Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis

Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1369543
Main Authors Svietlova, Nataliia, Zhyr, Liza, Reichelt, Michael, Grabe, Veit, Mithöfer, Axel
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 25.03.2024
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2024.1369543

Cover

Loading…
Abstract Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4 , which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2 , we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1 , suggesting non- NRT2.4 -related metabolic consequences in this knockout line.
AbstractList Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter , which is inducible by N deficiency, in grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line and two independent knockout lines, and , we analyzed gene expression and amino acid profiles. We showed that the regulation of expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the line shows unexpected effects on gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and , suggesting non- -related metabolic consequences in this knockout line.
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4 , which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2 , we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1 , suggesting non- NRT2.4 -related metabolic consequences in this knockout line.
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Author Svietlova, Nataliia
Zhyr, Liza
Mithöfer, Axel
Reichelt, Michael
Grabe, Veit
AuthorAffiliation 2 Department of Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany
1 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany
3 Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology , Jena , Germany
AuthorAffiliation_xml – name: 2 Department of Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany
– name: 1 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology , Jena , Germany
– name: 3 Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology , Jena , Germany
Author_xml – sequence: 1
  givenname: Nataliia
  surname: Svietlova
  fullname: Svietlova, Nataliia
– sequence: 2
  givenname: Liza
  surname: Zhyr
  fullname: Zhyr, Liza
– sequence: 3
  givenname: Michael
  surname: Reichelt
  fullname: Reichelt, Michael
– sequence: 4
  givenname: Veit
  surname: Grabe
  fullname: Grabe, Veit
– sequence: 5
  givenname: Axel
  surname: Mithöfer
  fullname: Mithöfer, Axel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38633457$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rFTEUhgep2Fr7A9xIlm7uNd8zs5JStBaKglRwF5LMyTVlJhmTTMF_4M8203srrWAW-Tzv8yYn52VzFGKApnlN8Jaxrn_n5jFvKaZ8S5jsBWfPmhMiJd9wSb8fPZofN2c53-LaBMZ9375ojlknGeOiPWl-X45L0ZMPgHRGOY6Agi8p7iDU1ZIsoDnBHYSSkQ_DYouPAUV3H6ULoNqHPMdUIKEqAvT56w3dcqTDgLRzYKtw5UekrR_QBEWbOPo8VRw6T9r4Ic7Z51fNc6fHDGeH8bT59vHDzcWnzfWXy6uL8-uN5VKWjbTAOMaEcC6F6OuDBsF7bKGeOmBGaty6mo_q3JvODqKVnGDqDDaYdJiy0-Zqzx2ivlVz8pNOv1TUXt1vxLRTOhVvR1BESNO2kvZCYC4N60xrGHGDEM51jrLKer9nzYuZYLA1S0mPT6BPT4L_oXbxTpF6JUo5r4S3B0KKPxfIRU0-WxhHHSAuWTHMSTUibL34m8dmf10e_rIGtPsAm2LOCZyyvuj1v6q3HxXBai0ctRaOWgtHHQqnKsk_ygf4_zV_AFwrx-c
CitedBy_id crossref_primary_10_1016_j_indcrop_2025_120573
Cites_doi 10.1093/jxb/erx013
10.1016/0168-9452(95)04284-9
10.1111/j.1469-8137.2008.02546.x
10.1111/j.1469-8137.2008.02751.x
10.1126/science.1086391
10.5194/bg-9-1509-2012
10.1105/tpc.110.079392
10.1111/aab.12045
10.3390/plants9080972
10.1016/S0168-9452(97)00213-6
10.1007/s00425-017-2727-3
10.1093/jxb/erad149
10.1016/j.plaphy.2021.12.032
10.1093/pcp/pcad054
10.1016/j.pbi.2017.05.010
10.1104/pp.106.092205
10.3389/fbioe.2016.00014
10.1105/tpc.19.00748
10.1093/pcp/pcg036
10.1104/pp.82.4.1057
10.1016/j.molcel.2017.12.002
10.3389/fpls.2023.1281495
10.1093/jxb/erh066
10.1186/s12864-015-1892-7
10.1016/j.cell.2014.10.015
10.1093/nar/29.9.e45
10.1016/j.tplants.2012.04.006
10.3390/ijms21103557
10.1093/pcp/pcad071
10.1515/opag-2019-0016
10.1016/S0005-2736(00)00144-9
10.1007/BF00202328
10.1105/tpc.111.092221
10.3390/ijms242216128
10.1093/pcp/pcj075
10.1046/j.1365-313X.1999.00396.x
10.1016/j.semcdb.2017.07.010
10.1016/0168-9452(86)90106-8
10.1242/dev.160887
10.1093/jexbot/53.370.825
10.1080/01904160902787842
10.1023/A:1023929630687
10.1093/jxb/erm208
10.1023/A:1024899808018
10.1016/j.cj.2021.04.002
10.1104/pp.84.3.775
10.1016/j.pbi.2012.02.001
10.3923/rjes.2009.163.173
10.1111/tpj.12626
10.1093/pcp/pcg094
10.1016/S1360-1385(98)01231-X
ContentType Journal Article
Copyright Copyright © 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer.
Copyright © 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer
Copyright_xml – notice: Copyright © 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer.
– notice: Copyright © 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2024.1369543
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_156b7762955046b38b7b31fd55ff8f23
PMC11022244
38633457
10_3389_fpls_2024_1369543
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c466t-6ce340011446559009d5490ce466fe3b6a07f369ffe9b8cd5764102fb0b018023
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:28:29 EDT 2025
Thu Aug 21 18:34:20 EDT 2025
Fri Sep 05 10:25:09 EDT 2025
Thu Apr 03 06:59:14 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Tue Jul 01 01:39:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords high-affinity nitrate transporters (NRTs)
nitrogen-deficiency
Arabidopsis
amino acids
nitrate
NRT2.4
glutamine
NRT2.5
Language English
License Copyright © 2024 Svietlova, Zhyr, Reichelt, Grabe and Mithöfer.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-6ce340011446559009d5490ce466fe3b6a07f369ffe9b8cd5764102fb0b018023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Noelia Foresi, CONICET Mar del Plata, Argentina
Edited by: Enrique Ostria-Gallardo, University of Concepcion, Chile
Reviewed by: Guillaume Pilot, Virginia Tech, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2024.1369543
PMID 38633457
PQID 3041233132
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_156b7762955046b38b7b31fd55ff8f23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11022244
proquest_miscellaneous_3041233132
pubmed_primary_38633457
crossref_citationtrail_10_3389_fpls_2024_1369543
crossref_primary_10_3389_fpls_2024_1369543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-25
PublicationDateYYYYMMDD 2024-03-25
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Okamoto (B30) 2003; 44
Bonner (B3) 1997; 130
Chaput (B5) 2023; 74
Schobert (B38) 1990; 181
Rhodes (B35) 1986; 82
Bonner (B4) 1996; 113
Lardos (B22) 2024; 14
Orsel (B31) 2002; 53
Huang (B18) 2017; 246
Zoufan (B52) 2009; 3
Yao (B50) 2020; 9
Lee (B23) 2023; 64
Forsum (B12) 2008; 179
Andrews (B2) 2013; 163
Liu (B25) 2010; 22
Tegeder (B43) 2012; 15
Chellamuthu (B6) 2014; 159
Näsholm (B27) 2009; 182
Noroozlo (B29) 2019; 4
Dinkeloo (B8) 2018; 74
Hao (B17) 2020; 21
Lezhneva (B24) 2014; 80
(B34) 2018
Crocoll (B7) 2016; 4
Svietlova (B42) 2023; 24
Han (B16) 2022; 172
Xuan (B49) 2017; 39
Kiba (B21) 2012; 24
Rognes (B37) 1986; 43
Ortiz-Lopez (B32) 2000
Gent (B13) 2017; 68
Walch-Liu (B46) 2006; 47
Kawade (B20) 2023; 64
Shi (B39) 2018; 145
Fischer (B10) 1998; 3
Miller (B26) 2008; 59
Zhuo (B51) 1999; 17
Rhodes (B36) 1987; 84
Vidal (B45) 2020; 32
Kan (B19) 2015; 16
Sivaguru (B40) 2003; 44
Wang (B48) 2018; 69
Alonso (B1) 2003; 301
Nazoa (B28) 2003; 52
Gioseffi (B14) 2012; 9
Guo (B15) 2021; 9
Pfaffl (B33) 2001; 29
Forsbach (B11) 2003; 52
Wang (B47) 2012; 17
El-Naggar (B9) 2009; 32
Svennerstam (B41) 2007; 143
Thornton (B44) 2004; 55
References_xml – volume: 68
  start-page: 2531
  year: 2017
  ident: B13
  article-title: How do plants sense their nitrogen status
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx013
– volume: 113
  start-page: 43
  year: 1996
  ident: B4
  article-title: Antagonism by L-glutamine of toxicity and growth inhibition caused by other amino acids in cell cultures of Nicotiana silvestris
  publication-title: Plant Sci.
  doi: 10.1016/0168-9452(95)04284-9
– volume: 179
  start-page: 1058
  year: 2008
  ident: B12
  article-title: Capacities and constraints of amino acid utilization in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02546.x
– volume: 182
  start-page: 31
  year: 2009
  ident: B27
  article-title: Uptake of organic nitrogen by plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02751.x
– volume: 301
  start-page: 653
  year: 2003
  ident: B1
  article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1086391
– volume: 9
  start-page: 1509
  year: 2012
  ident: B14
  article-title: Interactions between uptake of amino acids and inorganic nitrogen in wheat plants
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1509-2012
– volume: 22
  start-page: 3845
  year: 2010
  ident: B25
  article-title: Amino acid homeostasis modulates salicylic acid–associated redox status and defense responses in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.079392
– volume: 163
  start-page: 174
  year: 2013
  ident: B2
  article-title: Do plants need nitrate? The mechanisms by which nitrogen form affects plants
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12045
– volume: 9
  year: 2020
  ident: B50
  article-title: Amino acid transporters in plants: Identification and function
  publication-title: Plants
  doi: 10.3390/plants9080972
– volume: 130
  start-page: 133
  year: 1997
  ident: B3
  article-title: Recognition of specific patterns of amino acid inhibition of growth in higher plants, uncomplicated by glutamine-reversible ‘general amino acid inhibition
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(97)00213-6
– volume: 246
  start-page: 737
  year: 2017
  ident: B18
  article-title: Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-017-2727-3
– volume: 74
  start-page: 4244
  year: 2023
  ident: B5
  article-title: Characterization of the signalling pathways involved in the repression of root nitrate uptake by nitrate in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erad149
– volume: 172
  start-page: 1
  year: 2022
  ident: B16
  article-title: Effects of exogenous L-Glutamine as a sole nitrogen source on physiological characteristics and nitrogen use efficiency of poplar
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.12.032
– volume: 64
  start-page: 1466
  year: 2023
  ident: B23
  article-title: Glutamine metabolism, sensing and signaling in plants
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcad054
– volume: 39
  start-page: 57
  year: 2017
  ident: B49
  article-title: Plant nitrogen nutrition: sensing and signaling
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.05.010
– year: 2018
  ident: B34
  article-title: R: A language and environment for statistical computing
– volume: 143
  start-page: 1853
  year: 2007
  ident: B41
  article-title: Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.092205
– volume: 4
  year: 2016
  ident: B7
  article-title: Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00014
– volume: 32
  start-page: 2094
  year: 2020
  ident: B45
  article-title: Nitrate in 2020: Thirty years from transport to signaling networks
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00748
– volume: 44
  start-page: 304
  year: 2003
  ident: B30
  article-title: Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcg036
– volume: 82
  start-page: 1057
  year: 1986
  ident: B35
  article-title: Amino acid metabolism of Lemna minor L. I. Responses to methionine sulfoximine
  publication-title: Plant Physiol.
  doi: 10.1104/pp.82.4.1057
– volume: 69
  start-page: 100
  year: 2018
  ident: B48
  article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.002
– volume: 14
  year: 2024
  ident: B22
  article-title: Discovery of the biostimulant effect of asparagine and glutamine on plant growth in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1281495
– volume: 55
  start-page: 761
  year: 2004
  ident: B44
  article-title: Inhibition of nitrate influx by glutamine in Lolium perenne depends upon the contribution of the HATS to the total influx
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh066
– volume: 16
  start-page: 731
  year: 2015
  ident: B19
  article-title: Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1892-7
– volume: 159
  start-page: 1188
  year: 2014
  ident: B6
  article-title: A widespread glutamine-sensing mechanism in the plant kingdom
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.015
– volume: 29
  year: 2001
  ident: B33
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.9.e45
– volume: 17
  start-page: 458
  year: 2012
  ident: B47
  article-title: Uptake, allocation and signaling of nitrate
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.006
– volume: 21
  year: 2020
  ident: B17
  article-title: Function and regulation of ammonium transporters in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21103557
– volume: 64
  start-page: 1482
  year: 2023
  ident: B20
  article-title: The roles of functional amino acids in plant growth and development
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcad071
– volume: 4
  start-page: 164
  year: 2019
  ident: B29
  article-title: Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth
  publication-title: Open Agricult.
  doi: 10.1515/opag-2019-0016
– start-page: 275
  year: 2000
  ident: B32
  article-title: Amino acid transporters in plants
  publication-title: Biochim. Biophys. Acta – Biomembr.
  doi: 10.1016/S0005-2736(00)00144-9
– volume: 181
  start-page: 85
  year: 1990
  ident: B38
  article-title: Transfer of amino acids and nitrate from roots into the xylem of Ricinus communis seedlings
  publication-title: Planta
  doi: 10.1007/BF00202328
– volume: 24
  start-page: 245
  year: 2012
  ident: B21
  article-title: The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.092221
– volume: 24
  year: 2023
  ident: B42
  article-title: The beneficial fungus Mortierella hyalina modulates amino acid homeostasis in Arabidopsis under nitrogen starvation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms242216128
– volume: 47
  start-page: 1045
  year: 2006
  ident: B46
  article-title: Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcj075
– volume: 17
  start-page: 563
  year: 1999
  ident: B51
  article-title: Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00396.x
– volume: 74
  start-page: 105
  year: 2018
  ident: B8
  article-title: Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.07.010
– volume: 43
  start-page: 45
  year: 1986
  ident: B37
  article-title: Effects of exogenous amino acids on growth and activity of four aspartate pathway enzymes in barley
  publication-title: Plant Sci.
  doi: 10.1016/0168-9452(86)90106-8
– volume: 145
  start-page: dev160887
  year: 2018
  ident: B39
  article-title: TOR signaling in plants: conservation and innovation
  publication-title: Development
  doi: 10.1242/dev.160887
– volume: 53
  start-page: 825
  year: 2002
  ident: B31
  article-title: Nitrate transport in plants: which gene and which control
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.370.825
– volume: 32
  start-page: 725
  year: 2009
  ident: B9
  article-title: Simultaneous uptake of multiple amino acids by wheat
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160902787842
– volume: 52
  start-page: 161
  year: 2003
  ident: B11
  article-title: A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1023929630687
– volume: 59
  start-page: 111
  year: 2008
  ident: B26
  article-title: Amino acids and nitrate as signals for the regulation of nitrogen acquisition
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm208
– volume: 52
  start-page: 689
  year: 2003
  ident: B28
  article-title: Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1024899808018
– volume: 9
  start-page: 530
  year: 2021
  ident: B15
  article-title: Function, transport, and regulation of amino acids: What is missing in rice
  publication-title: Crop J.
  doi: 10.1016/j.cj.2021.04.002
– volume: 84
  start-page: 775
  year: 1987
  ident: B36
  article-title: Amino acid metabolism of Lemna minor L. II. Responses to chlorsulfuron
  publication-title: Plant Physiol.
  doi: 10.1104/pp.84.3.775
– volume: 15
  start-page: 315
  year: 2012
  ident: B43
  article-title: Transporters for amino acids in plant cells: some functions and many unknowns
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2012.02.001
– volume: 3
  start-page: 163
  year: 2009
  ident: B52
  article-title: The trend of HATS nitrate uptake in response to nitrate and glutamine in Nicotiana plunbaginifolia plant
  publication-title: Res. J. Environ. Sci.
  doi: 10.3923/rjes.2009.163.173
– volume: 80
  start-page: 230
  year: 2014
  ident: B24
  article-title: The Arabidopsis nitrate transporter NRT 2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants
  publication-title: Plant J.
  doi: 10.1111/tpj.12626
– volume: 44
  start-page: 667
  year: 2003
  ident: B40
  article-title: Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcg094
– volume: 3
  start-page: 188
  year: 1998
  ident: B10
  article-title: Amino acid transport in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(98)01231-X
SSID ssj0000500997
Score 2.3882713
Snippet Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1369543
SubjectTerms amino acids
Arabidopsis
glutamine
high-affinity nitrate transporters (NRTs)
nitrate
nitrogen-deficiency
Plant Science
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NBL6GfqNA1T6CngZmNJtnxsStNQaA4hgdyEPolh117WzqH_oD87M5az7JaSXHoy2LIsZt5Yb-TxE2OfESfROFvn3HqX41uyyOsQVc6lsrIwJ0UI9KPwr4vy_Fr8vJE3G1t9UU1YkgdOhjvG_MJWGLE1UmlRWq5sZbF_L2WMKhajzifOeRvJVFL1JupTpc-YmIXVx3E5J3XuQlBhVy0F35qIRr3-f5HMv2slNyafs5dsd2KN8DWN9hV7FtrX7Plph8zu9xv25wfCxyyQL4LpAcEUAAN11SE2IC3OwzIpNfWAKXjSi4Uujq2Qa8KwVjhfAd4U4OLyqvgiwLQeTCr4AOq_A-MaD4swIHTmTb_A7nBQxja-W_ZN_5Zdn32_-naeTzss5E6U5ZCXLnAx_k9LMmo12sxjvjhzAa_GwG1pZlVEc-GTaqucx-REICOJlpZPSTruHdtpuza8Z4CRr6zy3uBBlCqaOnovlZHexqCUy9jswdzaTfLjtAvGXGMaQh7S5CFNHtKThzJ2tL5lmbQ3Hmt8Sj5cNyTZ7PEEgklPYNJPgSljnx4QoDHM6NuJaUN312tOumScdC4ztpcQsX4UVyXnQlYZU1tY2RrL9pW2uR2lvE_GhFuI_f8x-g_sBVmEKuQKecB2htVd-IiUabCHY3TcA2j-FUg
  priority: 102
  providerName: Directory of Open Access Journals
Title Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis
URI https://www.ncbi.nlm.nih.gov/pubmed/38633457
https://www.proquest.com/docview/3041233132
https://pubmed.ncbi.nlm.nih.gov/PMC11022244
https://doaj.org/article/156b7762955046b38b7b31fd55ff8f23
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpWkoupe9uH0GFngpOdy1ZKx9KaUqTUEgOJQt7E3qmhl17azvQ_IP-7M5I3iVbtr3YYMsjW_ONZ0aWvyHkHeAkaGvKjBlnM3hL5lnpg8xYIU2R60nuPf4ofH4hzmb827yY75F1eathALudqR3Wk5q1i6NfP28-gcF_xIwT_O2HsFog8XbOcc1WWXB2h9wFxyQQ5OdDtJ-ovjEeiuVWhOAZF_k8fefcLeWA3GdSMMbRdd1yWpHbf1dA-ve6yluO6uQheTBEmPRzgsQjsufrx-TecQNR4M0T8vsUoKaXEFtS3VEAnqdg1G0DOKJpIp-uEqtTRyFdT9yytAmxFcSltN-wobcULvL04vtlfsSprh3VaXEIRfkN1bZydOl7gNmi6pYgDm5Km8o1q67qnpLZydfLL2fZUI0hs1yIPhPWMx7_vUXKtRKG0kFuObYezgbPjNDjaYCRg55KI62DRIZD9BIMTrUizdwzsl83tX9BKLwlpJHOadhxIYMug3OF1IUzwUtpR2S8Hm5lB6pyrJixUJCyoLIUKkuhstSgrBF5v7lklXg6_tf4GHW4aYgU2_FA016pwWIVJLZmCq6ihByOC8OkmRoAtiuKEGTIQcjbNQIUmCR-Z9G1b647xZDDjCEn5og8T4jYdLVG1IjILaxs3cv2mbr6EWm_JzE55_zlP4W-Igf4mLhELi9ek_2-vfZvIGbqzWGca4Dt6XxyGK3iD8TDFTQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamine+as+sole+nitrogen+source+prevents+induction+of+nitrate+transporter+gene+NRT2.4+and+affects+amino+acid+metabolism+in+Arabidopsis&rft.jtitle=Frontiers+in+plant+science&rft.au=Svietlova%2C+Nataliia&rft.au=Zhyr%2C+Liza&rft.au=Reichelt%2C+Michael&rft.au=Grabe%2C+Veit&rft.date=2024-03-25&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=15&rft.spage=1369543&rft_id=info:doi/10.3389%2Ffpls.2024.1369543&rft_id=info%3Apmid%2F38633457&rft.externalDocID=38633457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon