and S-1 plus cisplatin on serum gastrin and survivin antibody in the patients with advanced gastric carcinoma publication-title: J. Basic Clin. Oncol. – volume: 155 year: 2022 ident: bib36 article-title: EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions publication-title: Biomed. Pharmacother. – volume: 26 start-page: 2256 year: 2015 end-page: 2257 ident: bib91 article-title: Effect of Aidi injection on serum interleukin and tumor necrosis factor levels in patients with lung cancer chemotherapy publication-title: Front. Oncol. – volume: 8 start-page: 897 year: 2013 end-page: 902 ident: bib44 article-title: Components of Panax notoginseng saponins enhance the cytotoxicity of cisplatin via their effects on gap junctions publication-title: Mol. Med. Rep. – volume: 36 start-page: 290 year: 2009 end-page: 293 ident: bib100 article-title: Anti-angiogenic effects of cisplatin combined with ginsenoside Rg3 in nude mice cervical cancer publication-title: Cancer Res. Prev. Treat. – volume: 13 year: 2022 ident: bib55 article-title: Ginsenoside Rg3 alleviates cisplatin resistance of gastric cancer cells through inhibiting SOX2 and the PI3K/ Akt/mTOR signaling axis by Up-regulating miR-429 publication-title: Front. Genet. – volume: 73 start-page: 994 year: 2008 end-page: 1007 ident: bib31 article-title: Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies publication-title: Kidney Int – volume: 33 start-page: 2141 year: 2019 end-page: 2151 ident: bib12 article-title: Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug-Minireview of – volume: 20 start-page: 4136 year: 2019 ident: bib6 article-title: New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment publication-title: Int. J. Mol. Sci. – volume: 27 start-page: 871 year: 2019 end-page: 883 ident: bib14 article-title: Pharmacological effects of ginseng on infectious diseases publication-title: Inflammopharmacology – volume: 20 start-page: 343 year: 2015 end-page: 349 ident: bib107 article-title: Ameliorative effect of ginsenoside RT-5 on CDDP-induced nephrotoxicity publication-title: Wuhan. Univ. J. Nat. Sci. – volume: 1870 year: 2023 ident: bib84 article-title: 20 (S)-Ginsenoside Rh1 inhibits cisplatin-induced hearing loss by inhibiting the MAPK signaling pathway and suppressing apoptosis publication-title: Biochim. Biophys. Acta, Mol. Cell Res. – volume: 32 start-page: 2192 year: 2014 end-page: 2195 ident: bib85 article-title: Effect of ginsenoside Rg3 combined with cisplatin on transplanted human high-metastasis ovarian cancer cell line H0-8910PM in nude mice publication-title: Chin. Arch. Tradit. Chin. Med. – volume: 12 start-page: 847 year: 2007 end-page: 849 ident: bib88 article-title: Ginsenoside Rg3 capsules combined NP regimen in the treatment of advanced non-small cell lung cancer publication-title: Chin. Clin. Oncol. – volume: 740 start-page: 364 year: 2014 end-page: 378 ident: bib3 article-title: Cisplatin in cancer therapy: molecular mechanisms of action publication-title: Eur. J. Pharmacol. – volume: 415 start-page: 73 year: 2018 end-page: 85 ident: bib38 article-title: Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness publication-title: Cancer Lett. – volume: 13 year: 2022 ident: bib24 article-title: Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent publication-title: Front. Pharmacol. – volume: 34 start-page: 1555 year: 2014 end-page: 1557 ident: bib47 article-title: Effect of combination of Ginsenoside Rh2 and low doses CDDP on apoptosis of prostate cancer mice publication-title: Chin. J. Gerontol. – volume: 88 year: 2019 ident: bib5 article-title: Cisplatin: The first metal-based anticancer drug publication-title: Bioorg. Chem. – volume: 48 start-page: 2219 year: 2018 end-page: 2229 ident: bib64 article-title: Kidney protection effect of ginsenoside Re and its underlying mechanisms on cisplatin-induced kidney injury publication-title: Cell. Physiol. Biochem. – volume: 51 start-page: 407 year: 2023 end-page: 424 ident: bib82 article-title: Ginsenoside Re attenuates cisplatin-induced intestinal toxicity via suppressing GSK-3β-dependent Wnt/β-catenin signaling pathway publication-title: Am. J. Chin. Med. – volume: 20 year: 2021 ident: bib16 article-title: Oral Chinese patent medicine combined with oxaliplatin-based chemotherapy regimen for the treatment of colorectal cancer: a network meta-analysis publication-title: Integr. Cancer Ther. – volume: 16 year: 2020 ident: bib19 article-title: Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis publication-title: Small – volume: 1806 start-page: 172 year: 2010 end-page: 182 ident: bib11 article-title: Cisplatin resistance: preclinical findings and clinical implications publication-title: Biochim. Biophys. Acta – volume: 130 start-page: 423 year: 2004 end-page: 428 ident: bib10 article-title: Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer publication-title: J. Cancer Res. Clin. Oncol. – volume: 69 start-page: 2983 year: 2009 ident: bib62 article-title: Effects of ginsenoside Rg3 on chemotherapeutic efficacy of cisplatin and its reactive oxygen species-mediated toxicity in a tumor xenograft model of colon carcinoma publication-title: Cancer Res – volume: 21 start-page: 2938 year: 2015 end-page: 2940 ident: bib18 article-title: Clinical research progress in anti-tumor effects of ginesenoside Rg3 publication-title: Med. Recapitul. – volume: 34 start-page: 1535 year: 1998 end-page: 1542 ident: bib27 article-title: Cellular and molecular determinants of cisplatin resistance publication-title: Eur. J. Cancer – volume: 32 start-page: 755 year: 2009 end-page: 765 ident: bib42 article-title: Inhibition of NF-κB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel publication-title: Arch. Pharmacal Res. – volume: 310 start-page: 53 year: 2013 end-page: 60 ident: bib43 article-title: Role of heteromeric gap junctions in the cytotoxicity of cisplatin publication-title: Toxicology – volume: 35 year: 2021 ident: bib68 article-title: Ginsenoside Rg3 attenuates cisplatin-induced kidney injury through inhibition of apoptosis and autophagy-inhibited NLRP3 publication-title: J. Biochem. Mol. Toxicol. – volume: 33 start-page: 9 year: 2007 end-page: 23 ident: bib28 article-title: Molecular mechanisms of resistance and toxicity associated with platinating agents publication-title: Cancer Treat. Rev. – volume: 2020 start-page: 3401067 year: 2020 ident: bib73 article-title: Ginsenoside Rh1 alleviates HK-2 apoptosis by inhibiting ROS and the JNK/p53 pathways publication-title: Evid. Based Complement. Altern. Med. – volume: 153 year: 2020 ident: bib96 article-title: Clinical efficacy and safety of aidi injection combination with vinorelbine and cisplatin for advanced non-small-cell lung carcinoma: A systematic review and meta-analysis of 54 randomized controlled trials publication-title: Pharmacol. Res. – volume: 19 start-page: 689 year: 2003 end-page: 692 ident: bib99 article-title: Ginsenoside Rh2 enhances the apoptotic effect of cisplatin on PC-3M prostatic cancer cells publication-title: Chin. J. Pathophysiol. – volume: 30 start-page: 838 year: 2019 end-page: 845 ident: bib52 article-title: Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway publication-title: Anti-Cancer Drugs – volume: 33 start-page: 9 issue: 1 year: 2007 ident: 10.1016/j.phrs.2024.107175_bib28 article-title: Molecular mechanisms of resistance and toxicity associated with platinating agents publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2006.09.006 – volume: 32 start-page: 2192 issue: 9 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib85 article-title: Effect of ginsenoside Rg3 combined with cisplatin on transplanted human high-metastasis ovarian cancer cell line H0-8910PM in nude mice publication-title: Chin. Arch. Tradit. Chin. Med. – volume: 41 start-page: 233 issue: 3 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib106 article-title: Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.03.008 – volume: 16 issue: 2 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib19 article-title: Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis publication-title: Small doi: 10.1002/smll.201905233 – volume: 130 start-page: 423 year: 2004 ident: 10.1016/j.phrs.2024.107175_bib10 article-title: Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-004-0556-9 – volume: 11 start-page: 385 issue: 3 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib34 article-title: Mechanism of kidney injury induced by cisplatin publication-title: Toxicol. Res. doi: 10.1093/toxres/tfac019 – volume: 9 start-page: 1283 issue: 7 year: 1988 ident: 10.1016/j.phrs.2024.107175_bib29 article-title: Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: Intrinsic differences and cell cycle effects publication-title: Carcinogenesis doi: 10.1093/carcin/9.7.1283 – volume: 28 start-page: 229 issue: 2 year: 2011 ident: 10.1016/j.phrs.2024.107175_bib89 article-title: Observation of ginsenoside Rg3 combined with chemotherapy as adjuvant treatment for elder nonsmall-cell lung cancer patients publication-title: J. Xinxiang Med. Univ. – volume: 99 start-page: 286 issue: 2 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib13 article-title: Anticancer properties and pharmaceutical applications of ginsenoside compound K: a review publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13983 – volume: 90 start-page: 264 issue: 4 year: 2010 ident: 10.1016/j.phrs.2024.107175_bib102 article-title: Research on mechanism of ginsenoside Rh2 reversing resistance of lung adenocarcinoma cells publication-title: Natl. Med. J. China – volume: 32 start-page: 5044 issue: 12 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib20 article-title: Microfluidic synthesis of multimode Au@CoFeB-Rg3 nanomedicines and their cytotoxicity and anti-tumor effects publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00797 – volume: 26 start-page: 2256 issue: 10 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib91 article-title: Effect of Aidi injection on serum interleukin and tumor necrosis factor levels in patients with lung cancer chemotherapy publication-title: Front. Oncol. – volume: 20 start-page: 495 issue: 4 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib41 article-title: Ginsenoside Rh2 Improves the Cisplatin Anti-tumor Effect in Lung Adenocarcinoma A549 Cells via Superoxide and PD-L1 publication-title: Anti-Cancer Agents Med. Chem. doi: 10.2174/1871520619666191209091230 – volume: 23 start-page: 7227 issue: 13 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib35 article-title: Pro-inflammatory signalling PRROpels cisplatin-induced toxicity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23137227 – volume: 631 start-page: 1 issue: 1-3 year: 2010 ident: 10.1016/j.phrs.2024.107175_bib101 article-title: Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-κB publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2009.12.018 – volume: 40 start-page: 135 issue: 2 year: 2016 ident: 10.1016/j.phrs.2024.107175_bib63 article-title: Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2015.06.006 – volume: 52 issue: 4 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib71 article-title: Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo publication-title: Cell Prolif. doi: 10.1111/cpr.12627 – volume: 2 start-page: 63 issue: 1 year: 1991 ident: 10.1016/j.phrs.2024.107175_bib98 article-title: Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo publication-title: Anti-Cancer Drugs doi: 10.1097/00001813-199102000-00009 – volume: 22 start-page: 115 issue: 2 year: 2000 ident: 10.1016/j.phrs.2024.107175_bib103 article-title: The role of ginsenoside-Rd in cisplatin-induced acute renal failure publication-title: Ren. Fail. doi: 10.1081/JDI-100100858 – volume: 51 start-page: 407 issue: 02 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib82 article-title: Ginsenoside Re attenuates cisplatin-induced intestinal toxicity via suppressing GSK-3β-dependent Wnt/β-catenin signaling pathway in vivo and in vitro publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X23500210 – volume: 1870 issue: 5 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib84 article-title: 20 (S)-Ginsenoside Rh1 inhibits cisplatin-induced hearing loss by inhibiting the MAPK signaling pathway and suppressing apoptosis in vitro publication-title: Biochim. Biophys. Acta, Mol. Cell Res. doi: 10.1016/j.bbamcr.2023.119461 – volume: 41 start-page: 227 issue: 2 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib70 article-title: Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2017.01.011 – volume: 89 start-page: 433 issue: 4 year: 2001 ident: 10.1016/j.phrs.2024.107175_bib104 article-title: Role of ginsenoside-Rd in cisplatin-induced renal injury: Special reference to DNA fragmentation publication-title: Nephron doi: 10.1159/000046116 – volume: 30 start-page: 838 issue: 8 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib52 article-title: Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway publication-title: Anti-Cancer Drugs doi: 10.1097/CAD.0000000000000781 – volume: 40 start-page: 1161 issue: 10 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib30 article-title: The role of DNA repair pathways in cisplatin resistant lung cancer publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2014.10.003 – volume: 8 start-page: 25897 issue: 16 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib50 article-title: Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/beta-catenin signaling and epithelial-to-mesenchymal transition publication-title: Oncotarget doi: 10.18632/oncotarget.13071 – volume: 19 start-page: 689 issue: 5 year: 2003 ident: 10.1016/j.phrs.2024.107175_bib99 article-title: Ginsenoside Rh2 enhances the apoptotic effect of cisplatin on PC-3M prostatic cancer cells publication-title: Chin. J. Pathophysiol. – volume: 27 start-page: 871 issue: 5 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib14 article-title: Pharmacological effects of ginseng on infectious diseases publication-title: Inflammopharmacology doi: 10.1007/s10787-019-00630-4 – volume: 79 start-page: 468 issue: 3 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib37 article-title: Ginsenoside from Panax ginseng meyer enhances the cytotoxic and apoptotic effect of cisplatin in A549 human lung cancer cells publication-title: Indian J. Pharm. Sci. – volume: 13 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib24 article-title: Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent publication-title: Front. Pharmacol. – volume: 89 start-page: 733 issue: 7 year: 1998 ident: 10.1016/j.phrs.2024.107175_bib87 article-title: Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells publication-title: Jpn. J. Cancer Res. doi: 10.1111/j.1349-7006.1998.tb03278.x – volume: 8 start-page: 897 issue: 3 year: 2013 ident: 10.1016/j.phrs.2024.107175_bib44 article-title: Components of Panax notoginseng saponins enhance the cytotoxicity of cisplatin via their effects on gap junctions publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2013.1597 – volume: 143 start-page: 114 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib77 article-title: Renoprotective effects of Maillard reaction products generated during heat treatment of ginsenoside Re with leucine publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.07.075 – volume: 27 start-page: 1398 issue: 9 year: 2012 ident: 10.1016/j.phrs.2024.107175_bib57 article-title: Effect of ginsenoside Rh2 combined with cisplatin on apoptosis of human ovarian cancer SKOV-3 cells publication-title: Matern. Child Health Care China – volume: 20 start-page: 4136 issue: 17 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib6 article-title: New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20174136 – volume: 1806 start-page: 172 issue: 2 year: 2010 ident: 10.1016/j.phrs.2024.107175_bib11 article-title: Cisplatin resistance: preclinical findings and clinical implications publication-title: Biochim. Biophys. Acta – volume: 96 start-page: 378 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib53 article-title: Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.09.129 – volume: 35 issue: 11 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib68 article-title: Ginsenoside Rg3 attenuates cisplatin-induced kidney injury through inhibition of apoptosis and autophagy-inhibited NLRP3 publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.22896 – volume: 31 start-page: 19 issue: 1 year: 2018 ident: 10.1016/j.phrs.2024.107175_bib93 article-title: Influence of ginsenoside and S-1 plus cisplatin on serum gastrin and survivin antibody in the patients with advanced gastric carcinoma publication-title: J. Basic Clin. Oncol. – volume: 12 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib95 article-title: The optimal adjuvant strategy of Aidi injection with gemcitabine and cisplatin in advanced non-small cell lung cancer: A meta-analysis of 70 randomized controlled trials publication-title: Front. Pharmacol. – volume: 2021 start-page: 1653750 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib17 article-title: The effect of Shenyi capsule on non-small-cell lung cancer combined with chemotherapy from the Yin-Yang perspective publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2021/1653750 – volume: 102 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib40 article-title: Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway publication-title: J. Funct. Foods doi: 10.1016/j.jff.2023.105438 – volume: 44 start-page: 366 issue: 3 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib54 article-title: Ginsenoside Rg3 regulates cisplatin resistance in gastric cancer by Wnt/β-catenin signaling pathway publication-title: Acta Acad. Med. Sin. – volume: 102 issue: 14 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib94 article-title: The effect of ginsenoside Rg3 combined with chemotherapy on immune function in non-small cell lung cancer: A systematic review and meta-analysis of randomized controlled trials publication-title: Medicine doi: 10.1097/MD.0000000000033463 – volume: 10 start-page: 48 issue: 4 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib49 article-title: Ginsenoside Rg3 sensitizes colon cancer cells to DNA damage reagents by inhibiting WEE1 kinase expression publication-title: Res. J. BioTechnol. – volume: 36 start-page: 732 issue: 9 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib67 article-title: Protective effect of ginsenoside Rk1, a major rare saponin from black ginseng, on cisplatin-induced nephrotoxicity in HEK-293 cells publication-title: Kaohsiung J. Med. Sci. doi: 10.1002/kjm2.12220 – volume: 73 start-page: 994 issue: 9 year: 2008 ident: 10.1016/j.phrs.2024.107175_bib31 article-title: Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies publication-title: Kidney Int doi: 10.1038/sj.ki.5002786 – volume: 51 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.phrs.2024.107175_bib80 article-title: Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice publication-title: Free Radic. Res. doi: 10.1080/10715762.2016.1234710 – volume: 88 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib5 article-title: Cisplatin: The first metal-based anticancer drug publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.102925 – volume: 2019 start-page: 2417418 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib15 article-title: Ginsenoside Rg3 (Shenyi Capsule) Combined with Chemotherapy for digestive system cancer in China: a meta-analysis and systematic review publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2019/2417418 – volume: 13 start-page: 507 issue: 8 year: 1990 ident: 10.1016/j.phrs.2024.107175_bib59 article-title: Stimulation of p-aminohippurate transport in renal cortical slices prepared from rats treated with ginsenosides publication-title: J. Pharm. – volume: 13 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib55 article-title: Ginsenoside Rg3 alleviates cisplatin resistance of gastric cancer cells through inhibiting SOX2 and the PI3K/ Akt/mTOR signaling axis by Up-regulating miR-429 publication-title: Front. Genet. – volume: 33 start-page: 2141 issue: 9 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib12 article-title: Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug-Minireview of in vitro studies, Phytother. Res – volume: 32 start-page: 1803 issue: 5 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib56 article-title: Synergistic antitumor effect of ginsenoside Rg3 and cisplatin in cisplatin-resistant bladder tumor cell line publication-title: Oncol. Rep. doi: 10.3892/or.2014.3452 – volume: 20 start-page: 2553 issue: 24 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib90 article-title: Efficacy of ginsenoside Rh2 combined with cisplatin and pemetrexed in the treatment of advanced lung cancer publication-title: Oncol. Prog. – volume: 22 start-page: 5475 issue: 17 year: 2012 ident: 10.1016/j.phrs.2024.107175_bib78 article-title: Important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against cisplatin-induced nephrotoxicity in LLC-PK1 cells publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2012.07.018 – volume: 24 start-page: 4627 issue: 24 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib75 article-title: Increase in protective effect of Panax vietnamensis by heat processing on cisplatin-induced kidney cell toxicity publication-title: Molecules doi: 10.3390/molecules24244627 – volume: 8 start-page: 48 issue: 5A year: 2015 ident: 10.1016/j.phrs.2024.107175_bib92 article-title: Clinical effect of ginsenosides combined with tigio and cisplatin chemotherapy in the treatment of advanced gastric cancer publication-title: Chin. J. Clin. Ration. Drug Use – volume: 54 start-page: 561 issue: 4 year: 2016 ident: 10.1016/j.phrs.2024.107175_bib39 article-title: Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer publication-title: Pharm. Biol. doi: 10.3109/13880209.2015.1101142 – volume: 21 start-page: 2938 issue: 16 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib18 article-title: Clinical research progress in anti-tumor effects of ginesenoside Rg3 publication-title: Med. Recapitul. – volume: 61 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib66 article-title: Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo publication-title: Phytomedicine doi: 10.1016/j.phymed.2019.152862 – volume: 34 start-page: 1535 issue: 10 year: 1998 ident: 10.1016/j.phrs.2024.107175_bib27 article-title: Cellular and molecular determinants of cisplatin resistance publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(98)00227-5 – volume: 32 start-page: 755 issue: 5 year: 2009 ident: 10.1016/j.phrs.2024.107175_bib42 article-title: Inhibition of NF-κB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel publication-title: Arch. Pharmacal Res. doi: 10.1007/s12272-009-1515-4 – volume: 48 start-page: 2219 issue: 5 year: 2018 ident: 10.1016/j.phrs.2024.107175_bib64 article-title: Kidney protection effect of ginsenoside Re and its underlying mechanisms on cisplatin-induced kidney injury publication-title: Cell. Physiol. Biochem. doi: 10.1159/000492562 – volume: 34 start-page: 1555 issue: 6 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib47 article-title: Effect of combination of Ginsenoside Rh2 and low doses CDDP on apoptosis of prostate cancer mice publication-title: Chin. J. Gerontol. – volume: 20 start-page: 881 issue: 12 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib23 article-title: Potential of ginsenoside Rh2 and its derivatives as anti-cancer agents publication-title: Chin. J. Nat. Med. – volume: 7 start-page: 400 issue: 3 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib45 article-title: Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells publication-title: J. Thorac. Dis. – volume: 22 start-page: 516 issue: 3 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib48 article-title: The suppression effect of ginsenoside Rh2 combined with cisplatin on human esophageal cancer cell line Eca109 publication-title: J. Mod. Oncol. – volume: 20 start-page: 914 issue: 11 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib86 article-title: Effect of ginsenoside Rg3 and cisplatin on immunity and tumor related proteins in nude mice bearing ovarian cancer publication-title: J. Chin. Oncol. – volume: 115 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib51 article-title: Ginsenoside Rb1 for overcoming cisplatin-insensitivity of A549/DDP cells in vitro and vivo through the dual-inhibition on two efflux pumps of ABCB1 and PTCH1 publication-title: Phytomedicine doi: 10.1016/j.phymed.2023.154776 – volume: 12 start-page: 847 issue: 11 year: 2007 ident: 10.1016/j.phrs.2024.107175_bib88 article-title: Ginsenoside Rg3 capsules combined NP regimen in the treatment of advanced non-small cell lung cancer publication-title: Chin. Clin. Oncol. – volume: 8 start-page: 566 issue: 9 year: 2016 ident: 10.1016/j.phrs.2024.107175_bib65 article-title: Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis publication-title: Nutrients doi: 10.3390/nu8090566 – volume: 2020 start-page: 3401067 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib73 article-title: Ginsenoside Rh1 alleviates HK-2 apoptosis by inhibiting ROS and the JNK/p53 pathways publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2020/3401067 – volume: 4 start-page: 4986 issue: 1 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib74 article-title: The pseudoginsenoside F11 ameliorates cisplatin-induced nephrotoxicity without compromising its anti-tumor activity in vivo publication-title: Sci. Rep. doi: 10.1038/srep04986 – volume: 56 start-page: 1834 issue: 8 year: 1996 ident: 10.1016/j.phrs.2024.107175_bib9 article-title: Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax: Bcl-2 ratio publication-title: Cancer Res – volume: 310 start-page: 53 year: 2013 ident: 10.1016/j.phrs.2024.107175_bib43 article-title: Role of heteromeric gap junctions in the cytotoxicity of cisplatin publication-title: Toxicology doi: 10.1016/j.tox.2013.05.010 – volume: 49 start-page: 1739 issue: 7 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib69 article-title: Protective effect of 20(R)-ginsenoside Rg3 against cisplatin-induced renal toxicity via phosphoinositide 3-kinase/protein kinase B and nuclear factor-kappa B signaling pathways based on the premise of ensuring anticancer effect publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X21500828 – volume: 20 start-page: 343 issue: 4 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib107 article-title: Ameliorative effect of ginsenoside RT-5 on CDDP-induced nephrotoxicity publication-title: Wuhan. Univ. J. Nat. Sci. doi: 10.1007/s11859-015-1103-z – volume: 9 start-page: 27 issue: 1 year: 1995 ident: 10.1016/j.phrs.2024.107175_bib60 article-title: Protective effects of ginsenosides against renal injuries induced by cisplatin in rats, Chin publication-title: J. Pharmacol. Toxicol. – volume: 36 start-page: 290 issue: 4 year: 2009 ident: 10.1016/j.phrs.2024.107175_bib100 article-title: Anti-angiogenic effects of cisplatin combined with ginsenoside Rg3 in nude mice cervical cancer publication-title: Cancer Res. Prev. Treat. – volume: 31 start-page: 1869 issue: 15 year: 2012 ident: 10.1016/j.phrs.2024.107175_bib8 article-title: Molecular mechanisms of cisplatin resistance publication-title: Oncogene doi: 10.1038/onc.2011.384 – volume: 415 start-page: 73 year: 2018 ident: 10.1016/j.phrs.2024.107175_bib38 article-title: Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.11.037 – volume: 2021 start-page: 9516726 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib2 article-title: Mechanism prediction of Astragalus membranaceus against cisplatin-induced kidney damage by network pharmacology and molecular docking publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2021/9516726 – volume: 50 start-page: 2565 issue: 7 year: 2012 ident: 10.1016/j.phrs.2024.107175_bib61 publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.01.005 – volume: 55 start-page: 24 issue: 9 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib46 article-title: Inhibitory effects of ginsenoside CK combined with cisplatin on human lung adenocarcinoma A549 cells and its mechanisms publication-title: Shandong Med. J. – volume: 69 start-page: 2983 year: 2009 ident: 10.1016/j.phrs.2024.107175_bib62 article-title: Effects of ginsenoside Rg3 on chemotherapeutic efficacy of cisplatin and its reactive oxygen species-mediated toxicity in a tumor xenograft model of colon carcinoma publication-title: Cancer Res – volume: 740 start-page: 364 year: 2014 ident: 10.1016/j.phrs.2024.107175_bib3 article-title: Cisplatin in cancer therapy: molecular mechanisms of action publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2014.07.025 – volume: 153 year: 2020 ident: 10.1016/j.phrs.2024.107175_bib96 article-title: Clinical efficacy and safety of aidi injection combination with vinorelbine and cisplatin for advanced non-small-cell lung carcinoma: A systematic review and meta-analysis of 54 randomized controlled trials publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104637 – volume: 20 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib16 article-title: Oral Chinese patent medicine combined with oxaliplatin-based chemotherapy regimen for the treatment of colorectal cancer: a network meta-analysis publication-title: Integr. Cancer Ther. doi: 10.1177/15347354211058169 – volume: 136 start-page: 35 issue: 1 year: 2012 ident: 10.1016/j.phrs.2024.107175_bib32 article-title: Subcellular targets of cisplatin cytotoxicity: An integrated view publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2012.07.003 – volume: 1 start-page: 280 issue: 4 year: 2009 ident: 10.1016/j.phrs.2024.107175_bib25 article-title: Inhibition of transcription by platinum antitumor compounds publication-title: Metallomics doi: 10.1039/b907567d – volume: 63 start-page: 5964 issue: 25 year: 2015 ident: 10.1016/j.phrs.2024.107175_bib76 article-title: Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: In vitro and in vivo studies publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b00782 – volume: 151 start-page: 549 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib22 article-title: Dynamic ginsenoside-sheltered nanocatalysts for safe ferroptosis-apoptosis combined therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.08.026 – volume: 155 year: 2022 ident: 10.1016/j.phrs.2024.107175_bib36 article-title: EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2022.113774 – volume: 35 start-page: 351 issue: 5 year: 2013 ident: 10.1016/j.phrs.2024.107175_bib58 article-title: Reversing cisplatin-resistant of Eca109/DDP cell line by ginsenoside Rg3 publication-title: Anat. Res. – volume: 29 start-page: 2051 issue: 10 year: 2006 ident: 10.1016/j.phrs.2024.107175_bib105 article-title: Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.29.2051 – volume: 116 start-page: 3436 issue: 5 year: 2016 ident: 10.1016/j.phrs.2024.107175_bib26 article-title: The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00597 – volume: 2021 start-page: 6640714 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib72 article-title: Ginsenoside Rb3 alleviates the toxic effect of cisplatin on the kidney during its treatment to oral cancer via TGF-beta-mediated mitochondrial apoptosis publication-title: Evid. Based Complement. Altern. Med. – volume: 43 start-page: 499 issue: 4 year: 2019 ident: 10.1016/j.phrs.2024.107175_bib83 article-title: Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2017.07.009 – volume: 47 start-page: 6645 issue: 19 year: 2018 ident: 10.1016/j.phrs.2024.107175_bib7 article-title: The side effects of platinum-based chemotherapy drugs: a review for chemists publication-title: Dalton Trans. doi: 10.1039/C8DT00838H – volume: 4 start-page: 190 issue: 1 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib21 article-title: The synthesis of a nanodrug using metal-based nanozymes conjugated with ginsenoside Rg3 for pancreatic cancer therapy publication-title: Nanoscale Adv. doi: 10.1039/D1NA00697E – volume: 55 start-page: 243 issue: 4 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib79 article-title: Protective effects of ginsenosides in cisplatin-induced kidney injury: A systematic review, meta-analysis publication-title: Indian J. Pharmacol. doi: 10.4103/ijp.ijp_251_23 – volume: 8 start-page: 175 issue: 3 year: 2011 ident: 10.1016/j.phrs.2024.107175_bib97 article-title: A meta-analysis of ginsenoside Rg3 for non-small cell lung cancer publication-title: Clin. Oncol. Cancer Res. doi: 10.1007/s11805-011-0578-4 – volume: 2 start-page: 2490 issue: 11 year: 2010 ident: 10.1016/j.phrs.2024.107175_bib33 article-title: Mechanisms of cisplatin nephrotoxicity publication-title: Toxins doi: 10.3390/toxins2112490 – volume: 56 start-page: 63 issue: 1 year: 2005 ident: 10.1016/j.phrs.2024.107175_bib81 article-title: American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-004-0956-1 – volume: 66 start-page: 1079 issue: 5 year: 2023 ident: 10.1016/j.phrs.2024.107175_bib1 article-title: Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea publication-title: Sci. China Life Sci. doi: 10.1007/s11427-022-2218-x – volume: 13 start-page: 303 year: 2021 ident: 10.1016/j.phrs.2024.107175_bib4 article-title: Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy publication-title: J. Exp. Pharmacol. doi: 10.2147/JEP.S267383 |
SSID | ssj0009410 |
Score | 2.492808 |
SecondaryResourceType | review_article |
Snippet | Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107175 |
SubjectTerms | Animals Anticancer Antineoplastic Agents - administration & dosage Antineoplastic Agents - therapeutic use Antineoplastic Combined Chemotherapy Protocols - therapeutic use Cisplatin Cisplatin - administration & dosage Cisplatin - adverse effects Cisplatin - therapeutic use Combined Therapy Ginsenoside Ginsenosides - administration & dosage Ginsenosides - pharmacology Ginsenosides - therapeutic use Humans Molecular Mechanism Neoplasms - drug therapy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4Qp15QobQsUJRKiAtEndm8ZnujqAghUXEAiVuUZBxpKzSLmN0D_x57MrOwB-iFa-TxWLET24nzmbFDr2BcBa-FslEKZaooKm9qocHYSQgVOhlKFK_-motbdXmn7161-qKasAwPnCfup6xDpBYxRZTouYMPmLMFU8lKQ2HGIdLuiz5vSKYGuF1VFv0TmVzNhTND4NxjhQOYwegVN9Sh9a94o7eizc7rnH9mG324yE-zmJtsDZotdnSd8aafTvjNy_Op9oQf8esXJOqnL6w-m7YPVOzWCPJWNUfzwky4UwbPL68wUf5FXKaPHAhNArlyOpvlnqdZXLQcKelMmjDFpzW0yEL4FcDdbXZ7_ufm7EL0bRVEVMbMBe4ooYYwKcgvhdIEDVp7b5M3sYYqWQnWpBBBpyJBiZQp4iZog5bGS23lV7bezBrYYbzQcVIGWXrMe1SSaWKiqsAqkLYuYqlHrBxm2cUec5xaX9y7objsnyPNONKMy5oZsePlNw8ZceNd6t-kvCUloWV3A2hDrrch9z8bGjE9qN71gUcOKJDV9N2f_xjsxOGqpKsW38Bs0TpJyIo427YYsW_ZgJYi0lUsgQztfoToe-wTCZRLMPfZ-vxxAd8xTJqHg25FPAMIwRFr priority: 102 providerName: Directory of Open Access Journals |
Title | Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration |
URI | https://dx.doi.org/10.1016/j.phrs.2024.107175 https://www.ncbi.nlm.nih.gov/pubmed/38582357 https://www.proquest.com/docview/3034246670 https://doaj.org/article/3dbc05960c3441bab788b68385e062bc |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemceGC-KYDKiOhXZhpUn9mt61iKiCmSWzSbpbtOChoSqumPezC3857TtKqB3bgGOvFTvye34f93s-EfHQiTo13kgkdOBPKBGacKpmMShfeGzAyGCj-uFTzG_HtVt4ekNlQC4Nplb3u73R60tZ9y6Sfzcmyric_c0RPV-AfiwRclirYhUYp__xnl-ZRiAGRgDOk7gtnuhwvmC-E7J4KaIC4Ru4Zp4Thv2ej_uWDJlt08ZQ86Z1IetZ95zNyEJvn5PiqQ6G-P6HXu6Kq9oQe06sdPvX9C1LO6naJKXANQxtWUvh3iI8Ti2hXjwXh8yn2Uq9oRIwJ6JXiji11tFqETUuBEneqEWm8LmMLXTC3B8P7ktxcfLmezVl_2QILQqk1Az3jy-iLDK2Vz5WXUUrndOVUKKOpNI9aVT5EWWVVzIGyCqAatZdcOS41f0UOm0UT3xCayVDknucOoiFR8apQQZioReS6zEIuRyQfZtmGHokcL8S4s0PK2W-LnLHIGdtxZkQ-bd9ZdjgcD1KfI_O2lIihnRoWq1-2FyLLSx_w8qEscPAJvfPaGK8MNzJmaurDiMiB9XZPJKGr-sHBPwxyYmGt4gGMa-Ji01qOeIsw2zobkdedAG0_EQ9oEXro6D9HfUse41OXi_mOHK5Xm_ge_KW1H6cFMSaPzr5-n1-O067DX9DGFlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NT9swFMAtVA7bZRrsqxtsnjRxGVaT-rPcWDVUBlRIKxI3y3YclGlKq6Y98N_vvXy06gEOuzqOk_jZ7yN-_pmQb07EofFOMqEDZ0KZwIxTGZNR6ZH3BowMBoo3UzW5E7_u5f0eGXd7YTCtstX9jU6vtXVbMmh7c7AoisHvFOnpCvxjUYPLIATaRzqV7JH988uryXTL3hUdlIAzvKHdO9OkeUGXIbV7KKAAQhu5Y59qjP-OmXrKDa3N0cVr8qr1I-l586oHZC-Wh-TktgFRP57S2XZfVXVKT-jtFlH9-IZk46JaYBZcydCMZRQ-H0LkWkq02ZIFEfQZtlIsaUTMBLRK8actdTSfh3VFoSb-rEbYeJHFCppgbofE-5bcXfycjSesPW-BBaHUioGq8Vn0owQNlk-Vl1FK53TuVMiiyTWPWuU-RJkneUyhZh5AO2ovuXJcav6O9Mp5GT8QmsgwSj1PHQREIuf5SAVhohaR6ywJqeyTtOtlG1oYOZ6J8dd2WWd_LErGomRsI5k--b65Z9GgOJ6t_QOFt6mJGO26YL58sO04sjzzAc8fSgIHt9A7r43xynAjY6KGPvSJ7ERvd0YlNFU8-_Cv3TixMF1xDcaVcb6uLEfkIvS2TvrkfTOANq-Ia7RIH_r4n0_9Ql5MZjfX9vpyevWJvMQrTWrmEemtlut4DO7Tyn9up8c_viAYFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cisplatin-based+combination+therapies%3A+Their+efficacy+with+a+focus+on+ginsenosides+co-administration&rft.jtitle=Pharmacological+research&rft.au=Li%2C+Keke&rft.au=Li%2C+Jiwen&rft.au=Li%2C+Zhongyu&rft.au=Men%2C+Lei&rft.date=2024-05-01&rft.eissn=1096-1186&rft.volume=203&rft.spage=107175&rft_id=info:doi/10.1016%2Fj.phrs.2024.107175&rft_id=info%3Apmid%2F38582357&rft.externalDocID=38582357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6618&client=summon |